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patrick Parameterized Unit Testing
Description

patrick (parameterized testing in R is kind of cool!) is a testthat extension that lets you create
reusable blocks of a test codes. Parameterized tests are often easier to read and more reliable, since
they follow the DNRY (do not repeat yourself) rule.



2 with_parameters_test_that

Details

This package is inspired by parameterized testing packages in other languages, notably the param-
eterized library in Python.

with_parameters_test_that
Execute a test with parameters.

Description

This function is an extension of testthat::test_that() that lets you pass a series of testing
parameters. These values are substituted into your regular testing code block, making it reusable
and reducing duplication.

Usage
with_parameters_test_that(desc_stub, code, .cases = NULL, ...)
cases(...)
Arguments
desc_stub A string scalar. Used in creating the names of the parameterized tests.
code Test code containing expectations.
.cases A data frame where each row contains test parameters.
Named arguments of test parameters.
Details

You have a couple of options for passing parameters to you test. You can use named vectors/
lists. The function will assert that you have correct lengths before proceeding to test execution.
Alternatively you can used a data.frame or list in combination with the splice unquote operator
I'11. Last, you can use the constructor cases (), which is similar to building a data. frame rowwise.
If you manually build the data frame, pass it in the . cases argument.

One parameter is noteworthy. If the user passes a character vector as test_name, each instance is
combined with desc_stub to create the completed test name. Similarly, the named argument from
cases() is combined with desc_stub to create the parameterized test names.

Examples

with_parameters_test_that("trigonometric functions match identities”, {
testthat: :expect_equal (expr, numeric_value)
1
expr = c(sin(pi / 4), cos(pi / 4), tan(pi / 4)),
numeric_value = c(1 / sqrt(2), 1 / sqrt(2), 1)


https://github.com/wolever/parameterized
https://github.com/wolever/parameterized

with_parameters_test_that

# Run the same test with the cases() constructor
with_parameters_test_that(”"trigonometric functions
testthat: :expect_equal (expr, numeric_value)

b

cases(
sin = list(expr = sin(pi / 4), numeric_value =
cos = list(expr = cos(pi / 4), numeric_value
tan = list(expr = tan(pi / 4), numeric_value

match identities”, {

1/ sqrt(2)),
1/ sqrt(2)),
1))



Index

cases (with_parameters_test_that), 2

patrick, 1
patrick-package (patrick), 1

testthat::test_that(), 2

with_parameters_test_that, 2



	patrick
	with_parameters_test_that
	Index

