Package 'pchc'

July 6, 2020

Title Bayesian Network Learning with the PCHC Algorithm
Version 0.1
URL
Date 2020-07-05
Author Michail Tsagris [aut, cre]
Maintainer Michail Tsagris <mtsagris@uoc.gr></mtsagris@uoc.gr>
Depends R (>= 3.6.0)
Imports bnlearn, Rfast, robustbase, stats
Description Bayesian network learning using the PCHC algorithm. PCHC stands for PC Hill- Climbing. It is a new hybrid algorithm that used PC to construct the skele- ton of the BN and then utilizes the Hill-Climbing greedy search. The relevant pa- per has been submitted and is currently in revision.
License GPL (≥ 2)
NeedsCompilation no

Repository CRAN

Type Package

Date/Publication 2020-07-06 16:30:03 UTC

R topics documented:

pchc-package	2
Chi-square and G-square tests of (unconditional) indepdence	3
Correlation significance testing using Fisher's z-transformation	4
Partial correlation between two continuous variables	5
Skeleton of the PC algorithm	6
The PCHC Bayesian network learning algorithm	8

10

Index

```
pchc-package
```

Description

Bayesian network learning with the PCHC algorithm. PCHC stands for PC Hill-Climbing. It is a new hybrid algorithm that used PC to construct the skeleton of the BN and then utilizes the Hill-Climbing greedy search. The relevant paper has been submitted and is currently in revision.

Details

Package:	pchc
Type:	Package
Version:	0.1
Date:	2020-07-05
License:	GPL-2

Maintainers

Michail Tsagris <mtsagris@uoc.gr>

Author(s)

Michail Tsagris <mtsagris@uoc.gr>.

References

Spirtes P., Glymour C. and Scheines R. (2001). Causation, Prediction, and Search. The MIT Press, Cambridge, MA, USA, 3nd edition.

Tsamardinos I., Borboudakis G. (2010) Permutation Testing Improves Bayesian Network Learning. In Machine Learning and Knowledge Discovery in Databases. ECML PKDD 2010. 322-337.

Tsamardinos I., Brown E.L. and Aliferis F.C. (2006). The max-min hill-climbing Bayesian network structure learning algorithm. Machine learning 65(1):31-78.

Tsagris M. (2017). Conditional independence test for categorical data using Poisson log-linear model. Journal of Data Science, 15(2):347-356.

Borboudakis G. and Tsamardinos I. (2019). Forward-backward selection with early dropping. Journal of Machine Learning Research, 20(8): 1-39.

Chi-square and G-square tests of (unconditional) indepdence Chi-square and G-square tests of (unconditional) indepdence

Description

Chi-square and G-square tests of (unconditional) indepdence.

Usage

cat.tests(x, y, logged = FALSE)

Arguments

x	A numerical vector or a factor variable with data. The data must be consecutive numbers.
У	A numerical vector or a factor variable with data. The data must be consecutive numbers.
logged	Should the p-values be returned (FALSE) or their logarithm (TRUE)?

Details

The function calculates the test statistic of the χ^2 and the G^2 tests of unconditional independence between x and y. x and y need not be numerical vectors like in g2Test. This function is more close to the spirit of MASS' loglm function which calculates both statistics using Poisson log-linear models (Tsagris, 2017).

Value

A matrix with two rows. In each row the X2 or G2 test statistic, its p-value and the degrees of freedom are returned.

Author(s)

Michail Tsagris

R implementation and documentation: Michail Tsagris <mtsagris@uoc.gr>.

References

Tsagris M. (2017). Conditional independence test for categorical data using Poisson log-linear model. Journal of Data Science, 15(2):347-356.

See Also

cortest,pc.skel

Examples

```
x <- rbinom(100, 3, 0.5)
y <- rbinom(100, 2, 0.5)</pre>
```

Correlation significance testing using Fisher's z-transformation Correlation significance testing using Fisher's z-transformation

Description

Correlation significance testing using Fisher's z-transformation.

Usage

cortest(y, x, rho = 0, a = 0.05)

Arguments

У	A numerical vector.
х	A numerical vector.
rho	The value of the hypothesised correlation to be used in the hypothesis testing.
а	The significance level used for the confidence intervals.

Details

The function uses the built-in function "cor" which is very fast, then computes a confidence interval and produces a p-value for the hypothesis test.

Value

A vector with 5 numbers; the correlation, the p-value for the hypothesis test that each of them is equal to "rho", the test statistic and the a/2% lower and upper confidence limits.

Author(s)

Michail Tsagris

R implementation and documentation: Michail Tsagris <mtsagris@uoc.gr>.

See Also

pcor

Examples

```
x <- rcauchy(60)
y <- rnorm(60)
cortest(y, x)
```

4

Partial correlation between two continuous variables Partial correlation

Description

Partial correlation between two continuous variables when a correlation matrix is given.

Usage

pcor(R, indx, indy, indz, n)

Arguments

R	A correlation matrix.
indx	The index of the first variable whose conditional correlation is to estimated.
indy	The index of the second variable whose conditional correlation is to estimated.
indz	The index of the conditioning variables.
n	The sample size of the data from which the correlation matrix was computed.

Details

Given a correlation matrix the function will caclulate the partial correlation between variables indx and indy conditioning on variable(s) indz and will return the logarithm of the p-value.

Value

The logged p-value for the test of no partial correlation.

Author(s)

Michail Tsagris

R implementation and documentation: Michail Tsagris <mtsagris@uoc.gr>

See Also

pc.skel

Examples

```
y <- as.matrix( iris[, 1:2] )
z <- cbind(1, iris[, 3] )
er <- resid( .lm.fit(z, y) )
r <- cor(er)[1, 2]
z <- 0.5 * log( (1 + r) / (1 - r) ) * sqrt( 150 - 1 - 3 )
log(2) + pt( abs(z), 150 - 1 - 3, lower.tail = FALSE, log.p = TRUE )
r <- cor(iris[, 1:3])
pcor(r, 1,2, 3, 150)</pre>
```

Skeleton of the PC algorithm

The skeleton of a Bayesian network produced by the PC algorithm

Description

The skeleton of a Bayesian network produced by the PC algorithm.

Usage

pchc.skel(x, method = "pearson", alpha = 0.05, ini.stat = NULL, ini.pvalue = NULL)

Arguments

x	A numerical matrix with the variables. If you have a data.frame (i.e. categorical data) turn them into a matrix using data.frame.to_matrix. Note, that for the categorical case data, the numbers must start from 0. No missing data are allowed.
method	If you have continuous data, this "pearson". If you have categorical data though, this must be "cat". In this case, make sure the minimum value of each variable is zero. The function "g2Test" in the R package Rfast and the relevant functions work that way.
alpha	The significance leve for assessing the p-values.
ini.stat	If the initial test statistics (univariate associations) are available, pass them through this parameter.
ini.pvalue	if the initial p-values of the univariate associations are available, pass them through this parameter.

Details

The PC algorithm as proposed by Spirtes et al. (2000) is implemented. The variables must be either continuous or categorical, only. The skeleton of the PC algorithm is order independent, since we are using the third heuristic (Spirte et al., 2000, pg. 90). At every stage of the algorithm use the pairs which are least statistically associated. The conditioning set consists of variables which are most statistically associated with each other of the pair of variables.

For example, for the pair (X, Y) there can be two conditioning sets for example (Z1, Z2) and (W1, W2). All p-values and test statistics and degrees of freedom have been computed at the first step of the algorithm. Take the p-values between (Z1, Z2) and (X, Y) and between (Z1, Z2) and (X, Y). The conditioning set with the minimum p-value is used first. If the minimum p-values are the same, use the second lowest p-value. If the unlikely, but not impossible, event of all p-values being the same, the test statistic divided by the degrees of freedom is used as a means of choosing which conditioning set is to be used first.

If two or more p-values are below the machine epsilon (.Machine\$double.eps which is equal to 2.220446e-16), all of them are set to 0. To make the comparison or the ordering feasible we use the logarithm of p-value. Hence, the logarithm of the p-values is always calculated and used.

Skeleton of the PC algorithm

In the case of the G^2 test of independence (for categorical data) with no permutations, we have incorporated a rule of thumb. If the number of samples is at least 5 times the number of the parameters to be estimated, the test is performed, otherwise, independence is not rejected according to Tsamardinos et al. (2006). We have modified it so that it calculates the p-value using permutations.

Value

A list including:

stat	The test statistics of the univariate associations.
ini.pvalue	The initial p-values univariate associations.
pvalue	The logarithm of the p-values of the univariate associations.
runtime	The amount of time it took to run the algorithm.
kappa	The maximum value of k, the maximum cardinality of the conditioning set at which the algorithm stopped.
n.tests	The number of tests conducted during each k.
G	The adjancency matrix. A value of 1 in $G[i, j]$ appears in $G[j, i]$ also, indicating that i and j have an edge between them.
sepset	A list with the separating sets for every value of k.

Author(s)

Michail Tsagris

R implementation and documentation: Michail Tsagris <mtsagris@uoc.gr>.

References

Spirtes P., Glymour C. and Scheines R. (2001). Causation, Prediction, and Search. The MIT Press, Cambridge, MA, USA, 3nd edition.

Tsamardinos I., Borboudakis G. (2010) Permutation Testing Improves Bayesian Network Learning. In Machine Learning and Knowledge Discovery in Databases. ECML PKDD 2010. 322-337.

See Also

pchc

Examples

```
# simulate a dataset with continuous data
x <- matrix( rnorm(200 * 50, 1, 100), nrow = 200 )
a <- pchc.skel(x)</pre>
```

The PCHC Bayesian network learning algorithm *The PCHC Bayesian network learning algorithm*

Description

The PCHC Bayesian network learning algorithm.

Usage

```
pchc(x, method = "pearson", alpha = 0.05, ini.stat = NULL,
ini.pvalue = NULL, restart = 10, score = "bge", blacklist = NULL, whitelist = NULL)
```

Arguments

x	A numerical matrix with the variables. If you have a data.frame (i.e. categorical data) turn them into a matrix using data.frame.to_matrix. Note, that for the categorical case data, the numbers must start from 0. No missing data are allowed.
method	If you have continuous data, you can choose either "pearson" or "spearman". If you have categorical data though, this must be "cat". In this case, make sure the minimum value of each variable is zero. The g2Test and the relevant functions work that way.
alpha	The significance level for assessing the p-values.
ini.stat	If the initial test statistics (univariate associations) are available, pass them through this parameter.
ini.pvalue	if the initial p-values of the univariate associations are available, pass them through this parameter.
restart	An integer, the number of random restarts.
score	A character string, the label of the network score to be used in the algorithm. If none is specified, the default score is the Bayesian Information Criterion for both discrete and continuous data sets. The available score for continuous variables are: "bge" (default), "loglik-g", "aic-g", "bic-g" or "bge". The available score categorical variables are: "bde", "loglik" or "bic".
blacklist	A data frame with two columns (optionally labeled "from" and "to"), containing a set of arcs not to be included in the graph.
whitelist	A data frame with two columns (optionally labeled "from" and "to"), containing a set of arcs to be included in the graph.

Details

The PC algorithm as proposed by Spirtes et al. (2000) is first implemented followed by a scoring phase, such as hill climbing.

Value

A list including:

stat	The test statistics of the univariate associations.
ini.pvalue	The initial p-values univariate associations.
pvalue	The logarithm of the p-values of the univariate associations.
runtime	The amount of time it took to run the algorithm.
kappa	The maximum value of k, the maximum cardinality of the conditioning set at which the algorithm stopped.
n.tests	The number of tests conducted during each k.
G	The adjancency matrix. A value of 1 in $G[i, j]$ appears in $G[j, i]$ also, indicating that i and j have an edge between them.
sepset	A list with the separating sets for every value of k.

Author(s)

Michail Tsagris

R implementation and documentation: Michail Tsagris <mtsagris@uoc.gr>.

References

Spirtes P., Glymour C. and Scheines R. (2001). Causation, Prediction, and Search. The MIT Press, Cambridge, MA, USA, 3nd edition.

Tsamardinos I., Borboudakis G. (2010) Permutation Testing Improves Bayesian Network Learning. In Machine Learning and Knowledge Discovery in Databases. ECML PKDD 2010. 322-337.

Tsamardinos I., Brown E.L. and Aliferis F.C. (2006). The max-min hill-climbing Bayesian network structure learning algorithm. Machine learning 65(1):31-78.

See Also

pchc.skel

Examples

```
# simulate a dataset with continuous data
x <- matrix( rnorm(200 * 50, 1, 10), nrow = 200 )
a <- pchc(x)</pre>
```

Index

* Conditioning set Partial correlation between two continuous variables, 5 ***** G² test of conditional independence Chi-square and G-square tests of (unconditional) indepdence, 3 * Partial correlation Partial correlation between two continuous variables, 5 cat.tests(Chi-square and G-square tests of (unconditional) indepdence), 3Chi-square and G-square tests of (unconditional) indepdence, 3 Correlation significance testing using Fisher's z-transformation, 4 cortest, 3 cortest (Correlation significance testing using Fisher's z-transformation), 4 data.frame.to_matrix, 6, 8 g2Test, 3, 8 loglm, 3 Partial correlation between two continuous variables, 5 pc.skel, 3, 5 pchc, 7 pchc (The PCHC Bayesian network learning algorithm), 8 pchc-package, 2 pchc.skel, 9 pchc.skel(Skeleton of the PC algorithm), 6 pcor, 4 pcor (Partial correlation between two continuous variables), 5

Skeleton of the PC algorithm, 6

The PCHC Bayesian network learning algorithm, ${\bf 8}$