
Package ‘pbdNCDF4’
February 20, 2015

Version 0.1-4

Date 2014-06-21

Title Programming with Big Data -- Interface to Parallel Unidata
NetCDF4 Format Data Files

Depends R (>= 3.0.0)

Enhances pbdMPI

LazyLoad yes

LazyData yes

Copyright Most files are originally designed by David Pierce under GPL
(>= 3).

Description This package adds collective parallel read and write capability
to the R package ncdf4 version 1.8. Typical use is as a
parallel NetCDF4 file reader in SPMD style programming. Each R
process reads and writes its own data in a synchronized
collective mode, resulting in faster parallel performance.
Performance improvement is conditional on a parallel file system.

SystemRequirements OpenMPI (>= 1.5.4) on Solaris, Linux and Mac.
(Parallel) HDF5 and (Parallel) NetCDF4 (4.1 or later)
libraries. No MPI library required on Windows.

License GPL (>= 3)

URL http://r-pbd.org/

BugReports http://group.r-pbd.org/

MailingList Please send questions and comments regarding pbdR to
RBigData@gmail.com

Author Pragneshkumar Patel [aut, cre],
George Ostrouchov [aut],
Wei-Chen Chen [aut],
Drew Schmidt [aut],
David Pierce [aut]

Maintainer Pragneshkumar Patel <pragnesh@utk.edu>

1

http://r-pbd.org/
http://group.r-pbd.org/

2 pbdNCDF4-package

NeedsCompilation yes

Repository CRAN

Date/Publication 2014-06-22 15:48:03

R topics documented:
pbdNCDF4-package . 2
ncatt_get . 4
ncatt_put . 6
ncdf4 . 7
ncdim_def . 8
ncdump . 11
ncvar_add . 12
ncvar_change_missval . 15
ncvar_def . 17
ncvar_get . 20
ncvar_put . 23
ncvar_rename . 26
nc_close . 28
nc_create . 29
nc_create_par . 30
nc_enddef . 31
nc_open . 32
nc_open_par . 34
nc_redef . 36
nc_sync . 37
nc_var_par_access . 38
nc_version . 39
print.ncdf4 . 40

Index 41

pbdNCDF4-package Programming with Big Data – Interface to Parallel Unidata NetCDF4
Format Data Files

Description

This package adds collective parallel read and write capability to the R package ncdf4 version 1.8.
Typical use is as a parallel NetCDF4 file reader in SPMD style programming. Each R process reads
and writes its own data in a synchronized collective mode, resulting in faster parallel performance.
Performance improvement is conditional on a parallel file system.

pbdNCDF4-package 3

Details

Package: pbdNCDF4
Type: Package
License: GPL
LazyLoad: yes

The parallel HDF5 and NetCDF4 (version 4.1 or later) libraries are prerequisite, then this package
will link with them and improve the I/O performance via three mainly functions nc_creat_par,
nc_open_par, and nc_var_par_access added to the original ncdf4 (1.8) package to enable collec-
tive reading and writing.

If only serial NetCDF4 and HDF5 libraries are available, then this package will function exactly the
same as ncdf4. All functionalities of ncdf4 (version 1.8) are followed.

Author(s)

George Ostrouchov, Pragneshkumar Patel <pragnesh@utk.edu>, Wei-Chen Chen, Drew Schmidt,
and David Pierce.

References

The HDF Group: http://www.hdfgroup.org/HDF5/

Unidata: http://www.unidata.ucar.edu/software/netcdf/

Programming with Big Data in R Website: http://r-pbd.org/

See Also

nc_create_par, nc_open_par, nc_var_par_access, and ncdump.

Examples

Not run:
Under command mode, run the demo with 2 processors by
(Use Rscript.exe for windows system)
mpiexec -np 2 Rscript -e "demo(ncwrite,'pbdNCDF4',ask=F,echo=F)"
mpiexec -np 2 Rscript -e "demo(ncread,'pbdNCDF4',ask=F,echo=F)"
mpiexec -np 2 Rscript -e "demo(ncdump,'pbdNCDF4',ask=F,echo=F)"

End(Not run)

http://www.hdfgroup.org/HDF5/
http://www.unidata.ucar.edu/software/netcdf/
http://r-pbd.org/

4 ncatt_get

ncatt_get Get attribute from netCDF file

Description

Reads an attribute from a netCDF file.

Usage

ncatt_get(nc, varid, attname=NA, verbose=FALSE)

Arguments

nc An object of class ncdf4 (as returned from nc_open), indicating what file to
read from.

varid The variable whose attribute is to be read. Can be a character string with the
variable’s name or an object of class ncvar4. As a special case, if varid==0, then
a global (file) attribute will be read rather than a particular variable’s attribute.

attname Name of the attribute to read; if not specified, a list containg ALL attributes of
the selected variable or file is returned.

verbose If TRUE, then debugging information is printed.

Details

This function gets an attribute from a netCDF variable (or a global attribute from a netCDF file, if
the passed argument "varid" is zero). Multiple attributes are returned in a vector.

Value

If an attribute name is supplied (i.e., argument attname is given), this returns a list with two com-
ponents, "hasatt" and "value". "hasatt" is TRUE if the named attribute was found, and FALSE
otherwise. "value" is the (possibly vector) value of the attribute. If the on-disk type of the attribute
is short or integer, then an integer value is returned. If the on-disk type is float or double, than a
double value is returned. If the on-disk type is character, than a character string is returned.

If no attribute name is supplied, then this returns a list containing ALL the attributes for the specified
variable along with their associated values. For example, if attlist is the list returned by this call,
then names(attlist) shows all the attributes defined for the variable, and attlist[[N]] is the value of
the N’th attribute.

Author(s)

David W. Pierce <dpierce@ucsd.edu>

References

http://dwpierce.com/software

ncatt_get 5

See Also

ncatt_put.

Examples

Not run:
Make a simple netCDF file
filename <- "atttest_types.nc"
dim <- ncdim_def("X", "inches", 1:12)
var <- ncvar_def("Data", "unitless", dim, -1)
ncnew <- nc_create(filename, var)

Define some attributes of various types
attvaldbl <- 3.1415926536
ncatt_put(ncnew, var, "testatt_dbl", attvaldbl, prec="double")
attvalfloat <- c(1.0,4.0,9.0,16.0)
ncatt_put(ncnew, var, "testatt_float", attvalfloat)
varid=0 means it is a global attribute
ncatt_put(ncnew, 0, "globalatt_int", 32000, prec="int")
ncatt_put(ncnew, 0, "globalatt_short", 7, prec="short")
ncatt_put(ncnew, 0, "description",
"this is a test file with attributes of various types")
nc_close(ncnew)

Now illustrate the use of the ncatt_get function by reading them back in
doitfor <- function(nc, var, attname) {
av <- ncatt_get(nc, var, attname)
if(av$hasatt) {
print(paste("File",nc$filename,", var",var,"DOES have attribute",
attname))
print(paste("Storage mode:",storage.mode(av$value)))
print("Attribute value:")
print(av$value)
} else {
print(paste("File",nc$filename,", var",var,"does NOT have",
"attribute", attname))
}
}

nc <- nc_open(filename)
var <- "Data"
doitfor(nc, var, "testatt_dbl")
doitfor(nc, var, "testatt_float")
doitfor(nc, var, "testatt_wacko")
doitfor(nc, 0, "globalatt_int")
doitfor(nc, 0, "globalatt_short")
doitfor(nc, 0, "description")

End(Not run)

6 ncatt_put

ncatt_put Put an attribute into a netCDF file

Description

Writes an attribute to a netCDF file.

Usage

ncatt_put(nc, varid, attname, attval, prec=NA, verbose=FALSE,
definemode=FALSE)

Arguments

nc An object of class ncdf4 (as returned from nc_open), indicating what file to
write to.

varid The variable whose attribute is to be written. Can be a character string with the
variable’s name, an object of class ncvar4, or an id contained in the "id" field of
a ncvar object. As a special case, if varid==0, then a global attribute is written
instead of a variable’s attribute.

attname Name of the attribute to write.

attval Attribute to write.

prec Precision to write the attribute. If not specified, the written precision is the same
as the variable whose attribute this is. This can be overridden by specifying this
argument with a value of "short", "float", "double", or "text".

verbose Can be set to TRUE if additional information is desired while the attribute is
being created.

definemode If FALSE (the default), it is assumed that the file is NOT already in define mode.
Since the file must be in define mode for this call to work, the file will be put
in define mode, the attribute defined, and then the file taken out of define mode.
If this argument is set to TRUE, it is assumed the file is already in define mode,
and the file is also left in define mode. If you don’t know what any of this means,
just leave this at the default value.

Details

This function write an attribute to a netCDF variable (or a global attribute to a netCDF file, if the
passed argument "varid" is zero). The type of the written variable can be controlled by the "prec"
argument, if the default behavior (the precision follows that of the associated variable) is not wanted.

Author(s)

David W. Pierce <dpierce@ucsd.edu>

ncdf4 7

References

http://dwpierce.com/software

See Also

ncatt_get.

Examples

Not run:
Make a simple netCDF file
filename <- "atttest_types.nc"
dim <- ncdim_def("X", "inches", 1:12)
var <- ncvar_def("Data", "unitless", dim, -1)
ncnew <- nc_create(filename, var)

Define some attributes of various types
attvaldbl <- 3.1415926536
ncatt_put(ncnew, var, "testatt_dbl", attvaldbl, prec="double")
attvalfloat <- c(1.0,4.0,9.0,16.0)
ncatt_put(ncnew, var, "testatt_float", attvalfloat)
varid=0 means it is a global attribute
ncatt_put(ncnew, 0, "globalatt_int", 32000, prec="int")
ncatt_put(ncnew, 0, "globalatt_short", 7, prec="short")
ncatt_put(ncnew, 0, "description",
"this is a test file with attributes of various types")
nc_close(ncnew)

End(Not run)

ncdf4 Read, write, and create netCDF files (including version 4 format)

Description

Read from or write to existing netCDF format files, or create new ones. This is the R-ncdf4 package,
version 1.6.

Details

More information on this package, including detailed installation instructions, can be found at
http://dwpierce.com/software.

The netCDF data file format from Unidata is a platform-independent, binary file that also contains
metadata describing the contents and format of the data in the file. Version 4 of the netcdf library
stores data in HDF5 format files; earlier versions stored data in a custom format. The R package
ncdf4 can read either format.

8 ncdim_def

NetCDF files contain one or more variables, which are usually structured as regular N-dimensional
arrays. For example, you might have a variable named "Temperature" that is a function of lon-
gitude, latitude, and height. NetCDF files also contain dimensions, which describe the extent of
the variables’ arrays. In our Temperature example, the dimensions are "longitude", "latitude", and
"height". Data can be read from or written to variables in arbitrary hyperslabs (for example, you
can read or write all the Temperature values at a given height, or at a given latitude).

The R package ’ncdf4’ allows reading from, writing to, and creation of netCDF files, either netCDF
version 3 or (optionally) netCDF version 4. If you choose to create version 4 output files, be aware
that older netcdf software might only be able to read version 3 files.

Note that both the netCDF library and the HDF5 library must already be installed on your machine
for this R interface to the library to work.

If you are new to netCDF files, they can be a little overwhelming, so here is a brief sketch of what
documentation you need to read next.

If you want to READ data from an already-existing netCDF file, first call nc_open to open the file,
then call ncvar_get to read the data from a variable in the file.

If you want to WRITE data to a new netCDF file, the procedure is to first define the dimensions
your data array has, then define the variable, then create the file. So, first call ncdim_def to define
the dimensions that your data exists along (for example, latitude, longitude, and time). Then call
ncvar_def to define a variable that uses those dimensions, and will hold your data. Then call
nc_create to create the netCDF file. Finally, call ncvar_put to write your data to the newly
created netCDF file, and nc_close when you are done.

This is version 1.6 of the ncdf4 library. Not all features of netcdf-4 are supported yet. This version
supports compression, chunking, groups, and multiple unlimited dimensions. User-defined types
and "vlens" (variable-length arrays) are not supported yet.

Author(s)

David W. Pierce <dpierce@ucsd.edu>

References

http://dwpierce.com/software

See Also

print.ncdf4, nc_open, nc_close, nc_create, ncdim_def, ncvar_def, ncvar_get, ncvar_put,
ncvar_change_missval, ncatt_get, ncatt_put, nc_sync, nc_redef.

ncdim_def Define a netCDF Dimension

Description

Defines a netCDF dimension. This dimension initially only exists in memory. The dimension is later
added to a netCDF variable using a call to ncvar_def(), and written to disk using nc_create().

ncdim_def 9

Usage

ncdim_def(name, units, vals, unlim=FALSE,
create_dimvar=TRUE, calendar=NA, longname=name)

Arguments

name Name of the dimension to be created (character string). The dimension name can
optionally have forward slashes in it, in which case the dimension will be defined
in the indicated group. For example, a dimension named model3/run1/Longitude
will define a group named model3, with a subgroup named run1, which will
hold a dimension named Longitude. Using groups forces a netcdf version 4 file
to be written. Note that older software might not be able to read netcdf version
4 files.

units The dimension’s units (character string).

vals The dimension’s values (vector of numeric type). If integers are passed, the
associated dimensional variable will be integer type; otherwise, it will be double
precision.

unlim If TRUE, this dimension is unlimited. Unlimited dimensions are convenient for
storing, for example, data that extends over time; the time dimension can be
made unlimited, and extended as needed. Or, an unlimited dimension could be
the number of stations, and extended as more stations come on-line. Note that
in netCDF version 4, multiple dimensions can be unlimited. In netCDF version
3, there could only be one unlimited dimension, typically the time dimension.

create_dimvar If TRUE, a dimensional variable (aka coordinate variable) will be created for
this dimension. Note: if this is set to FALSE, then ’units’ must be an empty
string. It is good practice to always leave this as TRUE.

calendar If set, the specified string will be added as an attribute named "calendar" to the
dimension variable. Used almost exclusively with unlimited time dimensions.
Useful values include "standard" (or "gregorian"), "noleap" (or "365_day"), and
"360_day").

longname If set, AND create_dimvar is TRUE, then the created dimvar will have a long_name
attribute with this value.

Details

This routine creates a netCDF dimension in memory. The created dimension can then later be
passed to the routine ncvar_def() when defining a variable.

Note that this interface to the netCDF library by default includes that more than the minimum
required by the netCDF standard. I.e., the netCDF standard allows dimensions with no units or
values. This call encourages creating dimensions that have units and values, as it is useful to ensure
that all dimensions have units and values, and considerably easier to include them in this call than
it is to add them later. The units and values are implemented through "dimensional variables,"
which are variables with the same name as the dimension. By default, these dimensional variables
are created automatically – there is no need for the user to create them explicitly. Dimensional
variables are standard practice in netCDF files. To suppress the creation of the dimensional variable
for the dimension, set passed parameter create_dimvar to FALSE. As a check, if create_dimvar

10 ncdim_def

is FALSE, you must ALSO pass an empty string (”) as the unit, and the values must be simple
integers from 1 to the length of the dimension (e.g., 1:10 to make a dimension of length 10). This
empahsizes that without a dimensional variable, a netCDF file cannot store a dimension’s units or
values.

The dimensional variable is usually created as a double precision floating point. The other pos-
sibility is to pass integer values (using as.integer, for example), in which case the dimensional
variable with be integer.

The return value of this function is an object of class ncdim4, which describes the newly created
dimension. The ncdim object is used for more than just creating a new dimension, however. When
opening an existing file, function nc_open returns a ncdf4 class object, which itself has a list of
ncdim objects that describe all the dimensions in that existing file.

The ncdim object has the following fields, which are all read only: 1) name, which is a character
string containing the name of the dimension; 2) units, which is a character string containing the
units for the dimension, if there are any (technically speaking, this is the "units" attribute of the
associated coordinate variable); 3) vals, which is a vector containing the dimension’s values (i.e.,
the values of the associated coordinate variable, or, if there is none, an integer sequence from 1 to
the length of the dimension); 3) len, which is the length of this dimension; 4) unlim, which is a
boolean indicating whether or not this is an unlimited dimension; 5) (optional) calendar, which is
set if and only if the on-disk dimvar had an attribute named "calendar" (in which case, it is set to
the value of that attribute).

Value

An object of class ncdim4 that can later be passed to ncvar_def().

Note

It is good practice, but not necessary, to pass the dimension’s values to this routine when the di-
mension is created. It is also possible to write them later with a call to ’ncvar_put’, using as the
dimension name as the ’varid’ in the call. This is useful when creating large variables with long
unlimited dimensions; it can take a long time to write out the unlimited dimension’s values. In this
case, it can be more efficient to step through the file, writing one timestep at a time, and write that
timestep’s dimensional value at the same time.

Author(s)

David W. Pierce <dpierce@ucsd.edu>

References

http://dwpierce.com/software

See Also

ncvar_def, nc_create

ncdump 11

Examples

Not run:
Define some straightforward dimensions
x <- ncdim_def("Lon", "degreesE", 0.5:359.5)
y <- ncdim_def("Lat", "degreesN", as.double(-89:89))
t <- ncdim_def("Time", "days since 1900-01-01", 1:10, unlim=TRUE)

Make a variable with those dimensions. Note order: time is LAST
salinity <- ncvar_def("Salinity", "ppt", list(x,y,t), 1.e30)

Create a netCDF file with this variable
ncnew <- nc_create("salinity.nc", salinity)

nc_close(ncnew)

Now, illustrate some manipulations of the ncdim object.
filename <- "salinity.nc"
nc <- nc_open(filename)
print(paste("File",filename,"contains",nc$ndims,"dimensions"))
for(i in 1:nc$ndims) {
print(paste("Here is information about dimension number",i,":"))
d <- nc$dim[[i]]
print(paste(" Name :",d$name))
print(paste(" Units :",d$units))
print(paste(" Length:",d$len))
print(" Values:")
print(d$vals)
print(paste(" Unlimited:",d$unlim))
}

End(Not run)

ncdump Shell Command of ncdump

Description

Call ncdump and print the results.

Usage

ncdump(filename, args = "-h")

Arguments

filename Name of the NetCDF file to be created.

args as the options in the shell command of ncdump.

12 ncvar_add

Value

Messages of details of the NetCDF file will be printed.

Author(s)

George Ostrouchov, Pragneshkumar Patel <pragnesh@utk.edu>, Wei-Chen Chen, and Drew Schmidt.

References

Programming with Big Data in R Website: http://r-pbd.org/

See Also

nc_create_par, nc_open_par, nc_var_par_access.

Examples

Not run:
Under command mode, run the demo with 2 processors by
(Use Rscript.exe for windows system)
mpiexec -np 2 Rscript -e "demo(ncwrite,'pbdNCDF4',ask=F,echo=F)"
mpiexec -np 2 Rscript -e "ncdump('test_par.nc')"

End(Not run)

ncvar_add Add New netCDF Variable to Existing File

Description

Special purpose routine for adding a new variable to a netCDF file that already exists on disk.

Usage

ncvar_add(nc, v, verbose=FALSE, indefine=FALSE)

Arguments

nc The already-existing netCDF file we want to add a new variable to. This must
be a value of class "ncdf4" returned by a call to nc_open(...,write=TRUE).

v The variable to be added to the file. This must be a value of class "ncvar4"
returned by a call to ncvar_def.

verbose If true, prints diagnostic messages.

indefine If true, the file is assumed to already be in define mode.

http://r-pbd.org/

ncvar_add 13

Details

There are two cases in which you might want to add a variable to a netCDF file. The first, and most
common way, is when you are creating a new netCDF file. Usually when you create a netCDF file,
you specify what variables you want the file to contain. This is the method most users will use to
make netCDF files. To do this, do NOT use this routine; instead, pass a list of the variables you
wish to have created in the output file to routine nc_create.

The second, less common, case is when you already have an existing netCDF file on disk and wish to
add a new variable to it. In that case, use this routine. First define the variable you want to add to the
existing file using routine ncvar_def; then add it to the already-existing and opened (for writing)
netCDF file using this routine. (This routine automatically creates any additional dimensions that
are needed in the output file to handle the new variable.)

NOTE that the return value of this routine should replace the old netCDF file handle that you were
using. This newly returned value reflects the modifications to the file that were accomplished by
calling this routine.

Value

A handle to the netCDF file that describes the newly modified file. This is an object of type ’ncdf’,
the same as returned by nc_open or nc_create.

Author(s)

David W. Pierce <dpierce@ucsd.edu>

References

http://dwpierce.com/software

See Also

ncdim_def, nc_create, ncvar_def.

Examples

Not run:
#===
PART 1. MAKE A TEST NETCDF FILE THAT WE WILL ADD A VARIABLE TO IN PART 2.
#===

#----------------
Make dimensions
#----------------
xvals <- 1:360
yvals <- -90:90

nx <- length(xvals)
ny <- length(yvals)

xdim <- ncdim_def('Lon', 'degreesE', xvals)
ydim <- ncdim_def('Lat', 'degreesE', yvals)

14 ncvar_add

tdim <- ncdim_def('Time', 'days since 1900-01-01', 0, unlim=TRUE)

#---------
Make var
#---------
mv <- 1.e30 # missing value
var_temp <- ncvar_def('Temperature', 'K', list(xdim,ydim,tdim), mv)

#---------------------
Make new output file
#---------------------
output_fname <- 'test_real3d.nc'
ncid_new <- nc_create(output_fname, list(var_temp))

#-------------------------------
Put some test data in the file
#-------------------------------
data_temp <- array(0.,dim=c(nx,ny,1))
for(j in 1:ny)
for(i in 1:nx)

data_temp[i,j,1] <- sin(i/10)*sin(j/10)

ncvar_put(ncid_new, var_temp, data_temp, start=c(1,1,1), count=c(nx,ny,1))

#--------------------------
Close our new output file
#--------------------------
nc_close(ncid_new)

#===
PART 2. ADD A NEW VARIABLE TO THE FILE
#===

#---
Open the existing file we're going to add a var to
#---
ncid_old <- nc_open(output_fname, write=TRUE)

#--
Make a NEW variable to put into the file. Have this new variable
use the same dimensions already in the file
#--
xdim2 <- ncid_old$dim[['Lon']]
ydim2 <- ncid_old$dim[['Lat']]
tdim2 <- ncid_old$dim[['Time']]
mv2 <- 1.e30
var_q <- ncvar_def('Humidity', 'g/kg', list(xdim2,ydim2,tdim2), mv2)

ncid_old <- ncvar_add(ncid_old, var_q) # NOTE this returns a modified netcdf file handle

#---
Make a DIFFERENT new var that will be added to the file. This var
uses a dim that does NOT already exist in the file.

ncvar_change_missval 15

#---
zdim <- ncdim_def('Level', 'hPa', seq(1000,100,by=-100))
var_cf <- ncvar_def('CloudFraction', 'percent', list(xdim2,ydim2,zdim,tdim2), mv2)

ncid_old <- ncvar_add(ncid_old, var_cf)

print(ncid_old)

nc_close(ncid_old)

End(Not run)

ncvar_change_missval Change the Missing Value For a netCDF Variable

Description

Changes the missing_value attribute for a netCDF variable.

Usage

ncvar_change_missval(nc, varid, missval)

Arguments

nc An object of class ncdf4, as returned by nc_open(...,write=TRUE) or nc_create.
varid Either the name of the variable or an ncvar object indicating whose missing

value will be changed.
missval The missing value to change to.

Details

Note: this specialty function is only used to change a variable’s missing value after it has already
been defined, which is rare. The proper way to set a variable’s missing value in the first place is by
setting the missing value argument to routine ncvar_def appropriately.

Missing values are special values in netCDF files whose value is to be taken as indicating the data
is "missing". This is a convention, and is indicated by the netCDF variable having an attribute
named "missing_value" that holds this number. This function sets the "missing_value" attribute for
a variable.

R uses a similar concept to indicate missing values, the "NA" value. When the ncdf library reads
in data set from a pre-existing file, all data values that equal that variable’s missing value attribute
appear to the R code as being "NA" values. When the R code writes values to a netCDF variable,
any "NA" values are set to that variable’s missing value before being written out. This makes the
mapping between netCDF’s "missing_value" attribute and R’s "NA" values transparent to the user.

For this to work, though, the user still has to specify a missing value for a variable. Usually this is
specified when the variable is created, as a required argument to ncvar_def. However, sometimes
it is useful to add (or change) a missing value for variable that already exists in a disk file. This
function enables that.

16 ncvar_change_missval

Author(s)

David W. Pierce <dpierce@ucsd.edu>

References

http://dwpierce.com/software

See Also

ncvar_def.

Examples

Not run:
Make an example netCDF file with a given missing value. We will
then change the missing value in the file using ncvar_change_missval

origMissVal <- -1.
dimX <- ncdim_def("X", "meters", 1:7)
varAlt <- ncvar_def("Altitude", "km", dimX, origMissVal)
ncnew <- nc_create("transect.nc", varAlt)
data <- c(10.,2.,NA,1.,7.,NA,8.)
ncvar_put(ncnew, varAlt, data)
nc_close(ncnew)

At this point, the actual data values in the netCDF
file will be: 10 2 -1 1 7 -1 8
because the "NA" values were filled with the missing
value, -1. Also, the missing_value attribute of variable
"varAlt" will be equal to -1.

Now change the missing value to something else. Remember
we have to open the file as writable to be able to change
the missing value on disk!

newMissVal <- 999.9
nc <- nc_open("transect.nc", write=TRUE)
varname <- "Altitude"
data <- ncvar_get(nc, varname) # data now has: 10., 2., NA, 1., 7., NA, 8.
print(data)
ncvar_change_missval(nc, varname, newMissVal)
ncvar_put(nc, varname, data)
nc_close(nc)

Now, the actual data values in the netCDF file will be:
10 2 999.9 1 7 999.9 8
and the variables "missing_value" attributre will be 999.9

NOTE that we had to explicitly read in the data and write
it out again in order for the on-disk missing values in the
data array to change! The on-disk missing_value attribute for
the variable is set automatically by this function, but it is

ncvar_def 17

up to you whether or not you want to read in all the existing
data and change the values to the new missing value.

End(Not run)

ncvar_def Define a netCDF Variable

Description

Defines a netCDF variable. This variable initially only exists in memory. It is later written to disk
using nc_create().

Usage

ncvar_def(name, units, dim, missval, longname=name, prec="float",
shuffle=FALSE, compression=NA, chunksizes=NA, verbose=FALSE)

Arguments

name Name of the variable to be created (character string). The name can optionally
have forward slashes in it, in which case the variable will be defined in the
indicated group. For example, a variable named model3/run1/Temperature
will define a group named model3, with a subgroup named run1, which will
hold a variable named Temperature. Using groups forces a netcdf version 4 file
to be written. Note that older software might not be able to read netcdf version
4 files.

units The variable’s units (character string). Or, pass a zero length string (”) to have
no units attribute.

dim The variable’s dimension(s) (one or a list of "ncdim4" class objects, as returned
by ncdim_def). To create a variable with NO dimensions, pass an empty list
("list()").

missval The variable’s missing value. If NO missing value is desired, pass a NULL, or
omit this argument entirely. If a NaN missing value is desired, pass an NA.

longname Optional longer name for the variable, which is assigned to the variable’s "long_name"
attribute. For example, a variable named "TS" might have the longname "Sur-
face Temperature"

prec Precision of the created variable. Valid options: ’short’ ’integer’ ’float’ ’double’
’char’.

shuffle Turns on (if TRUE) or off (if FALSE, the default) the shuffle filter. According
to netcdf docs, turning the shuffle filter on can improve compression for integer
variables. Turning the shuffle filter on forces the created file to be in netcdf
version 4 format, which will not be compatible with older software that only
reads netcdf version 3 files.

18 ncvar_def

compression If set to an integer between 1 (least compression) and 9 (most compression),
this enables compression for the variable as it is written to the file. Turning
compression on forces the created file to be in netcdf version 4 format, which
will not be compatible with older software that only reads netcdf version 3 files.

chunksizes If set, this must be a vector of integers with a length equal to the number of
dimensions in the variable. When data from this variable is written to the file,
it will be buffered in blocks as indicated by the chunksize. The order of di-
mensions in this vector is the standard R ordering of XYZT. In some instances,
setting a chunksize that reflects how the variable’s data will be read or written
can greatly reduce read or write times. See the netcdf documentation for more
detail on how to set this parameter. Enabling this feature forces the created file to
be in netcdf version 4 format, which will not be compatible with older software
that only reads netcdf version 3 files.

verbose Print debugging information.

Details

This routine creates a netCDF variable in memory. The variable can then be passed to the routine
nc_create when writing a file to disk.

Note that this interface to the netCDF library includes more than the minimum required by the
netCDF standard. I.e., the netCDF standard allows variables with no units or missing values. This
call requires units and a missing value, as it is useful to ensure that all variables have units and
missing values, and considerably easier to include them in this call than it is to add them later.
The units and missing value are implemented through attributes to the variable, named "units" and
"missing_value", respectively. This is standard practice in netCDF files.

After a variable is defined with this call, and created on disk using nc_create, then data values for
the variable can be written to disk using ncvar_put.

This function returns a ncvar object, which describes the newly-created variable. However, the
ncvar object is used for more than just creating new variables. The function nc_open returns a
ncdf4 class object that itself contains a list of ncvar4 objects that describe the variables in an ex-
isting, on-disk netCDF file. (Note that coordinate variables are NOT included in this list. Attributes
of the coordinate variables are kept in the ncdim4 class object instead.)

The ncvar4 class object has the following fields, which are all read-only: 1) name, which is a char-
acter string containing the name of the variable; 2) units, which is a character string containing the
contents of the variable’s "units" attribute; 3) missval, which contains the contents of the variable’s
"missing_value" attribute; 4) longname, which is the contents of the variable’s "long_name" at-
tribute, or defaults to the name of the variable if there is no "long_name" attribute; 5) ndims, which
is the number of dimensions this variable has; 6) dim, which is a list of objects of class "ncdim4"
(see ncdim_def), and describe this variable’s dimensions; 7) unlim, which is TRUE if this variable
has an unlimited dimension and FALSE otherwise; 8) varsize, which is a convenience array that
gives the shape of the variable (in XYZT ordering).

Note that the missval attribute does not need to be used much in R, because R’s special value NA
is fully supported. I.e., when data is read in from an existing file, any values equal to the "missing"
value are set to NA. When data is written out, any NAs are set equal to the missing value. If not
explicitly set by the user, a default value of 1.e30 is used for the missing value.

ncvar_def 19

Value

An object of class ncvar4 that can later be passed to nc_create().

Author(s)

David W. Pierce <dpierce@ucsd.edu>

References

http://dwpierce.com/software

See Also

ncdim_def, nc_create, ncvar_put.

Examples

Not run:
Define an integer dimension
dimState <- ncdim_def("StateNo", "count", 1:50)

Make an integer variable. Note that an integer variable can have
a double precision dimension, or vice versa; there is no fixed
relationship between the precision of the dimension and that of the
associated variable. We just make an integer variable here for
illustration purposes.
varPop <- ncvar_def("Pop", "count", dimState, -1,
longname="Population", prec="integer")

Create a netCDF file with this variable
ncnew <- nc_create("states_population.nc", varPop)

Write some values to this variable on disk.
popAlabama <- 4447100
ncvar_put(ncnew, varPop, popAlabama, start=1, count=1)

Add source info metadata to file
ncatt_put(ncnew, 0, "source", "Census 2000 from census bureau web site")

nc_close(ncnew)

Now illustrate some manipulations of the var.ncdf object
filename <- "states_population.nc"
nc <- nc_open(filename)
print(paste("File",nc$filename,"contains",nc$nvars,"variables"))
for(i in 1:nc$nvars) {
v <- nc$var[[i]]
print(paste("Here is information on variable number",i))
print(paste(" Name: ",v$name))
print(paste(" Units:",v$units))
print(paste(" Missing value:",v$missval))
print(paste(" # dimensions :",v$ndims))

20 ncvar_get

print(paste(" Variable size:",v$varsize))
}

Illustrate creating variables of various types. You will find
that the type of the missing_value attribute automatically follows
the type of the variable.
dimt <- ncdim_def("Time", "days", 1:3)
missval <- -1
varShort <- ncvar_def("varShort", "meters", dimt, missval, prec="short")
varInt <- ncvar_def("varInt", "meters", dimt, missval, prec="integer")
varFloat <- ncvar_def("varFloat", "meters", dimt, missval, prec="single")
varDouble<- ncvar_def("varDouble","meters", dimt, missval, prec="double")
nctypes <- nc_create("vartypes.nc", list(varShort,varInt,varFloat,varDouble))
nc_close(nctypes)

End(Not run)

ncvar_get Read data from a netCDF file

Description

Reads data from an existing netCDF file.

Usage

ncvar_get(nc, varid=NA, start=NA, count=NA, verbose=FALSE,
signedbyte=TRUE, collapse_degen=TRUE)

Arguments

nc An object of class ncdf4 (as returned by either function nc_open or function
nc_create), indicating what file to read from.

varid What variable to read the data from. Can be a string with the name of the vari-
able or an object of class ncvar4 If left unspecified, the function will determine
if there is only one variable in the file and, if so, read from that. If left un-
specified and there are multiple variables in the file, an error is generated. This
argument can also, optionally, specify the name of a dimension (usually the un-
limited dimension) in order to read values from a coordinate variable. Note this
is not usual practice, because the ncdim object already contains all the dimen-
sion’s values in the field named "vals". However, it can sometimes be faster
to turn off this automatic reading of the unlimited dimension’s values by using
nc_open(filename, readunlim=FALSE), then read the dimension values in
later with this function.

start A vector of indices indicating where to start reading the passed values (begin-
ning at 1). The length of this vector must equal the number of dimensions the
variable has. Order is X-Y-Z-T (i.e., the time dimension is last). If not specified,
reading starts at the beginning of the file (1,1,1,...).

ncvar_get 21

count A vector of integers indicating the count of values to read along each dimen-
sion (order is X-Y-Z-T). The length of this vector must equal the number of
dimensions the variable has. If not specified and the variable does NOT have
an unlimited dimension, the entire variable is read. As a special case, the value
"-1" indicates that all entries along that dimension should be read.

verbose If TRUE, then progress information is printed.

signedbyte If TRUE (default), then on-disk byte variables are interpreted as signed. This is
in accord with the netCDF standard. If FALSE, then on-disk byte variables are
interpreted as unsigned.

collapse_degen If TRUE (the default), then degenerate (length==1) dimensions in the returned
array are removed.

Details

This routine reads data values from a variable in an existing netCDF file. The file must already have
been opened with a call to nc_open.

Returned values will be in ordinary R double precision if the netCDF variable type is float or double.
Returned values will be in R’s integer storage mode if the netCDF variable type is short or int.
Returned values will be of character type if the netCDF variable is of character type.

Values of "NA" are supported; values in the data file that match the variable’s missing value attribute
are automatically converted to "NA" before being returned to the user. See ncvar_change_missval
for more information.

Data in a netCDF file is conceived as being a multi-dimensional array. The number and length
of dimensions is determined when the variable is created. The ’start’ and ’count’ indices that this
routine takes indicate where the writing starts along each dimension, and the count of values along
each dimension to write. Note that the special count value "-1" means "all the values along that
dimension".

If the variable in the netCDF file has a scale and/or offset attribute defined, the returned data are
automatically and silently scaled and/or offset as requested.

Author(s)

David W. Pierce <dpierce@ucsd.edu>

References

http://dwpierce.com/software

See Also

ncvar_put.

Examples

Not run:
Start with the simplest example. If the file only has one variable in it,
you can read the data as easily as this:
#

22 ncvar_get

nc <- nc_open("salinity.nc")
NOTE how not specifying varid reads the "only" var in the file
data <- ncvar_get(nc)
nc_close(nc)

In this next example we read values from file "writevals.nc", which is created by
the R code in the example section for function "ncvar_put". We open the
file with readunlim=FALSE for potentially faster access, and to illustrate
(below) how to read in the unlimited dimension values.
#
nc <- nc_open("writevals.nc", readunlim=FALSE)

print(paste("The file has",nc$nvars,"variables"))

This illustrates how to read all the data from a variable
v1 <- nc$var[[1]]
data1 <- ncvar_get(nc, v1) # by default, reads ALL the data
print(paste("Data for var ",v1$name,":",sep=""))
print(data1)

This shows how the shape of the read data is preserved
v2 <- nc$var[[2]]
data2 <- ncvar_get(nc, v2)
print(paste("Var 2 has name",v2$name,"and is of shape",dim(data2),
". Here are the values:"))
print(data2)

This illustrates how to read data one timestep at a time. In this
example we will elaborately show how to deal with a variable whose
shape is completely unknown (i.e., how many dimensions, and what their
sizes are). We will also, for illustration of a common case, show how
to read in the values of the time dimension at each timestep.
v3 <- nc$var[[3]]
varsize <- v3$varsize
ndims <- v3$ndims
nt <- varsize[ndims] # Remember timelike dim is always the LAST dimension!
for(i in 1:nt) {
Initialize start and count to read one timestep of the variable.
start <- rep(1,ndims) # begin with start=(1,1,1,...,1)
start[ndims] <- i # change to start=(1,1,1,...,i) to read timestep i
count <- varsize # begin w/count=(nx,ny,nz,...,nt), reads entire var
count[ndims] <- 1 # change to count=(nx,ny,nz,...,1) to read 1 tstep
data3 <- ncvar_get(nc, v3, start=start, count=count)

Now read in the value of the timelike dimension
timeval <- ncvar_get(nc, v3$dim[[ndims]]$name, start=i, count=1)

print(paste("Data for variable",v3$name,"at timestep",i,
" (time value=",timeval,v3$dim[[ndims]]$units,"):"))
print(data3)
}

nc_close(nc)

ncvar_put 23

End(Not run)

ncvar_put Write data to a netCDF file

Description

Writes data to an existing netCDF file. The variable to be written to must already exist on disk (i.e.,
you must call either nc_create or nc_open before calling this function).

Usage

ncvar_put(nc, varid, vals, start=NA, count=NA, verbose=FALSE)

Arguments

nc An object of class ncdf4 (as returned by either function nc_open or nc_create),
indicating what file to write to.

varid What variable to write the data to. Can be a string with the name of the variable
or an object of class ncvar4, as returned by ncvar_def or nc_open.

vals The values to be written.

start A vector of indices indicating where to start writing the passed values (starting
at 1). The length of this vector must equal the number of dimensions the variable
has. Order is X-Y-Z-T (i.e., the time dimension is last). If not specified, writing
starts at the beginning of the file (1,1,1,...).

count A vector of integers indicating the count of values to write along each dimen-
sion (order is X-Y-Z-T). The length of this vector must equal the number of
dimensions the variable has. If not specified and the variable does NOT have
an unlimited dimension, the entire variable is written. If the variable has an un-
limited dimension, this argument must be specified. As a special case, the value
"-1" indicates that all entries along that dimension should be written.

verbose If true, prints information while executing.

Details

This routine writes data values to a variable in a netCDF file. The file should have either been
created with nc_create, or opened with nc_open called with parameter write=TRUE.

Note that the data type (i.e., precision) of the values written to the file is determined when the
variable is created; in particular, it does not matter what type you pass to this function to be written.
In other words, if the variable was created with type ’integer’, passing double precision values to
this routine will still result in integer values being written to disk.

Values of "NA" are supported; they are converted to the netCDF variable’s missing value attribute
before being written. See ncvar_change_missval for more information.

24 ncvar_put

Data in a netCDF file is conceived as being a multi-dimensional array. The number and length
of dimensions is determined when the variable is created. The ’start’ and ’count’ indices that this
routine takes indicate where the writing starts along each dimension, and the count of values along
each dimension to write.

Author(s)

David W. Pierce <dpierce@ucsd.edu>

References

http://dwpierce.com/software

See Also

ncdim_def, nc_create, nc_open, ncvar_get.

Examples

Not run:
#--------------------------------
Make a few dimensions we can use
#--------------------------------
nx <- 3
ny <- 4
nt <- 5
xvals <- (1:nx)*100.
dimX <- ncdim_def("X", "meters", xvals)
dimY <- ncdim_def("Y", "meters", (1:ny)*100.)
dimT <- ncdim_def("Time", "seconds", (1:nt)/100., unlim=TRUE)

#---
Make varables of various dimensionality, for illustration purposes
#---
mv <- 1.e30 # missing value to use
var1d <- ncvar_def("var1d", "units", dimX, mv)
var2d <- ncvar_def("var2d", "units", list(dimX,dimY), mv)
var3d <- ncvar_def("var3d", "units", list(dimX,dimY,dimT), mv)

#---------------------
Create the test file
#---------------------
nc <- nc_create("writevals.nc", list(var1d,var2d,var3d))

#----------------------------
Write some data to the file
#----------------------------
data1d <- runif(nx)
ncvar_put(nc, var1d, data1d) # no start or count: write all values
ncvar_put(nc, var1d, 27.5, start=3, count=1) # Write a value to the third slot

data2d <- runif(nx*ny)

ncvar_put 25

ncvar_put(nc, var2d, data2d) # no start or count: write all values

#--------------------------------
Write a 1-d slice to the 2d var
#--------------------------------
ncvar_put(nc, var2d, data1d, start=c(1,2), count=c(nx,1))

#--
Note how "-1" in the count means "the whole dimension length",
which equals nx in this case
#--
ncvar_put(nc, var2d, data1d, start=c(1,3), count=c(-1,1))

#---
The 3-d variable has an unlimited dimension. We will loop over the timesteps,
writing one 2-d slice per timestep.
#---
for(i in 1:nt)
ncvar_put(nc, var3d, data2d, start=c(1,1,i), count=c(-1,-1,1))

nc_close(nc)

#--
Illustrate creating a character type variable
#--
cnames <- c("red", "orange", "green", "yellow", "puce", "colorwithverylongname")
nstrings <- length(cnames)

#--
Make dimensions. Setting "dimnchar" to have a length of 12
means that the maximum color name
length can be 12. Longer names will be truncated to this.
We don't need dimvars for this example.
#--
dimnchar <- ncdim_def("nchar", "", 1:12, create_dimvar=FALSE)
dimcolorno <- ncdim_def("colorno", "", 1:nstrings, create_dimvar=FALSE)

#--
NOTE in the following call that units is set to the empty string (""),
which suppresses creation of a units attribute, and the missing value
is entirely omitted, which suppresses creation of the missing value att
#--
varcolors <- ncvar_def("colors", "", list(dimnchar, dimcolorno),
prec="char")

ncid <- nc_create("colornames.nc", list(varcolors))

ncvar_put(ncid, "colors", cnames, verbose=TRUE)

nc_close(ncid)

End(Not run)

26 ncvar_rename

ncvar_rename Rename an Existing Variable in a netCDF File

Description

Renames an existing variable that currently is part of a netCDF file that is on disk.

Usage

ncvar_rename(nc, old_varname, new_varname, verbose=FALSE)

Arguments

nc The already-existing netCDF file that we want to manipulate. This must be a
value of class "ncdf4" returned by a call to nc_open(...,write=TRUE).

old_varname The variable in the file that is to be renamed. This can be a string with the name
of the variable to be renamed, or a value of class "ncvar4" returned by a call to
ncvar_def().

new_varname A string containing the new name of the variable.

verbose If true, run verbosely.

Details

This call allows you to rename a variable that already exists in a netCDF file.

NOTE that the return value of this routine should replace the old netCDF file handle that you were
using. This newly returned value reflects the modifications to the file that were accomplished by
calling this routine.

Value

The updated value of nc that contains the new name. This needs to replace the old value of nc in
the code. I..e, ncid <- ncvar_rename(ncid, ...).

Author(s)

David W. Pierce <dpierce@ucsd.edu>

References

http://dwpierce.com/software

See Also

ncdim_def, nc_create, ncvar_def.

ncvar_rename 27

Examples

Not run:
#===
PART 1. MAKE A TEST NETCDF FILE THAT WE WILL MANIPULATE IN PART 2
#===

#----------------
Make dimensions
#----------------
xvals <- 1:360
yvals <- -90:90

nx <- length(xvals)
ny <- length(yvals)

xdim <- ncdim_def('Lon', 'degreesE', xvals)
ydim <- ncdim_def('Lat', 'degreesE', yvals)
tdim <- ncdim_def('Time', 'days since 1900-01-01', 0, unlim=TRUE)

#---------
Make var
#---------
mv <- 1.e30 # missing value
var_temp <- ncvar_def('Temperature', 'K', list(xdim,ydim,tdim), mv)

#---------------------
Make new output file
#---------------------
output_fname <- 'test_real3d.nc'
ncid_new <- nc_create(output_fname, list(var_temp))

#-------------------------------
Put some test data in the file
#-------------------------------
data_temp <- array(0.,dim=c(nx,ny,1))
for(j in 1:ny)
for(i in 1:nx)

data_temp[i,j,1] <- sin(i/10)*sin(j/10)

ncvar_put(ncid_new, var_temp, data_temp, start=c(1,1,1), count=c(nx,ny,1))

#--------------------------
Close our new output file
#--------------------------
nc_close(ncid_new)

#===
PART 2. RENAME A NEW VARIABLE TO THE FILE
#===

#---
Open the existing file we're going to manipulate

28 nc_close

#---
ncid_old <- nc_open(output_fname, write=TRUE)

old_varname <- 'Temperature'
new_varname <- 'T'

ncid_old <- ncvar_rename(ncid_old, old_varname, new_varname)

print(ncid_old)

nc_close(ncid_old)

End(Not run)

nc_close Close a netCDF File

Description

Closes an open netCDF file, which flushes any unwritten data to disk. Always close a netCDF file
when you are done with it! You are risking data loss otherwise.

Usage

nc_close(nc)

Arguments

nc An object of class ncdf4 (as returned by either function nc_open or function
nc_create.

Details

Data written to a netCDF file is cached in memory, for better performance. This data is only written
out to disk when the file is closed. Therefore, always remember to close a netCDF file when done
with it.

Author(s)

David W. Pierce <dpierce@ucsd.edu>

References

http://dwpierce.com/software

See Also

nc_sync.

nc_create 29

Examples

Not run: nc <- nc_open("salinity.nc")
Not run: data <- ncvar_get(nc) # Read the "only" var in the file
Not run: nc_close(nc)

nc_create Create a netCDF File

Description

Creates a new netCDF file on disk, given the variables the new file is to contain.

Usage

nc_create(filename, vars, force_v4=FALSE, verbose=FALSE)

Arguments

filename Name of the netCDF file to be created.

vars Either an object of class ncvar4 describing the variable to be created, or a vector
(or list) of such objects to be created.

force_v4 If TRUE, then the created output file will always be in netcdf-4 format (which
supports more features, but cannot be read by version 3 of the netcdf library). If
FALSE, then the file is created in netcdf version 3 format UNLESS the user has
requested features that require version 4. Deafult is FALSE.

verbose If TRUE, then information is printed while the file is being created.

Details

This routine creates a new netCDF file on disk. The routine must be called with the variables that
will be created in the file. Keep in mind that the new file may not actually be written to disk until
nc_close is called. Always call nc_close when you are done with your file, or before exiting R!

Value

An object of class ncdf4, which has the fields described in nc_open.

Author(s)

David W. Pierce <dpierce@ucsd.edu>

References

http://dwpierce.com/software

See Also

ncdim_def, ncvar_def.

30 nc_create_par

Examples

Not run:
Define an integer dimension
dimState <- ncdim_def("StateNo", "count", 1:50)

Make an integer variable. Note that an integer variable can have
a double precision dimension, or vice versa; there is no fixed
relationship between the precision of the dimension and that of the
associated variable. We just make an integer variable here for
illustration purposes.
varPop <- ncvar_def("Pop", "count", dimState, -1,
longname="Population", prec="integer")

Create a netCDF file with this variable
ncnew <- nc_create("states_population.nc", varPop)

Write some values to this variable on disk.
popAlabama <- 4447100
ncvar_put(ncnew, varPop, popAlabama, start=1, count=1)

nc_close(ncnew)

End(Not run)

nc_create_par Create a parallel NetCDF File

Description

Creates a new parallel NetCDF file on a parallel file system, given the variables the new file is to
contain.

Usage

nc_create_par(filename, vars, force_v4 = TRUE, verbose = FALSE,
comm = 0L, info = 0L)

Arguments

filename Name of the NetCDF file to be created.
vars Either an object of class ncvar4 describing the variable to be created, or a vector

(or list) of such objects to be created.
force_v4 If TRUE, then the created output file will always be in parallel netcdf-4 format

which supports more features, but cannot be read by version 3 of the netcdf
library. FALSE is not allowed.

verbose If TRUE, then information is printed while the file is being created.
comm a communicator number from pbdMPI.
info a info number from pbdMPI.

nc_enddef 31

Details

See nc_create for details. The parallel version is able to coordinate with other nc_create_par
instances for more efficient operation in parallel.

Value

An object of class ncdf4, which has the fields described in nc_open.

Author(s)

George Ostrouchov, Pragneshkumar Patel <pragnesh@utk.edu>, Wei-Chen Chen, and Drew Schmidt.

References

Programming with Big Data in R Website: http://r-pbd.org/

See Also

nc_open_par, nc_var_par_access, ncdim_def, ncvar_def.

Examples

Not run:
Under command mode, run the demo with 2 processors by
(Use Rscript.exe for windows system)
mpiexec -np 2 Rscript -e "demo(ncwrite,'pbdNCDF4',ask=F,echo=F)"
mpiexec -np 2 Rscript -e "demo(ncread,'pbdNCDF4',ask=F,echo=F)"

End(Not run)

nc_enddef Takes a netCDF file out of define mode

Description

Changes a netCDF that is currently in define mode back into data mode.

Usage

nc_enddef(nc)

Arguments

nc An object of class ncdf4 (as returned by either function nc_open or function
nc_create, indicating what file to operate upon.

http://r-pbd.org/

32 nc_open

Details

NOTE: typical users will never need to use this function.

NetCDF files can be in "define mode", at which time dimensions and variables can be defined, or
new attributes added to a file, or in "data mode", at which time data can be read from the file. This
call puts a file that is currently in define mode back into data mode. The ncdf4 package manages
this process transparently, so normally, an end user will not need to call this explicitly.

Note

The typical user will never need this call, nor will ever have to worry about "define mode" or "data
mode". THIS CALL IS PROVIDED FOR ADVANCED USERS ONLY! If the user goes through
this package’s standard functional interface, the file will always automatically be set to whatever
mode it needs to be in without the user having to do anything. For example, the call to write an
attribute (ncatt_put) handles this automatically.

Author(s)

David W. Pierce <dpierce@ucsd.edu>

References

http://dwpierce.com/software

See Also

nc_redef.

Examples

This function is for advanced useage only, and will never
be needed by the typical users R code.

nc_open Open a netCDF File

Description

Opens an existing netCDF file for reading (or, optionally, writing).

Usage

nc_open(filename, write=FALSE, readunlim=TRUE, verbose=FALSE)

nc_open 33

Arguments

filename Name of the existing netCDF file to be opened.

write If FALSE (default), then the file is opened read-only. If TRUE, then writing to
the file is allowed.

readunlim When invoked, this function reads in the values of all dimensions from the asso-
ciated variables. This can be slow for a large file with a long unlimited dimen-
sion. If set to FALSE, the values for the unlimited dimension are not automati-
cally read in (they can be read in later, manually, using ncvar_get()).

verbose If TRUE, then messages are printed out during execution of this function.

Details

This routine opens an existing netCDF file for reading (or, if write=TRUE, for writing). To create a
new netCDF file, use nc_create instead.

In addition to simply opening the file, information about the file and its contents is read in and
stored in the returned object, which is of class ncdf4. This class has the following user-accessible
fields, all of which are read-only: 1) filename, which is a character string holding the name of the
file; 2) ndims, which is an integer holding the number of dimensions in the file; 3) nvars, which
is an integer holding the number of the variables in the file that are NOT coordinate variables (aka
dimensional variables); 4) natts, which is an integer holding the number of global attributes; 5)
unlimdimid, which is an integer holding the dimension id of the unlimited dimension, or -1 if there
is none; 6) dim, which is a list of objects of class ncdim4; 7) var, which is a list of objects of class
ncvar4; 8) writable, which is TRUE or FALSE, depending on whether the file was opened with
write=TRUE or write=FALSE.

The concept behind the R interface to a netCDF file is that the ncdf object returned by this function,
as well as the list of ncdim objects contained in the ncdf object’s "dim" list and the ncvar objects
contained in the ncdf object’s "var" list, completely describe the netCDF file. I.e., they hold the
entire contents of the file’s metadata. Therefore, there are no R interfaces to the explicit netCDF
query functions, such as "nc_inq_nvars" or "nc_inq_natts". The upshot is, look in the ncdf object
or its children to get information about the netCDF file. (Note: the ncdim object is described in the
help file for ncdim_def; the ncvar object is described in the help file for ncvar_def).

Value

An object of class ncdf4 that has the fields described above.

Author(s)

David W. Pierce <dpierce@ucsd.edu>

References

http://dwpierce.com/software

See Also

ncdim_def, ncvar_def.

34 nc_open_par

Examples

Not run:
Define an integer dimension
dimState <- ncdim_def("StateNo", "count", 1:50)

Make an integer variable. Note that an integer variable can have
a double precision dimension, or vice versa; there is no fixed
relationship between the precision of the dimension and that of the
associated variable. We just make an integer variable here for
illustration purposes.
varPop <- ncvar_def("Pop", "count", dimState, -1,
longname="Population", prec="integer")

Create a netCDF file with this variable
ncnew <- nc_create("states_population.nc", varPop)

Write some values to this variable on disk.
popAlabama <- 4447100
ncvar_put(ncnew, varPop, popAlabama, start=1, count=1)

Add source info metadata to file
ncatt_put(ncnew, 0, "source", "Census 2000 from census bureau web site")

nc_close(ncnew)

Now open the file and read its data
ncold <- nc_open("states_population.nc")
data <- ncvar_get(ncold)
print("here is the data in the file:")
print(data)
nc_close(ncold)

End(Not run)

nc_open_par Open a parallel NetCDF File

Description

Opens an existing NetCDF file for reading (or, optionally, writing) in parallel.

Usage

nc_open_par(filename, write = FALSE, readunlim = TRUE,
verbose = FALSE, comm = 0L, info = 0L)

nc_open_par 35

Arguments

filename Name of the existing NetCDF file to be opened.

write If FALSE (default), then the file is opened read-only. If TRUE, then writing to
the file is allowed.

readunlim When invoked, this function reads in the values of all dimensions from the asso-
ciated variables. This can be slow for a large file with a long unlimited dimen-
sion. If set to FALSE, the values for the unlimited dimension are not automati-
cally read in (they can be read in later, manually, using ncvar_get).

verbose If TRUE, then messages are printed out during execution of this function.

comm a communicator number from pbdMPI.

info a info number from pbdMPI.

Details

See nc_open details. The parallel version is able to coordinate with other nc_open_par instances
for more efficient operation in parallel.

Value

An object of class ncdf4 that has the fields described above.

Author(s)

George Ostrouchov, Pragneshkumar Patel <pragnesh@utk.edu>, Wei-Chen Chen, and Drew Schmidt.

References

Programming with Big Data in R Website: http://r-pbd.org/

See Also

nc_create_par, nc_var_par_access, ncdim_def, ncvar_def.

Examples

Not run:
Under command mode, run the demo with 2 processors by
(Use Rscript.exe for windows system)
mpiexec -np 2 Rscript -e "demo(ncwrite,'pbdNCDF4',ask=F,echo=F)"
mpiexec -np 2 Rscript -e "demo(ncread,'pbdNCDF4',ask=F,echo=F)"

End(Not run)

http://r-pbd.org/

36 nc_redef

nc_redef Puts a netCDF file back into define mode

Description

Puts a netCDF that is not currently in define mode back into define mode.

Usage

nc_redef(nc)

Arguments

nc An object of class ncdf4 (as returned by either function nc_open(..., write=TRUE)
or function nc_create, indicating what file to operate on.

Details

Typically, users will never need this function.

NetCDF files can be in "define mode", at which time dimensions and variables can be defined,
or new attributes added to a file, or in "data mode", at which time data can be read from the file.
This call puts a file that is currently in data mode back into define mode. This functionality is
handled transparently by the ncdf4 library, so users will never need to call this unless they are doing
advanced manipulations of netcdf files.

Note

The typical user will never need this call, nor will ever have to worry about "define mode" or "data
mode". THIS CALL IS PROVIDED FOR ADVANCED USERS ONLY! If the user goes through
this package’s standard functional interface, the file will always automatically be set to whatever
mode it needs to be in without the user having to do anything. For example, the call to write an
attribute (ncatt_put) handles this automatically.

Author(s)

David W. Pierce <dpierce@ucsd.edu>

References

http://dwpierce.com/software

See Also

nc_enddef.

Examples

This function is for advanced useage only, and will never
be needed by the typical users R code.

nc_sync 37

nc_sync Synchronize (flush to disk) a netCDF File

Description

Flushes any pending operations on a netCDF file to disk.

Usage

nc_sync(nc)

Arguments

nc An object of class ncdf4 that is opened for writing (as returned by either func-
tion nc_open(..., write=TRUE) or function nc_create, indicating what file
is being written to.

Details

Data in a netCDF file is cached in memory, for better performance. An example of when this might
be bad is if a long-running job writes one timestep of the output file at a time; if the job crashes near
the end, the results of many timesteps might be lost. In such an event, the user can manually force
any cached data to be written to disk using this call.

Author(s)

David W. Pierce <dpierce@ucsd.edu>

References

http://dwpierce.com/software

Examples

Not run:
The time you would use the sync.ncdf function is when you have an unlimited
dimension and are writing to the file timestep-by-timestep. Make a netCDF file
that has an unlimited dimension for illustration.
nx <- 5
ny <- 8
dimx <- ncdim_def("X", "meters", 1:nx)
dimy <- ncdim_def("Y", "meters", 1:ny)
dimt <- ncdim_def("Time", "days since 1900-01-01", 0, unlim=TRUE)

vartemp <- ncvar_def("Temperature", "degC", list(dimx,dimy,dimt), 1.e30)
nc <- nc_create("temperature.nc", vartemp)

nt <- 10 # Imagine this is actually some very large number of timesteps
for(i in 1:nt) {

38 nc_var_par_access

Long, slow computation to get the data ... for illustration, we just
use the following:
data <- runif(nx*ny)

Write the data to this timestep
ncvar_put(nc, vartemp, data, start=c(1,1,i), count=c(nx,ny,1))

Write the time value for this timestep as well
timeval <- i*10
ncvar_put(nc, dimt, timeval, start=i, count=1)

Flush this timestep's data to the file so we dont lose it
if there is a crash or other problem
nc_sync(nc)
}

Always remember to close the file when done!!
nc_close(nc)

End(Not run)

nc_var_par_access Switch between collective and individual parallel access

Description

Switches between the default individual access and collective access for a variable in a file that was
opened with nc_open_par or nc_create_par.

Usage

nc_var_par_access(nc, var, collective = TRUE, verbose = FALSE)

Arguments

nc An object of class ncdf4 (as returned by either function nc_open_par or func-
tion nc_create_par), indicating what file to read from.

var Variable name or id.

collective use collective method to read and write.

verbose If TRUE, then messages are printed out during execution of this function.

Details

Default parallel access is individual for variables. Collective access allows coordination between
simultaneous requests within a communicator.

Value

Returns, invisibly, 0 or NetCDF error integer.

nc_version 39

Author(s)

George Ostrouchov, Pragneshkumar Patel <pragnesh@utk.edu>, Wei-Chen Chen, and Drew Schmidt.

References

Programming with Big Data in R Website: http://r-pbd.org/

See Also

nc_open_par, nc_create_par, ncdim_def, ncvar_def.

Examples

Not run:
Under command mode, run the demo with 2 processors by
(Use Rscript.exe for windows system)
mpiexec -np 2 Rscript -e "demo(ncwrite,'pbdNCDF4',ask=F,echo=F)"
mpiexec -np 2 Rscript -e "demo(ncread,'pbdNCDF4',ask=F,echo=F)"

End(Not run)

nc_version Report version of ncdf4 library

Description

Returns a string that is the version number of the ncdf4 package.

Usage

nc_version()

Details

Note that the returned value it is a string, not a floating point number.

Value

A string (not float) that is the version number of the ncdf4 package.

Author(s)

David W. Pierce <dpierce@ucsd.edu>

References

http://dwpierce.com/software

http://r-pbd.org/

40 print.ncdf4

print.ncdf4 Print Information About a netCDF File

Description

Prints information about a netCDF file, including the variables and dimensions it contains.

Usage

S3 method for class 'ncdf4'
print(x, ...)

Arguments

x An object of class "ncdf4".

... Extra arguments are passed to the generic print function.

Details

NetCDF files contain variables, which themselves have dimensions. This routine prints out useful
information about a netCDF file’s variables and dimensions. It is overloaded on the regular print
function, so if "nc" is an object of class "ncdf4", then just calling print(nc) will suffice. Objects
of class "ncdf4" are returned from nc_open and nc_create.

Author(s)

David W. Pierce <dpierce@ucsd.edu>

References

http://dwpierce.com/software

See Also

ncvar_def

Examples

Not run:
Open a netCDF file, print information about it
nc <- nc_open("salinity.nc")
print(nc)

End(Not run)

Index

∗Topic programming
nc_create_par, 30
nc_open_par, 34
nc_var_par_access, 38
ncdump, 11

∗Topic utilities
nc_close, 28
nc_create, 29
nc_enddef, 31
nc_open, 32
nc_redef, 36
nc_sync, 37
nc_version, 39
ncatt_get, 4
ncatt_put, 6
ncdf4, 7
ncdim_def, 8
ncvar_add, 12
ncvar_change_missval, 15
ncvar_def, 17
ncvar_get, 20
ncvar_put, 23
ncvar_rename, 26
print.ncdf4, 40

nc_close, 8, 28, 29
nc_create, 8, 10, 13, 15, 18–20, 23, 24, 26,

28, 29, 31, 33, 36, 37, 40
nc_create_par, 30
nc_enddef, 31, 36
nc_open, 4, 6, 8, 10, 12, 13, 15, 18, 20, 21, 23,

24, 26, 28, 29, 31, 32, 35–37, 40
nc_open_par, 34
nc_redef, 8, 32, 36
nc_sync, 8, 28, 37
nc_var_par_access, 38
nc_version, 39
ncatt_get, 4, 7, 8
ncatt_put, 5, 6, 8, 32, 36
ncdf4, 7

ncdim_def, 8, 8, 13, 18, 19, 24, 26, 29, 31, 33,
35, 39

ncdump, 11
ncvar_add, 12
ncvar_change_missval, 8, 15, 21, 23
ncvar_def, 8, 10, 12, 13, 15, 16, 17, 23, 26,

29, 31, 33, 35, 39, 40
ncvar_get, 8, 20, 24, 35
ncvar_put, 23
ncvar_rename, 26

pbdNCDF4 (pbdNCDF4-package), 2
pbdNCDF4-package, 2
print.ncdf4, 8, 40

41

	pbdNCDF4-package
	ncatt_get
	ncatt_put
	ncdf4
	ncdim_def
	ncdump
	ncvar_add
	ncvar_change_missval
	ncvar_def
	ncvar_get
	ncvar_put
	ncvar_rename
	nc_close
	nc_create
	nc_create_par
	nc_enddef
	nc_open
	nc_open_par
	nc_redef
	nc_sync
	nc_var_par_access
	nc_version
	print.ncdf4
	Index

