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Description

This package contains many tools and techniques used in the field of pedometrics (see https://en.wikipedia.org/wiki/Pedometric_mapping
for a definition of pedometrics). These tools and techniques were developed to fulfill the demands
created by the PhD research project (2012-2016) entitled “Contribution to the Construction of Mod-
els for Predicting Soil Properties”, developed by Alessandro Samuel-Rosa under the supervision of
Dr Lúcia HC Anjos (Universidade Federal Rural do Rio de Janeiro, Brazil), Dr Gustavo M Vasques
(Embrapa Solos, Brazil), and Dr Gerard B M Heuvelink (ISRIC - World Soil Information, the
Netherlands). The project is/was funded by the CNPq Foundation (Process 140720/2012-0), Min-
istry of Science and Technology of Brazil, Brasília, DF, 70040-020, Brazil, phone +55 (61) 2022
6002, and the CAPES Foundation (Process ID BEX 11677/13-9), Ministry of Education of Brazil,
Brasília, DF, 70040-020, Brazil, phone: +55 (61) 2022 6210.

Details

Several functions simply extend the functionalities of other functions commonly used for the anal-
ysis of pedometric data. It should be noted that changes are likely to occur quite often and the use
of this package as a dependency for other packages is strongly discouraged.

Author(s)

Author and Maintainer: Alessandro Samuel-Rosa <alessandrosamuelrosa@gmail.com>.

adjR2 Adjusted coefficient of determination

Description

Calculates the adjusted coefficient of determination of a multiple linear regression model.

Usage

adjR2(r2, n, p)

Arguments

r2 Numeric vector with the coefficient of determination to be adjusted.

n Numeric vector providing the number of observations used to fit the multiple
linear regression model.

p Numeric vector providing the number of parameters included in the multiple
linear regression model.

Details

Details will be added later.

Value

A numeric vector with the adjusted coefficient of determination.
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Author(s)

Alessandro Samuel-Rosa <alessandrosamuelrosa@gmail.com>

References

Coefficient of determination. Wikipedia, The Free Encyclopedia. Available at https://en.wikipedia.org/wiki/Coefficient_of_determination.

Examples

adjR2(r2 = 0.95, n = 100, p = 80)

bbox2sp Create Spatial object from a bounding box

Description

This function takes the bounding box of a Spatial* object and creates a SpatialPoints* or Spa-
tialPolygons* object from it.

Usage

bbox2sp(obj, sp = "SpatialPolygons", keep.crs = TRUE)

Arguments

obj Object of class Spatial*.

sp Class of the resulting object. Available options are "SpatialPoints", "SpatialPointsDataFrame",
"SpatialPolygons" and "SpatialPolygonsDataFrame".

keep.crs Logical for assigning the same coordinate reference system to the resulting Spa-
tial* object.

Value

An object of class SpatialPoints* or SpatialPolygons*.

Note

Some of the solutions used to build this function were found in the source code of the R-package in-
tamapInteractive. As such, the authors of that package, Edzer Pebesma <edzer.pebesma@uni-muenster.de>
and Jon Skoien <jon.skoien@gmail.com>, are entitled ‘contributors’ to the R-package pedomet-
rics.

Author(s)

Alessandro Samuel-Rosa <alessandrosamuelrosa@gmail.com>
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References

Edzer Pebesma, Jon Skoien with contributions from Olivier Baume, A. Chorti, D.T. Hristopulos,
S.J. Melles and G. Spiliopoulos (2013). intamapInteractive: procedures for automated interpola-
tion - methods only to be used interactively, not included in intamap package. R package version
1.1-10. https://CRAN.R-project.org/package=intamapInteractive

Examples

require(sp)
data(meuse)
coordinates(meuse) <- ~ x + y
bbox2sp(meuse, keep.crs = FALSE)

buildMS Build a series of linear models using automated variable selection

Description

This function allows building a series of linear models (lm) using one or more automated variable
selection implemented in function stepVIF and stepAIC.

Usage

buildMS(
formula,
data,
vif = FALSE,
vif.threshold = 10,
vif.verbose = FALSE,
aic = FALSE,
aic.direction = "both",
aic.trace = FALSE,
aic.steps = 5000,
...

)

Arguments

formula A list containing one or several model formulas (a symbolic description of the
model to be fitted).

data Data frame containing the variables in the model formulas.

vif Logical for performing backward variable selection using the Variance-Inflation
Factor (VIF). Defaults to VIF = FALSE.

vif.threshold Numeric value setting the maximum acceptable VIF value. Defaults to vif.threshold
= 10.

https://CRAN.R-project.org/package=intamapInteractive


6 buildMS

vif.verbose Logical for printing iteration results of backward variable selection using the
VIF. Defaults to vif.verbose = FALSE.

aic Logical for performing variable selection using Akaike Information Criterion
(AIC). Defaults to aic = FALSE.

aic.direction Character string setting the direction of variable selection when using AIC.
Available options are "both", "forward", and "backward". Defaults to aic.direction
= "both".

aic.trace Logical for printing iteration results of variable selection using the AIC. Defaults
to aic.trace = FALSE.

aic.steps Integer value setting the maximum number of steps to be considered for variable
selection using the AIC. Defaults to aic.steps = 5000.

... Further arguments passed to the function stepAIC.

Details

This function was devised to deal with a list of linear model formulas. The main objective is to bring
together several functions commonly used when building linear models, such as automated variable
selection. In the current implementation, variable selection can be done using stepVIF or stepAIC
or both. stepVIF is a backward variable selection procedure, while stepAIC supports backward,
forward, and bidirectional variable selection. For more information about these functions, please
visit their respective help pages.

An important feature of buildMS is that it records the initial number of candidate predictor variables
and observations offered to the model, and adds this information as an attribute to the final selected
model. Such feature was included because variable selection procedures result biased linear models
(too optimistic), and the effective number of degrees of freedom is close to the number of candi-
date predictor variables initially offered to the model (Harrell, 2001). With the initial number of
candidate predictor variables and observations offered to the model, one can calculate penalized or
adjusted measures of model performance. For models built using builtMS, this can be done using
statsMS.

Some important details should be clear when using buildMS:

1. this function was originally devised to deal with a list of formulas, but can also be used with a
single formula;

2. in the current implementation, stepVIF runs before stepAIC;

3. function arguments imported from stepAIC and stepVIF were named as in the original func-
tions, and received a prefix (aic or vif) to help the user identifying which function is affected
by a given argument without having to go check the documentation.

Value

A list containing the fitted linear models.

TODO

Add option to set the order in which stepAIC and stepVIF are run.
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Author(s)

Alessandro Samuel-Rosa <alessandrosamuelrosa@gmail.com>

References

Harrell, F. E. (2001) Regression modelling strategies: with applications to linear models, logistic
regression, and survival analysis. First edition. New York: Springer.

Venables, W. N. and Ripley, B. D. (2002) Modern applied statistics with S. Fourth edition. New
York: Springer.

See Also

stepAIC, stepVIF, statsMS.

Examples

## Not run:
# based on the second example of function stepAIC
require(MASS)
cpus1 <- cpus
for(v in names(cpus)[2:7])

cpus1[[v]] <- cut(cpus[[v]], unique(stats::quantile(cpus[[v]])),
include.lowest = TRUE)

cpus0 <- cpus1[, 2:8] # excludes names, authors' predictions
cpus.samp <- sample(1:209, 100)
cpus.form <- list(formula(log10(perf) ~ syct + mmin + mmax + cach + chmin +

chmax + perf),
formula(log10(perf) ~ syct + mmin + cach + chmin + chmax),
formula(log10(perf) ~ mmax + cach + chmin + chmax + perf))

data <- cpus1[cpus.samp,2:8]
cpus.ms <- buildMS(cpus.form, data, vif = TRUE, aic = TRUE)

## End(Not run)

cdfPlot Plot estimated cumulative distribution function with confidence limits

Description

This function is a modified version of cdf.plot() of spsurvey-package including new argument
options.

Usage

cdfPlot(
obj,
ind,
units.cdf = "percent",
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type.plot = "s",
type.cdf = "continuous",
logx = "",
xlbl = NULL,
ylbl = "Percent",
ylbl.r = NULL,
figlab = NULL,
legloc = "BR",
confcut = 5,
show.conflev = TRUE,
conflev = 95,
show.param = TRUE,
round = 0,
col.param = "black",
...

)

Arguments

obj Object with the estimated CDF. The resulting object of cont.analysis() of
spsurvey-package.

ind Indicator variable. The name of the variable as displayed in the resulting object
of cont.analysis().

units.cdf Indicator for the type of units in which the CDF is plotted, where “percent”
means the plot is in terms of percent of the population, and “units” means the
plot is in terms of units of the population. Defaults to units.cdf = "percent".

type.plot Type of plot. Desired type of plot to be produced, with options type.plot
= "l", for ‘line’, and type.plot = "s" for ‘stair’. See ‘Details’. Defaults to
type.plot = "s".

type.cdf Character string consisting of the value “continuous” or “ordinal” that controls
the type of CDF plot for each indicator. Defaults to type.cdf = "continuous".

logx Character string consisting of the value "" or "x" that controls whether the x
axis uses the original scale ("") or the base 10 logarithmic scale ("x"). Defaults
to logx = "".

xlbl Character string providing the x-axis label. If this argument equals NULL, then
the indicator name is used as the label. Defaults to xlbl = NULL.

ylbl Character string providing the the y-axis label. Defaults to ylbl = "Percent".

ylbl.r Character string providing the label for the right side y-axis, where ylbl.r =
NULL means a label is not created, and ylbl.r = "Same" means the label is the
same as the left side label (i.e., argument ylbl). Defaults to ylbl.r = NULL.

figlab Character string providing the plot title. Defaults to figlab = NULL.

legloc Indicator for location of the plot legend, where legloc = "BR" means bottom
right, legloc = "BL" means bottom left, legloc = "TR" means top right, and
legloc = "TL" means top left. Defaults to legloc = "BR".



cdfPlot 9

confcut Numeric value that controls plotting confidence limits at the CDF extremes.
Confidence limits for CDF values (percent scale) less than confcut or greater
than 100 minus confcut are not plotted. A value of zero means confidence
limits are plotted for the complete range of the CDF. Defaults to confcut = 5.

show.conflev Logical for showing the confidence limits of the CDF. Defaults to show.conflev
= TRUE.

conflev Numeric value of the confidence level used for confidence limits. Defaults to
conflev = 95.

show.param Logical for showing the parameters of the CDF. Available parameters are the
mean, the median, and a percentile defined by the argument conflev. The leg-
end displays de actual values of all three parameters, including the standard devi-
ation of the mean. The percentile value is calculated using spsurvey::interp.cdf().

round Numeric to set the rounding level of the parameters of the CDF.

col.param Color of the lines showing the parameters of the CDF. Defaults to col.param =
"black".

... Additional arguments passed to plot(). See ‘Details’.

Details

Parameter type.plot is used only when type.cdf = "Continuous".

Care should be taken with possible conflicts between the arguments of the original function cdf.plot
and those passed to plot() using .... The existence of conflicts between these two functions was
one of the reasons for creating this new implementation.

Value

A plot of the estimated cumulative distribution function with confidence limits.

Note

Most of the source code that constitutes this function was originally published in the spsurvey-
package, version 2.6 (2013-09-20). The authors were asked to include a few new functionalities,
but did not seem to be interested in doing so, since no reply was obtained. This implementation
is a way of including such functionalities. When using this function, credit should be given to the
authors of the original implementation in the spsurvey-package.

Author(s)

Tony Olsen <Olsen.Tony@epa.gov>
Tom Kincaid <Kincaid.Tom@epa.gov>
Alessandro Samuel-Rosa <alessandrosamuelrosa@gmail.com>

References

Brus, D. J., Kempen, B. and Heuvelink, G. B. M. (2011). Sampling for validation of digital soil
maps. European Journal of Soil Science, v. 62, p. 394-407.
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Diaz-Ramos, S., D.L. Stevens, Jr., and A.R. Olsen. (1996). EMAP Statistical Methods Manual.
EPA/620/R-96/XXX. Corvallis, OR: U.S. Environmental Protection Agency, Office of Research and
Development, National Health Effects and Environmental Research Laboratory, Western Ecology
Division.

Kincaid, T. M. and Olsen, A. R. (2013) spsurvey: Spatial Survey Design and Analysis. R package
version 2.6. URL: http://www.epa.gov/nheerl/arm/.

See Also

cdf.plot.

Examples

## Not run:
if (require(spsurvey)) {
## Estimate the CDF
my.cdf <- spsurvey::cont.analysis(spsurvey.obj = my.spsurvey)

## See indicator levels in the resulting object
levels(my.cdf$Pct$Indicator)

## Plot CDF
cdfPlot(obj = my.cdf, ind = "dz", figlab = "",

xlbl = "Difference (m)", xlim = c(-30, 10), type.plot = "s")
}

## End(Not run)

cdfStats Descriptive statistics of the cumulative distribution function of a con-
tinuous variable

Description

This function returns summary statistics of the cumulative distribution function of a continuous
variable estimated with spsurvey-package.

Usage

cdfStats(obj, ind, all = TRUE)

Arguments

obj Object containing the estimated cumulative distribution function of the continu-
ous variable. The resulting object of cont.analysis() of spsurvey-package.

ind Indicator variable. The name of the continuous variable as displayed in the
resulting object of cont.analysis().

http://www.epa.gov/nheerl/arm/
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all Summary statistics to be returned. The default option (all = TRUE) returns all
summary statistics available. If all = FALSE, then only estimated population
mean and standard deviation are returned. See ‘Details’.

Details

The function cont.analysis() of spsurvey-package estimates the population total, mean, vari-
ance, and standard deviation of a continuous variable. It also estimates the standard error and
confidence bounds of these population estimates. In some cases it may be interesting to see all
estimates, for which one uses all = TRUE. However, in other circumstances there might be interest
only in taking a look at the estimated population mean and standard deviation. Then the argument
all has to be set to FALSE.

Value

A data.frame containing summary statistics of the cumulative distribution function of a continuous
variable.

Author(s)

Alessandro Samuel-Rosa <alessandrosamuelrosa@gmail.com>

References

Kincaid, T. M. and Olsen, A. R. (2013). spsurvey: Spatial Survey Design and Analysis. R package
version 2.6. URL: http://www.epa.gov/nheerl/arm/.

See Also

cont.analysis.

Examples

## Not run:
if (require(spsurvey)) {
## Estimate the CDF
my.cdf <- spsurvey::cont.analysis(spsurvey.obj = my.spsurvey)

## See indicator levels in the resulting object
levels(my.cdf$Pct$Indicator)

## Return all summary statistics of indicator variable 'dx'
cdfStats(my.cdf, "dx", all = TRUE)
}

## End(Not run)

http://www.epa.gov/nheerl/arm/
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cdfTable Table with descriptive statistics of an estimated cumulative distribu-
tion function

Description

This function returns a table containing the descriptive statistics of the cumulative distribution func-
tion of a set of continuous variables. TeX code is printed to copy and paste in a document.

Usage

cdfTable(x, type = "xy", rounding = 0, tex = FALSE, data.frame = FALSE)

Arguments

x Object with the estimated cumulative distribution function of the set of continu-
ous variables. The resulting object of cont.analysis() of spsurvey-package.

type Type of data under analysis. Defaults to type = "xy". See ‘Details’.

rounding Rounding level of the data in the output table. Defaults to rounding = 0.

tex Logical for creating TeX code. Defaults to tex = FALSE.

data.frame Logical for returning a data.frame object. Defaults to data.frame = FALSE.

Details

Summary statistics included in the table (estimated population mean and standard deviation) are ob-
tained from the resulting object of cont.analysis() by internally using the function cdfStats().

There are two types of data that can be submitted to function cdfTable(). The first (type = "xy")
is composed by two instances (‘x’ and ‘y’) and is produced during horizontal (positional) valida-
tion exercises (validation in the geographic space). Thus, ‘x’ and ‘y’ represent, respectively, the
horizontal displacement (error) in ‘x’ and ‘y’ coordinates.

The second type of data (type = "z") is composed by only one instance (‘z’) and is generated by
vertical validation exercises (validation in the attribute space). Thus, ‘z’ represents the vertical
displacement (error) of the attribute ‘z’ being measured.

Value

Returned value depends on how arguments type and tex are set.

list("type") If type = "xy", then the function returns a table with estimated population mean
and standard deviation of error statistics for ‘x’ and ‘y’ coordinates. These error
statistics include the mean error, mean absolute error, and mean square error. It
also returns the estimated mean and mean square error vector (module), and the
estimated mean azimuth. The number of ground control points used to make the
estimates is printed by default.
If type = "z", then the function returns a table with estimated population mean
and standard deviation of error statistics for ‘z’, the attribute under analysis.
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These error statistics include the mean error, mean absolute error, and mean
square error. The number of ground control points used to make the estimates is
printed by default.

list("tex") If tex = TRUE, them the function prints the TeX code for the table defined by the
argument type. Otherwise the TeX code is not generated.

Author(s)

Alessandro Samuel-Rosa <alessandrosamuelrosa@gmail.com>

References

Kincaid, T. M. and Olsen, A. R. (2013). spsurvey: Spatial Survey Design and Analysis. R package
version 2.6. URL: http://www.epa.gov/nheerl/arm/.

See Also

cdfStats, cont.analysis.

Examples

## Not run:
if (require(spsurvey)) {
## Estimate the CDF
my.cdf <- spsurvey::cont.analysis(spsurvey.obj = my.spsurvey)

## Print table and TeX code
cdfTable(my.cdf)
}

## End(Not run)

checkGMU Evaluation of geostatistical models of uncertainty

Description

Evaluate the local quality of a geostatistical model of uncertainty (GMU) using summary measures
and graphical displays.

Usage

checkGMU(
observed,
simulated,
pi = seq(0.01, 0.99, 0.01),

http://www.epa.gov/nheerl/arm/
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symmetric = TRUE,
plotit = TRUE

)

Arguments

observed Vector of observed values at the validation points. See ‘Details’ for more infor-
mation.

simulated Data frame or matrix with simulated values (columns) for each validation point
(rows). See ‘Details’ for more information.

pi Vector defining the width of the series of probability intervals. Defaults to pi =
seq(0.01,0.99,0.01). See ‘Details’ for more information.

symmetric Logical for choosing the type of probability interval. Defaults to symmetric =
TRUE. See ‘Details’ for more information.

plotit Logical for plotting the results. Defaults to plotit = TRUE.

Details

There is no standard way of evaluating the local quality of a GMU. The collection of summary
measures and graphical displays presented here is far from being comprehensive. A few definitions
are given bellow.

Error statistics: Error statistics measure how well the GMU predicts the measured values at the
validation points. Four error statistics are presented:

Mean error (ME) Measures the bias of the predictions of the GMU, being defined as the mean
of the differences between the average of the simulated values and the observed values, i.e.
the average of all simulations is taken as the predicted value.

Mean squared error (MSE) Measures the accuracy of the predictions of the GMU, being de-
fined as the mean of the squared differences between the average of the simulated values and
the observed values.

Scaled root mean squared error (SRMSE) Measures how well the GMU estimate of the pre-
diction error variance (PEV) approximates the observed prediction error variance, where the
first is given by the variance of the simulated values, while the second is given by the squared
differences between the average of the simulated values, i.e. the squared error (SE). The
SRMSE is computed as the average of SE / PEV, where SRMSE > 1 indicates underestima-
tion, while SRMSE < 1 indicates overestimation.

Pearson correlation coefficient Measures how close the GMU predictions are to the observed
values. A scatter plot of the observed values versus the average of the simulated values
can be used to check for possible unwanted outliers and non-linearities. The square of the
Pearson correlation coefficient measures the fraction of the overall spread of observed values
that is explained by the GMU, that is, the amount of variance explained (AVE), also known
as coefficient of determination or ratio of scatter.

Coverage probabilities: The coverage probability of an interval is given by the number of times
that that interval contains its parameter over several replications of an experiment. For example,
consider the interquartile range IQR = Q3 − Q1 of a Gaussian distributed variable with mean
equal to zero and variance equal to one. The nominal coverage probability of the IQR is 0.5, i.e.
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two quarters of the data fall within the IQR. Suppose we generate a Gaussian distributed random
variable with the same mean and variance and count the number of values that fall within the IQR
defined above: about 0.5 of its values will fall within the IQR. If we continue generating Gaussian
distributed random variables with the same mean and variance, on average, 0.5 of the values will
fall in that interval.
Coverage probabilities are very useful to evaluate the local quality of a GMU: the closer the
observed coverage probabilities of a sequence of probability intervals (PI) are to the nominal
coverage probabilities of those PIs, the better the modeling of the local uncertainty.
Two types of PIs can be used here: symmetric, median-centered PIs, and left-bounded PIs. Papritz
& Dubois (1999) recommend using left-bounded PIs because they are better at evidencing devi-
ations for both large and small PIs. The authors also point that the coverage probabilities of the
symmetric, median-centered PIs can be read from the coverage probability plots produced using
left-bounded PIs.
In both cases, the PIs are computed at each validation location using the quantiles of the condi-
tional cumulative distribution function (ccdf) defined by the set of realizations at that validation
location. For a sequence of PIs of increasing width, we check which of them contains the ob-
served value at all validation locations. We then average the results over all validation locations to
compute the proportion of PIs (with the same width) that contains the observed value: this gives
the coverage probability of the PIs.
Deutsch (1997) proposed three summary measures of the coverage probabilities to assess the
local goodness of a GMU: accuracy ($A$), precision ($P$), and goodness ($G$). According to
Deutsch (1997), a GMU can be considered “good” if it is both accurate and precise. Although
easy to compute, these measures seem not to have been explored by many geostatisticians, except
for the studies developed by Pierre Goovaerts and his later software implementation (Goovaerts,
2009). Richmond (2001) suggests that they should not be used as the only measures of the local
quality of a GMU.
Accuracy An accurate GMU is that for which the proportion p∗ of true values falling within the

$p$ PI is equal to or larger than the nominal probability $p$, that is, when p∗ ≥ p. In the
coverage probability plot, a GMU will be more accurate when all points are on or above the
1:1 line. The range of $A$ goes from 0 (lest accurate) to 1 (most accurate).

Precision The precision, $P$, is defined only for an accurate GMU, and measures how close p∗

is to $p$. The range of $P$ goes from 0 (lest precise) to 1 (most precise). Thus, a GMU will
be more accurate when all points in the PI-width plot are on or above the 1:1 line.

Goodness The goodness, $G$, is a measure of the departure of the points from the 1:1 line in the
coverage probability plot. $G$ ranges from 0 (minimum goodness) to 1 (maximum good-
ness), the maximum $G$ being achieved when p∗ = p, that is, all points in both coverage
probability and interval width plots are exactly on the 1:1 line.

It is worth noting that the coverage probability and PI-width plots are relevant mainly to GMU
created using conditional simulations, that is, simulations that are locally conditioned to the data
observed at the validation locations. Conditioning the simulations locally serves the purposes of
honoring the available data and reducing the variance of the output realizations. This is why one
would like to find the points falling above the 1:1 line in both coverage probability and PI-width
plots. For unconditional simulations, that is, simulations that are only globally conditioned to the
histogram (and variogram) of the data observed at the validation locations, one would expect to
find that, over a large number of simulations, the whole set of possible values (i.e. the global
histogram) can be generated at any node of the simulation grid. In other words, it is expected to
find all points on the 1:1 line in both coverage probability and PI-width plots. Deviations from
the 1:1 line could then be used as evidence of problems in the simulation.
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Note

Comments by Pierre Goovaerts <pierre.goovaerts@biomedware.com> were important to de-
scribe how to use the coverage probability and PI-width plots when a GMU is created using un-
conditional simulations.

Author(s)

Alessandro Samuel-Rosa <alessandrosamuelrosa@gmail.com>

References

Deutsch, C. Direct assessment of local accuracy and precision. Baafi, E. Y. & Schofield, N. A.
(Eds.) Geostatistics Wollongong ’96. Dordrecht: Kinwer Academic Publishers, v. I, p. 115-125,
1997.

Papritz, A. & Dubois, J. R. Mapping heavy metals in soil by (non-)linear kriging: an empirical
validation. Gómez-Hernández, J.; Soares, A. & Froidevaux, R. (Eds.) geoENV II – Geostatistics
for Environmental Applications. Springer, p. 429-440, 1999.

Goovaerts, P. Geostatistical modelling of uncertainty in soil science. Geoderma. v. 103, p. 3 - 26,
2001.

Goovaerts, P. AUTO-IK: a 2D indicator kriging program for the automated non-parametric model-
ing of local uncertainty in earth sciences. Computers & Geosciences. v. 35, p. 1255-1270, 2009.

Richmond, A. J. Maximum profitability with minimum risk and effort. Xie, H.; Wang, Y. & Jiang,
Y. (Eds.) Proceedings 29th APCOM. Lisse: A. A. Balkema, p. 45-50, 2001.

Ripley, B. D. Stochastic simulation. New York: John Wiley & Sons, p. 237, 1987.

Examples

## Not run:
set.seed(2001)
observed <- round(rnorm(100), 3)
simulated <- t(

sapply(1:length(observed), function (i) round(rnorm(100), 3)))
resa <- checkGMU(observed, simulated, symmetric = T)
resb <- checkGMU(observed, simulated, symmetric = F)
resa$error;resb$error
resa$goodness;resb$goodness

## End(Not run)

cont2cat Categorize/stratify continuous variable(s)

Description

Create break points, compute strata proportions, and stratify continuous variable(s) to create cate-
gorical variable(s).
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Usage

cont2cat(x, breaks, integer = FALSE)

breakPoints(x, n, type = "area", prop = FALSE)

stratify(x, n, type = "area", integer = FALSE)

Arguments

x Vector, data frame or matrix with data on the continuous variable(s) to be cate-
gorized/stratified.

breaks Vector or list containing the lower and upper limits that should be used to break
the continuous variable(s) into categories. See ‘Details’ for more information.

integer Logical value indicating if the categorical variable(s) be returned as integers.
Defaults to integer = FALSE, i.e. the variable(s) will be returned as factors.

n Integer value indicating the number of strata that should be created.

type Character value indicating the type of strata that should be used, with options
"area", for equal-area, and "range", for equal-range strata. Defaults to type =
"area".

prop Logical value indicating if the strata proportions should be returned? Defaults
to prop = FALSE.

Details

Argument breaks must be a vector if x is a vector, but a list if x is a data frame or matrix. Using a
list allows breaking each column of x into different number of categories.

Value

A vector, data frame, or matrix, depending on the class of x.

Author(s)

Alessandro Samuel-Rosa <alessandrosamuelrosa@gmail.com>

See Also

cut2

Examples

## Compute the break points of marginal strata
x <- data.frame(x = round(rnorm(10), 1), y = round(rlnorm(10), 1))
x <- breakPoints(x = x, n = 4, type = "area", prop = TRUE)
x

## Convert continuous data into categorical data
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# Matrix
x <- y <- c(1:10)
x <- cbind(x, y)
breaks <- list(c(1, 2, 4, 8, 10), c(1, 5, 10))
y <- cont2cat(x, breaks)
y
# Data frame
x <- y <- c(1:10)
x <- data.frame(x, y)
breaks <- list(c(1, 2, 4, 8, 10), c(1, 5, 10))
y <- cont2cat(x, breaks, integer = TRUE)
y
# Vector
x <- c(1:10)
breaks <- c(1, 2, 4, 8, 10)
y <- cont2cat(x, breaks, integer = TRUE)
y

## Stratification
x <- data.frame(x = round(rlnorm(10), 1), y = round(rnorm(10), 1))
x <- stratify(x = x, n = 4, type = "area", integer = TRUE)
x

coordenadas Prepare object for argument design of spsurvey.analysis()

Description

This function returns an object to feed the argument design when creating an object of class
spsurvey.analysis.

Usage

coordenadas(x)

Arguments

x Object of class SpatialPointsDataFrame from which site ID and XY coordi-
nates are to be returned.

Details

The argument design used to create object of class spsurvey.analysis requires a series of inputs.
However, it can be fed with data about site ID and coordinates. coordenadas() returns a data frame
that provides this information, assuming that all other design variables are provided manually in the
arguments list.

Value

An object of class data.frame containing three columns with names siteID, xcoord, and ycoord.
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Author(s)

Alessandro Samuel-Rosa <alessandrosamuelrosa@gmail.com>

References

Kincaid, T. M. and Olsen, A. R. (2013). spsurvey: Spatial Survey Design and Analysis. R package
version 2.6. URL: https://www.epa.gov/nheerl/arm/.

See Also

gcpDiff, cont.analysis.

Examples

## Not run:
if (require(spsurvey)) {

## Create an spsurvey.analysis object
my.spsurvey <-
spsurvey::spsurvey.analysis(

design = coordenadas(my.data),
data.cont = delta(ref.data, my.data),
popcorrect = TRUE, pcfsize = length(my.data$id),
support = rep(1, length(my.data$id)),
wgt = rep(1, length(my.data$id)), vartype = "SRS")

}

## End(Not run)

cramer Association between categorical variables

Description

Compute the Cramer’s V, a descriptive statistic that measures the association between categorical
variables.

Usage

cramer(x)

Arguments

x Data frame or matrix with a set of categorical variables.

Details

Any integer variable is internally converted to a factor.

https://www.epa.gov/nheerl/arm/
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Value

A matrix with the Cramer’s V between the categorical variables.

Note

The original code is available at http://sas-and-r.blogspot.nl/, Example 8.39: calculat-
ing Cramer’s V, posted by Ken Kleinman on Friday, June 3, 2011. As such, Ken Kleinman
<Ken_Kleinman@hms.harvard.edu> is entitled a ‘contributor’ to the R-package pedometrics.

The function bigtabulate used to compute the chi-squared test is the main bottleneck in the current
version of cramer. Ideally it will be implemented in C++.

Author(s)

Alessandro Samuel-Rosa <alessandrosamuelrosa@gmail.com>

References

Cramér, H. Mathematical methods of statistics. Princeton: Princeton University Press, p. 575,
1946.

Everitt, B. S. The Cambridge dictionary of statistics. Cambridge: Cambridge University Press, p.
432, 2006.

See Also

assocstats

Examples

## Not run:
data <- read.csv("http://www.math.smith.edu/r/data/help.csv")
data <- data[, c("female", "homeless", "racegrp")]
str(data)
test <- cramer(data)
test

## End(Not run)

gcpDiff Difference on xyz coordinates between ground control points

Description

This function estimates the difference, absolute difference, and squared difference on x, y and z
coordinates of two sets of ground control points (GCP). It also estimates the module (difference
vector), its square and azimuth. The result is a data frame ready to be used to define a object of
class spsurvey.object.

http://sas-and-r.blogspot.nl/
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Usage

gcpDiff(measured, predicted, type = "xy", aggregate = FALSE, rounding = 0)

Arguments

measured Object of class SpatialPointsDataFrame with the reference GCP. A column
named ‘siteID’ giving case names is mandatory. See ‘Details’, item ‘Type of
data’.

predicted An object of class SpatialPointsDataFrame with the point data being vali-
dated. A column named ‘siteID’ giving case names is mandatory. See ‘Details’,
item ‘Type of data’.

type Type of data under analysis. Defaults to type = "xy". ‘Details’, item ‘Type of
data’.

aggregate Logical for aggregating the data when it comes from cluster sampling. Used
only when type = "z". Defaults to aggregate = FALSE. See ‘Details’, item
‘Data aggregation’.

rounding Rounding level of the data in the output data frame.

Details

Type of data: Two types of validation data that can be submitted to function gcpDiff(): those
coming from horizontal (positional) validation exercises (type = "xy"), and those coming from
vertical validation exercises (type = "z").
Horizontal (positional) validation exercises compare the position of measured point data with the
position of predicted point data. Horizontal displacement (error) is measured in both ‘x’ and
‘y’ coordinates, and is used to calculate the error vector (module) and its azimuth. Both objects
measured and predicted used with function gcpDiff() must be of class SpatialPointsDataFrame.
They must have at least one column named ‘siteID’ giving the identification of every case. Match-
ing of case IDs is mandatory. Other columns are discarded.
Vertical validation exercises are interested in comparing the measured value of a variable at a
given location with that predicted by some model. In this case, error statistics are calculated
only for the the vertical displacement (error) in the ‘z’ coordinate. Both objects measured and
predicted used with function gcpDiff() must be of class SpatialPointsDataFrame. They
also must have a column named ‘siteID’ giving the identification of every case. Again, matching
of case IDs is mandatory. However, both objects must have a column named ‘z’ which contains
the values of the ‘z’ coordinate. Other columns are discarded.

Data aggregation: Validation is sometimes performed using cluster or transect sampling. Be-
fore estimation of error statistics, the data needs to be aggregated by cluster or transect. The func-
tion gcpDiff() aggregates validation data of type = "z" calculating the mean value per cluster.
Thus, aggregation can only be properly done if the ‘siteID’ column of both objects measured
and predicted provides the identification of clusters. Setting aggregate = TRUE will return ag-
gregated estimates of error statistics. If the data has been aggregated beforehand, the parameter
aggregate can be set to FALSE.

Case matching: There are circumstances in which the number of cases in the object measured
is larger than that in the object predicted. The function gcpDiff() compares the number of
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cases in both objects and automatically drops those cases of object measured that do not match
the cases of object predicted. However, case matching can only be done if case IDs are exactly
the same for both objects. Otherwise, estimated error statistics will have no meaning at all.

Value

An object of class data.frame ready to be used to feed the argument data.cont when creating a
spsurvey.analysis object.

Note

Data of type = "xy" cannot be submitted to cluster aggregation in the present version.

Author(s)

Alessandro Samuel-Rosa <alessandrosamuelrosa@gmail.com>

References

Kincaid, T. M. and Olsen, A. R. (2013). spsurvey: Spatial Survey Design and Analysis. R package
version 2.6. URL: http://www.epa.gov/nheerl/arm/.

See Also

coordenadas, gcpVector, spsurvey.analysis.

Examples

## Not run:
if (require(spsurvey)) {
## Create an spsurvey.analysis object
my.spsurvey <-

spsurvey.analysis(design = coordenadas(my.data),
data.cont = delta(ref.data, my.data),
popcorrect = TRUE, pcfsize = length(my.data$id),
support = rep(1, length(my.data$id)),
wgt = rep(1, length(my.data$id)), vartype = "SRS")

}

## End(Not run)

http://www.epa.gov/nheerl/arm/
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gcpVector Calculate module and azimuth

Description

This function calculates the module and azimuth of the difference on x and y coordinates between
two sets of ground control points (GCP).

Usage

gcpVector(dx, dy)

Arguments

dx Numeric vector containing the difference on the ‘x’ coordinate between two sets
of GCP.

dy Numeric vector containing the difference on the ‘y’ coordinate between two sets
of GCP.

Details

This function is suited to perform calculations for topographical coordinates only. The origin is set
in the y coordinate, and rotation performed clockwise.

Value

An object of the class data.frame containing the module, its square and azimuth. These three
columns are named ‘module’, ‘sq.module’ and ‘azimuth’.

Note

This function was adapted from LoadData.

Author(s)

Juan Carlos Ruiz Cuetos <bilba_t@hotmail.com>
Maria Eugenia Polo Garcia <mepolo@unex.es>
Pablo Garcia Rodriguez <pablogr@unex.es>
Alessandro Samuel-Rosa <alessandrosamuelrosa@gmail.com>

References

Ruiz-Cuetos J.C., Polo M.E. and Rodriguez P.G. (2012). VecStatGraphs2D: Vector analysis using
graphical and analytical methods in 2D. R package version 1.6. https://CRAN.R-project.org/
package=VecStatGraphs2D

https://CRAN.R-project.org/package=VecStatGraphs2D
https://CRAN.R-project.org/package=VecStatGraphs2D
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See Also

LoadData, gcpDiff

Examples

## Not run:
gcpVector(dx = rnorm(3, 5, 10), dy = rnorm(3, 5, 10))

## End(Not run)

isNumint Tests for data types

Description

Evaluate the data type contained in an object.

Usage

isNumint(x)

allNumint(x)

anyNumint(x)

whichNumint(x)

allInteger(x)

anyInteger(x)

whichInteger(x)

allFactor(x)

anyFactor(x)

whichFactor(x)

allNumeric(x)

anyNumeric(x)

whichNumeric(x)

uniqueClass(x)
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Arguments

x Object to be tested.

Value

TRUE or FALSE depending on whether x contains a given data type.

Author(s)

Alessandro Samuel-Rosa <alessandrosamuelrosa@gmail.com>

See Also

is.numeric, is.integer, is.factor.

Examples

# Vector of integers
x <- 1:10
isNumint(x) # FALSE

# Vector of numeric integers
x <- as.numeric(x)
isNumint(x) # TRUE

# Vector of numeric values
x <- c(1.1, 1, 1, 1, 2)
isNumint(x) # FALSE
allNumint(x) # FALSE
anyNumint(x) # TRUE
whichNumint(x)

# Single numeric integer
isNumint(1) # TRUE

# Single numeric value
isNumint(1.1) # FALSE

optimRandomForest Optimum number of iterations to de-bias a random forest regression

Description

Compute the optimum number of iterations needed to de-bias a random forest regression.
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Usage

optimRandomForest(
x,
y,
niter = 10,
nruns = 100,
ntree = 500,
ntrain = 2/3,
nodesize = 5,
mtry = max(floor(ncol(x)/3), 1),
profile = TRUE,
progress = TRUE

)

Arguments

x Data frame or matrix of covariates (predictor variables).

y Numeric vector with the response variable.

niter Number of iterations. Defaults to niter = 10.

nruns Number of simulations to be used in each iteration. Defaults to nruns = 100.

ntree Number of trees to grow. Defaults to ntree = 500.

ntrain Number (or proportion) of observation to be used as training cases. Defaults to
2/3 of the total number of observations.

nodesize Minimum size of terminal nodes. Defaults to nodesize = 5.

mtry Number of variables randomly sampled as candidates at each split. Defaults to
1/3 of the total number of covariates.

profile Should the profile of the standardized mean squared prediction error be plotted
at the end of the optimization? Defaults to profile = TRUE.

progress Should a progress bar be displayed. Defaults to progress = TRUE.

Details

A fixed proportion of the total number of observations is used to calibrate (train) the random forest
regression. The set of calibration observations is randomly selected from the full set of observations
in each simulation. The remaining observations are used as test cases (validation). In general, the
smaller the calibration dataset, the more simulation runs are needed to obtain stable estimates of the
mean squared prediction error (MSPE).

The optimum number of iterations needed to de-bias the random forest regression is obtained ob-
serving the evolution of the MSPE as the number of iterations increases. The MSPE is defined as
the mean of the squared differences between predicted and observed values.

Note

The original function was published as part of the dissertation of Ruo Xu, which was devel-
oped under the supervision of Daniel S Nettleton <dnett@iastate.edu> and Daniel J Nordman
<dnordman@iastate.edu>.
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Author(s)

Ruo Xu <xuruo.isu@gmail.com>, with improvements by Alessandro Samuel-Rosa <alessandrosamuelrosa@gmail.com>

References

Breiman, L. Random forests. Machine Learning. v. 45, p. 5-32, 2001.

Breiman, L. Using adaptive bagging to debias regressions. Berkeley: University of California, p.
16, 1999.

Liaw, A. & Wiener, M. Classification and regression by randomForest. R News. v. 2/3, p. 18-22,
2002.

Xu, R. Improvements to random forest methodology. Ames, Iowa: Iowa State University, p. 87,
2013.

See Also

randomForest

plotCor Correlation plot

Description

Plotting correlation matrices.

Usage

plotCor(r, r2, col, breaks, col.names, ...)

Arguments

r Square matrix with correlation values.

r2 (optional) A second square matrix with correlation values.

col (optional) Color table to use for image – see image for details. The default is a
colorblind-friendly palette ("RdBu") created using brewer.pal.

breaks (optional) Break points in sorted order to indicate the intervals for assigning the
colors. See image.plot for more details.

col.names (optional) Character vector with short (up to 5 characters) column names.

... (optional) Additional parameters passed to plotting functions.



28 plotESDA

Details

A correlation plot in an alternative and interesting way of showing the strength of correlations
between variables. This is done by using a diverging color palette, where the darker the color, the
stronger the absolute correlation.

plotCor also enables comparing correlations between the same variables at different points in time
or space or for different observations. This can be done by passing two square correlation ma-
trices using arguments r and r2. The lower triangle of the resulting correlation plot will contain
correlations from r, correlations from r2 will be in the upper triangle, and the diagonal will be
empty.

Value

A correlation plot.

Author(s)

Alessandro Samuel-Rosa <alessandrosamuelrosa@gmail.com>

Examples

data(meuse, package = "sp")
cols <- c("cadmium", "copper", "lead", "zinc", "elev", "dist", "om")

# A single correlation matrix
r <- cor(meuse[1:20, cols], use = "complete")
r <- round(r, 2)
plotCor(r)

# Two correlation matrices: r2 goes in the upper triangle
r2 <- cor(meuse[21:40, cols], use = "complete")
r2 <- round(r2, 2)
plotCor(r, r2)

plotESDA Plots for exploratory spatial data analysis (ESDA)

Description

This function creates four plots for exploratory spatial data analysis (ESDA): histogram + density
plot, bubble plot, variogram plot, and variogram map.

Usage

plotESDA(
z,
lat,
lon,
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lags = NULL,
cutoff = NULL,
width = c(cutoff/20),
leg.pos = "right"

)

Arguments

z Vector of numeric values of the variable for with ESDA plots should be created.

lat Vector of numeric values containing the y coordinate (latitude) of the point lo-
cations where the z variable was observed.

lon Vector of numeric values containing the x coordinate (longitude) of the point
locations where the z variable was observed.

lags (optional) Numerical vector; upper boundaries of lag-distance classes. See ar-
gument boundaries of variogram for more info.

cutoff (optional) Integer value defining the spatial separation distance up to which point
pairs are included in semi-variance estimates. Defaults to the length of the diag-
onal of the box spanning the data divided by three.

width Integer value specifying the width of subsequent distance intervals into which
data point pairs are grouped for semi-variance estimates. Defaults to width =
cutoff / 20.

leg.pos (optional) Character value indication the location of the legend of the bubble
plot. Defaults to leg.pos = "right"

Details

The user should visit the help pages of variogram, plotHD, bubble and spplot to obtain more
details about the main functions used to built plotESDA.

Value

Four plots: histogram and density plot, bubble plot, empirical variogram, and variogram map.

Author(s)

Alessandro Samuel-Rosa <alessandrosamuelrosa@gmail.com>

References

Cressie, N.A.C. (1993) Statistics for Spatial Data. New York: John Wiley \& Sons, p.900, 1993.

Pebesma, E.J. (2004) Multivariable geostatistics in S: the gstat package. Computers \& Geo-
sciences, 30:683-691, 2004.

Webster, R. \& Oliver, M.A. Geostatistics for environmental scientists. Chichester: John Wiley \&
Sons, p.315, 2007.

See Also

variogram, plotHD, bubble, spplot.
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Examples

# library(sp)
# data(meuse)
# plotESDA(z = meuse$zinc, lat = meuse$y, lon = meuse$x)

plotHD Histogram and density plot

Description

This function plots a histogram and a density plot of a single variable using the R-package lattice.

Usage

plotHD(
x,
HD = "over",
nint = 20,
digits = 2,
stats = TRUE,
BoxCox = FALSE,
col = c("lightgray", "black"),
lwd = c(1, 1),
lty = "dashed",
xlim,
ylim,
...

)

Arguments

x Vector of numeric values of the variable for which the histogram nd density plot
should be created.

HD Character value indicating the type of plot to be created. Available options are
"over", to create a histogram superimposed by the theoretical density plot of a
normally distributed variable, and "stack", to create a histogram and an empir-
ical density plot in separated panels. Defaults to HD = "over".

nint Integer specifying the number of histogram bins. Defaults to nint = 20.

digits Integer indicating the number of decimal places to be used when printing the
statistics of the variable x. Defaults to digits = 2.

stats Logical to indicate if descriptive statistics of the variable x should be added to
the plot. Available only when HD = "over". The function tries to automatically
find the best location to put the descriptive statistics given the shape of the his-
togram. Defaults to stats = TRUE.
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BoxCox Logical to indicate if the variable x should be transformed using the Box-Cox
family of power transformations. The estimated lambda value of the Box-Cox
transform is printed in the console. It is set to zero when negative. Defaults to
BoxCox = FALSE.

col Vector of two elements, the first indicating the color of the histogram, the second
indicating the color of the density plot. Defaults to col = c("lightgray","black").

lwd Vector of two elements, the first indicating the line width of the histogram, the
second indicating the line width of the density plot. Defaults to lwd = c(1,1).

lty Character value indicating the line type for the density plot. Defaults to lty =
"dashed".

xlim Vector of two elements defining the limits of the x axis. The function automati-
cally optimizes xlim based on the density plot.

ylim Vector of two elements defining the limits of the y axis. The function automati-
cally optimizes ylim based both histogram and density plot.

... Other arguments that can be passed to lattice functions. There is no guarantee
that they will work.

Details

The user should visit the help pages of histogram, densityplot, panel.mathdensity, powerTransform
and bcPower to obtain more details about the main functions used to built plotHD.

Value

An object of class "trellis". The update.trellis method can be used to update components
of the object and the print.trellis print method (usually called by default) will plot it on an
appropriate plotting device.

Author(s)

Alessandro Samuel-Rosa <alessandrosamuelrosa@gmail.com>

References

Sarkar, Deepayan (2008) Lattice: Multivariate Data Visualization with R, Springer. http://
lmdvr.r-forge.r-project.org/

See Also

histogram, densityplot, panel.mathdensity, powerTransform, bcPower.

Examples

x <- rnorm(100, 10, 2)
plotHD(x, HD = "stack")
plotHD(x, HD = "over")

http://lmdvr.r-forge.r-project.org/
http://lmdvr.r-forge.r-project.org/
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plotMS Model series plot

Description

This function produces a graphical output that allows the examination of the effect of using different
model specifications (design) on the predictive performance of these models (a model series). It
generally is used to access the results of functions buildMS and statsMS, but can be easily adapted
to work with any model structure and performance measure.

Usage

plotMS(
obj,
grid,
line,
ind,
type = c("b", "g"),
pch = c(20, 2),
size = 0.5,
arrange = "desc",
color = NULL,
xlim = NULL,
ylab = NULL,
xlab = NULL,
at = NULL,
...

)

Arguments

obj Object of class data.frame, generally returned by statsMS, containing a 1)
series of performance statistics of several models, and 2) the design information
of each model. See ‘Details’ for more information.

grid Vector of integer values or character strings indicating the columns of the data.frame
containing the design data which will be gridded using the function levelplot.
See ‘Details’ for more information.

line Character string or integer value indicating which of the performance statistics
(usually calculated by statsMS) should be plotted using the function xyplot.
See ‘Details’ for more information.

ind Integer value indicating for which group of models the mean rank is to be cal-
culated. See ‘Details’ for more information.

type Vector of character strings indicating some of the effects to be used when plot-
ting the performance statistics using xyplot. Defaults to type = c("b","g").
See panel.xyplot for more information on how to set this argument.
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pch Vector with two integer values specifying the symbols to be used to plot points.
The first sets the symbol used to plot the performance statistic, while the second
sets the symbol used to plot the mean rank of the indicator set using argument
ind. Defaults to pch = c(20,2). See points for possible values and their inter-
pretation.

size Numeric value specifying the size of the symbols used for plotting the mean
rank of the indicator set using argument ind. Defaults to size = 0.5. See
grid.points for more information.

arrange Character string indicating how the model series should be arranged, which
can be in ascending (asc) or descending (desc) order. Defaults to arrange =
"desc". See arrange for more information.

color Vector defining the colors to be used in the grid produced by function levelplot.
If NULL, defaults to color = cm.colors(n), where n is the number of unique
values in the columns defined by argument grid. See cm.colors to see how to
use other color palettes.

xlim Numeric vector of length 2, giving the x coordinates range. If NULL (which is
the recommended value), defaults to xlim = c(0.5,dim(obj)[1] + 0.5). This
is, so far, the optimum range for adequate plotting.

ylab Character vector of length 2, giving the y-axis labels. When obj is a data.frame
returned by statsMS, and the performance statistic passed to argument line
is one of those calculated by statsMS ("candidates", "df", "aic", "rmse",
"nrmse", "r2", "adj_r2" or "ADJ_r2"), the function tries to automatically
identify the correct ylab.

xlab Character vector of length 1, giving the x-axis labels. Defaults to xlab = "Model
ranking".

at Numeric vector indicating the location of tick marks along the x axis (in native
coordinates).

... Other arguments for plotting, although most of these have no been tested. Argu-
ment asp, for example, is not effective since the function automatically identifies
the best aspect for plotting based on the dimensions of the design data.

Details

This section gives more details about arguments obj, grid, line, arrange, and ind.

obj: The argument obj usually constitutes a data.frame returned by statsMS. However, the user
can use any data.frame object as far as it contains the two basic units of information needed:

1. design data passed with argument grid
2. performance statistic passed with argument line

grid: The argument grid indicates the design data which is used to produce the grid output in
the top of the model series plot. By design we mean the data that specify the structure of each
model and how they differ from each other. Suppose that eight linear models were fit using three
types of predictor variables (a, b, and c). Each of these predictor variables is available in two
versions that differ by their accuracy, where 0 means a less accurate predictor variable, while 1
means a more accurate predictor variable. This yields 2^3 = 8 total possible combinations. The
design data would be of the following form:
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> design
a b c

1 0 0 0
2 0 0 1
3 0 1 0
4 1 0 0
5 0 1 1
6 1 0 1
7 1 1 0
8 1 1 1

line: The argument line corresponds to the performance statistic that is used to arrange the
models in ascending or descending order, and to produce the line output in the bottom of the model
series plot. For example, it can be a series of values of adjusted coefficient of determination, one
for each model:
adj_r2 <- c(0.87, 0.74, 0.81, 0.85, 0.54, 0.86, 0.90, 0.89)

arrange: The argument arrange automatically arranges the model series according to the per-
formance statistics selected with argument line. If obj is a data.frame returned by statsMS(),
then the function uses standard arranging approaches. For most performance statistics, the models
are arranged in descending order. The exception is when "r2", "adj_r2" or "ADJ_r2" are used,
in which case the models are arranged in ascending order. This means that the model with lowest
value appears in the leftmost side of the model series plot, while the models with the highest value
appears in the rightmost side of the plot.
> arrange(obj, adj_r2)

id a b c adj_r2
1 5 1 0 1 0.54
2 2 0 0 1 0.74
3 3 1 0 0 0.81
4 4 0 1 0 0.85
5 6 0 1 1 0.86
6 1 0 0 0 0.87
7 8 1 1 1 0.89
8 7 1 1 0 0.90
This results suggest that the best performing model is that of id = 7, while the model of id = 5 is
the poorest one.

ind: The model series plot allows to see how the design influences model performance. This is
achieved mainly through the use of different colors in the grid output, where each unique value
in the design data is represented by a different color. For the example given above, one could try
to see if the models built with the more accurate versions of the predictor variables have a better
performance by identifying their relative distribution in the model series plot. The models placed
at the rightmost side of the plot are those with the best performance.
The argument ind provides another tool to help identifying how the design, more specifically
how each variable in the design data, influences model performance. This is done by simply
calculating the mean ranking of the models that were built using the updated version of each
predictor variable. This very same mean ranking is also used to rank the predictor variables and
thus identify which of them is the most important.
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After arranging the design data described above using the adjusted coefficient of determination,
the following mean rank is obtained for each predictor variable:
> rank_center

a b c
1 5.75 6.25 5.25
This result suggests that the best model performance is obtained when using the updated version
of the predictor variable b. In the model series plot, the predictor variable b appears in the top
row, while the predictor variable c appears in the bottom row.

Value

An object of class "trellis" consisting of a model series plot.

Warning

Use the original functions xyplot and levelplot for higher customization.

Note

Some of the solutions used to build this function were found in the source code of the R-package
mvtsplot. As such, the author of that package, Roger D. Peng <rpeng@jhsph.edu>, is entitled
‘contributors’ to the R-package pedometrics.

Author(s)

Alessandro Samuel-Rosa <alessandrosamuelrosa@gmail.com>

References

Deepayan Sarkar (2008). Lattice: Multivariate Data Visualization with R. Springer, New York.
ISBN 978-0-387-75968-5.

Roger D. Peng (2008). A method for visualizing multivariate time series data. Journal of Statistical
Software. v. 25 (Code Snippet), p. 1-17.

Roger D. Peng (2012). mvtsplot: Multivariate Time Series Plot. R package version 1.0-1. https:
//CRAN.R-project.org/package=mvtsplot.

See Also

levelplot, xyplot, mvtsplot.

Examples

# This example follows the discussion in section "Details"
# Note that the data.frame is created manually
id <- c(1:8)
design <- data.frame(a = c(0, 0, 1, 0, 1, 0, 1, 1),

b = c(0, 0, 0, 1, 0, 1, 1, 1),
c = c(0, 1, 0, 0, 1, 1, 0, 1))

adj_r2 <- c(0.87, 0.74, 0.81, 0.85, 0.54, 0.86, 0.90, 0.89)
obj <- cbind(id, design, adj_r2)

https://CRAN.R-project.org/package=mvtsplot
https://CRAN.R-project.org/package=mvtsplot
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p <- plotMS(obj, grid = c(2:4), line = "adj_r2", ind = 1,
color = c("lightyellow", "palegreen"),
main = "Model Series Plot")

print(p)

rowMinCpp Return the minimum value in each row of a numeric matrix

Description

This function returns the minimum value in each row of a numeric matrix.

Usage

rowMinCpp(x)

Arguments

x Numeric matrix with two or more rows and/or columns.

Details

This function is implemented in C++ to speed-up the computation time for large matrices.

Value

A numeric vector with the minimum value of each row if the matrix.

Author(s)

Alessandro Samuel-Rosa <alessandrosamuelrosa@gmail.com>

See Also

rowMins

Examples

x <- matrix(rnorm(20), nrow = 5)
rowMinCpp(x)
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statsMS Obtain performance statistics of a series of linear models

Description

This function returns several statistics measuring the performance of a series of linear models built
using the function buildMS, with an option to rank the models based on one of the returned perfor-
mance statistics.

Usage

statsMS(model, design.info, arrange.by, digits)

Arguments

model A list of linear models returned by buildMS.

design.info Extra information about the linear models in the series.

arrange.by Character string defining if the table with the performance statistics of the linear
models should be arranged, and which column should be used. Available op-
tions are "candidates", "df", "aic", "rmse", "nrmse", "r2", "adj_r2", and
"ADJ_r2". Descending order is used by default and cannot be changed in the
current implementation. See ‘Value’ for more information.

digits Integer or vector with six integers indicating the number of decimal places to be
used to round the performance statistics. If a vector is passed to the function,
the number of decimal places should be in the following order:
c("aic","rmse","nrmse","r2","adj_r2","ADJ_r2").

Details

This function was devised to deal with a list of linear models generated by the function buildMS.
The main objective is to compare several linear models using several performance statistics. Such
statistics can then be used to rank the linear models and identify, for example, the best performing
model, given the selected performance statistics.

An important feature of statsMS is that it uses the information about the initial number of candidate
predictor variables offered to the build the model to calculate penalized or adjusted measures of
model performance. Such information is recorded as an attribute of the final model selected by
buildMS. This feature was included in statsMS because data-driven variable selection results biased
linear models (too optimistic), and the effective number of degrees of freedom is close to the number
of candidate predictor variables initially offered to the model (Harrell, 2001).

Value

A data frame with several performance statistics:

id Identification of the model.

candidates Number of candidate predictor variables initially offered to the model.
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df Number of degrees of freedom of the final selected model.

aic Akaike’s Information Criterion (AIC). Obtained using extractAIC.

rmse Root-mean squared error, calculated based on the number of candidate predictor variables
initially offered to the model.

nrmse Normalized Root-mean squared error, calculated as the ratio between the RMSE and the
standard deviation of the observed values of the dependent variable.

r2 Multiple coefficient of determination.

adj_r2 Adjusted multiple coefficient of determination.

ADJ_r2 Adjusted multiple coefficient of determination. Calculations are done based on the num-
ber of candidate predictor variables initially offered to the model.

TODO

1. Include other performance statistics such as: PRESS, BIC, Mallow’s Cp, max(VIF);

2. Add option to select which performance statistics should be returned.

Author(s)

Alessandro Samuel-Rosa <alessandrosamuelrosa@gmail.com>

References

Harrell, F. E. (2001) Regression modelling strategies: with applications to linear models, logistic
regression, and survival analysis. First edition. New York: Springer.

Venables, W. N. and Ripley, B. D. (2002) Modern applied statistics with S. Fourth edition. New
York: Springer.

See Also

buildMS, plotMS.

Examples

## Not run:
# based on the second example of function stepAIC
require(MASS)
cpus1 <- cpus
for(v in names(cpus)[2:7])

cpus1[[v]] <- cut(cpus[[v]], unique(quantile(cpus[[v]])),
include.lowest = TRUE)

cpus0 <- cpus1[, 2:8] # excludes names, authors' predictions
cpus.samp <- sample(1:209, 100)
cpus.form <- list(formula(log10(perf) ~ syct + mmin + mmax + cach + chmin +

chmax + perf),
formula(log10(perf) ~ syct + mmin + cach + chmin + chmax),
formula(log10(perf) ~ mmax + cach + chmin + chmax + perf))

data <- cpus1[cpus.samp,2:8]
cpus.ms <- buildMS(cpus.form, data, vif = TRUE, aic = TRUE)
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cpus.des <- data.frame(a = c(0, 1, 0), b = c(1, 0, 1), c = c(1, 1, 0))
stats <- statsMS(cpus.ms, design.info = cpus.des, arrange.by = "aic")

## End(Not run)

stepVIF Variable selection using the (generalized) variance-inflation factor
(VIF)

Description

This function takes a linear model and selects the subset of predictor variables that meet a user-
specific collinearity threshold measured by the (generalized) variance-inflation factor (VIF).

Usage

stepVIF(model, threshold = 10, verbose = FALSE)

Arguments

model Linear model (object of class ’lm’) containing collinear predictor variables.

threshold Positive number defining the maximum allowed VIF. Defaults to threshold =
10.

verbose Logical indicating if iteration results should be printed. Defaults to verbose =
FALSE.

Details

stepVIF starts computing the VIF of all predictor variables in the linear model. If the linear
model contains categorical predictor variables, generalized variance-inflation factors, GVIF, (Fox
and Monette, 1992) are calculated instead using vif. GVIF is interpretable as the inflation in size of
the confidence ellipse or ellipsoid for the coefficients of the predictor variable in comparison with
what would be obtained for orthogonal, uncorrelated data. Since categorical predictors have more
than one degree of freedom (df ), the confidence ellipsoid will have df dimensions, and GVIF will
need to be adjusted so that it can be comparable across predictor variables. The adjustment is made
using the following equation:

GV IF 1/(2×df)

The next step consists of evaluating if any of the predictor variables has a (G)VIF larger than the
specified threshold, the function default being threshold = 10. For, GVIF^(1/(2*df)), the threshold
will be sqrt(threshold).

If there is only one predictor variable that does not meet the VIF threshold, it is automatically re-
moved from the model and no further processing occurs. When there are two or more predictor
variables that do not meet the (G)VIF threshold, stepVIF fits a linear model between each of them
and the dependent variable. The predictor variable with the lowest adjusted coefficient of deter-
mination is dropped from the model and new coefficients are calculated, resulting in a new linear
model.
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This process lasts until all predictor variables included in the new model meet the (G)VIF threshold.

Nothing is done if all predictor variables have a (G)VIF value lower that the threshold, and stepVIF
returns the original linear model.

Value

A linear model (object of class ‘lm’) with low collinearity.

Note

More on the use of GVIF to measure the collinearity in linear models containing categorical pre-
dictor variables can be found on StackExchange.

Author(s)

Alessandro Samuel-Rosa <alessandrosamuelrosa@gmail.com>

References

Fox, J. and Monette, G. (1992) Generalized collinearity diagnostics. JASA, 87, 178–183.

Fox, J. (2008) Applied Regression Analysis and Generalized Linear Models, Second Edition. Sage.

Fox, J. and Weisberg, S. (2011) An R Companion to Applied Regression, Second Edition. Thousand
Oaks: Sage.

Hair, J. F., Black, B., Babin, B. and Anderson, R. E. (2010) Multivariate data analysis. New Jersey:
Pearson Prentice Hall.

Venables, W. N. and Ripley, B. D. (2002) Modern Applied Statistics with S. Fourth edition. Springer.

See Also

vif, stepAIC.

Examples

require(car)
fit <- lm(prestige ~ income + education + type, data = Duncan)
fit <- stepVIF(fit, threshold = 10, verbose = TRUE)

https://stats.stackexchange.com/questions/70679/which-variance-inflation-factor-should-i-be-using-textgvif-or-textgvif/
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trend.terms Extract spatial trend data

Description

Extract spatial trend data from an object of class likfit.

Usage

trend.terms(x)

trend.matrix(x)

Arguments

x Object of class likfit.

Details

trend.terms is similar to terms.

trend.matrix is similar to model.frame.

Author(s)

Alessandro Samuel-Rosa <alessandrosamuelrosa@gmail.com>

See Also

likfit

vgmICP Initial covariance parameters (ICP)

Description

Guess the initial values for the covariance parameters required to fit a variogram model.
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Usage

vgmICP(
z,
coords,
lags,
cutoff = 0.5,
method = "a",
min.npairs = 30,
model = "matern",
nu = 0.5,
estimator = "qn",
plotit = FALSE

)

Arguments

z Numeric vector with the values of the response variable for which the initial
values for the covariance parameters should be guessed.

coords Data frame or matrix with the projected x- and y-coordinates.

lags Numeric scalar defining the width of the lag-distance classes, or a numeric vec-
tor with the lower and upper bounds of the lag-distance classes. If missing,
the lag-distance classes are computed using vgmLags. See ‘Details’ for more
information.

cutoff Numeric value defining the fraction of the diagonal of the rectangle that spans
the data (bounding box) that should be used to set the maximum distance up to
which lag-distance classes should be computed. Defaults to cutoff = 0.5, i.e.
half the diagonal of the bounding box.

method Character keyword defining the method used for guessing the initial covariance
parameters. Defaults to method = "a". See ‘Details’ for more information.

min.npairs Positive integer defining the minimum number of point-pairs required so that
a lag-distance class is used for guessing the initial covariance parameters. De-
faults to min.npairs = 30.

model Character keyword defining the variogram model that will be fitted to the data.
Currently, most basic variogram models are accepted. See cov.spatial for
more information. Defaults to model = "matern".

nu numerical value for the additional smoothness parameter ν of the correlation
function. See RMmodel and argument kappa of cov.spatial for more informa-
tion.

estimator Character keyword defining the estimator for computing the sample variogram,
with options "qn", "mad", "matheron", and "ch". Defaults to estimator =
"qn". See sample.variogram for more details.

plotit Should the guessed initial covariance parameters be plotted along with the sam-
ple variogram? Defaults to plotit = FALSE.
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Details

There are five methods two guess the initial covariance parameters (ICP). Two of them, "a" and
"c", rely a sample variogram with exponentially spaced lag-distance classes, while the other three,
"b", "d", and "e", use equidistant lag-distance classes (see vgmLags). All of them are heuristic.

Method "a" was developed in-house and is the most elaborated of them, specially for guessing the
nugget variance.

Method "b" was proposed by Jian et al. (1996) and is implemented in SAS/STAT(R) 9.22.

Method "c" is implemented in the automap-package and was developed by Hiemstra et al. (2009).

Method "d" was developed by Desassis & Renard (2012).

Method "e" was proposed by Larrondo et al. (2003) and is implemented in the VARFIT module of
GSLIB.

Value

A vector of numeric values: the guesses for the covariance parameters nugget, partial sill, and range.

Note

Package geoR is used to guess the range (scale) parameter of the following covariance models:
"matern" (except when nu = 0.5), "powered.exponential", "stable", "cauchy", "gencauchy", "gneit-
ing", and "gneiting.matern". However, geoR is an orphan package since 2020-01-12. Thus, if geoR
is not installed, a guess of the practical range of these covariance models is returned. The practical
range is the distance at which the semivariance reaches its maximum, i.e. the sill.

Author(s)

Alessandro Samuel-Rosa <alessandrosamuelrosa@gmail.com>

References

Desassis, N. & Renard, D. Automatic variogram modelling by iterative least squares: univariate
and multivariate cases. Mathematical Geosciences. Springer Science + Business Media, v. 45, p.
453-470, 2012.

Hiemstra, P. H.; Pebesma, E. J.; Twenhöfel, C. J. & Heuvelink, G. B. Real-time automatic interpo-
lation of ambient gamma dose rates from the Dutch radioactivity monitoring network. Computers
& Geosciences. Elsevier BV, v. 35, p. 1711-1721, 2009.

Jian, X.; Olea, R. A. & Yu, Y.-S. Semivariogram modelling by weighted least squares. Computers
& Geosciences. Elsevier BV, v. 22, p. 387-397, 1996.

Larrondo, P. F.; Neufeld, C. T. & Deutsch, C. V. VARFIT: a program for semi-automatic variogram
modelling. Edmonton: Department of Civil and Environmental Engineering, University of Alberta,
p. 17, 2003.

See Also

vgmLags, sample.variogram, autofitVariogram

https://en.wikipedia.org/wiki/Heuristic
http://dx.doi.org/10.1016/0098-3004(95)00095-X
https://support.sas.com/documentation/cdl/en/statug/63347/HTML/default/viewer.htm#statug_variogram_a0000000593.htm
http://dx.doi.org/10.1016/j.cageo.2008.10.011
http://dx.doi.org/10.1007/s11004-012-9434-1
http://www.ccgalberta.com/ccgresources/report05/2003-122-varfit.pdf
http://www.gslib.com/
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Examples

data(meuse, package = "sp")
icp <- vgmICP(z = log(meuse$copper), coords = meuse[, 1:2])

vgmLags Lag-distance classes for variogram estimation

Description

Computation of lag-distance classes for variogram estimation.

Usage

vgmLags(
coords,
n.lags = 7,
type = "exp",
cutoff = 0.5,
base = 2,
zero = 0.001,
count = "pairs"

)

Arguments

coords Data frame or matrix with the projected x- and y-coordinates.

n.lags Integer value defining the number of lag-distance classes that should be com-
puted. Defaults to n = 7.

type Character value defining the type of lag-distance classes that should be com-
puted, with options "equi" (equidistant) and "exp" (exponential). Defaults to
type = "exp".

cutoff Numeric value defining the fraction of the diagonal of the rectangle that spans
the data (bounding box) that should be used to set the maximum distance up to
which lag-distance classes should be computed. Defaults to cutoff = 0.5, i.e.
half the diagonal of the bounding box.

base Numeric value defining the base of the exponential expression used to create
exponentially spaced lag-distance classes. Used only when type = "exp". De-
faults to base = 2, i.e. the width of the rightmost lag-distance classes is equal to
half the diagonal of cutoff, and so on.

zero Numeric value setting the minimum pair-wise separation distance that should be
used to compute the lag-distance classes. Defaults to zero = 0.0001.

count Should the number of points ("points") or point-pairs ("pairs") per lag-distance
class be computed? Defaults to count = "pairs".
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Value

Vector of numeric values with the lower and upper boundaries of the lag-distance classes. The
number of points or point-pairs per lag-distance class is returned as an attribute.

Author(s)

Alessandro Samuel-Rosa <alessandrosamuelrosa@gmail.com>

References

Truong, P. N.; Heuvelink, G. B. M.; Gosling, J. P. Web-based tool for expert elicitation of the
variogram. Computers and Geosciences. v. 51, p. 390-399, 2013.

See Also

optimPPL

Examples

data(meuse, package = "sp")
lags_points <- vgmLags(coords = meuse[, 1:2], count = "points")
lags_pairs <- vgmLags(coords = meuse[, 1:2], count = "pairs")

vgmSCV Spatially correlated variance (SCV)

Description

Compute the proportion of the variance that is spatially correlated.

Usage

## S3 method for class 'variomodel'
vgmSCV(obj, digits = 4)

## S3 method for class 'variogramModel'
vgmSCV(obj, digits = 4)

## S3 method for class 'georob'
vgmSCV(obj, digits = 4)

Arguments

obj Variogram model fitted with available function in geostatistical packages such
as gstat, geoR, and georob.

digits Integer indicating the number of decimal places to be used.
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Value

Numeric value indicating the proportion of the variance that is spatially correlated.

Author(s)

Alessandro Samuel-Rosa <alessandrosamuelrosa@gmail.com>

See Also

vgmLags
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levelplot, 32, 35
likfit, 41
LoadData, 23, 24

model.frame, 41
mvtsplot, 35

optimPPL, 45
optimRandomForest, 25

panel.mathdensity, 31
panel.xyplot, 32
pedometrics (pedometrics-package), 2
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plotMS, 32, 38
points, 33
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stratify (cont2cat), 16

terms, 41
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