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Abstract

The pcalg package for R (R Development Core Team 2014) can be used for the following
two purposes: Causal structure learning and estimation of causal effects from observational
and/or interventional data. In this document, we give a brief overview of the methodology,
and demonstrate the package’s functionality in both toy examples and applications.

This vignette is an updated and extended (FCI, RFCI, etc) version of Kalisch et al.
(2012) which was for pcalg 1.1-4.
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1. Introduction

Understanding cause-effect relationships between variables is of primary interest in many fields
of science. Usually, experimental intervention is used to find these relationships. In many
settings, however, experiments are infeasible because of time, cost or ethical constraints.

We therefore consider the problem of inferring causal information from observational data.
Under some assumptions, the algorithms PC (see Spirtes et al. 2000), FCI (see Spirtes et al.
2000, 1999a), RFCI (see Colombo et al. 2012) and GES (see Chickering 2002) can infer infor-
mation about the causal structure from observational data; there also exists a generalization
of GES to interventional data, GIES (see Hauser and Bühlmann 2012). These algorithms
tell us which variables could or could not be a cause of some variable of interest. They do
not, however, give information about the size of the causal effects. We therefore developed
the IDA method (Maathuis et al. 2009), which can infer bounds on causal effects based on
observational data under some assumptions and in particular that no hidden and selection
variables are present. IDA is a two step approach that combines the PC algorithm and Pearl’s
backdoor criterion (Pearl 1993), which has been designed for DAGs without latent variables.
IDA was validated on a large-scale biological system (see Maathuis et al. 2010). Since the
assumption of no latent variables is a strong assumption when working with real data and
therefore often violated in practice, we generalized Pearl’s backdoor criterion (see Maathuis
and Colombo 2013) to more general types of graphs, i.e. CPDAGs, MAGs, and PAGs, that
describe Markov equivalence classes of DAGs with and without latent variables but without
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selection variables.

For broader use of these methods, well documented and easy to use software is indispensable.
We therefore wrote the R package pcalg, which contains implementations of the algorithms
PC, FCI, RFCI, GES and GIES, as well as of the IDA method and the generalized Pearl’s
backdoor criterion. The objective of this paper is to introduce the R package pcalg, explain
the range of functions on simulated data sets and summarize some applications.

To get started, we show how two of the main functions (one for causal structure learning and
one for estimating causal effects from observational data) can be used in a typical applica-
tion. Suppose we have a system described by some variables and many observations of this
system. Furthermore, assume that it seems plausible that there are no hidden variables and
no feedback loops in the underlying causal system. The causal structure of such a system can
be conveniently represented by a directed acyclic graph (DAG), where each node represents
a variable and each directed edge represents a direct cause. To fix ideas, we have simulated
an example data set with p = 8 continuous variables with Gaussian noise and n = 5000
observations, which we will now analyze. First, we load the package pcalg and the data set.

> library("pcalg")

> data("gmG")

In the next step, we use the function pc() to produce an estimate of the underlying causal
structure. Since this function is based on conditional independence tests, we need to define two
things. First, we need a function that can compute conditional independence tests in a way
that is suitable for the data at hand. For standard data types (Gaussian, discrete and binary)
we provide predefined functions. See the example section in the help file of pc() for more
details. Secondly, we need a summary of the data (sufficient statistic) on which the conditional
independence function can work. Each conditional independence test can be performed at a
certain significance level alpha. This can be treated as a tuning parameter. In the following
code, we use the predefined function gaussCItest() as conditional independence test and
create the corresponding sufficient statistic, consisting of the correlation matrix of the data
and the sample size. Then we use the function pc() to estimate the causal structure and plot
the result.

> suffStat <- list(C = cor(gmG8$x), n = nrow(gmG8$x))

> pc.gmG <- pc(suffStat, indepTest = gaussCItest,

p = ncol(gmG8$x), alpha = 0.01)

As can be seen in Fig. 1, there are directed and bidirected edges in the estimated causal struc-
ture. The directed edges show the presence and direction of direct causal effects. A bidirected
edge means that the PC-algorithm was unable to decide whether the edge orientation should
be or . Thus, bidirected edges represent some uncertainty in the resulting model.
They reflect the fact that in general one cannot estimate a unique DAG from observational
data, not even with an infinite amount of data, since several DAGs can describe the same
conditional independence information.

On the inferred causal structure, we can estimate the causal effect of an intervention. Denote
the variable corresponding to node i in the graph by Vi. For example, suppose that, by
external intervention, we first set the variable V1 to some value x̃, and then to the value x̃+1.
The recorded average change in variable V6 is the (total) causal effect of V1 on V6. More
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Figure 1: True underlying causal DAG (left) and estimated causal structure (right), represent-
ing a Markov equivalence class of DAGs that all encode the same conditional independence
information. (Due to the large sample size, there were no sampling errors.)

precisely, the causal effect C(V1, V6, x̃) of V1 from V1 = x̃ on V6 is defined as

C(V1, V6, x̃) = E(V1| do(V6 = x̃+ 1))− E(V1| do(V6 = x̃)) or

C(V1, V6, x̃) =
∂

∂x
E(V1| do(V6 = x))|x=x̃,

where do(V6 = x) denotes Pearl’s do-operator (see Pearl 2000). If the causal relationships are
linear, these two expressions are equivalent and do not depend on x̃.

Since the causal structure was not identified uniquely in our example, we cannot expect to
get a unique number for the causal effect. Instead, we get a set of possible causal effects. This
set can be computed by using the function ida(). To provide full quantitative information,
we need to pass the covariance matrix in addition to the estimated causal structure.

> ida(1, 6, cov(gmG8$x), pc.gmG@graph)

[1] 0.5321 0.5304

Since we simulated the data, we know that the true value of the causal effect is 0.52. Thus,
one of the two estimates is indeed close to the true value. Since both values are larger than
zero, we can conclude that variable V1 has a positive causal effect on variable V6. Thus, we
can always estimate a lower bound for the absolute value of the causal effect. (Note that at
this point we have no p-value to control the sampling error.)

If we would like to know the effect of a unit increase in variable V1 on variables V4, V5 and
V6, we could simply call ida() three times. However, a faster way is to call the function
idaFast(), which was tailored for such situations.

> idaFast(1, c(4,5,6), cov(gmG8$x), pc.gmG@graph)

[,1] [,2]

4 -0.010329 -0.0098746
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5 0.043770 -0.0056205

6 0.532096 0.5303967

Each row in the output shows the estimated set of possible causal effects on the target variable
indicated by the row names. The true values for the causal effects are 0, 0.05, 0.52 for variables
V4, V5 and V6, respectively. The first row, corresponding to variable V4, quite accurately
indicates a causal effect that is very close to zero or no effect at all. The second row of the
output, corresponding to variable V5, is rather uninformative: Although one entry comes close
to the true value, the other estimate is close to zero. Thus, we cannot be sure if there is a
causal effect at all. The third row, corresponding to V6 was already discussed above.

2. Methodological background

In Section 2.1 we propose methods for estimating the causal structure. In particular, we
discuss algorithms for structure learning

• in the absence of hidden variables from observational data such as PC (see Spirtes et al.
2000), GES (see Chickering 2002), and the dynamic programming approach of Silander
and Myllymäki (2006),

• from observational data accounting for hidden variables such as FCI (see Spirtes et al.
2000, 1999a) and RFCI (see Colombo et al. 2012),

• in the absence of hidden variables from jointly observational and interventional data
such as GIES (see Hauser and Bühlmann 2012).

In Section 2.2 we first describe the IDA method (see Maathuis et al. 2009) to obtain bounds on
causal effects from observational data when no latent and selection variables are present. This
method is based on first estimating the causal structure and then applying do-calculus (see
Pearl 2000). We then propose the generalized Pearl’s backdoor criterion (see Maathuis and
Colombo 2013) that works with DAGs, CPDAGs, MAGs, and PAGs as input and it assumes
that there are arbitrarly many latent variables but no selection variables. This method is
based on two steps: first it checks if the total causal effect of one variable X onto another
variables Y is identifiable via the generalized backdoor criterion in the given type of graph,
and if this is the case it explicitly gives a set of variables that satisfies the generalized backdoor
criterion with respect to X and Y in the given graph.

2.1. Estimating causal structures with graphical models

Graphical models can be thought of as maps of dependence structures of a given probability
distribution or a sample thereof (see for example Lauritzen 1996). In order to illustrate the
analogy, let us consider a road map. In order to be able to use a road map, one needs two given
factors. First, one needs the physical map with symbols such as dots and lines. Second, one
needs a rule for interpreting the symbols. For instance, a railroad map and a map for electric
circuits might look very much alike, but their interpretation differs a lot. In the same sense,
a graphical model is a map. First, a graphical model consists of a graph with dots, lines and
potentially edge marks like arrowheads or circles. Second, a graphical model always comes
with a rule for interpreting this graph. In general, nodes in the graph represent (random)
variables and edges represent some kind of dependence.
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Without hidden and selection variables

An example of a graphical model is the DAG model. The physical map here is a graph
consisting of nodes and directed edges ( or ). As a further restriction, the edges must
be directed in a way, so that it is not possible to trace a cycle when following the arrowheads
(i.e., no directed cycles). The interpretation rule is called d-separation. This rule is a bit
intricate and we refer the reader to Lauritzen (1996) for more details. This interpretation
rule can be used in the following way: If two nodes x and y are d-separated by a set of nodes
S, then the corresponding random variables Vx and Vy are conditionally independent given
the set of random variables VS . For the following, we only deal with distributions whose list of
conditional independencies perfectly matches the list of d-separation relations of some DAG;
such distributions are called faithful. It has been shown that the set of distributions that are
faithful is the overwhelming majority (Meek 1995), so that the assumption does not seem to
be very strict in practice.

Since the DAG model encodes conditional independencies, it seems plausible that information
on the latter helps to infer aspects of the former. This intuition is made precise in the PC
algorithm (see Spirtes et al. (2000); PC stands for the initials of its inventors Peter Spirtes
and Clark Glymour) which was proven to reconstruct the structure of the underlying DAG
model given a conditional independence oracle up to its Markov equivalence class which is
discussed in more detail below. In practice, the conditional independence oracle is replaced
by a statistical test for conditional independence. For situations without hidden variables
and under some further conditions it has been shown that the PC algorithm using statistical
tests instead of an independence oracle is computationally feasible and consistent even for
very high-dimensional sparse DAGs (see Kalisch and Bühlmann 2007).

As mentioned before, several DAGs can encode the same list of conditional independencies.
One can show that such DAGs must share certain properties. To be more precise, we have to
define a v-structure as the subgraph i j k on the nodes i, j and k where i and k are not
adjacent (i.e., there is no edge between i and k). Furthermore, let the skeleton of a DAG be
the graph that is obtained by removing all arrowheads from the DAG. It was shown that two
DAGs encode the same conditional independence statements if and only if the corresponding
DAGs have the same skeleton and the same v-structures (see Verma and Pearl 1990). Such
DAGs are called Markov-equivalent. In this way, the space of DAGs can be partitioned into
equivalence classes, where all members of an equivalence class encode the same conditional
independence information. Conversely, if given a conditional independence oracle, one can
only determine a DAG up to its equivalence class. Therefore, the PC algorithm cannot
determine the DAG uniquely, but only the corresponding equivalence class of the DAG.

An equivalence class can be visualized by a graph that has the same skeleton as every DAG in
the equivalence class and directed edges only where all DAGs in the equivalence class have the
same directed edge. Edges that point into one direction for some DAGs in the equivalence
class and in the other direction for other DAGs in the equivalence class are visualized by
bidirected edges (sometimes, undirected edges are used instead). This graph is called a
completed partially directed acyclic graph, CPDAG (Spirtes et al. 2000), or essential graph
(Andersson et al. 1997).

We now describe the PC-algorithm, which is shown in Algorithm 1, in more detail. The
PC-algorithm starts with a complete undirected graph, G0, as stated in (P1) of Algorithm 1.
In stage (P2), a series of conditional independence tests is done and edges are deleted in the
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Algorithm 1 Outline of the PC-algorithm

Input: Vertex set V, conditional independence information, significance level α
Output: Estimated CPDAG Ĝ, separation sets Ŝ

Edge types: ,
(P1) Form the complete undirected graph on the vertex set V
(P2) Test conditional independence given subsets of adjacency sets at a given significance
level α and delete edges if conditional independent
(P3) Orient v-structures
(P4) Orient remaining edges.

following way. First, all pairs of nodes are tested for marginal independence. If two nodes i

and j are judged to be marginally independent at level α, the edge between them is deleted
and the empty set is saved as separation sets Ŝ[i, j] and Ŝ[j, i]. After all pairs have been
tested for marginal independence and some edges might have been removed, a graph results
which we denote by G1. In the second step, all pairs of nodes (i, j) still adjacent in G1 are
tested for conditional independence given any single node in adj(G1, i)\{j} or adj(G1, j)\{i}
(adj(G, i) denotes the set of nodes in graph G that are adjacent to node i) . If there is any
node k such that Vi and Vj are conditionally independent given Vk, the edge between i and
j is removed and node k is saved as separation sets (sepset) Ŝ[i, j] and Ŝ[j, i]. If all adjacent
pairs have been tested given one adjacent node, a new graph results which we denote by G2.
The algorithm continues in this way by increasing the size of the conditioning set step by step.
The algorithm stops if all adjacency sets in the current graph are smaller than the size of the
conditioning set. The result is the skeleton in which every edge is still undirected. Within
(P3), each triple of vertices (i, k, j) such that the pairs (i, k) and (j, k) are each adjacent
in the skeleton but (i, j) are not (such a triple is called an “unshielded triple”), is oriented
based on the information saved in the conditioning sets Ŝ[i, j] and Ŝ[j, i]. More precisely, an
unshielded triple i k j is oriented as i k j if k is not in Ŝ[j, i] = Ŝ[i, j]. Finally, in
(P4) it may be possible to orient some of the remaining edges, since one can deduce that one
of the two possible directions of the edge is invalid because it introduces a new v-structure
or a directed cycle. Such edges are found by repeatedly applying rules described in Spirtes
et al. (2000), p.85. The resulting output is the equivalence class (CPDAG) that describes the
conditional independence information in the data, in which every edge is either undirected or
directed. (To simplify visual presentation, undirected edges are depicted as bidirected edges
in the output as soon as at least one directed edge is present. If no directed edge is present,
all edges are undirected.)

It is known that the PC algorithm is order-dependent in steps (P2)–(P4), meaning that
the output depends from the order in which the variables are given. Colombo and Maathuis
(2013) proposed several modifications of the PC algorithm (see Sections 3.1 and 3.2) that
partly or fully remove these order-dependence issues in each step.

The PC algorithm presented so far is based on conditional independence tests. Score-based
methods form an alternative approach to causal inference. They try to find a CPDAG that
maximizes a score, typically a model selection criterion, which is calculated from data.

One of the most popular scores is the Bayesian information criterion (BIC) because its max-
imization leads to consistent model selection in the classical large-sample limit (Haughton
1988; Geiger et al. 2001). However, computing its maximum is an NP-hard problem (Chick-
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ering 1996). An exhaustive search is computationally infeasible due to the size of the search
space, the space of DAGs or CPDAGs, respectively. Silander and Myllymäki (2006) have
presented an exact dynamic programming algorithm with an exponential time complexity.
Its execution is feasible for models with a few dozen variables.

The greedy equivalence search (GES) of Chickering (2002) makes the maximization of the BIC
computationally feasible for much larger graphs. As the name of the algorithm implies, GES
maximizes the BIC in a greedy way, but still guarantees consistency in the large-sample limit.
It still has exponential-time complexity in the worst case, but only polynomial complexity in
the average case where the size of the largest clique in a graph grows only logarithmically
with the number of nodes (Grimmett and McDiarmid 1975).

GES greedily optimizes the BIC in two phases:

• In the forward phase, the algorithm starts with the empty graph. It then sequentially
moves to larger CPDAGs by operations that correspond to adding single arrows in the
space of DAGs. This phase is aborted if no augmentation of the BIC is possible any
more.

• In the backward phase, the algorithm moves again into the direction of smaller graphs
by operations that correspond to removing single arrows in the space of DAGs. The
algorithm terminates as soon as no augmentation of the BIC is possible any more.

A key ingredient for the fast exploration of the search space in GES is an evaluation of
the greedy steps in a local fashion which avoids enumerating all representative DAGs of an
equivalence class and which exploits the decomposability of the BIC score (Chickering 2002).

A causal structure without feedback loops and without hidden or selection variable can be
visualized using a DAG where the edges indicate direct cause-effect relationships. Under
some assumptions, Pearl (2000) showed (Theorem 1.4.1) that there is a link between causal
structures and graphical models. Roughly speaking, if the underlying causal structure is
a DAG, we observe data generated from this DAG and then estimate a DAG model (i.e.,
a graphical model) on this data, the estimated CPDAG represents the equivalence class of
the DAG model describing the causal structure. This holds if we have enough samples and
assuming that the true underlying causal structure is indeed a DAG without latent or selection
variables. Note that even given an infinite amount of data, we usually cannot identify the
true DAG itself, but only its equivalence class. Every DAG in this equivalence class can be
the true causal structure.

With hidden or selection variables

When discovering causal relations from nonexperimental data, two difficulties arise. One
is the problem of hidden (or latent) variables: Factors influencing two or more measured
variables may not themselves be measured. The other is the problem of selection bias: Values
of unmeasured variables or features may influence whether a unit is included in the data
sample.

In the case of hidden or selection variables, one could still visualize the underlying causal
structure with a DAG that includes all observed, hidden and selection variables. However,
when inferring the DAG from observational data, we do not know all hidden and selection
variables.
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We therefore seek to find a structure that represents all conditional independence relationships
among the observed variables given the selection variables of the underlying causal structure.
It turns out that this is possible. However, the resulting object is in general not a DAG
for the following reason. Suppose, we have a DAG including observed, latent and selection
variables and we would like to visualize the conditional independencies among the observed
variables only. We could marginalize out all latent variables and condition on all selection
variables. It turns out that the resulting list of conditional independencies can in general not
be represented by a DAG, since DAGs are not closed under marginalization or conditioning
(see Richardson and Spirtes 2002).

A class of graphical independence models that is closed under marginalization and condition-
ing and that contains all DAG models is the class of ancestral graphs. A detailed discussion
of this class of graphs can be found in Richardson and Spirtes (2002). In this text, we only
give a brief introduction.

Ancestral graphs have nodes, which represent random variables and edges which represent
some kind of dependence. The edges can be either directed ( or ), undirected ( )
or bidirected ( ) (note that in the context of ancestral graphs, undirected and bidirected
edges do not mean the same). There are two rules that restrict the direction of edges in an
ancestral graph:

1: If i and j are joined by an edge with an arrowhead at i, then there is no directed path
from i to j. (A path is a sequence of adjacent vertices, and a directed path is a path
along directed edges that follows the direction of the arrowheads.)

2: There are no arrowheads present at a vertex which is an endpoint of an undirected edge.

Maximal ancestral graphs (MAG), which we will use from now on, also obey a third rule:

3: Every missing edge corresponds to a conditional independence.

The conditional independence statements of MAGs can be read off using the concept of m-
separation, which is a generalization the concept of d-separation. Furthermore, part of the
causal information in the underlying DAG is represented in the MAG. If in the MAG there
is an edge between node i and node j with an arrowhead at node i, then there is no directed
path from node i to node j nor to any of the selection variables in the underlying DAG (i.e.,
i is not a cause of j or of the selection variables). If, on the other hand, there is a tail at node
i, then there is a directed path from node i to node j or to one of the selection variables in
the underlying DAG (i.e., i is a cause of j or of a selection variable).

Recall that finding a unique DAG from an independence oracle is in general impossible.
Therefore, one only reports on the equivalence class of DAGs in which the true DAG must
lie. The equivalence class is visualized using a CPDAG. The same is true for MAGs: Finding
a unique MAG from an independence oracle is in general impossible. One only reports on the
equivalence class in which the true MAG lies.

An equivalence class of a MAG can be uniquely represented by a partial ancestral graph
(PAG) (see, e.g., Zhang 2008). A PAG contains the following types of edges: , , ,

, , . Roughly, the bidirected edges come from hidden variables, and the undirected
edges come from selection variables. The edges have the following interpretation: (i) There
is an edge between x and y if and only if Vx and Vy are conditionally dependent given VS for
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all sets VS consisting of all selection variables and a subset of the observed variables; (ii) a
tail on an edge means that this tail is present in all MAGs in the equivalence class; (iii) an
arrowhead on an edge means that this arrowhead is present in all MAGs in the equivalence
class; (iv) a ◦-edgemark means that there is a at least one MAG in the equivalence class where
the edgemark is a tail, and at least one where the edgemark is an arrowhead.

An algorithm for finding the PAG given an independence oracle is the FCI algorithm (“fast
causal inference”; see Spirtes et al. (2000) and Spirtes et al. (1999b)). The orientation rules
of this algorithm were slightly extended and proven to be complete in Zhang (2008). FCI
is very similar to PC but makes additional conditional independence tests and uses more
orientation rules (see Section 3.4 for more details). We refer the reader to Zhang (2008) or
Colombo et al. (2012) for a detailed discussion of the FCI algorithm. It turns out that the
FCI algorithm is computationally infeasible for large graphs. The RFCI algorithm (“really
fast causal inference”; see Colombo et al. (2012)), is much faster than FCI. The output
of RFCI is in general slightly less informative than the output of FCI, in particular with
respect to conditional independence information. However, it was shown in Colombo et al.
(2012) that any causal information in the output of RFCI is correct and that both FCI and
RFCI are consistent in (different) sparse high-dimensional settings. Finally, in simulations
the estimation performances of the algorithms are very similar.

Since both these algorithms are build up from the PC algorithm, they are also order-dependent,
meaning that the output depends from the order in which the variables are given. Starting
from the solution proposed for the PC algorithm, Colombo and Maathuis (2013) proposed
several modifications of the FCI and the RFCI algorithms (see Sections 3.1, 3.4, and 3.5) that
partly or fully remove these order-dependence issues in each of their steps.

From a mixture of observational and interventional data

We often have to deal with interventional data in causal inference. In cell biology for example,
data is often measured in different mutants, or collected from gene knockdown experiments,
or simply measured under different experimental conditions. An intervention, denoted by
Pearl’s do-calculus (see Section 1), changes the joint probability distribution of the system;
therefore, data samples collected from different intervention experiments are not identically
distributed (although still independent).

The algorithms PC and GES both rely on the i.i.d. assumption and are not suited for causal
inference from interventional data. The GIES algorithm, which stands for “greedy interven-
tional equivalence search”, is a generalization of GES to interventional data (see Hauser and
Bühlmann 2012). It does not only make sure that interventional data points are handled
correctly (instead of being wrongly treated as observational data points), but also accounts
for the improved identifiablity of causal models under interventional data by returning an
interventional essential graph. Just as in the observational case, an interventional essential
graph is a partially directed graph representing an (interventional) Markov equivalence class
of DAGs: a directed edge between two vertices stands for an arrow with common orientation
among all representatives of the equivalence class, an undirected edge stands for an arrow that
has different orientations among different representative DAGs; for more details, see Hauser
and Bühlmann (2012).

GIES traverses the search space of interventional essential graphs in a similar way as GES
traverses the search space of observational essential graphs. In addition, a new search phase



10 More Causal Graphical Models: Package pcalg

was introduced by Hauser and Bühlmann (2012) with movements which correspond to turning
single arrows in the space of DAGs.

2.2. Estimating bounds on causal effects

One way of quantifying the causal effect of variable Vx on Vy is to measure the state of Vy if
Vx is forced to take value Vx = x and compare this to the value of Vy if Vx is forced to take
the value Vx = x+ 1 or Vx = x+ δ. If Vx and Vy are random variables, forcing Vx = x could
have the effect of changing the distribution of Vy. Following the conventions in Pearl (2000),
the resulting distribution after manipulation is denoted by P [Vy| do(Vx = x)]. Note that this
is different from the conditional distribution P [Vy|Vx = x]. To illustrate this, imagine the
following simplistic situation. Suppose we observe a particular spot on the street during some
hour. The random variable Vx denotes whether it rained during that hour (Vx = 1 if it rained,
Vx = 0 otherwise). The random variable Vy denotes whether the street was wet at the end of
that hour (Vy = 1 if it was wet, Vy = 0 otherwise). If we assume P (Vx = 1) = 0.1 (rather dry
region), P (Vy = 1|Vx = 1) = 0.99 (the street is almost always still wet at the end of the hour
when it rained during that hour) and P (Vy = 1|Vx = 0) = 0.02 (other reasons for making the
street wet are rare), we can compute the conditional probability P (Vx = 1|Vy = 1) = 0.85.
So, if we observe the street to be wet, the probability that there was rain in the last hour is
about 0.85. However, if we take a garden hose and force the street to be wet at a randomly
chosen hour, we get P (Vx = 1| do(Vy = 1)) = P (Vx = 1) = 0.1. Thus, the distribution of the
random variable describing rain is quite different when making an observation versus making
an intervention.

Oftentimes, only the change of the target distribution under intervention is reported. We use
the change in mean, i.e., ∂

∂x
E[Vy| do(Vx = x)], as a general measure for the causal effect of

Vx on Vy. For multivariate Gaussian random variables, E[Vy| do(Vx = x)] depends linearly
on x. Therefore, the derivative is constant which means that the causal effect does not
depend on x, and can also be interpreted as E[Vy| do(Vx = x + 1)] − E[Vy| do(Vx = x)].
For binary random variables (with domain {0, 1}) we define the causal effect of Vx on Vy as
E(Vy| do(Vx = 1))− E(Vy| do(Vx = 0)) = P (Vy = 1| do(Vx = 1))− P (Vy = 1| do(Vx = 0)).

The goal in the remainder of this section is to estimate the effect of an intervention if only
observational data is available.

Without hidden and selection variables

If the causal structure is a known DAG and there are no hidden and selection variables, Pearl
(2000) (Th 3.4.1) suggested a set of inference rules known as “do-calculus” whose applica-
tion transforms an expression involving a “do” into an expression involving only conditional
distributions. Thus, information on the interventional distribution can be obtained by using
information obtained by observations and knowledge of the underlying causal structure.

Unfortunately, the causal structure is rarely known in practice. However, as discussed in
Section 2.1, we can estimate the Markov equivalence class of the true causal DAG. Taking
this into account, we conceptually apply the do-calculus on each DAG within the equivalence
class and thus obtain a possible causal effect for each DAG in the equivalence class (in practice,
we developed a local method that is faster but yields a similar result; see Section 3.7 for more
details). Therefore, even if we have an infinite amount of observations we can in general report
on a multiset of possible causal values (it is a multiset rather than a set because it can contain
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duplicate values). One of these values is the true causal effect. Despite the inherent ambiguity,
this result can still be very useful when the multiset has certain properties (e.g., all values
are much larger than zero). These ideas are incorporated in the IDA method (Intervention
calculus when the DAG is Absent).

In addition to this fundamental limitation in estimating a causal effect, errors due to finite
sample size blur the result as with every statistical method. Thus, we can typically only get
an estimate of the set of possible causal values. It was shown that this estimate is consistent
in sparse high-dimensional settings under some assumptions by Maathuis et al. (2009).

It has recently been shown empirically that despite the described fundamental limitations
in identifying the causal effect uniquely and despite potential violations of the underlying
assumptions, the method performs well in identifying the most important causal effects in a
high-dimensional yeast gene expression data set (see Maathuis et al. 2010).

With hidden but no selection variables

If the causal DAG is known and no latent and selection variables are present, one can estimate
causal effects from observational data using for example Pearl’s backdoor criterion, as done
in IDA.

However, in practice the assumption of no latent variables is often violated. Therefore,
Maathuis and Colombo (2013) generalized Pearl’s backdoor criterion to more general types
of graphs that describe Markov equivalence classes of DAGs when allowing arbitrarily many
latent but no selection variables. This generalization works with DAGs, CPDAGs, MAGs,
and PAGs as input and it is based on a two step approach. In a first step, the causal effect of
one variable X onto another variable Y under investigation is checked to be identifiable via
the generalized backdoor criterion, meaning that there exists a set of variables W for which
the generalized backdoor criterion is satisfied with respect to X and Y in the given graph. If
the effect is indeed identifiable, in a second step the set W is explicitly given.

2.3. Summary of assumptions

For all proposed methods, we assume that the data is faithful to the unknown underlying
causal DAG. For the individual methods, further assumptions are made.

PC algorithm: No hidden or selection variables; consistent in high-dimensional settings
(the number of variables grows with the sample size) if the underlying DAG is sparse,
the data is multivariate normal and satisfies some regularity conditions on the partial
correlations, and α is taken to zero appropriately. See Kalisch and Bühlmann (2007)
for full details. Consistency in a standard asymptotic regime with a fixed number of
variables follows as a special case.

GES algorithm: No hidden or selection variables; consistency in a standard asymptotic
regime with a fixed number of variables (see Chickering 2002).

FCI algorithm: Allows for hidden and selection variables; consistent in high-dimensional
settings if the so-called Possible-D-SEP sets (see Spirtes et al. 2000) are sparse, the
data is multivariate normal and satisfies some regularity conditions on the partial corre-
lations, and α is taken to zero appropriately. See Colombo et al. (2012) for full details.
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Consistency in a standard asymptotic regime with a fixed number of variables follows
as a special case.

RFCI algorithm: Allows for hidden and selection variables; consistent in high-dimensional
settings if the underlying MAG is sparse (this is a much weaker assumption than the one
needed for FCI), the data is multivariate normal and satisfies some regularity conditions
on the partial correlations, and α is taken to zero appropriately. See Colombo et al.
(2012) for full details. Consistency in a standard asymptotic regime with a fixed number
of variables follows as a special case.

GIES algorithm: No hidden or selection variables; mix of observational and interventional
data. Interventional data alone is sufficient if there is no variable which is intervened in
all data points.

IDA: No hidden or selection variables; all conditional expectations are linear; consistent in
high-dimensional settings if the underlying DAG is sparse, the data is multivariate Nor-
mal and satisfies some regularity conditions on the partial correlations and conditional
variances, and α is taken to zero appropriately. See Maathuis et al. (2009) for full
details.

Generalized Backdoor Criterion: allows for arbitrarily many hidden but no selection
variables. See Maathuis and Colombo (2013) for more details.

3. Package pcalg

This package has two goals. First, it is intended to provide fast, flexible and reliable imple-
mentations of the PC, FCI, RFCI, GES and GIES algorithms for estimating causal structures
and graphical models. Second, it provides an implementation of the IDA method, which es-
timates bounds on causal effects from observational data when no causal structure is known
and hidden or selection variables are absent, and it also provides a genralization of Pearl’s
backdoor criterion to DAGs, CPDAGs, MAGs, nad PAGs, when hidden but no selection
variables are allowed.

In the following, we describe the main functions of our package for achieving these goals.
The functions skeleton(), pc(), fci(), rfci(), ges(), gies() and simy() are intended for
estimating graphical models. The functions ida() and idaFast() are intended for estimating
causal effects from observational data, and the function backdoor() is intended for checking
if a causal effect is identifiable or not using the generalized backdoor criterion and if it is
identifiable for estimating a set that actually satisfies the generalized backdoor criterion.

Alternatives to this package for estimating graphical models in R include: Scutari (2010);
Bottcher and Dethlefsen (2011); Hojsgaard (2012); Hojsgaard et al. (2012) and Hojsgaard
and Lauritzen (2011).

3.1. skeleton

The function skeleton() estimates the skeleton of a DAG without latent and selection vari-
ables using the PC algorithm (steps (P1) and (P2) in Algorithm 1), and it estimates an initial
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> ## using data("gmG", package="pcalg")

> suffStat <- list(C = cor(gmG8$x), n = nrow(gmG8$x))

> skel.gmG <- skeleton(suffStat, indepTest = gaussCItest,

p = ncol(gmG8$x), alpha = 0.01)

> par(mfrow = c(1,2))

> plot(gmG8$g, main = ""); plot(skel.gmG, main = "")
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Figure 2: True underlying DAG (left) and estimated skeleton (right) fitted on the simulated
Gaussian data set gmG.

skeleton of a DAG with arbitrarily many latent and selection variables using the FCI and the
RFCI algorithms. The function can be called with the following arguments

skeleton(suffStat, indepTest, alpha, labels, p, method = c("stable", "original",

"stable.fast"), m.max = Inf, fixedGaps = NULL, fixedEdges = NULL, NAdelete = TRUE,

numCores = 1, verbose = FALSE)

As was discussed in Section 2.1, the main task in finding the skeleton is to compute and
test several conditional independencies. To keep the function flexible, skeleton() takes as
argument a function indepTest() that performs these conditional independence tests and
returns a p-value. All information that is needed in the conditional independence test can
be passed in the argument suffStat. The only exceptions are the number of variables p

and the significance level alpha for the conditional independence tests, which are passed
separately. For convenience, we have preprogrammed versions of indepTest() for Gaussian
data (gaussCItest()), discrete data (disCItest()), and binary data (binCItest()). Each
of these independence test functions needs different arguments as input, described in the
respective help files. For example, when using gaussCItest(), the input has to be a list
containing the correlation matrix and the sample size of the data. In the following code, we
estimate the skeleton on the data set gmG (which consists of p = 8 variables and n = 5000
samples) and plot the results. The estimated skeleton and the true underlying DAG are shown
in Fig. 2.

To give another example, we show how to fit a skeleton to the example data set gmD (which
consists of p = 5 discrete variables with 3, 2, 3, 4 and 2 levels and n = 10000 samples). The
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Figure 3: True underlying DAG (left) and estimated skeleton (right) fitted on the simulated
discrete data set gmD.

predefined test function disCItest() is based on the G2 statistic and takes as input a list
containing the data matrix, a vector specifying the number of levels for each variable and an
option which indicates if the degrees of freedom must be lowered by one for each zero count.
Finally, we plot the result. The estimated skeleton and the true underlying DAG are shown
in Fig. 3.

In some situations, one may have prior information about the underlying DAG, for example
that certain edges are absent or present. Such information can be incorporated into the
algorithm via the arguments fixedGaps (absent edges) and fixedEdges (present edges). The
information in fixedGaps and fixedEdges is used as follows. The gaps given in fixedGaps

are introduced in the very beginning of the algorithm by removing the corresponding edges
from the complete undirected graph. Thus, these edges are guaranteed to be absent in the
resulting graph. Pairs (i, j) in fixedEdges are skipped in all steps of the algorithm, so that
these edges are guaranteed to be present in the resulting graph.

If indepTest() returns NA and the option NAdelete is TRUE, the corresponding edge is deleted.
If this option is FALSE, the edge is not deleted.

The argument m.max is the maximum size of the conditioning sets that are considered in the
conditional independence tests.

Throughout, the function works with the column positions of the variables in the adjacency
matrix, and not with the names of the variables.

The PC algorithm is known to be order-dependent, in the sense that the output depends
on the order in which the variables are given. Therefore, Colombo and Maathuis (2013)
proposed a simple modification, called PC-stable, that yields order-independent adjacencies in
the skeleton. In this function we implement their modified algorithm (the old order-dependent
implementation can be found in version 1.1-5).

Since the FCI and RFCI algorithms are build up from the PC algorithm, they are also order-
dependent in the skeleton. To resolve their order-dependence issues in the skeleton is more
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involved, see Colombo and Maathuis (2013). However, this function estimates an initial
order-independent skeleton in these algorithms (for additional details on how to make the
final skeleton of FCI fully order-independent see 3.4 and Colombo and Maathuis (2013)).

3.2. pc

The function pc() implements all steps (P1) to (P4) of the PC algorithm shown in display
algorithm 1. First, the skeleton is computed using the function skeleton() (steps (P1) and
(P2)). Then, as many edges as possible are oriented (steps (P3) and (P4)). The function can
be called as

pc(suffStat, indepTest, alpha, labels, p, fixedGaps = NULL, fixedEdges = NULL,

NAdelete = TRUE, m.max = Inf, u2pd = c("relaxed", "rand", "retry"),

skel.method = c("stable", "original", "stable.fast"), conservative = FALSE,

maj.rule = FALSE, solve.confl = FALSE, numCores = 1, verbose = FALSE)

where the arguments suffStat, indepTest, p, alpha, fixedGaps, fixedEdges, NAdelete
and m.max are identical to those of skeleton().

The conservative PC algorithm (conservative = TRUE) is a slight variation of the PC al-
gorithm (see Ramsey et al. 2006). After the skeleton is computed, all unshielded triplets
a b c are checked in the following way. We test whether Va and Vc are independent
conditioning on any subset of the neighbors of a or any subset of the neighbors of c. If b is in
no such conditioning set (and not in the original sepset) or in all such conditioning sets (and
in the original sepset), the triple is marked as unambiguous, no further action is taken and
the usual PC is continued. If, however, b is in only some conditioning sets, or if there was no
subset S of the adjacency set of a nor of c such that Va and Vc are conditionally independent
given VS , the triple a b c is marked as ambiguous. An ambiguous triple is not oriented as
a v-structure. Furthermore, no later orientation rule that needs to know whether a b c

is a v-structure or not is applied. Instead of using the conservative version, which is quite
strict towards the v-structures, Colombo and Maathuis (2013) introduced a less strict version
for the v-structures called majority rule. This adaptation can be called using maj.rule =

TRUE. In this case, the triple a b c is marked as ambiguous if b is in exactly 50 percent
of such conditioning sets, if it is in less than 50 percent it is set as a v-structure, and if in more
than 50 percent as a non v-structure, for more details see Colombo and Maathuis (2013). The
usage of both the conservative and the majority rule versions resolve the order-dependence
issues of the determination of the v-structures, see Colombo and Maathuis (2013) for more
details.

Sampling errors (or hidden variables) can lead to conflicting information about edge directions.
For example, one may find that a b c and b c d should both be directed as
v-structures. This gives conflicting information about the edge b c, since it should be
directed as b c in v-structure a b c, while it should be directed as b c in v-
structure b c d. With the option solve.confl = FALSE, in such cases, we simply
overwrite the directions of the conflicting edge. In the example above this means that we
obtain a b c d if a b c was visited first, and a b c d if b c d

was visited first, meaning that the final orientation on the edge depends on the ordering in
which the edges are oriented. With the option solve.confl = TRUE (which is only supported
with option u2pd = "relaxed"), we first generate a list of all (unambiguous) v-structures (in
the example above a b c and b c d), and then we simply orient them allow both
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directions on the edge b c, namely we allow the bi-directed edge b c resolving the order-
dependence issues on the edge orientations. We denote bi-directed edges in the adjacency
matrix M of the graph as M [b, c] = 2 and M [c, b] = 2. In a similar way using lists for the
candidate edges for each orientation rule and allowing bi-directed edges, the order-dependence
issues in the orientation rules can be solved. Note that bi-directed edges merely represents a
conflicting orientation and they should not to be interpreted causally. The usage of these lists
for the candidate edges and allowing bi-directed edges resolve the order-dependence issues
on the orientation of the v-structures and on the edges using the three orientation rules, see
Colombo and Maathuis (2013) for more details.

Note that calling (conservative = TRUE) or maj.rule = TRUE, together with solve.confl

= TRUE produces a fully order-independent output, see Colombo and Maathuis (2013).

Sampling errors, non faithfulness, or hidden variables can also lead to invalid CPDAGs,
meaning that there does not exist a DAG that has the same skeleton and v-structures as
the graph found by the algorithm. An example of this is an undirected cycle consisting of the
edges a b c d and d a. In this case it is impossible to direct the edges without
creating a cycle or a new v-structure. The optional argument u2pd specifies what should be
done in such a situation. If it is set to "relaxed", the algorithm simply outputs the invalid
CPDAG. If u2pd is set to "rand", all direction information is discarded and a random DAG
is generated on the skeleton. The corresponding CPDAG is then returned. If u2pd is set to
"retry", up to 100 combinations of possible directions of the ambiguous edges are tried, and
the first combination that results in a valid CPDAG is chosen. If no valid combination is
found, an arbitrary CPDAG is generated on the skeleton as with u2pd = "rand".

As with the skeleton, the PC algorithm works with the column positions of the variables in
the adjacency matrix, and not with the names of the variables. When plotting the object,
undirected and bidirected edges are equivalent.

As an example, we estimate a CPDAG of the Gaussian data used in the example for the
skeleton in Section 3.1. Again, we choose the predefined gaussCItest() as conditional in-
dependence test and create the corresponding test statistic. Finally, we plot the result. The
estimated CPDAG and the true underlying DAG are shown in Fig. 4.

3.3. ges

The PC algorithm presented in the previous section is based on conditional independence
tests. To apply it, we first had to calculate a sufficient statistic and to specify a conditional
independence test function. For the score-based GES algorithm, we have to define a score
object before applying the inference algorithm.

A score object is an instance of a class derived from the base class Score. This base class
is implemented as a virtual reference class. At the moment, the pcalg package only contains
classes derived from Score for Gaussian data: GaussL0penObsScore for purely observational
data, and GaussL0penIntScore for a mixture of observational and interventional data; for
the GES algorithm, we only need the first one here, but we will encounter the second one in
Section 3.6 again. The implementation of score classes for discrete data is planned for future
versions of the pcalg package. However, the flexible implementation using class inheritance
allows the user to implement own score classes for different scores.

The predefined score-class GaussL0penObsScore implements a an ℓ0-penalized maximum-
likelihood estimator for observational data from a Gaussian causal model. A instance is
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> suffStat <- list(C = cor(gmG8$x), n = nrow(gmG8$x))

> pc.fit <- pc(suffStat, indepTest=gaussCItest, p = ncol(gmG8$x), alpha = 0.01)

> par(mfrow= c(1,2)); plot(gmG8$g, main = ""); plot(pc.fit, main = "")
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Figure 4: True underlying DAG (left) and estimated CPDAG (right) fitted on the simulated
Gaussian data set gmG.

generated as follows:

> score <- new("GaussL0penObsScore", data = matrix(1, 1, 1),

lambda = 0.5*log(nrow(data)), intercept = FALSE, use.cpp = TRUE, ...)

The data matrix is provided by the argument data. The penalization constant is specified by
lambda. The default value of lambda corresponds to the BIC score; the AIC score is realized
by setting lambda to 1. The argument intercept indicates whether the model should allow
for intercepts in the linear structural equations, or for a non-zero mean of the multivariate
normal distribution, which is equivalent. The last argument use.cpp indicates whether the
internal C++ library should be used for calculation, which is in most cases the best choice
due to velocity issues.

Once a score object is defined, the GES algorithm is called as follows:

ges(score, labels = score$getNodes(), fixedGaps = NULL, adaptive = c("none",

"vstructures", "triples"), phase = c("forward", "backward", "turning"),

iterate = length(phase) > 1, turning = NULL, maxDegree = integer(0),

verbose = FALSE, ...)

The argument score is a score object defined before. The argument turning indicates
whether the novel turning phase (see Section 2.1) not present in the original implementa-
tion of Chickering (2002) should be used, and maxdegree can be used to bound the vertex
degree of the estimated graph. More details can be found in the help file of ges().

In Fig. 5, we re-analyze the data set used in the example of Fig. 4 with the GES algorithm.
The estimated graph is exactly the same in this case.



18 More Causal Graphical Models: Package pcalg

> score <- new("GaussL0penObsScore", gmG8$x)

> ges.fit <- ges(score)

> par(mfrow=1:2); plot(gmG8$g, main = ""); plot(ges.fit$essgraph, main = "")
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Figure 5: True underlying DAG (left) and essential graph (right) estimated with the GES
algorithm fitted on the simulated Gaussian data set gmG.

3.4. fci

The FCI algorithm is a generalization of the PC algorithm, in the sense that it allows arbi-
trarily many latent and selection variables. Under the assumption that the data are faithful
to a DAG that includes all latent and selection variables, the FCI algorithm estimates the
equivalence class of MAGs that describe the conditional independence relationships between
the observed variables given the selection variables.

The first part of the FCI algorithm is analogous to the PC algorithm. It starts with a
complete undirected graph and estimates an initial skeleton using the function skeleton(),
which produces an initial order-independent skeleton. All edges of this skeleton are of the form

. However, due to the presence of hidden variables, it is no longer sufficient to consider
only subsets of the adjacency sets of nodes x and y to decide whether the edge x y should
be removed. Therefore, the initial skeleton may contain some superfluous edges. These edges
are removed in the next step of the algorithm which requires some orientations. Therefore, the
v-structures are determined using the conservative method (see discussion on conservative

below). All potential v-structures a b c are checked in the following way. We test
whether Va and Vc are independent conditioning on any subset of the neighbors of a or any
subset of the neighbors of c. If b is in no such conditioning set or in all such conditioning sets,
no further action is taken. If, however, b is in only some conditioning sets, the triple a b c

is marked as ambiguous. If Va is independent of Vc given some S in the skeleton (i.e., the edge
a c dropped out), but Va and Vc remain dependent given all subsets of neighbors of either
a or c, we will call all such triples a b c unambiguous. This is because in the FCI, the
true separating set might be outside the neighborhood of either a or c. An ambiguous triple
is not oriented as a v-structure. After the v-structures have been oriented, Possible-D-SEP
sets for each node in the graph are computed at once. To decide whether edge x y should
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be removed, one performs conditional independence tests of Vx and Vy given all subsets of
Possible-D-SEP(x) and of Possible-D-SEP(y) (see help file of function pdsep()). The edge is
removed if a conditional independence is found. This will produce a fully order-independent
final skeleton as explained in Colombo and Maathuis (2013). Subsequently, all edges are
transformed into again and the v-structures are newly determined (using information in
sepset). Finally, as many undetermined edge marks (o) as possible are determined using (a
subset of) the 10 orientation rules given by Zhang (2008).

The function can be called with the following arguments:

fci(suffStat, indepTest, alpha, labels, p, skel.method = c("stable",

"original", "stable.fast"), type = c("normal", "anytime", "adaptive"),

fixedGaps = NULL, fixedEdges = NULL, NAdelete = TRUE, m.max = Inf,

pdsep.max = Inf, rules = rep(TRUE, 10), doPdsep = TRUE, biCC = FALSE,

conservative = FALSE, maj.rule = FALSE, numCores = 1, verbose = FALSE)

where the arguments suffStat, indepTest, p, alpha, fixedGaps, fixedEdges, NAdelete
and m.max are identical to those in skeleton().

The argument pdsep.max indicates the maximum size of Possible-D-SEP for which subsets
are considered as conditioning sets in the conditional independence tests. If the nodes x and y

are adjacent in the graph and the size of Possible-D-SEP(x)\{x,y} is bigger than pdsep.max

the edge is simply left in the graph. Note that if pdsep.max is less than Inf, the final PAG
may be a supergraph than the one computed with pdsep.max = Inf, because less tests may
have been performed in the former.

The option rules contains a logical vector of length 10 indicating which rules should be used
when directing edges, where the order of the rules is taken from Zhang (2008).

The option doPdsep indicates whether Possible-D-SEP should be computed for all nodes,
and all subsets of Possible-D-SEP are considered as conditioning sets in the conditional in-
dependence tests, if not defined otherwise in pdsep.max. If FALSE, Possible-D-SEP is not
computed, so that the algorithm simplifies to the Modified PC algorithm of Spirtes et al.
(2000).

By setting the argument biCC = TRUE, Possible-D-SEP(a, c) is defined as the intersection of
the original Possible-D-SEP(a, c) and the set of nodes that lie on a path between a and c.
This method uses biconnected components to find all nodes on a path between nodes a and c.
The smaller Possible-D-SEP sets lead to faster computing times, while Colombo et al. (2012)
showed that the algorithm is identical to the original FCI algorithm given oracle information
on the conditional independence relationships.

Conservative versions of FCI, Anytime FCI, and Adaptive Anytime FCI (see below) are
computed if the argument of conservative is TRUE. After the final skeleton is computed,
all potential v-structures a b c are checked in the following way. We test whether Va

and Vc are independent conditioning on any subset of the neighbors of a or any subset of
the neighbors of c. When a subset makes Va and Vc conditionally independent, we call it a
separating set. If b is in no such separating set or in all such separating sets, no further action
is taken and the normal version of the FCI, Anytime FCI, or Adaptive Anytime FCI algorithm
is continued. If, however, b is in only some separating sets, the triple a b c is marked
ambiguous. If Va is independent of Vc given some S in the skeleton (i.e., the edge a c

dropped out), but Va and Vc remain dependent given all subsets of neighbors of either a or c,
we will call all triples a b c unambiguous. This is because in the FCI algorithm, the
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true separating set might be outside the neighborhood of either a or c. An ambiguous triple
is not oriented as a v-structure. Furthermore, no further orientation rule that needs to know
whether a b c is a v-structure or not is applied. Instead of using the conservative version,
which is quite strict towards the v-structures, Colombo and Maathuis (2013) introduced a
less strict version for the v-structures called majority rule. This adaptation can be called
using maj.rule = TRUE. In this case, the triple a b c is marked as ambiguous if and
only if b is in exactly 50 percent of such separating sets or no separating set was found. If b
is in less than 50 percent of the separating sets it is set as a v-structure, and if in more than
50 percent it is set as a non v-structure, for more details see Colombo and Maathuis (2013).
Colombo and Maathuis (2013) showed that with both these modifications, the final skeleton
and the decisions about the v-structures of the FCI algorithm are fully order-independent.

Using the argument labels, one can pass names for the vertices of the estimated graph. By
default, this argument is set to NA, in which case the node names as.character(1:p) are
used.

The argument type specifies the version of the FCI that has to be used. Per default it
is normal and so the normal FCI algorithm is called. If set as anytime, the Anytime FCI
Spirtes (2001) is called and in this case m.max must be specified by the user. The Anytime FCI
algorithm can be viewed as a modification of the FCI algorithm that only performs conditional
independence tests up to and including order m.max when finding the initial skeleton, using
the function skeleton, and the final skeleton, using the function pdsep. Thus, Anytime FCI
performs fewer conditional independence tests than FCI. If set as adaptive, the Adaptive
Anytime FCI Colombo et al. (2012) is called and in this case m.max is not used. The first
part of the algorithm is identical to the normal FCI described above. But in the second part
when the final skeleton is estimated using the function pdsep, the Adaptive Anytime FCI
algorithm only performs conditional independence tests up to and including order m.max,
where m.max is the maximum size of the conditioning sets that were considered to determine
the initial skeleton using the function skeleton.

As an example, we estimate the PAG of a graph with five nodes using the function fci() and
the predefined function gaussCItest() as conditional independence test. In Fig. 6 the true
DAG and the PAG estimated with fci() are shown. Random variable V1 is latent. We can
read off that both V4 and V5 cannot be a cause of V2 and V3, which can be confirmed in the
true DAG.

3.5. rfci

The function rfci() is rather similar to fci(). However, it does not compute any Possible-
D-SEP sets and thus does not make tests conditioning on them. This makes rfci() much
faster than fci(). The orientation rule for v-structures and the orientation rule for so-called
discriminating paths (rule 4) were modified in order to produce a PAG which, in the oracle
version, is guaranteed to have correct ancestral relationships.

The function can be called in the following way:

rfci(suffStat, indepTest, alpha, labels, p, skel.method = c("stable",

"original", "stable.fast"), fixedGaps = NULL, fixedEdges = NULL, NAdelete = TRUE,

m.max = Inf, rules = rep(TRUE, 10), conservative = FALSE, maj.rule = FALSE,

numCores = 1, verbose = FALSE)

where the arguments suffStat, indepTest, p, alpha, fixedGaps, fixedEdges, NAdelete
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Figure 6: True underlying DAG (left) and estimated PAG (right), when applying the FCI
and RFCI algorithms to the data set gmL. The output of FCI and RFCI is identical. Variable
V1 of the true underlying DAG is latent.

and m.max are identical to those in skeleton().

The argument rules is similar to the one in fci but modified to produce a PAG with correct
ancestral relationships, in the oracle version.

The first part of the RFCI algorithm is analogous to the PC and FCI algorithm. It starts with
a complete undirected graph and estimates an initial skeleton using the function skeleton,
which produces an initial order-independent skeleton, see skeleton for more details. All
edges of this skeleton are of the form . Due to the presence of hidden variables, it is no
longer sufficient to consider only subsets of the neighborhoods of nodes x and y to decide
whether the edge x o-o y should be removed. The FCI algorithm performs independence
tests conditioning on subsets of Possible-D-SEP to remove those edges. Since this procedure
is computationally infeasible, the RFCI algorithm uses a different approach to remove some
of those superfluous edges before orienting the v-structures and the discriminating paths in
orientation rule 4.

Before orienting the v-structures, we perform the following additional conditional indepen-
dence tests. For each unshielded triple a b c in the initial skeleton, we check if both Va

and Vb and Vb and Vc are conditionally dependent given the separating of a and c (sepset(a, c)).
These conditional dependencies may not have been checked while estimating the initial skele-
ton, since sepset(a, c) does not need to be a subset of the neighbors of a nor of the neighbors
of c. If both conditional dependencies hold and b is not in the sepset(a, c), the triple is
oriented as a v-structure a b c. On the other hand, if an additional conditional inde-
pendence relationship may be detected, say Va is independent from Vb given the sepset(a, c),
the edge between a and c is removed from the graph and the set responsible for that is saved
in sepset(a, b). The removal of an edge can destroy or create new unshielded triples in the
graph. To solve this problem we work with lists (for details see Colombo et al. 2012).

Before orienting discriminating paths, we perform the following additional conditional in-
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dependence tests. For each triple a b c with a c, the algorithm searches for
a discriminating path p = 〈d, ..., a, b, c〉 for b of minimal length, and checks that the ver-
tices in every consecutive pair (Vf , Vg) on p are conditionally dependent given all subsets of
sepset(d, c) \ Vf , Vg. If we do not find any conditional independence relationship, the path is
oriented as in rule (R4). If one or more conditional independence relationships are found, the
corresponding edges are removed, their minimal separating sets are stored.

Conservative RFCI can be computed if the argument of conservative is TRUE. After the
final skeleton is computed and the additional local tests on all unshielded triples, as described
above, have been done, all potential v-structures a b c are checked in the following way.
We test whether Va and Vc are independent conditioning on any subset of the neighbors of a or
any subset of the neighbors of c. When a subset makes Va and Vc conditionally independent,
we call it a separating set. If b is in no such separating set or in all such separating sets,
no further action is taken and the normal version of the RFCI algorithm is continued. If,
however, b is in only some separating sets, the triple a b c is marked ambiguous. If Va

is independent of Vc given some S in the skeleton (i.e., the edge a c dropped out), but Va

and Vc remain dependent given all subsets of neighbors of either a or c, we will call all triples
a b c unambiguous. This is because in the RFCI algorithm, the true separating set
might be outside the neighborhood of either a or c. An ambiguous triple is not oriented as a
v-structure. Furthermore, no further orientation rule that needs to know whether a b c

is a v-structure or not is applied. Instead of using the conservative version, which is quite
strict towards the v-structures, Colombo and Maathuis (2013) introduced a less strict version
for the v-structures called majority rule. This adaptation can be called using maj.rule =

TRUE. In this case, the triple a b c is marked as ambiguous if and only if b is in exactly
50 percent of such separating sets or no separating set was found. If b is in less than 50
percent of the separating sets it is set as a v-structure, and if in more than 50 percent it is
set as a non v-structure, for more details see Colombo and Maathuis (2013).

The implementation uses the stabilized skeleton skeleton(), which produces an initial order-
independent skeleton. The final skeleton and edge orientations can still be order-dependent,
see Colombo and Maathuis (2013).

As an example, we re-run the example from Section 3.4 and show the PAG estimated with
rfci() in Figure 6. The PAG estimated with fci() and the PAG estimated with rfci() are
the same.

> data("gmL")

> suffStat1 <- list(C = cor(gmL$x), n = nrow(gmL$x))

> pag.est <- rfci(suffStat1, indepTest = gaussCItest,

p = ncol(gmL$x), alpha = 0.01, labels = as.character(2:5))

A note on implementation: As pc(), fci() and rfci() are similar in the result they produce,
their resulting values are of (S4) class pcAlgo and fciAlgo (for both fci() and rfci()),
respectively. Both classes extend the class (of their “communalities”) gAlgo.

3.6. gies and simy

As we noted in Section 2.1, the GIES algorithm is a generalization of the GES algorithm to a
mix of interventional and observational data. Hence the usage of gies() is similar to that of
ges() (see Section 3.3). Actually, the function ges() is only an internal wrapper for gies().
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A data set with jointly interventional and observational data points is not i.i.d. In order to
use it for causal inference, we must specify the intervention target each data point belongs
to. This is done by specifying the arguments target and target.index when generating an
instance of GaussL0penIntScore (see Section 3.3):

> score <- new("GaussL0penIntScore", data = matrix(1, 1, 1),

targets = list(integer(0)), target.index = rep(as.integer(1), nrow(data)),

lambda = 0.5*log(nrow(data)), intercept = FALSE, use.cpp = TRUE, ...)

The argument targets is a list of all (mutually different) targets that have been intervened
in the experiments generating the data set. The allocation of sample indices to intervention
targets is specified by the argument target.index. This is an integer vector whose first entry
specifies the index of the intervention target in the list targets of the first data point, whose
second entry specifies the target index of the second data point, and so on. An example is
given in Figure 7.

Once a score object for interventional data is defined, the GIES algorithm is called as follows:

gies(score, labels = score$getNodes(), targets = score$getTargets(),

fixedGaps = NULL, adaptive = c("none", "vstructures", "triples"), phase = c("forward",

"backward", "turning"), iterate = length(phase) > 1, turning = NULL,

maxDegree = integer(0), verbose = FALSE, ...)

Most arguments coincide with those of ges() (see Section 3.3). The only additional argument
is targets: it takes the same list of (unique) intervention targets as the constructor of the
class GaussL0penIntScore (see above). This list of targets specifies the space of corresponding
interventional Markov equivalence classes or essential graphs (see Section 2.1).

The data set gmInt consists of 5000 data points sampled from the DAG in Figure 2, among
them 3000 observational ones, 1000 originating from an intervention at vertex 3 and 1000
originating from an intervention at vertex 5. It can be loaded by calling

> data(gmInt)

The underlying causal model (or its interventional essential graph, respectively) is estimated
in Figure 7.

As an alternative to GIES, we can also use the dynamic programming approach of Silander
and Myllymäki (2006) to estimate the interventional essential graph from this interventional
data set. This algorithm is implemented in the function simy() which has the same arguments
as gies(). As noted in Section 2.1, this approach yields the exact optimum of the BIC score
at the price of a computational complexity which is exponential in the number of variables.
On the small example based on 8 variables, using this algorithm is feasible; however, it is not
feasible for more than approximately 20 variables, depending on the processor and memory of
the machine. In this example, we get exactly the same result as with gies() (see Figure 7).

3.7. ida

To illustrate the function ida(), consider the following example. We simulated 10000 samples
from seven multivariate Gaussian random variables with a causal structure given on the left
of Fig. 8. We assume that the causal structure is unknown and want to infer the causal effect
of V2 on V5. First, we estimate the equivalence class of DAGs that describe the conditional
independence relationships in the data, using the function pc() (see Section 3.2).

> data("gmI")
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> score <- new("GaussL0penIntScore", gmInt$x, targets = gmInt$targets,

target.index = gmInt$target.index)

> gies.fit <- gies(score)

> simy.fit <- simy(score)

> par(mfrow = c(1, 3)) ; plot(gmInt$g, main = "")

> plot(gies.fit$essgraph, main = "")

> plot(simy.fit$essgraph, main = "")
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Figure 7: The underlying DAG (left) and the essential graph estimated with the GIES algo-
rithm (middle) and the dynamic programming approach of Silander and Myllymäki (2006)
(right) applied on the simulated interventional Gaussian data set gmInt. This data set con-
tains data from interventions at vertices 3 and 5; accordingly, the orientation of all arrows
incident to these two vertices becomes identifiable (see also Figure 5 for comparison with the
observational case.
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Figure 8: True DAG (left) and estimated CPDAG (right).

> suffStat <- list(C = cor(gmI$x), n = nrow(gmI$x))

> pc.gmI <- pc(suffStat, indepTest=gaussCItest,

p = ncol(gmI$x), alpha = 0.01)

Comparing the true DAG with the CPDAG in Fig. 8, we see that the CPDAG and the
true DAG have the same skeleton. Moreover, the directed edges in the CPDAG are also
directed in that way in the true DAG. Three edges in the CPDAG are bidirected. Recall that
undirected and bidirected edges bear the same meaning in a CPDAG, so they can be used
interchangeably.

Since there are three undirected edges in the CPDAG, there might be up to 23 = 8 DAGs
in the corresponding equivalence class. However, the undirected edges 2 3 5 can be
oriented as a new v-structure. As mentioned in Section 2.1, DAGs in the equivalence class
must have exactly the same v-structures as the corresponding CPDAG. Thus, 2 3 5
can only be oriented as 2 3 5, 2 3 5 or 2 3 5, and not as 2 3 5.
There is only one remaining undirected edge (1 6), which can be oriented in two ways.
Thus, there are six valid DAGs (i.e., they have no new v-structures and no directed cycles)
and these form the equivalence class represented by the CPDAG. In Fig. 9, all DAGs in the
equivalence class are shown. DAG 6 is the true DAG.

For each DAG G in the equivalence class, we apply Pearl’s do-calculus to estimate the total
causal effect of Vx on Vy. Since we assume Gaussianity, this can be done via a simple linear
regression: If y is not a parent of x, we take the regression coefficient of Vx in the regression
lm(Vy ~ Vx + pa(Vx)), where pa(Vx) denotes the parents of x in the DAG G (z is called a
parent of x if G if G contains the edge z x); if y is a parent of x in G, we set the estimated
causal effect to zero.

If the equivalence class contains k DAGs, this yields k estimated total causal effects. Since
we do not know which DAG is the true causal DAG, we do not know which estimated total
causal effect of Vx on Vy is the correct one. Therefore, we return the entire multiset of k
estimated effects.
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Figure 9: All DAGs belonging to the same equivalence class as the true DAG shown in Fig. 6.
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In our example, there are six DAGs in the equivalence class. Therefore, the function ida()

(with method = "global") produces six possible values of causal effects, one for each DAG.

> ida(2, 5, cov(gmI$x), pc.gmI@graph, method = "global", verbose = FALSE)

[1] -0.0049012 -0.0049012 0.5421360 -0.0049012 -0.0049012 0.5421360

Among these six values, there are only two unique values: −0.0049 and 0.5421. This is because
we compute lm(V5 ~ V2 + pa(V2)) for each DAG and report the regression coefficient of V2.
Note that there are only two possible parent sets of node 2 in all six DAGs: In DAGs 3 and
6, there are no parents of node 2. In DAGs 1, 2, 4 and 5, however, the parent of node 2 is
node 3. Thus, exactly the same regressions are computed for DAGs 3 and 6, and the same
regressions are computed for DAGs 1, 2, 4 and 5. Therefore, we end up with two unique
values, one of which occurs twice, while the other occurs four times.

Since the data was simulated from a model, we know that the true value of the causal effect
of V2 on V5 is 0.5529. Thus, one of the two unique values is indeed very close to the true
causal effect (the slight discrepancy is due to sampling error).

The function ida() can be called as

ida(x.pos, y.pos, mcov, graphEst, method = c("local", "optimal",

"global"), y.notparent = FALSE, verbose = FALSE, all.dags = NA, type = c("cpdag",

"pdag"))

where x.pos denotes the column position of the cause variable, y.pos denotes the column
position of the effect variable, mcov is the covariance matrix of the original data, and graphEst

is a graph object describing the causal structure (this could be given by experts or estimated
by pc()).

If method="global", the method is carried out as described above, where all DAGs in the
equivalence class of the estimated CPDAG are computed. This method is suitable for small
graphs (say, up to 10 nodes). The DAGs can (but need not) be precomputed using the
function allDags() and passed via argument all.dags.

If method="local", we do not determine all DAGs in the equivalence class of the CPDAG.
Instead, we only consider the local neighborhood of x in the CPDAG. In particular, we
consider all possible directions of undirected edges that have x as endpoint, such that no new
v-structure is created. For each such configuration, we estimate the total causal effect of Vx

on Vy as above, using linear regression.

At first sight, it is not clear that such a local configuration corresponds to a DAG in the
equivalence class of the CPDAG, since it may be impossible to direct the remaining undirected
edges without creating a directed cycle or a v-structure. However, Maathuis et al. (2009)
showed that there is at least one DAG in the equivalence class for each such local configuration.
As a result, it follows that the multisets of total causal effects of the global and the local

method have the same unique values. They may, however, have different multiplicities.

Recall, that in the example using the global method, we obtained two unique values with
multiplicities two and four yielding six numbers in total. Applying the local method, we
obtain the same unique values, but the multiplicities are 1 for both values.

> ida(2,5, cov(gmI$x), pc.gmI@graph, method = "local")

[1] 0.5421360 -0.0049012

One can take summary measures of the multiset. For example, the minimum absolute value
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provides a lower bound on the size of the true causal effect: If the minimum absolute value
of all values in the multiset is larger than one, then we know that the size of the true causal
effect (up to sampling error) must be larger than one. The fact that the unique values of the
multisets of the global and local method are identical implies that summary measures of
the multiset that only depend on the unique values (such as the minimum absolute value)
can be found using the local method.

In some applications, it is clear that some variable is definitively a cause of other variables.
Consider for example a bacterium producing a certain substance, taking the amount of pro-
duced substance as response variable. Knocking out genes in the bacterium might change
the ability to produce the substance. By measuring the expression levels of genes, we want
to know which genes have a causal effect on the product. In this setting, it is clear that
the amount of substance is the effect and the activity of the genes is the cause. Thus in the
causal structure, the response variable cannot be a parent node of any variable describing the
expression level of genes. This background knowledge can be easily incorporated: By setting
the option y.notparent = TRUE, all edges in the CPDAG that have the response variable as
endpoint (no matter whether directed or undirected) are overwritten so that they are oriented
towards the response variable.

3.8. idaFast

In some applications it is desirable to estimate the causal effect of one variable on a set of
response variables. In these situations, the function idaFast() should be used. Imagine
for example, that we have data on several variables, that we have no background knowledge
about the causal effects among the variables and that we want to estimate the causal effect
of each variable onto each other variable. To this end, we could consider for each variable
the problem: What is the causal effect of this variable on all other variables. Of course, one
could solve the problem by using ida() on each pair of variables. However, there is a more
efficient way which uses the fact that a linear regression of a fixed set of explanatory variables
on several different response variables can be computed very efficiently.

The function idaFast() can be called with the following arguments

idaFast(x.pos, y.pos.set, mcov, graphEst)

The arguments x.pos, mcov, graphEst have the same meaning as the corresponding argu-
ments in ida(). The argument y.pos.set is a vector containing the column positions of all
response variables of interest.

This call performs ida(x.pos, y.pos, mcov, graphEst, method="local", y.notparent=

FALSE, verbose=FALSE) for all values of y.pos in y.pos.set at the same time and in an
efficient way. Note that the option y.notparent = TRUE is not implemented.

Consider the example from Section 3.7, where we computed the causal effect of V2 on V5.
Now, we want to compute the effect of V2 on V5, V6 and V7 using idaFast() and compare
the results with the output of ida(). As expected, both methods lead to the same results.

> (eff.est1 <- ida(2,5, cov(gmI$x), pc.gmI@graph, method="local"))

[1] 0.5421360 -0.0049012

> (eff.est2 <- ida(2,6, cov(gmI$x), pc.gmI@graph, method="local"))

[1] -0.0058532 -0.0062310
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> (eff.est3 <- ida(2,7, cov(gmI$x), pc.gmI@graph, method="local"))

[1] 1.00861 0.89708

> (eff.estF <- idaFast(2, c(5,6,7), cov(gmI$x), pc.gmI@graph))

[,1] [,2]

5 0.5421360 -0.0049012

6 -0.0058532 -0.0062310

7 1.0086138 0.8970766

3.9. backdoor

This function is a generalization of Pearl’s backdoor criterion, see Pearl (1993), defined for
directed acyclic graphs (DAGs), for single interventions and single outcome variable to more
general types of graphs (CPDAGs, MAGs, and PAGs) that describe Markov equivalence
classes of DAGs with and without latent variables but without selection variables, for more
details see Maathuis and Colombo (2013).

The motivation to find a set W that satisfies the generalized backdoor criterion with respect
to X and Y in the given graph relies on the result of the generalized backdoor adjustment that
says: “If a set of variables W satisfies the generalized backdoor criterion relative to X and Y in
the given graph, then the causal effect of X on Y is identifiable and is given by:”P (Y |do(X =
x)) =

∑
W P (Y |X,W ).P (W ). This result allows to write post-intervention densities (the one

written using Pearl’s do-calculus) using only observational densities estimated from the data.

This function can be called in the following way:

backdoor(amat, x, y, type = "pag", max.chordal = 10, verbose = FALSE)

where amat is the adjacency matrix of the given graph, x denotes the column position of the
cause variable, y denotes the column position of the effect variable, and mcov is the covariance
matrix of the original data.

The argument type specifies the type of graph of the given adjacency matrix in amat. If the
input graph is a DAG (type="dag"), this function reduces to Pearl’s backdoor criterion for
single interventions and single outcome variable, and the parents of X in the DAG satisfies
the backdoor criterion unless Y is a parent of X. Therefore, if Y is a parent of X, there is
no set W that satisfies the generalized backdoor criterion relative to X and Y in the DAG
and NA is output. Otherwise, the causal effect is identifiable and a set W that satisfies the
generalized backdoor criterion relative to X and Y in the DAG is given. If the input graph
is a CPDAG C (type="cpdag"), a MAG M , or a PAG P (with both M and P not allowing
selection variables), this function first checks if the total causal effect of X on Y is identifiable
via the generalized backdoor criterion (see Maathuis and Colombo (2013), Theorem 4.1). If
the effect is not identifiable, the output is NA. Otherwise, an explicit set W that satisfies the
generalized backdoor criterion relative to X and Y in the given graph is found.

Note that if the set W is equal to the empty set, the output is NULL.

At this moment this function is not able to work with PAGs estimated using the rfci Algo-
rithm.

It is important to note that there can be pair of nodes x and y for which there is no set W that
satisfies the generalized backdoor criterion, but the total causal effect might be identifiable
via some other technique.



30 More Causal Graphical Models: Package pcalg

1 2

3 4

5 6

1 2

3 4

5 6

Figure 10: True DAG (left) and estimated CPDAG (right).

To illustrate this function, we use as example the CPDAG displayed in Figure 4, page 15 of
Maathuis and Colombo (2013). The R-code below is used to generate a DAG g that belongs
to the required equivalence class which is uniquely represented by the estimated CPDAG
myCPDAG.

> p <- 6

> amat <- t(matrix(c(0,0,1,1,0,1, 0,0,1,1,0,1, 0,0,0,0,1,0,

0,0,0,0,1,1, 0,0,0,0,0,0, 0,0,0,0,0,0), 6,6))

> V <- as.character(1:6)

> colnames(amat) <- rownames(amat) <- V

> edL <- vector("list",length=6)

> names(edL) <- V

> edL[[1]] <- list(edges=c(3,4,6),weights=c(1,1,1))

> edL[[2]] <- list(edges=c(3,4,6),weights=c(1,1,1))

> edL[[3]] <- list(edges=5,weights=c(1))

> edL[[4]] <- list(edges=c(5,6),weights=c(1,1))

> g <- new("graphNEL", nodes=V, edgeL=edL, edgemode="directed")

> cov.mat <- trueCov(g)

> myCPDAG <- dag2cpdag(g)

> true.amat <- as(myCPDAG, "matrix")

> ## true.amat[true.amat != 0] <- 1

The DAG g and the CPDAG myCPDAG are shown in Figure 10.

Now, we want to check if the effect of V6 on V3 in the given CPDAG is identifiable using
backdoor() and if this is the case know which set W satisfies the generalized backdoor
criterion. As explained in Example 4 in Maathuis and Colombo (2013), the causal effect of
V6 on V3 in the CPDAG myCPDAG is identifiable via the generalized backdoor criterion and
there is a set W that satisfies the generalized criterion:

> backdoor(true.amat, 6, 3, type="cpdag")
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[1] 1 2

3.10. Using a user specific conditional independence test

In some cases it might be desirable to use a user specific conditional independence test instead
of the provided ones. The pcalg package allows the use of any conditional independence
test defined by the user. In this section, we illustrate this feature by using a conditional
independence test for Gaussian data that is not predefined in the package.

The functions skeleton(), pc() and fci() all need the argument indepTest, a function
of the form indepTest(x, y, S, suffStat) to test conditional independence relationships.
This function must return the p-value of the conditional independence test of Vx and Vy given
VS and some information on the data in the form of a sufficient statistic (this might be simply
the data frame with the original data), where x, y, S indicate column positions of the original
data matrix. We will show an example that illustrates how to construct such a function.

A simple way to compute the partial correlation of Vx and Vy given VS for some data is to solve
the two associated linear regression problems lm(Vx ∼ VS) and lm(Vy ∼ VS), get the residuals,
and calculate the correlation between the residuals. Finally, a correlation test between the
residuals yields a p-value that can be returned. The argument suffStat is an arbitrary object
containing several pieces of information that are all used within the function to produce
the p-value. In the predefined function gaussCItest() for example, a list containing the
correlation matrix and the number of observations is passed. This has the advantage that
any favorite (e.g., robust) method of computing the correlation matrix can be used before
partial correlations are computed. Oftentimes, however, it suffices to just pass the complete
data set in suffStat. We choose this simple method in our example. An implementation of
the function myCItest() could look like this.

> myCItest <- function(x,y,S, suffStat) {

if (length(S) == 0) {

x. <- suffStat[,x]

y. <- suffStat[,y]

} else {

rxy <- resid(lm.fit(y= suffStat[,c(x,y)], x= cbind(1, suffStat[,S])))

x. <- rxy[,1]; y. <- rxy[,2]

}

cor.test(x., y.)$p.value

}

We can now use this function together with pc().

> pc.myfit <- pc(suffStat = gmG8$x, indepTest = myCItest,

p = 8, alpha = 0.01)

> par(mfrow = c(1,2)); plot(pc.gmG, main = ""); plot(pc.myfit, main = "")

As expected, the resulting CPDAG (see Fig. 11) is the same as in Section 3.2 where we
used the function gaussCItest() as conditional independence test. Note however that using
gaussCItest() is considerably faster than using myCItest() (on our computer 0.059 seconds
using gaussCItest() versus 1.05 seconds using myCItest()).
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Figure 11: The estimated CPDAGs using the predefined conditional independence test
gaussCItest() (left) and the user specified conditional independence test myCItest() (right)
are identical for the gmG data.

4. Applications

The pcalg package has been used for applications in epidemiology (see Kalisch et al. 2010),
biology (see Maathuis et al. 2010; Nagarajan et al. 2010) and the social sciences (see Danenberg
and Marsella 2010). We will discuss two applications in more detail below.

4.1. Graphical Models and Causal Effects in Human Functioning

In Kalisch et al. (2010), the development of WHO’s International Classification of Functioning,
Disability and Health (ICF) on the one hand and recent developments in graphical modeling
on the other hand were combined to deepen the understanding of human functioning. The
objective of the paper was to explore how graphical models can be used in the study of
ICF data. It was found that graphical models could be used successfully for visualization
of the dependence structure of the data set, dimension reduction, and the comparison of
subpopulations. Moreover, estimations of bounds on causal effects using the IDA method
yielded plausible results. All analyses were done with the pcalg package.

4.2. Causal effects among genes

In Maathuis et al. (2010), the authors aim at quantifying the effects of single gene interventions
on the expression of other genes in yeast, allowing for better insights into causal relations
between genes. With n = 63 samples of observational data measuring the expression of
p = 5361 genes (see Hughes et al. 2000), the goal was to identify the largest intervention
effects between all pairs of genes. For the analysis, the pcalg package with version 1.1-5 was
used.

Hughes et al. (2000) also provide gene expression measurements from 234 interventional ex-
periments, namely from 234 single-gene deletion mutant strains. Using this data, we know
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the true causal effect of the knock-out genes on the remaining genes in good approximation.
We can then quantify how well we can find the true intervention effects in the following way:
We encode the largest 10% of the intervention effects computed from the interventional data
as the target set of effects that we want to identify. We then check in an ROC curve, how well
the ranking of the causal effects estimated by applying ida() to the observational data is able
to identify effects in the target set. For comparison, the authors also used the (conceptually
wrong) Lasso and Elastic Net to obtain rankings. In Figure 12 one can see that ida(), using
the function skeleton() with version 1.1-5, is clearly superior to the alternative methods
(and random guessing) in terms of identifying effects in the target set. In Figure 13 one can
see that ida() using the stable function skeleton() produces even better results than with
the old version.

We note that the yeast data set is very high-dimensional (n = 63, p = 5361). Thus, unlike the
toy examples used to illustrate the package in this manuscript, where n was much bigger than p

and the causal structure was recovered exactly up to its equivalence class, the estimated causal
structure for the yeast data is likely to contain many sampling errors. However, Figure 12
shows that it is still possible to extract useful information about causal effects.

5. Discussion

Causal structure learning and the estimation of causal effects from observational data has
large potential. However, we emphasize that we do not propose causal inference methods
based on observational data as a replacement for experiments. Rather, IDA should be used
as a guide for prioritizing experiments, especially in situations where no clear preferences
based on the context can be given.

Data from cell biology is usually interventional data: different measurements could originate
from different mutants or different cell stems, or from experiments with gene knockout or
knockdown experiments. The GIES algorithm is designed for causal inference from data of
this kind.

Since many assumptions of the proposed methods are uncheckable, it is important to further
validate the methods in a range of applications. We hope that the pcalg package contributes
to this important issue by providing well-documented and easy to use software.
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Figure 12: The largest 10% of the causal effects found in experiments among yeast genes
are identified much better from observational data with IDA than with Lasso, Elastic Net or
random guessing. The figure is essentially taken from Maathuis et al. (2010).
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Using Graphical Models with the R Package pcalg.” Journal of Statistical Software, 47(11),
1–26. ISSN 1548-7660. URL http://www.jstatsoft.org/v47/i11.

Lauritzen S (1996). Graphical Models. Oxford University Press.

Maathuis MH, Colombo D (2013). “A generalized backdoor criterion.” ArXiv e-prints. 1307.
5636, URL http://arxiv.org/abs/1307.5636.
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Maathuis MH, Kalisch M, Bühlmann P (2009). “Estimating High-Dimensional Intervention
Effects from Observational Data.” Annals of Statistics, 37, 3133–3164.

Meek C (1995). “Strong Completeness and Faithfulness in Bayesian Networks.” In Proceed-
ings of 11th Conference on Uncertainty in Artificial Intelligence (UAI 1995), pp. 411–418.
Morgan Kaufmann.

Nagarajan R, Datta S, Scutari M, Beggs ML, Nolen GT, Peterson CA (2010). “Functional
Relationships between Genes Associated with Differentiation Potential of Aged Myogenic
Progenitors.” Frontiers in Physiology, 1.

Pearl J (1993). “Comment: Graphical models, causality and intervention.” Statistical Science,
8, 266–269.

Pearl J (2000). Causality. Cambridge University Press.

http://CRAN.R-project.org/package=gRain
http://CRAN.R-project.org/package=gRbase
http://CRAN.R-project.org/package=gRc
http://CRAN.R-project.org/package=gRc
http://www.jstatsoft.org/v47/i11
1307.5636
1307.5636
http://arxiv.org/abs/1307.5636
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R Development Core Team (2014). R: A Language and Environment for Statistical Comput-
ing. R Foundation for Statistical Computing, Vienna, Austria. ISBN 3-900051-07-0, URL
http://www.R-project.org.

Ramsey J, Zhang J, Spirtes P (2006). “Adjacency-Faithfulness and Conservative Causal
Inference.” In Proceedings of the 22nd Conference Annual Conference on Uncertainty in
Artificial Intelligence (UAI 2006), pp. 401–408. AUAI Press, Arlington, Virginia.

Richardson TS, Spirtes P (2002). “Ancestral Graph Markov Models.” Annals of Statistics,
30, 962–1030.

Scutari M (2010). “Learning Bayesian Networks with the bnlearn R Package.” Journal of
Statistical Software, 35(3), 1–22. URL http://www.jstatsoft.org/v35/i03/.
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