
Guide to the

pbdBASE Package

ScaLAPACK Wrappers and Helpers

February 23, 2020

Drew Schmidt

pbdR Core Team

Wei-Chen Chen

pbdR Core Team

George Ostrouchov

Computer Science and Mathematics Division,

Oak Ridge National Laboratory

Pragneshkumar Patel

National Institute for Computational Sciences

University of Tennessee

Version 0.5-3

Acknowledgements

Schmidt was supported in part by the National Institute for Mathematical and Biological Synthe-
sis, sponsored by the National Science Foundation, the U.S. Department of Homeland Security,
and the U.S. Department of Agriculture through NSF Awards #EF-0832858 and #DBI-1300426,
with additional support from The University of Tennessee, Knoxville.

Schmidt, Ostrouchov, and Patel were supported in part by the project “NICS Remote Data
Analysis and Visualization Center” funded by the Office of Cyberinfrastructure of the U.S. Na-
tional Science Foundation under Award No. ARRA-NSF-OCI-0906324 for NICS-RDAV center.

Chen was supported in part by the Department of Ecology and Evolutionary Biology at the
University of Tennessee, Knoxville, and a grant from the National Science Foundation (MCB-
1120370.)

Chen and Ostrouchov were supported in part by the project “Visual Data Exploration and
Analysis of Ultra-large Climate Data” funded by U.S. DOE Office of Science under Contract
No. DE-AC05-00OR22725.

This work used resources of National Institute for Computational Sciences at the University
of Tennessee, Knoxville, which is supported by the Office of Cyberinfrastructure of the U.S.
National Science Foundation under Award No. ARRA-NSF-OCI-0906324 for NICS-RDAV cen-
ter. This work also used resources of the Oak Ridge Leadership Computing Facility at the Oak
Ridge National Laboratory, which is supported by the Office of Science of the U.S. Department
of Energy under Contract No. DE-AC05-00OR22725. This work used resources of the Newton
HPC Program at the University of Tennessee, Knoxville.

Disclaimer

The findings and conclusions in this article have been formally disseminated neither by the
U.S. Department of Energy, nor by the University of Tennessee, and as such should not be
construed to represent any determination or policy of any University, Agency, and/or National
Laboratory.

➞ 2012–2015 pbdR Core Team.

Permission is granted to make and distribute verbatim copies of this vignette and its source
provided the copyright notice and this permission notice are preserved on all copies.

This manual may be incorrect or out-of-date. The author(s) assume no responsibility for errors
or omissions, or for damages resulting from the use of the information contained herein.

This publication was typeset using LATEX.

Contents

Acknowledgements 2

Abstract 1

1 Introduction 1

1.1 Installation . 1
1.2 Intended Audience . 1
1.3 Terminology . 2

2 Using pbdBASE 2

2.1 BLACS Communicators . 2
2.1.1 Construction . 2
2.1.1. Construction . 2
2.1.2 Destruction . 3

2.2 Notes for Developers . 3

References 5

1 INTRODUCTION 1 of 5

Abstract

With the size of data ever growing, the use of multiple processors in a single analysis be-
comes more and more a necessity. The Programming Big Data in R (pbdR) project attempts
to address the R language’s current shortcomings in parallel distributed computations. The
pbdBASE package for R provides a set of BLACS, PBLAS, and ScaLAPACK wrappers, as
well as numerous new functionality in the block-cyclic matrix paradigm. In addition to per-
formance improvements through parallelism, use of this system with more than one processor
allows the user to break R’s local memory barrier, namely the requirement that a vector be
indexed by a 32-bit integer, by only storing subsets of the vector on each processor.

1 Introduction

The Programming with Big Data in R (Ostrouchov et al., 2012), abbreviated pbdR or just
pbd, is a project which seeks to elevate the R language to supercomputers. This package, pb-
dBASE (Schmidt et al., 2012a), contains a set of wrappers of the high performance libraries
BLACS, PBLAS, and ScaLAPACK (Blackford et al., 1997), and also a host of new subroutines
for performing distributed matrix computations in R. The package is a dependency of pbd-

DMAT (Schmidt et al., 2012b), which is meant to greatly simplify the pbdBASE system into
something that intimately resembles the R language. Since these two packages ultimately rely
on the ScaLAPACK library, the data type used with each is the block-cyclic distributed matrix.
See the pbdDMAT vignette for more details.

Updates and bug releases for this and other pbd projects may, especially while in infancy, be
much more frequent than CRAN releases. So for up to date packages, as well as evolving
information about the pbd project, see our website https://pbdr.org/.

1.1 Installation

The pbdBASE package is available from the CRAN at https://cran.r-project.org, and can
be installed via a simple

Installing pbdBASE✞ ☎

1 install.packages("pbdBASE")
✝ ✆

This assumes only that you have MPI installed and properly configured on your system. If
the user can successfully install the package’s two principal dependencies, pbdMPI (Chen et al.,
2012a) and pbdSLAP (Chen et al., 2012c) (each available from the CRAN), then the installation
for pbdBASE should go smoothly. If you experience difficulty installing either these packages,
you should see their documentation.

1.2 Intended Audience

The pbdBASE package is a dependency of pbdDMAT, and so anyone who wishes to use the
latter package must first install pbdBASE. However, much of the direct use of pbdBASE is in-
tended only for extremely advanced users and developers. A few exceptions are the init.grid()
and finalize() functions, which will be outlined in the sections to follow. The overwhelming
majority of the remaining functions are either internal or for people deeply familiar with ScaLA-
PACK.

https://cran.r-project.org/
https://pbdr.org/
https://cran.r-project.org

2 USING PBDBASE 2 of 5

1.3 Terminology

Before beginning, we will make frequent use of concepts from the Single Program/Multiple
Data (SPMD) paradigm. If you are entirely unfamiliar with this approach to parallelism, or
if you are unfamiliar with the pbdMPI package, then you are strongly encouraged to read the
vignette (Chen et al., 2012b) contained in the pbdMPI package, as well as examine and digest
its many examples in order to better understand what follows.

A concise explanation of SPMD is that it is an approach to parallel, distributed programming in
which one program is written, and each processor runs that same program, though that program
locally will often be interacting with different data. This, in contrast to the manager/worker
paradigm where one processor, the manager, is in charge of its workers, each of whom swear
fealty to the manager. So in SPMD, each processor believes itself to be the manager, the one in
charge. As a colleague, Dr. Russell Zaretzki put it, “it’s like academia.”

2 Using pbdBASE

2.1 BLACS Communicators

Briefly, distributed matrix computations using ScaLAPACK require specialized MPI communi-
cators, via the BLACS library. As with any MPI communicator, you must initialize it before
getting started with communications, and you must terminate it when you are finished with
communications. For most users, this will amount to calling
✞ ☎

1 library(pbdBASE , quiet = TRUE)

2 init.grid() # initialize

3

4 # ...

5

6 finalize () # terminate
✝ ✆

This special communicator may be used with pbdMPI communicator(s) without causing prob-
lems, and by default one finalize() call will terminate all communicators, whether they be
from pbdMPI or pbdBASE (see the pbdBASE reference manual for more details and options).

2.1.1 Construction

BLACS communicators are not identical to pbdMPI communicators. Indeed, while a pb-

dMPI communicator is a one-dimensional array of processors, BLACS communicators are two-
dimensional (row-major) grids. These values are simply referred to as the number of processor
rows and the number of processor columns, as a communicator really is thought of as a matrix
of processors. When a grid is initialized with init.grid() and no arguments are passed, then
three communicators are created. These grids are referenced by their “integer context” value, or
ICTXT. These grids are numbered 0, 1, and 2. Context 0 tries to be the “best possible” context
(see (Blackford et al., 1997)). Here we make 2 choices:

1. Grids are always as close to square as possible.

2 USING PBDBASE 3 of 5

2. In the event a grid can not be made to be square, the larger value is used for the number
of processor rows.

So for example, if we have 4 processors, then by default this would create a 2×2 grid for context
0. However, if we have 6 processors, then by default this will create a 3× 2 grid of processors.

On the other hand, context 1 is always a 1× n grid, where n is the total number of processors.
Likewise, context 2 is always a n × 1 grid of processors. These can be extremely valuable,
especially for performing data movement operations.

The function init.grid() does a great deal of (useful) hand-holding, so the much more advanced
user who is familiar with BLACS may be more interested in the function blacs_gridinit(),
which does not reserve contexts 0, 1, or 2. However, many pbdDMAT functions make as-
sumptions about the existence and shapes of contexts 0, 1, and 2 (as described above), so this
functionality is not supported when using that package.

2.1.2 Destruction

The user can halt all communicators — both BLACS communicators and, optionally, those
created by pbdMPI (or others) — by calling finalize(). To destroy just a single BLACS
context (for example, one used to read in data on a subset of processors), then the user should
use gridexit(). See the pbdBASE reference manual for full details.

2.2 Notes for Developers

The pbdBASE package also has several useful routines for package developers who need to deal
with distributed matrices (such as pbdDMAT’s ddmatrix object). Chief among these is the
numroc() function. Here, numroc stands for number of rows or columns. This routine is used
for determining local storage dimensions. If you need to construct a distributed matrix and
know its (global) dimension, blocking factor, and BLACS context, then you can determine the
local problem size by making the call:
✞ ☎

1 numroc(dim=dim , bldim=bldim , ICTXT=ICTXT)
✝ ✆

This will return a numeric pair of values, with the first being the number of rows of the local
matrix, and the second being the number of columns in the local matrix. No communication is
performed with this call. However, it is possible that the above can return seemingly nonsensical
values. For example, if a processor owns no piece of the global matrix, then the local dimension
information returned from numroc() could be less than 1 in some dimension (rows, columns,
or both). By default, this should not happen because of an automatic correction, with the
smallest return possible being 1. To allow for the aforementioned possibility, pass the additional
argument fixme=FALSE.

We always make the convention that every processor owns something, even if one does not
actually own any portion of the global matrix. The default in this even is a 1 row, 1 column
matrix consisting of the single entry 0.0. This convention is to prevent problems when passing
off data to compiled code (C and Fortran), and care should be taken to preserve this. As such,
the reader may wish to exclusively use numroc() for its intended purpose (with correction), but
may still need to know about the case when the local storage is “in name only.” For this, use the

2 USING PBDBASE 4 of 5

ownany() routine, which answers the question “does the calling processor own any of the global
matrix?” with a TRUE (“yes”) or FALSE (“no”). The call is virtually identical to numroc():
✞ ☎

1 ownany(dim=dim , bldim=bldim , ICTXT=ICTXT)
✝ ✆

See the pbdBASE reference manual for full details.

REFERENCES 5 of 5

References

L. S. Blackford, J. Choi, A. Cleary, E. D’Azevedo, J. Demmel, I. Dhillon, J. Dongarra, S. Ham-
marling, G. Henry, A. Petitet, K. Stanley, D. Walker, and R. C. Whaley. ScaLAPACK

Users’ Guide. Society for Industrial and Applied Mathematics, Philadelphia, PA, 1997. ISBN
0-89871-397-8 (paperback). URL http://netlib.org/scalapack/slug/scalapack_slug.

html/.

W.-C. Chen, G. Ostrouchov, D. Schmidt, P. Patel, and H. Yu. pbdmpi: Programming with
big data – interface to mpi, 2012a. URL https://cran.r-project.org/package=pbdMPI. R
Package.

W.-C. Chen, G. Ostrouchov, D. Schmidt, P. Patel, and H. Yu. A quick guide for the pbdmpi
package, 2012b. URL https://cran.r-project.org/package=pbdMPI. R Vignette.

W.-C. Chen, D. Schmidt, G. Ostrouchov, and P. Patel. pbdslap: Programming with big data
– scalable linear algebra packages, 2012c. URL https://cran.r-project.org/package=

pbdSLAP. R Package.

G. Ostrouchov, W.-C. Chen, D. Schmidt, and P. Patel. Programming with big data in r, 2012.
URL https://pbdr.org/.

D. Schmidt, W.-C. Chen, G. Ostrouchov, and P. Patel. pbdbase: Programming with big
data – core pbd classes and methods, 2012a. URL https://cran.r-project.org/package=

pbdBASE. R Package.

D. Schmidt, W.-C. Chen, G. Ostrouchov, and P. Patel. pbddmat: Programming with big
data – distributed matrix algebra computation, 2012b. URL https://cran.r-project.org/

package=pbdDMAT. R Package.

http://netlib.org/scalapack/slug/scalapack_slug.html/
http://netlib.org/scalapack/slug/scalapack_slug.html/
https://cran.r-project.org/package=pbdMPI
https://cran.r-project.org/package=pbdMPI
https://cran.r-project.org/package=pbdSLAP
https://cran.r-project.org/package=pbdSLAP
https://pbdr.org/
https://cran.r-project.org/package=pbdBASE
https://cran.r-project.org/package=pbdBASE
https://cran.r-project.org/package=pbdDMAT
https://cran.r-project.org/package=pbdDMAT

	Acknowledgements
	Abstract -0.3cm
	Introduction
	Installation
	Intended Audience
	Terminology

	Using pbdBASE
	BLACS Communicators
	Construction
	2.1.1. Construction
	Destruction

	Notes for Developers

	References

