
Package ‘pcaPP’
January 14, 2018

Version 1.9-73

Date 2018-01-04

Title Robust PCA by Projection Pursuit

Author Peter Filzmoser, Heinrich Fritz, Klaudius Kalcher

Maintainer Valentin Todorov <valentin.todorov@chello.at>

Imports mvtnorm

Description Provides functions for robust PCA by projection pursuit. The methods are de-
scribed in Croux et al. (2006) <doi:10.2139/ssrn.968376>, Croux et al. (2013) <doi:10.1080/00401706.2012.727746>, Todorov and Filz-
moser (2013) <doi:10.1007/978-3-642-33042-1_31>.

License GPL (>= 3)

NeedsCompilation yes

Repository CRAN

Date/Publication 2018-01-14 18:27:29 UTC

R topics documented:
cor.fk . 2
covPC . 3
covPCA . 4
data.Zou . 6
l1median . 7
l1median_NLM . 8
objplot . 10
opt.TPO . 11
PCAgrid . 14
PCAproj . 17
PCdiagplot . 19
plot.opt.TPO . 21
plotcov . 23
qn . 24
ScaleAdv . 26

Index 28

1

2 cor.fk

cor.fk Fast estimation of Kendall’s tau rank correlation coefficient

Description

Calculates Kendall’s tau rank correlation coefficient in O (n log (n)) rather than O (n\^2) as in the
current R implementation.

Usage

cor.fk (x, y = NULL)

Arguments

x A vector, a matrix or a data frame of data.

y A vector of data.

Details

The code of this implementation of the fast Kendall’s tau correlation algorithm has originally been
published by David Simcha. Due to it’s runtime (O(n log n)) it’s essentially faster than the current
R implementation (O (n^2)), especially for large numbers of observations. The algorithm goes
back to Knight (1966) and has been described more detailed by Abrevaya (1999) and Christensen
(2005).

Value

The estimated correlation coefficient.

Author(s)

David Simcha, Heinrich Fritz, Christophe Croux, Peter Filzmoser <<P.Filzmoser@tuwien.ac.at>>

References

Knight, W. R. (1966). A Computer Method for Calculating Kendall’s Tau with Ungrouped Data.
Journal of the American Statistical Association, 314(61) Part 1, 436-439.
Christensen D. (2005). Fast algorithms for the calculation of Kendall’s Tau. Journal of Computa-
tional Statistics 20, 51-62.
Abrevaya J. (1999). Computation of the Maximum Rank Correlation Estimator. Economic Letters
62, 279-285.

See Also

cor

covPC 3

Examples

set.seed (100) ## creating test data
n <- 1000
x <- rnorm (n)
y <- x+ rnorm (n)

tim <- proc.time ()[1] ## applying cor.fk
cor.fk (x, y)
cat ("cor.fk runtime [s]:", proc.time ()[1] - tim, "(n =", length (x), ")\n")

tim <- proc.time ()[1] ## applying cor (standard R implementation)
cor (x, y, method = "kendall")
cat ("cor runtime [s]:", proc.time ()[1] - tim, "(n =", length (x), ")\n")

applying cor and cor.fk on data containing

Xt <- cbind (c (x, as.integer (x)), c (y, as.integer (y)))

tim <- proc.time ()[1] ## applying cor.fk
cor.fk (Xt)
cat ("cor.fk runtime [s]:", proc.time ()[1] - tim, "(n =", nrow (Xt), ")\n")

tim <- proc.time ()[1] ## applying cor (standard R implementation)
cor (Xt, method = "kendall")
cat ("cor runtime [s]:", proc.time ()[1] - tim, "(n =", nrow (Xt), ")\n")

covPC Covariance Matrix Estimation from princomp Object

Description

computes the covariance matrix from a princomp object. The number of components k can be given
as input.

Usage

covPC(x, k, method)

Arguments

x an object of class princomp.

k number of PCs to use for covariance estimation (optional).

method method how the PCs have been estimated (optional).

4 covPCA

Details

There are several possibilities to estimate the principal components (PCs) from an input data matrix,
including the functions PCAproj and PCAgrid. This function uses the estimated PCs to reconstruct
the covariance matrix. Not all PCs have to be used, the number k of PCs (first k PCs) can be given
as input to the function.

Value

cov the estimated covariance matrix

center the center of the data, as provided from the princomp object.

method a string describing the method that was used to calculate the PCs.

Author(s)

Heinrich Fritz, Peter Filzmoser <<P.Filzmoser@tuwien.ac.at>>

References

C. Croux, P. Filzmoser, M. Oliveira, (2007). Algorithms for Projection-Pursuit Robust Principal
Component Analysis, Chemometrics and Intelligent Laboratory Systems, Vol. 87, pp. 218-225.

See Also

PCAgrid, PCAproj, princomp

Examples

multivariate data with outliers
library(mvtnorm)
x <- rbind(rmvnorm(200, rep(0, 6), diag(c(5, rep(1,5)))),

rmvnorm(15, c(0, rep(20, 5)), diag(rep(1, 6))))
pc <- princomp(x)
covPC(pc, k=2)

covPCA Robust Covariance Matrix Estimation

Description

computes the robust covariance matrix using the PCAgrid and PCAproj functions.

Usage

covPCAproj(x, control)
covPCAgrid(x, control)

covPCA 5

Arguments

x a numeric matrix or data frame which provides the data.

control a list whose elements must be the same as (or a subset of) the parameters of the
appropriate PCA function (PCAgrid or PCAproj).

Details

The functions covPCAproj and covPCAgrid use the functions PCAproj and PCAgrid respectively
to estimate the covariance matrix of the data matrix x.

Value

cov the actual covariance matrix estimated from x

center the center of the data x that was substracted from them before the PCA algo-
rithms were run.

method a string describing the method that was used to calculate the covariance matrix
estimation

Author(s)

Heinrich Fritz, Peter Filzmoser <<P.Filzmoser@tuwien.ac.at>>

References

C. Croux, P. Filzmoser, M. Oliveira, (2007). Algorithms for Projection-Pursuit Robust Principal
Component Analysis, Chemometrics and Intelligent Laboratory Systems, Vol. 87, pp. 218-225.

See Also

PCAgrid, ScaleAdv, princomp

Examples

multivariate data with outliers
library(mvtnorm)
x <- rbind(rmvnorm(200, rep(0, 6), diag(c(5, rep(1,5)))),

rmvnorm(15, c(0, rep(20, 5)), diag(rep(1, 6))))
covPCAproj(x)
compare with classical covariance matrix:
cov(x)

6 data.Zou

data.Zou Test Data Generation for Sparse PCA examples

Description

Draws a sample data set, as introduced by Zou et al. (2006).

Usage

data.Zou (n = 250, p = c(4, 4, 2), ...)

Arguments

n The required number of observations.

p A vector of length 3, specifying how many variables shall be constructed using
the three factors V1, V2 and V3.

... Further arguments passed to or from other functions.

Details

This data set has been introduced by Zou et al. (2006), and then been referred to several times, e.g.
by Farcomeni (2009), Guo et al. (2010) and Croux et al. (2011).

The data set contains two latent factors V1 ~ N(0, 290) and V2 ~ N(0, 300) and a third mixed
component V3 = -0.3 V1 + 0.925V2 + e; e ~ N(0, 1).
The ten variables Xi of the original data set are constructed the following way:
Xi = V1 + ei; i = 1, 2, 3, 4
Xi = V2 + ei; i = 5, 6, 7, 8
Xi = V3 + ei; i = 9, 10
whereas ei ~ N(0, 1) is indepependent for i = 1 , ..., 10

Value

A matrix of dimension n x sum (p) containing the generated sample data set.

Author(s)

Heinrich Fritz, Peter Filzmoser <<P.Filzmoser@tuwien.ac.at>>

References

C. Croux, P. Filzmoser, H. Fritz (2011). Robust Sparse Principal Component Analysis Based on
Projection-Pursuit, ?? To appear.

A. Farcomeni (2009). An exact approach to sparse principal component analysis, Computational
Statistics, Vol. 24(4), pp. 583-604.

J. Guo, G. James, E. Levina, F. Michailidis, and J. Zhu (2010). Principal component analysis with
sparse fused loadings, Journal of Computational and Graphical Statistics. To appear.

l1median 7

H. Zou, T. Hastie, R. Tibshirani (2006). Sparse principal component analysis, Journal of Computa-
tional and Graphical Statistics, Vol. 15(2), pp. 265-286.

See Also

sPCAgrid, princomp

Examples

data generation
set.seed (0)
x <- data.Zou ()

applying PCA
pc <- princomp (x)

the corresponding non-sparse loadings
unclass (pc$load[,1:3])
pc$sdev[1:3]

lambda as calculated in the opt.TPO - example
lambda <- c (0.23, 0.34, 0.005)

applying sparse PCA
spc <- sPCAgrid (x, k = 3, lambda = lambda, method = "sd")
unclass (spc$load)
spc$sdev[1:3]

comparing the non-sparse and sparse biplot
par (mfrow = 1:2)
biplot (pc, main = "non-sparse PCs")
biplot (spc, main = "sparse PCs")

l1median Multivariate L1 Median

Description

Computes the multivariate L1 median (also called spatial median) of a data matrix.

Usage

l1median(X, MaxStep = 200, ItTol = 10^-8, trace = 0, m.init = .colMedians (X))

Arguments

X A matrix containing the values whose multivariate L1 median is to be computed.

MaxStep The maximum number of iterations.

ItTol Tolerance for convergence of the algorithm.

trace The tracing level.

m.init An initial estimate.

8 l1median_NLM

Value

returns the vector of the coordinates of the L1 median.

Author(s)

Heinrich Fritz, Peter Filzmoser <<P.Filzmoser@tuwien.ac.at>>

References

C. Croux, P. Filzmoser, M. Oliveira, (2007). Algorithms for Projection-Pursuit Robust Principal
Component Analysis, Chemometrics and Intelligent Laboratory Systems, Vol. 87, pp. 218-225.

See Also

median

Examples

l1median(rnorm(100), trace = -1) # this returns the median of the sample

multivariate data with outliers
library(mvtnorm)
x <- rbind(rmvnorm(200, rep(0, 4), diag(c(1, 1, 2, 2))),

rmvnorm(50, rep(3, 4), diag(rep(2, 4))))
l1median(x, trace = -1)
compare with coordinate-wise median:
apply(x,2,median)

l1median_NLM Multivariate L1 Median

Description

Computes the multivariate L1 median (also called spatial median) of a data matrix X.

Usage

l1median_NM (X, maxit = 200, tol = 10^-8, trace = 0,
m.init = .colMedians (X), ...)

l1median_CG (X, maxit = 200, tol = 10^-8, trace = 0,
m.init = .colMedians (X), ...)

l1median_BFGS (X, maxit = 200, tol = 10^-8, trace = 0,
m.init = .colMedians (X), REPORT = 10, ...)

l1median_NLM (X, maxit = 200, tol = 10^-8, trace = 0,
m.init = .colMedians (X), ...)

l1median_HoCr (X, maxit = 200, tol = 10^-8, zero.tol = 1e-15, trace = 0,
m.init = .colMedians (X), ...)

l1median_VaZh (X, maxit = 200, tol = 10^-8, zero.tol = 1e-15, trace = 0,
m.init = .colMedians (X), ...)

l1median_NLM 9

Arguments

X a matrix of dimension n x p.

maxit The maximum number of iterations to be performed.

tol The convergence tolerance.

trace The tracing level. Set trace > 0 to retrieve additional information on the single
iterations.

m.init A vector of length p containing the initial value of the L1-median.

REPORT A parameter internally passed to optim.

zero.tol The zero-tolerance level used in l1median_VaZh and l1median_HoCr for deter-
mining the equality of two observations (i.e. an observation and a current center
estimate).

... Further parameters passed from other functions.

Details

The L1-median is computed using the built-in functions optim and nlm. These functions are a tran-
script of the L1median method of package robustX (available at ftp://stat.ethz.ch/U/maechler/R/),
porting as much code as possible into C++.

Value

par A vector of length p containing the L1-median.

value The value of the objective function ||X - l1median|| which is minimized for
finding the L1-median.

code The return code of the optimization algorithm. See optim and nlm for further
information.

iterations The number of iterations performed.

iterations_gr When using a gradient function this value holds the number of times the gradient
had to be computed.

time The algorithms runtime in milliseconds.

Note

See the vignette "Compiling pcaPP for Matlab" which comes with this package to compile and use
some of these functions in Matlab.

Author(s)

Heinrich Fritz, Peter Filzmoser <<P.Filzmoser@tuwien.ac.at>>

See Also

median

10 objplot

Examples

multivariate data with outliers
library(mvtnorm)
x <- rbind(rmvnorm(200, rep(0, 4), diag(c(1, 1, 2, 2))),

rmvnorm(50, rep(3, 4), diag(rep(2, 4))))

l1median_NM (x)$par
l1median_CG (x)$par
l1median_BFGS (x)$par
l1median_NLM (x)$par
l1median_HoCr (x)$par
l1median_VaZh (x)$par

compare with coordinate-wise median:
apply(x,2,median)

objplot Objective Function Plot for Sparse PCs

Description

Plots an objective function (TPO or BIC) of one or more sparse PCs for a series of lambdas.

Usage

objplot (x, k, ...)

Arguments

x An opt.TPO or opt.BIC object.

k This function displays the objective function’s values of the k-th component for
opt.TPO-objects, or the first k components for opt.BIC-objects.

... Further arguments passed to or from other functions.

Details

This function operates on the return object of function opt.TPO or opt.BIC. The model (lambda)
selected by the minimization of the corresponding criterion is highlighted by a dashed vertical line.

The component the argument k refers to, corresponds to the $pc.noord item of argument x. For
more info on the order of sparse PCs see the details section of opt.TPO.

Author(s)

Heinrich Fritz, Peter Filzmoser <<P.Filzmoser@tuwien.ac.at>>

opt.TPO 11

References

C. Croux, P. Filzmoser, H. Fritz (2011). Robust Sparse Principal Component Analysis Based on
Projection-Pursuit, ?? To appear.

See Also

sPCAgrid, princomp

Examples

set.seed (0)
generate test data

x <- data.Zou (n = 250)

k.max <- 3 ## max number of considered sparse PCs

arguments for the sPCAgrid algorithm
maxiter <- 25 ## the maximum number of iterations
method <- "sd" ## using classical estimations

Optimizing the TPO criterion
oTPO <- opt.TPO (x, k.max = k.max, method = method, maxiter = maxiter)

Optimizing the BIC criterion
oBIC <- opt.BIC (x, k.max = k.max, method = method, maxiter = maxiter)

Objective function vs. lambda
par (mfrow = c (2, k.max))
for (i in 1:k.max) objplot (oTPO, k = i)
for (i in 1:k.max) objplot (oBIC, k = i)

opt.TPO Model Selection for Sparse (Robust) Principal Components

Description

These functions compute a suggestion for the sparseness parameter lambda which is required by
function sPCAgrid. A range of different values for lambda is tested and according to an objective
function, the best solution is selected. Two different approaches (TPO and BIC) are available,
which is further discussed in the details section. A graphical summary of the optimization can be
obtained by plotting the function’s return value (plot.opt.TPO, plot.opt.BIC for tradeoff curves
or objplot for an objective function plot).

Usage

opt.TPO (x, k.max = ncol (x), n.lambda = 30, lambda.max, ...)
opt.BIC (x, k.max = ncol (x), n.lambda = 30, lambda.max, ...)

12 opt.TPO

Arguments

x a numerical matrix or data frame of dimension (n x p), which provides the data
for the principal components analysis.

k.max the maximum number of components which shall be considered for optimizing
an objective function (optional).

n.lambda the number of lambdas to be checked for each component (optional).
lambda.max the maximum value of lambda to be checked (optional). If omitted, the lambda

which yields "full sparseness" (i.e. loadings of only zeros and ones) is computed
and used as default value.

... further arguments passed to sPCAgrid

Details

The choice for a particular lambda is done by optimizing an objective function, which is calculated
for a set of n.lambda models with different lambdas, ranging from 0 to lambda.max. If lambda.max
is not specified, the minimum lambda yielding "full sparseness" is used. "Full sparseness" refers to
a model with minimum possible absolute sum of loadings, which in general implies only zeros and
ones in the loadings matrix.

The user can choose between two optimization methods: TPO (Tradeoff Product Optimization;
see below), or the BIC (see Guo et al., 2011; Croux et al., 2011). The main difference is, that
optimization based on the BIC always chooses the same lambda for all PCs, and refers to a particular
choice of k, the number of considered components. TPO however is optimized separately for each
component, and so delivers different lambdas within a model and does not depend on a decision on
k.
This characteristic can be noticed in the return value of the function: opt.TPO returns a single
model with k.max PCs and different values of lambda for each PC. On the contrary opt.BIC returns
k.max distinct models with k.max different lambdas, whereas for each model a different number of
components k has been considered for the optimization. Applying the latter method, the user finally
has to select one of these k.max models manually, e.g. by considering the cumulated explained
variance, whereas the TPO method does not require any further decisions.

The tradeoff made in the context of sparse PCA refers to the loss of explained variance vs. the gain
of sparseness. TPO (Tradeoff Product Optimization) maximizes the area under the tradeoff curve
(see plot.opt.TPO), in particular it maximizes the explained variance multiplied by the number of
zero loadings of a particular component. As in this context the according criterion is minimized,
the negative product is considered.

Note that in the context of sparse PCA, there are two sorting orders of PCs, which must be consid-
ered: Either according to the objective function’s value, (item $pc.noord)or the variance of each
PC(item $pc). As in none-sparse PCA the objective function is identical to the PCs’ variance, this
is not an issue there.
The sPCAgrid algorithm delivers the components in decreasing order, according to the objec-
tive function (which apart from the variance also includes sparseness terms), whereas the method
sPCAgrid subsequently re-orders the components according to their explained variance.

Value

The functions return an S3 object of type "opt.TPO" or "opt.BIC" respectively, containing the fol-
lowing items:

opt.TPO 13

pc An S3 object of type princomp (opt.TPO), or a list of such objects of length
k.max (opt.BIC), as returned by sPCAgrid.

pc.noord An S3 object of type princomp (opt.TPO), or a list of such objects of length
k.max (opt.BIC), as returned by sPCAgrid.
Here the PCs have not been re-ordered according to their variance, but are
still ordered according to their objective function’s value as returned by the
sPCAgrid - algorithm. This information is used for according tradeoff curves
and the objective function plot.

x The input data matrix as provided by the user.

k.ini, opt These items contain optimization information, as used in functions plot.opt.TPO,
plot.opt.BIC and objplot.

Author(s)

Heinrich Fritz, Peter Filzmoser <<P.Filzmoser@tuwien.ac.at>>

References

C. Croux, P. Filzmoser, H. Fritz (2011). Robust Sparse Principal Component Analysis Based on
Projection-Pursuit, ?? To appear.

See Also

sPCAgrid, princomp

Examples

set.seed (0)
generate test data

x <- data.Zou (n = 250)

k.max <- 3 ## max number of considered sparse PCs

arguments for the sPCAgrid algorithm
maxiter <- 25 ## the maximum number of iterations
method <- "sd" ## using classical estimations

Optimizing the TPO criterion
oTPO <- opt.TPO (x, k.max = k.max, method = method, maxiter = maxiter)

oTPO$pc ## the model selected by opt.TPO
oTPOpcload ## and the according sparse loadings.

Optimizing the BIC criterion
oBIC <- opt.BIC (x, k.max = k.max, method = method, maxiter = maxiter)

oBIC$pc[[1]] ## the first model selected by opt.BIC (k = 1)

Tradeoff Curves: Explained Variance vs. sparseness

14 PCAgrid

par (mfrow = c (2, k.max))
for (i in 1:k.max) plot (oTPO, k = i)
for (i in 1:k.max) plot (oBIC, k = i)

Tradeoff Curves: Explained Variance vs. lambda
par (mfrow = c (2, k.max))
for (i in 1:k.max) plot (oTPO, k = i, f.x = "lambda")
for (i in 1:k.max) plot (oBIC, k = i, f.x = "lambda")

Objective function vs. lambda
par (mfrow = c (2, k.max))
for (i in 1:k.max) objplot (oTPO, k = i)
for (i in 1:k.max) objplot (oBIC, k = i)

PCAgrid (Sparse) Robust Principal Components using the Grid search algo-
rithm

Description

Computes a desired number of (sparse) (robust) principal components using the grid search algo-
rithm in the plane. The global optimum of the objective function is searched in planes, not in the
p-dimensional space, using regular grids in these planes.

Usage

PCAgrid (x, k = 2, method = c ("mad", "sd", "qn"),
maxiter = 10, splitcircle = 25, scores = TRUE, zero.tol = 1e-16,

center = l1median, scale, trace = 0, store.call = TRUE, control, ...)

sPCAgrid (x, k = 2, method = c ("mad", "sd", "qn"), lambda = 1,
maxiter = 10, splitcircle = 25, scores = TRUE, zero.tol = 1e-16,

center = l1median, scale, trace = 0, store.call = TRUE, control, ...)

Arguments

x a numerical matrix or data frame of dimension (n x p)which provides the data
for the principal components analysis.

k the desired number of components to compute

method the scale estimator used to detect the direction with the largest variance. Possible
values are "sd", "mad" and "qn", the latter can be called "Qn" too. "mad" is the
default value.

lambda the sparseness constraint’s strength(sPCAgrid only). A single value for all com-
ponents, or a vector of length k with different values for each component can be
specified. See opt.TPO for the choice of this argument.

maxiter the maximum number of iterations.

PCAgrid 15

splitcircle the number of directions in which the algorithm should search for the largest
variance. The direction with the largest variance is searched for in the directions
defined by a number of equally spaced points on the unit circle. This argument
determines, how many such points are used to split the unit circle.

scores A logical value indicating whether the scores of the principal component should
be calculated.

zero.tol the zero tolerance used internally for checking convergence, etc.

center this argument indicates how the data is to be centered. It can be a function like
mean or median or a vector of length ncol(x) containing the center value of
each column.

scale this argument indicates how the data is to be rescaled. It can be a function like sd
or mad or a vector of length ncol(x) containing the scale value of each column.

trace an integer value >= 0, specifying the tracing level.

store.call a logical variable, specifying whether the function call shall be stored in the
result structure.

control a list which elements must be the same as (or a subset of) the parameters above.
If the control object is supplied, the parameters from it will be used and any
other given parameters are overridden.

... further arguments passed to or from other functions.

Details

In contrast to PCAgrid, the function sPCAgrid computes sparse principal components. The strength
of the applied sparseness constraint is specified by argument lambda.

Similar to the function princomp, there is a print method for the these objects that prints the results
in a nice format and the plot method produces a scree plot (screeplot). There is also a biplot
method.

Angle halving is an extension of the original algorithm. In the original algorithm, the search direc-
tions are determined by a number of points on the unit circle in the interval [-pi/2 ; pi/2). Angle
halving means this angle is halved in each iteration, eg. for the first approximation, the above men-
tioned angle is used, for the second approximation, the angle is halved to [-pi/4 ; pi/4) and so on.
This usually gives better results with less iterations needed.
NOTE: in previous implementations angle halving could be suppressed by the former argument
"anglehalving". This still can be done by setting argument maxiter = 0.

Value

The function returns an object of class "princomp", i.e. a list similar to the output of the function
princomp.

sdev the (robust) standard deviations of the principal components.

loadings the matrix of variable loadings (i.e., a matrix whose columns contain the eigen-
vectors). This is of class "loadings": see loadings for its print method.

center the means that were subtracted.

scale the scalings applied to each variable.

16 PCAgrid

n.obs the number of observations.

scores if scores = TRUE, the scores of the supplied data on the principal components.

call the matched call.

obj A vector containing the objective functions values. For function PCAgrid this is
the same as sdev.

lambda The lambda each component has been calculated with (sPCAgrid only).

Note

See the vignette "Compiling pcaPP for Matlab" which comes with this package to compile and use
these functions in Matlab.

Author(s)

Heinrich Fritz, Peter Filzmoser <<P.Filzmoser@tuwien.ac.at>>

References

C. Croux, P. Filzmoser, M. Oliveira, (2007). Algorithms for Projection-Pursuit Robust Principal
Component Analysis, Chemometrics and Intelligent Laboratory Systems, Vol. 87, pp. 218-225.

C. Croux, P. Filzmoser, H. Fritz (2011). Robust Sparse Principal Component Analysis Based on
Projection-Pursuit, ?? To appear.

See Also

PCAproj, princomp

Examples

multivariate data with outliers
library(mvtnorm)
x <- rbind(rmvnorm(200, rep(0, 6), diag(c(5, rep(1,5)))),

rmvnorm(15, c(0, rep(20, 5)), diag(rep(1, 6))))
Here we calculate the principal components with PCAgrid
pc <- PCAgrid(x)
we could draw a biplot too:
biplot(pc)
now we want to compare the results with the non-robust principal components
pc <- princomp(x)
again, a biplot for comparison:
biplot(pc)

Sparse loadings
set.seed (0)
x <- data.Zou ()

applying PCA
pc <- princomp (x)

the corresponding non-sparse loadings
unclass (pc$load[,1:3])

PCAproj 17

pc$sdev[1:3]

lambda as calculated in the opt.TPO - example
lambda <- c (0.23, 0.34, 0.005)

applying sparse PCA
spc <- sPCAgrid (x, k = 3, lambda = lambda, method = "sd")
unclass (spc$load)
spc$sdev[1:3]

comparing the non-sparse and sparse biplot
par (mfrow = 1:2)
biplot (pc, main = "non-sparse PCs")
biplot (spc, main = "sparse PCs")

PCAproj Robust Principal Components using the algorithm of Croux and Ruiz-
Gazen (2005)

Description

Computes a desired number of (robust) principal components using the algorithm of Croux and
Ruiz-Gazen (JMVA, 2005).

Usage

PCAproj(x, k = 2, method = c("mad", "sd", "qn"), CalcMethod = c("eachobs",
"lincomb", "sphere"), nmax = 1000, update = TRUE, scores = TRUE, maxit = 5,
maxhalf = 5, scale = NULL, center = l1median_NLM, zero.tol = 1e-16, control)

Arguments

x a numeric matrix or data frame which provides the data for the principal com-
ponents analysis.

k desired number of components to compute

method scale estimator used to detect the direction with the largest variance. Possible
values are "sd", "mad" and "qn", the latter can be called "Qn" too. "mad" is the
default value.

CalcMethod the variant of the algorithm to be used. Possible values are "eachobs", "lincomb"
and "sphere", with "eachobs" being the default.

nmax maximum number of directions to search in each step (only when using "sphere"
or "lincomb" as the CalcMethod).

update a logical value indicating whether an update algorithm should be used.

scores a logical value indicating whether the scores of the principal component should
be calculated.

maxit maximim number of iterations.

maxhalf maximum number of steps for angle halving.

18 PCAproj

scale this argument indicates how the data is to be rescaled. It can be a function like sd
or mad or a vector of length ncol(x) containing the scale value of each column.

center this argument indicates how the data is to be centered. It can be a function like
mean or median or a vector of length ncol(x) containing the center value of
each column.

zero.tol the zero tolerance used internally for checking convergence, etc.

control a list which elements must be the same as (or a subset of) the parameters above.
If the control object is supplied, the parameters from it will be used and any
other given parameters are overridden.

Details

Basically, this algrithm considers the directions of each observation through the origin of the cen-
tered data as possible projection directions. As this algorithm has some drawbacks, especially if
ncol(x) > nrow(x) in the data matrix, there are several improvements that can be used with this
algorithm.

• updateAn updating step basing on the algorithm for finding the eigenvectors is added to the
algorithm. This can be used with any CalcMethod

• sphereAdditional search directions are added using random directions. The random directions
are determined using random data points generated from a p-dimensional multivariate standard
normal distribution. These new data points are projected to the unit sphere, giving the new
search directions.

• lincombAdditional search directions are added using linear combinations of the observations.
It is similar to the "sphere"-algorithm, but the new data points are generated using linear
combinations of the original data b_1*x_1 + ... + b_n*x_n where the coefficients b_i
come from a uniform distribution in the interval [0, 1].

Similar to the function princomp, there is a print method for the these objects that prints the results
in a nice format and the plot method produces a scree plot (screeplot). There is also a biplot
method.

Value

The function returns a list of class "princomp", i.e. a list similar to the output of the function
princomp.

sdev the (robust) standard deviations of the principal components.

loadings the matrix of variable loadings (i.e., a matrix whose columns contain the eigen-
vectors). This is of class "loadings": see loadings for its print method.

center the means that were subtracted.

scale the scalings applied to each variable.

n.obs the number of observations.

scores if scores = TRUE, the scores of the supplied data on the principal components.

call the matched call.

PCdiagplot 19

Author(s)

Heinrich Fritz, Peter Filzmoser <<P.Filzmoser@tuwien.ac.at>>

References

C. Croux, P. Filzmoser, M. Oliveira, (2007). Algorithms for Projection-Pursuit Robust Principal
Component Analysis, Chemometrics and Intelligent Laboratory Systems, Vol. 87, pp. 218-225.

See Also

PCAgrid, ScaleAdv, princomp

Examples

multivariate data with outliers
library(mvtnorm)
x <- rbind(rmvnorm(200, rep(0, 6), diag(c(5, rep(1,5)))),

rmvnorm(15, c(0, rep(20, 5)), diag(rep(1, 6))))
Here we calculate the principal components with PCAgrid
pc <- PCAproj(x, 6)
we could draw a biplot too:
biplot(pc)

we could use another calculation method and another objective function, and
maybe only calculate the first three principal components:
pc <- PCAproj(x, 3, "qn", "sphere")
biplot(pc)

now we want to compare the results with the non-robust principal components
pc <- princomp(x)
again, a biplot for comparision:
biplot(pc)

PCdiagplot Diagnostic plot for principal components

Description

Computes Orthogonal Distances (OD) and Score Distances (SD) for already computed principal
components using the projection pursuit technique.

Usage

PCdiagplot(x, PCobj, crit = c(0.975, 0.99, 0.999), ksel = NULL, plot = TRUE,
plotbw = TRUE, raw = FALSE, colgrid = "black", ...)

20 PCdiagplot

Arguments

x a numeric matrix or data frame which provides the data for the principal com-
ponents analysis.

PCobj a PCA object resulting from PCAproj or PCAgrid

crit quantile(s) used for the critical value(s) for OD and SD

ksel range for the number of PCs to be used in the plot; if NULL all PCs provided
are used

plot if TRUE a plot is generated, otherwise only the values are returned

plotbw if TRUE the plot uses gray, otherwise color representation

raw if FALSE, the distribution of the SD will be transformed to approach chisquare
distribution, otherwise the raw values are reported and used for plotting

colgrid the color used for the grid lines in the plot

... additional graphics parameters as used in par

Details

Based on (robust) principal components, a diagnostics plot is made using Orthogonal Distance (OD)
and Score Distance (SD). This plot can provide important information about the multivariate data
structure.

Value

ODist matrix with OD for each observation (rows) and each selected PC (cols)

SDist matrix with SD for each observation (rows) and each selected PC (cols)

critOD matrix with critical values for OD for each selected PC (rows) and each critical
value (cols)

critSD matrix with critical values for SD for each selected PC (rows) and each critical
value (cols)

Author(s)

Peter Filzmoser <<P.Filzmoser@tuwien.ac.at>>

References

P. Filzmoser and H. Fritz (2007). Exploring high-dimensional data with robust principal compo-
nents. In S. Aivazian, P. Filzmoser, and Yu. Kharin, editors, Proceedings of the Eighth International
Conference on Computer Data Analysis and Modeling, volume 1, pp. 43-50, Belarusian State Uni-
versity, Minsk.

M. Hubert, P.J. Rousseeuwm, K. Vanden Branden (2005). ROBCA: a new approach to robust
principal component analysis Technometrics 47, pp. 64-79.

See Also

PCAproj, PCAgrid

plot.opt.TPO 21

Examples

multivariate data with outliers
library(mvtnorm)
x <- rbind(rmvnorm(85, rep(0, 6), diag(c(5, rep(1,5)))),

rmvnorm(15, c(0, rep(20, 5)), diag(rep(1, 6))))
Here we calculate the principal components with PCAgrid
pcrob <- PCAgrid(x, k=6)
resrob <- PCdiagplot(x,pcrob,plotbw=FALSE)

compare with classical method:
pcclass <- PCAgrid(x, k=6, method="sd")
resclass <- PCdiagplot(x,pcclass,plotbw=FALSE)

plot.opt.TPO Tradeoff Curves for Sparse PCs

Description

Tradeoff curves of one or more sparse PCs for a series of lambdas, which contrast the loss of
explained variance and the gain of sparseness.

Usage

S3 method for class 'opt.TPO'
plot(x, k, f.x = c ("l0", "pl0", "l1", "pl1", "lambda"),

f.y = c ("var", "pvar"), ...)
S3 method for class 'opt.BIC'
plot(x, k, f.x = c ("l0", "pl0", "l1", "pl1", "lambda"),

f.y = c ("var", "pvar"), ...)

Arguments

x An opt.TPO or opt.BIC object.

k This function plots the tradeoff curve of the k-th component for opt.TPO-objects,
or the first k components for opt.BIC-objects.

f.x, f.y A string, specifying which information shall be plotted on the x and y - axis.
See the details section for more information.

... Further arguments passed to or from other functions.

Details

The argument f.x can obtain the following values:

• "l0": l0 - sparseness, which corresponds to the number of zero loadings of the considered
component(s).

• "pl0": l0 - sparseness in percent (l0 - sparseness ranges from 0 to p-1 for each component).

22 plot.opt.TPO

• "l1": l1 - sparseness, which corresponds to the negative sum of absolute loadings of the
considered component(s).
(The exact value displayed for a single component is sqrt (p) - S, with S as the the absolute
sum of loadings.)
As this value is a part of the objective function which selects the candidate directions within
the sPCAgrid function, this option is provided here.

• "pl1" The "l1 - sparseness" in percent (l1 - sparseness ranges from 0 to sqrt (p-1) for each
component).

• "lambda": The lambda used for computing a particular model.

The argument f.y can obtain the following values:

• "var": The (cumulated) explained variance of the considered component(s). The value shown
here is calculated using the variance estimator specified via the method argument of function
sPCAgrid.

• "pvar": The (cumulated) explained variance of the considered component(s) in percent. The
100%-level is assumed as the sum of variances of all columns of argument x.
Again the same variance estimator is used as specified via the method argument of function
sPCAgrid.

The subtitle summarizes the result of the applied criterion for selecting a value of lambda:

• The name of the applied method (TPO/BIC).

• The selected value of lambda for the k-th component (opt.TPO) or all computed components
(opt.BIC).

• The empirical cumulated variance (ECV) of the first k components in percent.

• The obtained l0-sparseness of the first k components.

This function operates on the return object of function opt.TPO or opt.BIC. The model (lambda)
selected by the minimization of the corresponding criterion is highlighted by a dashed vertical line.

The component the argument k refers to, corresponds to the $pc.noord item of argument x. For
more info on the order of sparse PCs see the details section of opt.TPO.

Author(s)

Heinrich Fritz, Peter Filzmoser <<P.Filzmoser@tuwien.ac.at>>

References

C. Croux, P. Filzmoser, H. Fritz (2011). Robust Sparse Principal Component Analysis Based on
Projection-Pursuit, ?? To appear.

See Also

sPCAgrid, princomp

plotcov 23

Examples

set.seed (0)
generate test data

x <- data.Zou (n = 250)

k.max <- 3 ## max number of considered sparse PCs

arguments for the sPCAgrid algorithm
maxiter <- 25 ## the maximum number of iterations
method <- "sd" ## using classical estimations

Optimizing the TPO criterion
oTPO <- opt.TPO (x, k.max = k.max, method = method, maxiter = maxiter)

Optimizing the BIC criterion
oBIC <- opt.BIC (x, k.max = k.max, method = method, maxiter = maxiter)

Tradeoff Curves: Explained Variance vs. sparseness
par (mfrow = c (2, k.max))
for (i in 1:k.max) plot (oTPO, k = i)
for (i in 1:k.max) plot (oBIC, k = i)

Explained Variance vs. lambda
par (mfrow = c (2, k.max))
for (i in 1:k.max) plot (oTPO, k = i, f.x = "lambda")
for (i in 1:k.max) plot (oBIC, k = i, f.x = "lambda")

plotcov Compare two Covariance Matrices in Plots

Description

allows a direct comparison of two estimations of the covariance matrix (e.g. resulting from covPC)
in a plot.

Usage

plotcov(cov1, cov2, method1, labels1, method2, labels2, ndigits, ...)

Arguments

cov1 a covariance matrix (from cov, covMcd, covPC, covPCAgrid, covPCAproj, etc.

cov2 a covariance matrix (from cov, covMcd, covPC, covPCAgrid, covPCAproj, etc.

method1 legend for ellipses of estimation method1

method2 legend for ellipses of estimation method2

labels1 legend for numbers of estimation method1

24 qn

labels2 legend for numbers of estimation method2

ndigits number of digits to use for printing covariances, by default ndigits=4

... additional arguments for text or plot

Details

Since (robust) PCA can be used to re-compute the (robust) covariance matrix, one might be inter-
ested to compare two different methods of covariance estimation visually. This routine takes as
input objects for the covariances to compare the output of cov, but also the return objects from
covPCAgrid, covPCAproj, covPC, and covMcd. The comparison of the two covariance matrices is
done by numbers (the covariances) and by ellipses.

Value

only the plot is generated

Author(s)

Heinrich Fritz, Peter Filzmoser <<P.Filzmoser@tuwien.ac.at>>

References

C. Croux, P. Filzmoser, M. Oliveira, (2007). Algorithms for Projection-Pursuit Robust Principal
Component Analysis, Chemometrics and Intelligent Laboratory Systems, Vol. 87, pp. 218-225.

See Also

PCAgrid, PCAproj, princomp

Examples

multivariate data with outliers
library(mvtnorm)
x <- rbind(rmvnorm(200, rep(0, 6), diag(c(5, rep(1,5)))),

rmvnorm(15, c(0, rep(20, 5)), diag(rep(1, 6))))
plotcov(covPCAproj(x),covPCAgrid(x))

qn scale estimation using the robust Qn estimator

Description

Returns a scale estimation as calculated by the (robust) Qn estimator.

Usage

qn(x, corrFact)

qn 25

Arguments

x a vector of data

corrFact the finite sample bias correction factor. By default a value of ~ 2.219144 is used
(assuming normality).

Details

The Qn estimator computes the first quartile of the pairwise absolute differences of all data values.

Value

The estimated scale of the data.

Warning

Earlier implementations used a wrong correction factor for the final result. Thus qn estimations
computed with package pcaPP version > 1.8-1 differ about 0.12% from earlier estimations (version
<= 1.8-1).

Note

See the vignette "Compiling pcaPP for Matlab" which comes with this package to compile and use
this function in Matlab.

Author(s)

Heinrich Fritz, Peter Filzmoser <<P.Filzmoser@tuwien.ac.at>>

References

P.J. Rousseeuw, C. Croux (1993) Alternatives to the Median Absolute Deviation, JASA, 88, 1273-
1283.

See Also

mad

Examples

data with outliers
x <- c(rnorm(100), rnorm(10, 10))
qn(x)

26 ScaleAdv

ScaleAdv centers and rescales data

Description

Data is centered and rescaled (to have mean 0 and a standard deviation of 1).

Usage

ScaleAdv(x, center = mean, scale = sd)

Arguments

x matrix containing the observations. If this is not a matrix, but a data frame, it
is automatically converted into a matrix using the function as.matrix. In any
other case, (eg. a vector) it is converted into a matrix with one single column.

center this argument indicates how the data is to be centered. It can be a function like
mean or median or a vector of length ncol(x) containing the center value of
each column.

scale this argument indicates how the data is to be rescaled. It can be a function like sd
or mad or a vector of length ncol(x) containing the scale value of each column.

Details

The default scale being NULL means that no rescaling is done.

Value

The function returns a list containing

x centered and rescaled data matrix.

center a vector of the centers of each column x. If you add to each column of x the ap-
propriate value from center, you will obtain the data with the original location
of the observations.

scale a vector of the scale factors of each column x. If you multiply each column of x
by the appropriate value from scale, you will obtain the data with the original
scales.

Author(s)

Heinrich Fritz, Peter Filzmoser <<P.Filzmoser@tuwien.ac.at>>

References

C. Croux, P. Filzmoser, M. Oliveira, (2007). Algorithms for Projection-Pursuit Robust Principal
Component Analysis, Chemometrics and Intelligent Laboratory Systems, Vol. 87, pp. 218-225.

ScaleAdv 27

Examples

x <- rnorm(100, 10, 5)
x <- ScaleAdv(x)$x

can be used with multivariate data too
library(mvtnorm)
x <- rmvnorm(100, 3:7, diag((7:3)^2))
res <- ScaleAdv(x, center = l1median, scale = mad)
res

instead of using an estimator, you could specify the center and scale yourself too
x <- rmvnorm(100, 3:7, diag((7:3)^2))
res <- ScaleAdv(x, 3:7, 7:3)
res

Index

∗Topic multivariate
cor.fk, 2
covPC, 3
covPCA, 4
data.Zou, 6
l1median, 7
l1median_NLM, 8
objplot, 10
opt.TPO, 11
PCAgrid, 14
PCAproj, 17
plot.opt.TPO, 21
plotcov, 23
qn, 24
ScaleAdv, 26

∗Topic robust
cor.fk, 2
covPCA, 4
data.Zou, 6
l1median, 7
l1median_NLM, 8
objplot, 10
opt.TPO, 11
PCAgrid, 14
PCAproj, 17
PCdiagplot, 19
plot.opt.TPO, 21
qn, 24

as.matrix, 26

biplot, 18

cor, 2
cor.fk, 2
cov, 24
covMcd, 24
covPC, 3, 24
covPCA, 4
covPCAgrid, 24

covPCAgrid (covPCA), 4
covPCAproj, 24
covPCAproj (covPCA), 4

data.Zou, 6

l1median, 7
l1median_BFGS (l1median_NLM), 8
l1median_CG (l1median_NLM), 8
l1median_HoCr (l1median_NLM), 8
l1median_NLM, 8
l1median_NM (l1median_NLM), 8
l1median_VaZh (l1median_NLM), 8
loadings, 15, 18

mad, 15, 18, 25, 26
mean, 15, 18, 26
median, 8, 9, 15, 18, 26

nlm, 9

objplot, 10, 11, 13
opt.BIC, 10, 12, 13, 21, 22
opt.BIC (opt.TPO), 11
opt.TPO, 10, 11, 12–14, 21, 22
optim, 9

par, 20
PCAgrid, 4, 5, 14, 19, 20, 24
PCAproj, 4, 5, 16, 17, 20, 24
PCdiagplot, 19
plot.opt.BIC, 11, 13
plot.opt.BIC (plot.opt.TPO), 21
plot.opt.TPO, 11–13, 21
plotcov, 23
princomp, 4, 5, 7, 11, 13, 15, 16, 18, 19, 22, 24
print, 15, 18

qn, 24

ScaleAdv, 5, 19, 26

28

INDEX 29

screeplot, 15, 18
sd, 15, 18, 26
sPCAgrid, 7, 11–13, 16, 22
sPCAgrid (PCAgrid), 14

	cor.fk
	covPC
	covPCA
	data.Zou
	l1median
	l1median_NLM
	objplot
	opt.TPO
	PCAgrid
	PCAproj
	PCdiagplot
	plot.opt.TPO
	plotcov
	qn
	ScaleAdv
	Index

