Package ‘patrick’

August 13, 2018
Title Parameterized Unit Testing
Author Michael Quinn <msquinn@google.com>
Maintainer Michael Quinn <msquinn@google.com>
Copyright Copyright (C) 2018 Google LLC

Description This is an extension of the 'testthat' package that lets you add
parameters to your unit tests. Parameterized unit tests are often easier to
read and more reliable, since they follow the DNRY (do not repeat yourself)
rule.

Version 0.0.1

Depends R (>=3.1)

Imports dplyr, purrr, rlang, testthat, tibble
License Apache License 2.0

RoxygenNote 6.0.1

NeedsCompilation no

Repository CRAN

Date/Publication 2018-08-13 14:10:03 UTC

R topics documented:

patrick . . . .o 1
with_parameters_test_that . . . . . . . . ... ... . 2
Index 4
patrick Parameterized Unit Testing
Description

patrick (parameterized testing in R is kind of cool!) is a testthat extension that lets you create
reusable blocks of a test codes. Parameterized tests are often easier to read and more reliable, since
they follow the DNRY (do not repeat yourself) rule.



2 with_parameters_test_that

Details

This package is inspired by parameterized testing packages in other languages, notably the param-
eterized library in Python.

with_parameters_test_that
Execute a test with parameters.

Description

This function is an extension of testthat::test_that() that lets you pass a series of testing
parameters. These values are substituted into your regular testing code block, making it reusable
and reducing duplication.

Usage
with_parameters_test_that(desc_stub, code, .cases = NULL, ...)
cases(...)
Arguments
desc_stub A string scalar. Used in creating the names of the parameterized tests.
code Test code containing expectations.
.cases A data frame where each row contains test parameters.
Named arguments of test parameters.
Details

You have a couple of options for passing parameters to you test. You can use named vectors/
lists. The function will assert that you have correct lengths before proceeding to test execution.
Alternatively you can used a data.frame or list in combination with the splice unquote operator
I'11. Last, you can use the constructor cases (), which is similar to building a data. frame rowwise.
If you manually build the data frame, pass it in the . cases argument.

One parameter is noteworthy. If the user passes a character vector as test_name, each instance is
combined with desc_stub to create the completed test name. Similarly, the named argument from
cases() is combined with desc_stub to create the parameterized test names.

Examples

with_parameters_test_that("trigonometric functions match identities”, {
testthat: :expect_equal (expr, numeric_value)
1
expr = c(sin(pi / 4), cos(pi / 4), tan(pi / 4)),
numeric_value = c(1 / sqrt(2), 1 / sqrt(2), 1)


https://github.com/wolever/parameterized
https://github.com/wolever/parameterized

with_parameters_test_that

# Run the same test with the cases() constructor
with_parameters_test_that(”"trigonometric functions
testthat: :expect_equal (expr, numeric_value)

b

cases(
sin = list(expr = sin(pi / 4), numeric_value =
cos = list(expr = cos(pi / 4), numeric_value
tan = list(expr = tan(pi / 4), numeric_value

match identities”, {

1/ sqrt(2)),
1/ sqrt(2)),
1))



Index

cases (with_parameters_test_that), 2

patrick, 1
patrick-package (patrick), 1

testthat::test_that(), 2

with_parameters_test_that, 2



	patrick
	with_parameters_test_that
	Index

