
A Quick Guide for the pbdRPC Package

Wei-Chen Chen

pbdR Core Team
Silver Spring, MD, USA

Contents

1. Introduction 1

1.1. Basic ssh and srpc() . 2

1.2. Basic ssh() . 2

1.3. Basic plink.exe and plink() . 3

2. Handling Login Information 4

3. Handling Machine Information 5

4. An Application with remoter 6

5. An Application with pbdCS 7

6. Local Port Forwarding 9

6.1. Arguments for Local Port Forwarding . 12

6.2. Arguments for Tunneling . 12

7. An Advance Application with pbdMPI 13

8. FAQs 15

8.1. General . 15

References 17

© 2017 Wei-Chen Chen.

Permission is granted to make and distribute verbatim copies of this vignette and its source
provided the copyright notice and this permission notice are preserved on all copies.

This publication was typeset using LATEX.

i

Disclaimer:
The findings and conclusions in this article have not been formally disseminated by the U.S.
Department of Health & Human Services nor by the U.S. Department of Energy, and should
not be construed to represent any determination or policy of University, Agency, Administra-
tion and National Laboratory.

Warning:
This document is written to explain the main functions of pbdRPC (Chen and Schmidt 2017),
version 0.1-1. Every effort will be made to ensure that future versions are consistent with
these instructions, but features in later versions may not be explained in this document.

Information about the functionality of this package, and any changes in future versions can be
found on website: “Programming with Big Data in R” (pbdR) at http://r-pbd.org/ (Os-
trouchov et al. 2012).

1. Introduction

This package, pbdRPC (Chen and Schmidt 2017), provides one high-level function, srpc(),
that can securely send commands to remote servers via ssh (OpenSSH) or plink/plink.exe
(PuTTY). The high-level function is a very light yet secure implementation because the
communications are encrypted, by default SSH version 2 using RSA key pairs, between a
local client and remote servers.

The high-level function srpc() is a unified interface via system call to either ssh or plink

across most popular OSs including Linux, Mac OSX, MS Windows, and Solaris. Simply
speaking, the function srpc() is a wrapper of two low-level functions, ssh() and plink().
However, these functions can ask remote servers to execute commands without logging in the
servers provided that an authentication is setup properly.

Four RPC controls are provided by the package to simply the functions:

1. .pbd_env$RPC.CT is main RPC controls taking care several basic functionalities of three
functions, srpc(), ssh(), and plink().

2. .pbd_env$RPC.LI has information of login account for logging in the remote server
include authentication using private keys. See Section 2 for details.

3. .pbd_env$RPC.RR has examples of executing multiple commands on a remote server
which is an application related to an R package, remoter (Schmidt and Chen 2016b).
See Section 4 for details.

4. .pbd_env$RPC.CS has examples of executing multiple commands on a pbdCS cluster
which is an application related to an R package, pbdCS (Schmidt and Chen 2016a). See
Section 5 for details.

Note that .pbd_env will be first generated when the library pbdRPC is loaded, then default
objects RPC.CT, RPC.LI, RPC.RR, and RPC.CS will be generated.

In general, only RPC.CT and RPC.LI are required to be set by users according to their en-
vironment configurations. The RPC.RR and RPC.Cs are simple templates to show two pbdR
applications. Users are welcomed to adopt those templates and to develop personal applica-
tions wherever automations can be benefit by remote procedure calls.

1

http://r-pbd.org/

Most OSs (Linux, Solaris, Mac OSX) have the system command ssh (OpenSSH) installed, so
the ssh() is a wrapper function to the system ssh command. For Windows, the plink.exe

(from PuTTY) will be compiled with pbdRPC, so the plink() is a wrapper function to the
executable file, plink.exe. Note that for non-Windows system, the plink can be compiled
as well.

1.1. Basic ssh and srpc()

Suppose a sshd is set and running correctly on a server running a Linux system at an ip
address “192.168.56.101” and a port “22”. Further, suppose an account called “snoweye” is
created and a password for the account is set on the server.

From a terminal or a shell of non-Windows systems, one may use

Basic ssh in shell� �
$ ssh snoweye@192 .168.56.101 ' whoami '� �
to access the server and to ask the server to execute a command whoami. Typing the password
for the login account may be needed. The command whoami is available on most Linux
systems, it should return the command result,“snoweye”, on the screen/stdout without logging
in a shell environment on the server. In the same setup, the command whoami can be replaced
by any other proper programs, shell scripts, or procedures. For Windows system, one may
use plink.exe instead of ssh from a terminal cmd.exe. See Section 1.3 for details.

Within R, the example below will have the same results as the above shell command.

Basic srpc() in pbdRPC and R� �
> library(pbdRPC , quietly = TRUE)

>

> ### Alter login information as needed

> rpcopt_set(user = "snoweye", hostname = "192.168.56.101")

> srpc("whoami")� �
The command results may be captured by R as well.

Regardless the system, the high level function srpc() can unify the calls to either ssh() or
plink() functions. One may use ssh() in non-Windows system, but use plink() in Windows
system. The srpc() automatically detects the system first, then calls the corresponding func-
tion. Currently, no external plink.exe or plink is implemented even though it is possible.
The details of ssh() and plink() are given in examples below.

1.2. Basic ssh()

Inside R and via pbdRPC, this can be done by

Basic ssh() in pbdRPC and R� �
> library(pbdRPC , quietly = TRUE)

> ssh("snoweye@192 .168.56.101 ' whoami ' ")� �
provided all other options (port, forwarding, etc) are set correctly. Note that the password
for the account may be required when an authentication file (id_rda) is not available.

2

Note that multiple commands can be automatically given at once as shell commands under
an shell prompt, such as “;”, “&&”, “>”, “<”, “|” or “&” etc. For example, the code below will
tell current id, date/time, and files.

Multiple commands to ssh in shell� �
$ ssh snoweye@192 .168.56.101 ' whoami;date;ls -a '� �
The multiple commands can be applied to ssh() and plink() as

Multipel commands to ssh() in pbdRPC and R� �
> library(pbdRPC , quietly = TRUE)

> ssh("snoweye@192 .168.56.101 ' whoami;date;ls -a ' ")� �
See Section 4 and .pbd_env$RPC.RR for more details.

1.3. Basic plink.exe and plink()

In Windows system and inside the cmd.exe, one may similarly use the code below

Basic plink.exe in cmd.exe� �
C:\> plink.exe snoweye@192 .168.56.101 ' whoami '� �
to access the server provided plink.exe is in the PATH.

Inside RGui and via pbdRPC, this can be done by

Basic plink() in pbdRPC and R� �
> library(pbdRPC , quietly = TRUE)

> plink("snoweye@192 .168.56.101 ' whoami ' ")� �
provided all other options (port, forwarding, etc) are set correctly. The multiple commands
can be applied to plink() as well.

By default, the plink() will open an cmd.exe to execute the command whoami because the
password input is not allowed inside RGui. When the authentication file (id_rsa.ppk) is
available, one may want to disable the opening cmd.exe below.

Advance plink() in pbdRPC and R� �
> .pbd_env$RPC.CT$use.shell.exec <- FALSE

> ret <- plink("snoweye@192 .168.56.101 ' whoami ' ")

> print(ret)� �
Because the shell.exec() is disable, the plink() call may accept returns of the remote
server and capture/save the returns in an R object, ret.

The use.shell.exec is for Windows system only and required to be TRUE when RGui is mainly
used. The plink() in RGui may hang forever or crash when input/typing of a password or
a passphrase is needed for logging in the server. RGui has different stdin and stdout than a
usual terminal. The use.shell.exec can be switched to FALSE when the authentication is
correct and no passphrase is needed, i.e. no stdin input/typing. However, Rcmd running
within a cmd.exe may be OK with stdin input/typing when use.shell.exec = FALSE.

Other solutions to replace internal plink.exe of pbdRPC include:

3

� The plink.exe can be installed from the PuTTY as well.

� Windows PowerShell and git also provide ssh.exe but additional installation/configu-
ration is unavoidable.

2. Handling Login Information

Suppose an Oracle VM VirtualBox runs Xubuntu 15.10 as the guest OS within a Windows 8
system as the host OS. The VM has an virtual network adaptor (host-only) with IP address
192.168.56.101, so that one can login to the VM using either telnet, plink, or ssh from the
Windows 8 system. Note that telnet and ssh uses ports 23 and 22 as default, respectively.
Suppose further the login id is called “snoweye”, then one may use the function rpcopt_set()

to assign/overwrite the login information to .pbd_env$RPC.LI below.

Set login information� �
> ### Alter login information as needed

> rpcopt_set(user = "snoweye", hostname = "192.168.56.101", pport =

22)� �
The basic login information RPC.LI below describes that srpc() will

� use ssh (exec.type) to execute a command (given by srpc(), ssh(), or plink())

� with args (additional arguments to ssh or plink.exe)

� and a user account (snoweye)

� login into a hostname (server ip = 192.168.56.101 or host name)

� from a pport (server port = 22), and

� may use authentication keys in priv.key or priv.key.ppk.

Basic RPC.LI� �
> .pbd_env$RPC.LI

$exec.type

[1] "ssh"

$args

[1] ""

$pport

[1] 22

$user

[1] "snoweye"

$hostname

[1] "192.168.56.101"

4

$priv.key

[1] "~/.ssh/id_rsa"

$priv.key.ppk

[1] "./id_rsa.ppk"� �
Currently, the exec.type is only for non-Windows systems, and it will be ignored on Windows
systems (”plink” will be used). Also, ssh uses “-p” (lower case) to input the server port
argument. plink.exe uses “-P” (upper case) to input the server port argument. Therefore,
the args should not include “-p” nor “-P” to avoid confusion in the unified function srpc().
Similarly, the “-i” may not be include in the args as well because additional authentication
may be required.

The account may have the private key for authentication to avoid typing the login password
for the user account. The private keys may be stored in files indicated by prive.key for
ssh() or prive.key.ppk for plink(). When all setups are correct, command calls can be
executed at the hostname (192.168.56.101) remotely. By default, the prive.key.ppk will be
read from the current working directory (from getwd()) in Windows systems. In this case
("./id_rsa.ppk"), the file C:/Users/login_account/Documents/id_rsa.ppk is probably
read for authentication.

To generate private and public keys is pretty standard for most Linux systems via the
ssh-keygen command which will generate keys in OpenSSH format. One may use puttygen in
Linux to convert OpenSSH format to PuTTY format for Windows. See Section 8.1 for the con-
version from id_rsa to id_rsa.ppk. For Windows systems, one may also use puttygen.exe

to obtain both keys.

3. Handling Machine Information

In Section 2, we have seen a very tedious way to handle login information which also includes
some information for a single machine. In this section, we introduce a better way to han-
dle both login information and multiple machines. The function machine() will generate a
constructor-like object containing all required information. It is as simple as the example
below.

Set machine information� �
> library(pbdRPC , quietly = TRUE)

>

> ### Multiple machine information as needed

> m1 <- machine(user = "snoweye", hostname = "192.168.56.101", pport

= 22)

> m2 <- machine(user = "snoweye", hostname = "192.168.56.102", pport

= 22)

> m3 <- machine(user = "snoweye", hostname = "192.168.56.103", pport

= 22)� �
With the above objects m1, m2, and m3, the function rpc() can assess freely to three machines
with simpler interface then the function srpc(). For example, one may quickly check the
access of three machines as the example below.

5

Basic rpc() in pbdRPC and R� �
> rpc(m1, "uname")

> rpc(m2, "uname")

> rpc(m3, "uname")� �
4. An Application with remoter

The remoter (Schmidt and Chen 2016b) and pbdZMQ (Chen et al. 2015) provide client/server
interface to control a remote R (e.g. running on a single server, Xubuntu, ip=192.168.56.101)
from a local R (e.g. running on a single laptop, Windows 8). Combining with pbdMPI (Chen
et al. 2012) and pbdCS (Schmidt and Chen 2016a), one may extent the remote R to the R
clusters by running R’s in a distributed/SPMD environment.

� See Schmidt et al. (2016) for an introduction of remoter and pbdCS.

� See http://github.com/snoweye/user2016.demo for a demo of both packages.

� See pbdR-Tech (http://snoweye.github.io/pbdr/) and HPSC (http://snoweye.
github.io/hpsc/) websites for more applications of SPMD and how to utilize R in
clusters (Chen and Ostrouchov 2012).

In a simplified scenario such as the setting in Section 2, one may use the following commands
to “start”, “check”, and “kill” a remote R server under a shell environment provided Rscript

is in PATH of the login server (pre-load or set by the 00_set_devel_R).

remoter server at 192.168.56.101� �
$ source ~/work -my/00_set_devel_R

$ nohup Rscript -e ' remoter :: server () ' > .rrlog 2>&1 < /dev/null &

$ ps ax|grep ' [r]emoter :: server '

$ kill -9 $(ps ax|grep ' [r]emoter :: server ' |awk ' {print $1} ')� �
In an well established server, one can use ssh or plink.exe to send those commands from
a local laptop. Furthermore, one may also use pbdRPC directly within an R environment to
send those commands. The example is in the code below.

Using pbdRPC to control remoter� �
> library(pbdRPC , quietly = TRUE)

>

> ### Alter login information as needed

> # rpcopt_set(user = "snoweye", hostname = "192.168.56.101")

> m <- machine(user = "snoweye", hostname = "192.168.56.101")

> .pbd_env$RPC.CT$use.shell.exec <- FALSE

>

> preload <- "source ~/work -my/00_set_devel_R; "

> start_rr(m, preload = preload)

character (0)

>

> library(remoter)

Loading required package: pbdZMQ

6

http://github.com/snoweye/user2016.demo
http://snoweye.github.io/pbdr/
http://snoweye.github.io/hpsc/
http://snoweye.github.io/hpsc/

Attaching package: ' remoter '

The following object is masked from ' package:grDevices ' :

dev.off

The following objects are masked from ' package:utils ' :

?, help

> client(addr = "192.168.56.101")

WARNING: server not secure; communications are not encrypted.

remoter > 1+1

[1] 2

remoter > q()

>

> check_rr(m)

[1] " 2014 ? Sl 0:00

/home/snoweye/work -my/local/R-devel/lib64/R/bin/exec/R --slave

--no-restore -e remoter :: server ()"

> kill_rr(m)

character (0)� �
where client() is for connect to the remote R server started by start_rr(). Note that all
commands in the above example were typed inside a local R in the local laptop. However,
the computation 1+1 was done by a remote R on the server (192.168.56.101).

The start_rr(), check_rr(), and kill_rr() are all wrapper functions of srpc()/rpc()
to submit different commands stored in .pbd_env$RPC.RR$start, .pbd_env$RPC.RR$check,
and .pbd_env$RPC.RR$kill, respectively. The tedious details of RPC.RR are in the code below
which all can be simply sent by srpc() to execute on the server.

RPC.RR for controlling remoter� �
> .pbd_env$RPC.RR

$check

[1] "ps ax|grep '[r]emoter ::server ' "

$kill

[1] "kill -9 $(ps ax|grep '[r]emoter ::server '| awk '{ print $ 1} ') "

$start

[1] "nohup Rscript -e ' remoter :: server () ' > .rrlog 2>&1 < /dev/null &"

$preload

[1] "source ~/work -my/00_set_devel_R; "� �
5. An Application with pbdCS

7

Similar to the remoter, the pbdCS (Schmidt and Chen 2016a) provides interactivity for clus-
ters running R’s via the pbdMPI (Chen et al. 2012) in SPMD computing framework (Ostrou-
chov et al. 2012; Chen and Ostrouchov 2012). See Schmidt et al. (2016) for an introduction
of remoter and pbdCS, and see https://github.com/snoweye/user2016.demo for a demo
of both packages.

In a simplified scenario such as the setting in Section 2, several pbdCS R’s can run 4 instances
on the server, Xubuntu, ip=192.168.56.101 as the example below.

pbdCS cluster with 4 R instances� �
$ source ~/work -my/00_set_devel_R

$ nohup mpiexec -np 4 Rscript -e ' pbdCS:: pbdserver () ' > .cclog 2>&1 <

/dev/null &

$ ps ax|grep ' [p]bdCS:: pbdserver '

$ kill -9 $(ps ax|grep ' [p]bdCS:: pbdserver ' |awk ' {print $1} ')� �
The example above is very similar to the one in Section 4, but further demonstrates how to
“start”, “check”, and “kill” a pbdCS cluster with 4 R launched by/within the MPI program
mpiexec.

In an well established server, one can use ssh or plink.exe to send those commands from
the local laptop. Furthermore, one may also use pbdRPC directly within an R environment
to send those commands. The code below shows the example.

Using pbdRPC to control pbdCS� �
> library(pbdRPC , quietly = TRUE)

>

> ### Alter login information as needed

> # rpcopt_set(user = "snoweye", hostname = "192.168.56.101")

> m <- machine(user = "snoweye", hostname = "192.168.56.101")

> .pbd_env$RPC.CT$use.shell.exec <- FALSE

>

> preload <- "source ~/work -my/00_set_devel_R; "

> start_cs(m, preload = preload)

character (0)

>

> library(pbdCS)

> pbdCS:: pbdclient(addr = "192.168.56.101")

pbdR > library(pbdMPI)

pbdR > allreduce (1)

[1] 4

pbdR > q()

>

> check_cs(m)

[1] "12578 ? Sl 0:00 mpiexec -np 4 Rscript -e

pbdCS :: pbdserver ()"

[2] "12580 ? Sl 0:00

/home/snoweye/work -my/local/R-devel/lib64/R/bin/exec/R --slave

--no-restore -e pbdCS :: pbdserver ()"

[3] "12581 ? Sl 0:00

/home/snoweye/work -my/local/R-devel/lib64/R/bin/exec/R --slave

--no-restore -e pbdCS :: pbdserver ()"

8

https://github.com/snoweye/user2016.demo

[4] "12583 ? Sl 0:00

/home/snoweye/work -my/local/R-devel/lib64/R/bin/exec/R --slave

--no-restore -e pbdCS :: pbdserver ()"

[5] "12588 ? Sl 0:00

/home/snoweye/work -my/local/R-devel/lib64/R/bin/exec/R --slave

--no-restore -e pbdCS :: pbdserver ()"

> kill_cs(m)

character (0)� �
where pbdclient() is for connect to the pbdCS cluster started by start_cs().

The start_cs(), check_cs(), and kill_cs() are all wrapper functions of srpc() to sub-
mit different commands stored in .pbd_env$RPC.CS$start, .pbd_env$RPC.CS$check, and
.pbd_env$RPC.CS$kill, respectively. The details of RPC.CS are in the example below.

RPC.CS for controlling pbdCS� �
> .pbd_env$RPC.CS

$check

[1] "ps ax|grep '[p]bdCS::pbdserver ' "

$kill

[1] "kill -9 $(ps ax|grep '[p]bdCS::pbdserver '| awk '{ print $ 1} ') "

$start

[1] "nohup mpiexec -np 4 Rscript -e ' pbdCS :: pbdserver () ' > .cslog

2>&1 < /dev/null &"

$preload

[1] "source ~/work -my/00_set_devel_R; "� �
6. Local Port Forwarding

Warning:
System security issues may raise when the materials of this section are imple-
mented in open/public domains. Consulting with network security experts may
be required.

The remoter command client() has a default setting to connect to the remoter server
using addr = "localhost" and port = 55555 which assumes the remoter server and client
are both working at localhost. This may only be possible for convenience of development
and debugging only. In general, the server can be anywhere and more powerful than a
laptop. Again, We may consider the environment setup in Sections 4 and 5 to demonstrate
local port forwarding, even though the setup is over simplified it is quite common for most
general users. The server is running at 192.168.56.101:55555, so the argument addr =

"192.168.56.101" in the remoter command client(addr = "192.168.56.101") from the
localhost is necessary.

Note that this above case may not be a good reason to show local port forwarding. However,
it can avoid typing address or to be independent to the addr. One may consider to forward
the localhost port 55555 to the server directly.

9

The following code serves the purpose of local port forwarding in pbdRPC using srpc(), then
start a remoter server and launch a connection via client() without changing arguments.

Forward localhost:55555 to 192.168.56.101:55555� �
> library(pbdRPC , quietly = TRUE)

>

> ### Alter login information as needed

> rpcopt_set(user = "snoweye", hostname = "192.168.56.101")

> # .pbd_env$RPC.CT$use.shell.exec <- FALSE

>

> # srpc(args = "-N -T -L 55555:192.168.56.101:55555" , wait = FALSE)

> tunnel(rhostname = "192.168.56.101")

cmd: Tasklist /FI "IMAGENAME eq plink.exe"

Image Name PID Session Name Session#

Mem Usage

========================= ======== ================ ===========

============

plink.exe 9052 Console 3

64 K

cmd: Tasklist /FI "IMAGENAME eq cmd.exe"

Image Name PID Session Name Session#

Mem Usage

========================= ======== ================ ===========

============

cmd.exe 5060 Console 3

2,624 K

>

> ### Launch the remoter server.

> m <- machine(user = "snoweye", hostname = "192.168.56.101")

> start_rr(m)

cmd: Tasklist /FI "IMAGENAME eq plink.exe"

Image Name PID Session Name Session#

Mem Usage

========================= ======== ================ ===========

============

plink.exe 9052 Console 3

4,316 K

plink.exe 3972 Console 3

3,992 K

cmd: Tasklist /FI "IMAGENAME eq cmd.exe"

Image Name PID Session Name Session#

Mem Usage

========================= ======== ================ ===========

============

cmd.exe 5060 Console 3

2,624 K

cmd.exe 4644 Console 3

2,460 K

> library(remoter , quietly = TRUE)

10

Attaching package: "pbdZMQ"

The following object is masked from "package:base":

ls

Attaching package: "remoter"

The following object is masked from "package:grDevices":

dev.off

The following objects are masked from "package:utils":

?, help

> client () # equivalent to client(addr = "192.168.56.101")

WARNING: server not secure; communications are not encrypted.

remoter > 1+1

[1] 2

remoter > shutdown ()

>

> ### Check/kill the alive background processes for local port

forwarding.

>

> rpc_ps()

cmd: Tasklist /FI "IMAGENAME eq plink.exe"

Image Name PID Session Name Session#

Mem Usage

========================= ======== ================ ===========

============

plink.exe 9052 Console 3

4,348 K

cmd: Tasklist /FI "IMAGENAME eq cmd.exe"

Image Name PID Session Name Session#

Mem Usage

========================= ======== ================ ===========

============

cmd.exe 5060 Console 3

2,624 K

> rpc_kill(c(9052, 5060))

>

> rpc_ps()

cmd: Tasklist /FI "IMAGENAME eq plink.exe"

INFO: No tasks are running which match the specified criteria.

cmd: Tasklist /FI "IMAGENAME eq cmd.exe"

INFO: No tasks are running which match the specified criteria.� �
11

First, srpc(args = "-N -T -L 55555:192.168.56.101:55555") forwards the connection
between 55555 of the local host and 192.168.56.101:5555, the remote host and port. This
is also equivalent to the function tunnel. Note that this call (local process) is running in
background and is not disconnected even after quiting R, because intern = FALSE (default)
and wait = FALSE are set to srpc() and passed down to its callee (in a shell). The possible
process id (pid) for the forwarding should be printed in R via the function rpc_ps(). For ex-
ample, the code above shows that 9052 is running for plink.exe which is also a child process
of 5060 running for cmd.exe. The additional command “kill -p [pid]” may be needed to
manually kill the local process (pid) when the forwarding is not needed anymore. Or, use the
function rpc_kill(pid) in R. See Section 6.1 or ssh’s man page for details of arguments -N
-T -L (inside args) to the ssh or plink.exe.

Second, client() tries to connect with localhost:55555 by default because it is from the
laptop. The connection is then redirected to 192.168.56.101:5555 as well because the local
port is being forwarded.

6.1. Arguments for Local Port Forwarding

Note that the ssh and plink.exe has similar functionalities for local port forwarding.

The argument -L in ssh or plink.exe is a typical option for local port forwarding. The usage
from the man page of the ssh says

From ssh man page� �
-L [bind_address :]port:host:hostport

Specifies that the given port on the local (client) host is

to be forwarded to the given host and port on the remote side.

... skipped ...� �
Because the call of local port forwarding needs to be either alive or active during the access
of other applications to the [bind_address:]port, two other useful arguments are -N and
-T that can combine and use with local port forwarding. The usages of both arguments from
the man page say

From ssh man page� �
-N Do not execute a remote command. This is useful for just

for warding ports (protocol version 2 only).

-T Disable pseudo -terminal allocation.� �
i.e. batch and background modes are preferable.

6.2. Arguments for Tunneling

Theoretically, this is possible to be used in srpc(). However, there is no appropriate example
yet.

Note that the ssh and plink.exe has similar functionalities for local port forwarding.

The argument -R in ssh or plink.exe is a typical option for tunneling. The usage from the
man page of the ssh says

12

From ssh man page� �
-R [bind_address :]port:host:hostport

Specifies that the given port on the remote (server) host is to

be forwarded to the given host and port on the local side.

... skipped ...� �
7. An Advance Application with pbdMPI

Examples of the pbdMPI (Chen et al. 2012) are introduced in this section first under a
shell/terminal mode. Then, the examples will be combined with pbdRPC to show how srpc()

sends requests from an interactive R session to a remote server and execute the examples in
the shell/terminal model. Multiple commands can be manually combined in one srpc() call.
The return values can also be captured by the interactive R session with an addition argument.

The pbdMPI is a general MPI interface running in SPMD by default. A typical example is to
run the pbdMPI via mpiexec and Rscript from a shell/terminal as in below with outputs.

pbdMPI::allreduce(1) in 4 cores� �
$ mpiexec -np 4 Rscript -e

' library(pbdMPI ,quietly=T);allreduce (1);finalize () '

[1] 4

[1] 4

[1] 4

[1] 4� �
The outputs are printed from 4 cores. Each core has a allreduce(1) call synchronically to
reduce three 1’s from other peer cores. The default operation for allreduce() is a summation
sum(), so the total is 4. Note that the 4 cores may not be in a single machine as long as MPI
setup correctly.

The example below will give the total 8 in each core because the value to be reduced is a 2
from each core.

pbdMPI::allreduce(2) in 4 cores� �
$ mpiexec -np 4 Rscript -e

' library(pbdMPI ,quietly=T);allreduce (2);finalize () '

[1] 8

[1] 8

[1] 8

[1] 8� �
Similarly, the total will be 12 in each core when 3’s are reduced from 4 cours.

With the examples above, one may want to execute them from a local machine/laptop. i.e.
pbdMPI is run on remote servers while pbdRPC is run in local. Note that two systems
between server and local machines are generally different.

Assume environment setups are similar as Sections 4 and 5. The pbdRPC commands within
an interactive R session are shown below.

13

pbdRPC in local and pbdMPI in remote� �
> library(pbdRPC)

>

> ### Alter login information as needed

> rpcopt_set(user = "snoweye", hostname = "192.168.56.101")

> .pbd_env$RPC.CT$use.shell.exec <- FALSE

>

> ### Set the RPC commands

> preload <- "source ~/work -my/00_set_devel_R; "

> cmd.mpi <- "mpiexec -np 4 Rscript -e "

> cmd.code <- " ' library(pbdMPI ,quietly=T);allreduce (3);finalize () ' "

>

> ### Put the RPC commands together

> cmd <- paste(preload , cmd.mpi , cmd.code , sep = "")

> cmd ### Similar to the shell example above

>

> ### Send the command to remote server , snoweye@192 .168.56.101

> srpc(cmd = cmd)

[1][1] 12

[1] 12

[1] 12

12

>

> ### Turn on verbose

> .pbd_env$RPC.CT$verbose <- TRUE

>

> ### Capture the return values

> ret <- srpc(cmd = cmd , intern = TRUE)

C:/Uners/snoweye/Documents/R/win -library/3.4/pbdRPC/libs/x64/plink.exe

-P 22 -i ./id_rsa.ppk snoweye@192 .168.56.101 "source

~/work -my/00_set_devel_R; mpiexec -np 4 Rscript -e

' library(pbdMPI ,quietly=T);allreduce (3);finalize () ' "

> str(ret)

chr [1:4] "[1] 12" "[1] 12" "[1] 12" "[1] 12"

> ret

[1] "[1] 12" "[1] 12" "[1] 12" "[1] 12"� �
In order to capture the return values (four character strings) from the remote server, the
argument intern = TRUE set to the srpc() is required as shown in the example.

When verbose = TRUE, the srpc() shows the command being passed to the shell or terminal.
In this case, one may test the message shown above to obtain the same result from the
interactive R session as below.

From a cmd.exe command prompt windows� �
C:\Users\snoweye > cd Documents

C:\Users\snoweye\Documents >

C:/Users/snoweye/Documents/R/win -library/3.4/pbdRPC/libs/x64/plink.exe

-P 22 -i ./id_rsa.ppk snoweye@192 .168.56.101 "source

~/work -my/00_set_devel_R; mpiexec -np 4 Rscript -e

' library(pbdMPI ,quietly=T);allreduce (3);finalize () ' "

[1] 12

14

[1] 12

[1][1] 12

12� �
Note that the slash symbols / may be replaced by anti-slash or back slash symbols \ in MS
Windows when Rtools is not loaded correctly. Double quote ” may be needed as well when
the command path to the plink.exe contains any spaces or any non-ascii characters.

8. FAQs

8.1. General

1. Q: Does pbdRPC support Windows system?
A: Yes, the plink.exe from PuTTY will be the program to send commands to remote
servers. An internal built plink.exe will be provided and wrapped by the pbdRPC
command plink().

2. Q: Is an authentication used in pbdRPC? How does it work?
A: Yes, the authentication is the same way to ssh and plink.exe provided public and
private keys are setup correctly. For example, when an RSA key is used, the ssh will
by default search ~/.ssh/id_rsa or via the option “-i ./id_rsa” for a local private
key. Similarly, the plink.exe uses the option“-i ./id_rsa.ppk”for a local private key.
Inside pbdRPC, one can use the options of the control .pbd_env$RPC.LI$priv.key and
.pbd_env$RPC.LI$pri.key.ppk to indicate the file of the private key. Then, ssh(),
plink(), and srpc() commands will automatically access those files, accordingly.

3. Q: Can a ssh private key be converted to plink’s private key? i.e. convert OpenSSH
format to PuTTY format.
A: Yes, the puttygen on linux can convert the id_rsa (OpenSSH format) to id_rsa.ppk
(PuTTY format) as the commands below.

Shell Command� �
$ sudo apt -get install putty

$ puttygen id_rsa -O private -o id_rsa.ppk� �
4. Q: Is it possible to capture the returns from the RPC calls by srpc(), ssh(), or

plink()? How?
A: Yes, set the arguments intern = TRUE and wait = TRUE to the RPC calls can
obtain the outputs as used by system(). The plink() used in RGui may not be able
to capture the outputs unless the authentication is set because shell.exec() is used
instead of system().

5. Q: Does srpc() support SSH (reverse/remote) tunneling or port forwarding?
A: Yes, theoretically there is no problem. However, there is no appropriate example to
show that in R. See Sections 6.1 and 6.2 for the command arguments.

15

6. Q: Error messages from an R session or a shell/terminal are shown as the error below.

Error Message� �
FATAL ERROR: Network error: Connection refused� �
or

Error Message� �
ssh: connect to host 192.168.56.101 port 22: Connection refused� �
A: The messages are mainly because of incorrect setups of SSH service. Check SSH
service on remote servers.

� Install SSH server, such as the command below.

Shell Command� �
$ sudo apt -get install openssh -server� �

� Check network, port, SSH service, and firewall configurations.

� Turn on connection permissions for SSH ports.

� Make sure password or authentication are correct.

16

References

Chen WC, Ostrouchov G (2012). “HPSC – High Performance Statistical Computing for Data
Intensive Research.” URL http://snoweye.github.io/hpsc/.

Chen WC, Ostrouchov G, Schmidt D, Patel P, Yu H (2012). “pbdMPI: Programming with
Big Data – Interface to MPI.” R Package, URL https://cran.r-project.org/package=

pbdMPI.

Chen WC, Schmidt D (2017). “pbdRPC: Programming with Big Data – Remote Procedure
Call.” R Package, URL https://cran.r-project.org/package=pbdRPC.

Chen WC, Schmidt D, Heckendorf C, Ostrouchov G (2015). “pbdZMQ: Programming with Big
Data – Interface to ZeroMQ.” R Package, URL https://cran.r-project.org/package=

pbdZMQ.

Ostrouchov G, Chen WC, Schmidt D, Patel P (2012). “Programming with Big Data in R.”
URL http://r-pbd.org/.

Schmidt D, Chen WC (2016a). pbdCS: pbdR Client/Server Utilities. R package version 0.1-0,
URL https://github.com/RBigData/pbdCS.

Schmidt D, Chen WC (2016b). “remoter: Remote R: Control a Remote R Session from a
Local One.” R Package, URL https://cran.r-project.org/package=remoter.

Schmidt D, Chen WC, Ostrouchov G (2016). “Introducing a New Client/Server Framework
for Big Data Analytics with the R Language.” In Proceedings of the XSEDE16 Conference
on Diversity, Big Data, and Science at Scale, pp. 38:1–38:9.

17

http://snoweye.github.io/hpsc/
https://cran.r-project.org/package=pbdMPI
https://cran.r-project.org/package=pbdMPI
https://cran.r-project.org/package=pbdRPC
https://cran.r-project.org/package=pbdZMQ
https://cran.r-project.org/package=pbdZMQ
http://r-pbd.org/
https://github.com/RBigData/pbdCS
https://cran.r-project.org/package=remoter

	1. Introduction
	1.1. Basic `_12`12`$12=-1 ssh and `_12`12`$12=-1 srpc()
	1.2. Basic `_12`12`$12=-1 ssh()
	1.3. Basic `_12`12`$12=-1 plink.exe and `_12`12`$12=-1 plink()

	2. Handling Login Information
	3. Handling Machine Information
	4. An Application with remoter
	5. An Application with pbdCS
	6. Local Port Forwarding
	6.1. Arguments for Local Port Forwarding
	6.2. Arguments for Tunneling

	7. An Advance Application with pbdMPI
	8. FAQs
	8.1. General

	References

