Package ‘patchwork’

June 22, 2020
Type Package
Title The Composer of Plots
Version 1.0.1
Maintainer Thomas Lin Pedersen <thomasp85@gmail.com>

Description The 'ggplot2' package provides a strong API for sequentially
building up a plot, but does not concern itself with composition of multiple
plots. 'patchwork' is a package that expands the API to allow for
arbitrarily complex composition of plots by, among others, providing
mathematical operators for combining multiple plots. Other packages that try
to address this need (but with a different approach) are 'gridExtra’ and
'cowplot'.

License MIT + file LICENSE
Encoding UTF-8
LazyData true

Imports ggplot2 (>=3.0.0), gtable, grid, stats, grDevices, utils,
graphics

RoxygenNote 7.1.0.9000

URL https://patchwork.data-imaginist.com,
https://github.com/thomasp85/patchwork

BugReports https://github.com/thomasp85/patchwork/issues

Suggests knitr, rmarkdown, gridGraphics, gridExtra, ragg, testthat (>=
2.1.0), vdiffr, covr

VignetteBuilder knitr
NeedsCompilation no

Author Thomas Lin Pedersen [cre, aut]
(<https://orcid.org/0000-0002-5147-4711>)

Repository CRAN
Date/Publication 2020-06-22 16:00:02 UTC

https://patchwork.data-imaginist.com
https://github.com/thomasp85/patchwork
https://github.com/thomasp85/patchwork/issues

2 area
R topics documented:
ATCA . . . v v e e e e e e e e 2
guide_area e e e e e 3
multipage_align 4
plot_annotation 5
plot_arithmetic e 7
plot_layout e e e 8
PIOL_SPACET L e e e e e e 10
wrap_elements L. e e e e 11
wrap_ggplot_grob L 13
Wrap_plots L 14
Index 16
area Specify a plotting area in a layout
Description
This is a small helper used to specify a single area in a rectangular grid that should contain a plot.
Objects constructed with area() can be concatenated together with c () in order to specify multiple
areas.
Usage

area(t, 1, b=t, r =1)

Arguments
t, b The top and bottom bounds of the area in the grid
1, r The left and right bounds of the area int the grid
Details
The grid that the areas are specified in reference to enumerate rows from top to bottom, and

coloumns from left to right. This means that t and 1 should always be less or equal to b and r
respectively. Instead of specifying area placement with a combination of area() calls, it is possible
to instead pass in a single string

areas <- c(area(1, 1, 2, 1),

area(2, 3, 3, 3))

is equivalent to

areas < -"A#

A#B
##B"

For an example of this, see the plot_layout() examples.

guide_area 3

Value
A patch_area object
Examples
library(ggplot2)
pl <- ggplot(mtcars) + geom_point(aes(mpg, disp))
p2 <- ggplot(mtcars) + geom_boxplot(aes(gear, disp, group = gear))

p3 <- ggplot(mtcars) + geom_bar(aes(gear)) + facet_wrap(~cyl)

layout <- c(

area(1, 1),
area(1, 3, 3),
area(3, 1, 3, 2)

)

Show the layout to make sure it looks as it should
plot(layout)

Apply it to a patchwork
pl + p2 + p3 + plot_layout(design = layout)

guide_area Add an area to hold collected guides

Description

Using the guides argument in plot_layout () you can collect and collapse guides from plots. By
default these guides will be put on the side like with regular plots, but by adding a guide_area()
to the plot you can tell patchwork to place the guides in that area instead. If guides are not collected
or no guides exists to collect it behaves as a standard plot_spacer() instead.

Usage

guide_area()

Examples

library(ggplot2)

pl <- ggplot(mtcars) + geom_point(aes(mpg, disp, colour = factor(gear)))
p2 <- ggplot(mtcars) + geom_boxplot(aes(gear, disp, group = gear))

p3 <- ggplot(mtcars) + geom_bar(aes(gear)) + facet_wrap(~cyl)

Guides are by default kept beeside their plot
pl + p2 + p3

They can be collected and placed on the side (according to the patchwork

4 multipage_align

theme)
pl + p2 + p3 + plot_layout(guides = 'collect', ncol = 2)

Using guide_area() you can also designate an empty area for this
pl + p2 + p3 + guide_area() + plot_layout(guides = 'collect')

multipage_align Align plots across multiple pages

Description

Sometimes it is necessary to make sure that separate plots are aligned, with each other, but still
exists as separate plots. That could e.g. be if they need to be part of a slideshow and you don’t
want titles and panels jumping around as you switch between slides. patchwork provides a range of
utilities to achieve that. Currently it is only possible to align ggplots, but aligning patchworks will
be supported in the future.

Usage
get_dim(plot)

set_dim(plot, dim)
get_max_dim(...)

align_patches(...)

Arguments
plot A ggplot object
dim A plot_dimension object as created by get_dim()
ggplot objects or a single list of them
Value

get_dim() and get_max_dim() return a plot_dimension object. set_dim() returns a modified
ggplot object with fixed outer dimensions and align_patches() return a list of such. The modified
ggplots still behaves like a standard ggplot and new layers, scales, etc can be added to them.

Examples

library(ggplot2)

pl <- ggplot(mtcars) +
geom_point(aes(mpg, disp)) +
ggtitle('Plot 1")

p2 <- ggplot(mtcars) +

plot_annotation 5

geom_boxplot(aes(gear, disp, group = gear)) +
ggtitle('Plot 2')

p3 <- ggplot(mtcars) +
geom_point(aes(hp, wt, colour = mpg)) +
ggtitle('Plot 3')

p4 <- ggplot(mtcars) +
geom_bar (aes(gear)) +
facet_wrap(~cyl) +
ggtitle('Plot 4')

Align a plot to p4
p4_dim <- get_dim(p4)
set_dim(p1, p4_dim)

Align a plot to the maximum dimensions of a list of plots
max_dims <- get_max_dim(p1, p2, p3, p4)
set_dim(p2, max_dims)

Align a list of plots with each other
aligned_plots <- align_patches(p1, p2, p3, p4)
aligned_plots[[3]]

Aligned plots still behave like regular ggplots
aligned_plots[[3]] + theme_bw()

plot_annotation Annotate the final patchwork

Description

The result of this function can be added to a patchwork using + in the same way as plot_layout(),
but unlike plot_layout() it will only have an effect on the top level plot. As the name suggests it
controls different aspects of the annotation of the final plot, such as titles and tags.

Usage

plot_annotation(

title = NULL,
subtitle = NULL,
caption = NULL,
tag_levels = NULL,
tag_prefix = NULL,
tag_suffix = NULL,
tag_sep = NULL,
theme = NULL

6 plot_annotation

Arguments

title, subtitle, caption
Text strings to use for the various plot annotations.

tag_levels A character vector defining the enumeration format to use at each level. Possible
values are 'a’' for lowercase letters, 'A' for uppercase letters, '1' for numbers,
"i' for lowercase Roman numerals, and 'I' for uppercase Roman numerals.

tag_prefix, tag_suffix
Strings that should appear before or after the tag.

tag_sep A separator between different tag levels

theme A ggplot theme specification to use for the plot. Only elements related to the
titles as well as plot margin and background is used.

Details

Tagging of subplots is done automatically and following the order of the plots as they are added.
When the plot contains nested layouts the tag_level argument in the nested plot_layout will define
whether enumeration should continue as usual or add a new level. The format of the levels are
defined with tag_levels argument in plot_annotation

Value

A plot_annotation object

Examples

library(ggplot2)

p1 <- ggplot(mtcars) + geom_point(aes(mpg, disp))
p2 <- ggplot(mtcars) + geom_boxplot(aes(gear, disp, group = gear))
p3 <- ggplot(mtcars) + geom_bar(aes(gear)) + facet_wrap(~cyl)

Add title, etc. to a patchwork
pl + p2 + plot_annotation('This is a title', caption = 'made with patchwork')

Change styling of patchwork elements
pl + p2 +
plot_annotation(
title = 'This is a title',
caption = 'made with patchwork',
theme = theme(plot.title = element_text(size = 16))
)

Add tags to plots
pl / (p2 | p3) +
plot_annotation(tag_levels = 'A")

Add multilevel tagging to nested layouts
pl / ((p2 | p3) + plot_layout(tag_level = 'new')) +
plot_annotation(tag_levels = c('A', '1'))

plot_arithmetic 7

plot_arithmetic Plot arithmetic

Description

In addition to the + operator known in ggplot2, patchwork defines logic for some of the other
operators that aids in building up your plot composition and reduce code-reuse.

Usage

S3 method for class 'ggplot'
el - e2

S3 method for class 'ggplot
el / e2

S3 method for class 'ggplot'
el | e2

S3 method for class 'gg'
el x e2

S3 method for class 'gg'

el & e2
Arguments
el A ggplot or patchwork object
e2 A ggplot or patchwork object in case of /, or a gg object such as a geom or
theme specification in case of * and &
Details

patchwork augment the + operator from ggplot2 and allows the user to add full ggplot objects
together in order to compose them into the same view. The last added plot is always the active one
where new geoms etc. are added to. Another operator that is much like it, but not quite, is -. It
also adds plots together but instead of adding the right hand side to the patchwork defined in the left
hand side, it puts the left hand side besides the right hand side in a patchwork. This might sound
confusing, but in essence - ensures that the right and left side are put in the same nesting level (+
puts the right side info the left side). Using - might seem unintuitive if you think of the operator as
"subtract", but look at it as a hyphen instead (the underlying reason is that - is the only operator in
the same precedence group as +).

Often you are interested in creating single column or single row layouts. patchwork provides |
(besides) and / (over) operators to support stacking and packing of plots. See the exampels for their
use.

8 plot_layout

In order to reduce code repetition patchwork provides two operators for adding ggplot elements
(geoms, themes, facets, etc.) to multiple/all plots in a patchwork. * will add the element to all plots
in the current nesting level, while & will recurse into nested patches.

Value

A patchwork object

Examples

library(ggplot2)

pl <- ggplot(mtcars)
p2 <- ggplot(mtcars)
p3 <- ggplot(mtcars)
p4 <- ggplot(mtcars)

geom_point(aes(mpg, disp))
geom_boxplot(aes(gear, disp, group = gear))
geom_bar (aes(gear)) + facet_wrap(~cyl)
geom_bar (aes(carb))

+ + + +

Standard addition vs division
pl + p2 + p3 + plot_layout(ncol = 1)
pl + p2 - p3 + plot_layout(ncol = 1)

Stacking and packing
(p1 | p2 | p3) /
p4

Add elements to the same nesting level
(p1 + (p2 + p3) + p4 + plot_layout(ncol = 1)) * theme_bw()

Recurse into nested plots as well
(p1 + (p2 + p3) + p4 + plot_layout(ncol = 1)) & theme_bw()

plot_layout Define the grid to compose plots in

Description

In order to control how different plots are layed out, you need to add a layout specification. If you
are nesting grids, the layout is scoped to the current nesting level.

Usage
plot_layout(
ncol = NULL,
nrow = NULL,
byrow = NULL,

widths = NULL,
heights = NULL,
guides = NULL,

plot_layout 9

tag_level = NULL,
design = NULL

)
Arguments
ncol, nrow The dimensions of the grid to create - if both are NULL it will use the same logic
as facet_wrap() to set the dimensions
byrow Analogous to byrow in matrix(). If FALSE the plots will be filled in in column-

major order
widths, heights

The relative widths and heights of each column and row in the grid. Will get
repeated to match the dimensions of the grid.

guides A string specifying how guides should be treated in the layout. 'collect' will
collect guides below to the given nesting level, removing duplicates. 'keep'
will stop collection at this level and let guides be placed alongside their plot.
auto will allow guides to be collected if a upper level tries, but place them along-
side the plot if not. If you modify default guide "position" with theme(legend.position=...
while also collecting guides you must apply that change to the overall patchwork
(see example).

tag_level A string ('keep' or 'new') to indicate how auto-tagging should behave. See
plot_annotation().

design Specification of the location of areas in the layout. Can either be specified as a
text string or by concatenating calls to area() together. See the examples for
further information on use.

Value

A plot_layout object to be added to a ggassmble object

Examples

library(ggplot2)

pl <- ggplot(mtcars)
p2 <- ggplot(mtcars)
p3 <- ggplot(mtcars)
p4 <- ggplot(mtcars)
p5 <- ggplot(mtcars)

geom_point(aes(mpg, disp))
geom_boxplot(aes(gear, disp, group = gear))
geom_bar (aes(gear)) + facet_wrap(~cyl)
geom_bar (aes(carb))

geom_violin(aes(cyl, mpg, group = cyl))

+ + 4+ + o+

The plots are layed out automatically by default
pl + p2 + p3 + p4 + p5

Use byrow to change how the grid is filled out
pl + p2 + p3 + p4 + p5 + plot_layout(byrow = FALSE)

Change the grid dimensions
pl + p2 + p3 + p4 + p5 + plot_layout(ncol = 2, widths = c(1, 2))

Define layout at different nesting levels
p1 +
p2 +
(p3 +
p4 +
plot_layout(ncol = 1)
)+
P> +
plot_layout(widths = c(2, 1))

Complex layouts can be created with the ‘design‘ argument
design <- c(

area(1, 1, 2),

area(1, 2, 1, 3),

area(2, 3, 3),
area(3, 1, 3, 2),
area(2, 2)

)
pl + p2 + p3 + p4 + p5 + plot_layout(design = design)

The same can be specified as a character string:
design <- "

122

153

443

n

pl + p2 + p3 + p4 + p5 + plot_layout(design = design)

When using strings to define the design ‘#‘ can be used to denote empty
areas
design <-

T##

123

##3

n

n

pl + p2 + p3 + plot_layout(design = design)

Use guides="collect” to remove duplicate guides

p6 <- ggplot(mtcars) + geom_point(aes(mpg, disp, color=cyl))
p7 <- ggplot(mtcars) + geom_point(aes(mpg, hp, color=cyl))
p6 + p7 + plot_layout(guides='collect')

Guide position must be applied to entire patchwork
p6 + p7 + plot_layout(guides='collect') &
theme(legend.position="bottom')

plot_spacer

plot_spacer Add a completely blank area

wrap_elements 11

Description

This simple wrapper creates an empty transparant patch that can be added to push your other plots
apart. The patch responds to adding theme() specifications, but only plot.background will have
an effect.

Usage

plot_spacer()

Value

A ggplot object containing an empty plot

Examples

library(ggplot2)

pl <- ggplot(mtcars) + geom_point(aes(mpg, disp))
p2 <- ggplot(mtcars) + geom_boxplot(aes(gear, disp, group = gear))

pl + plot_spacer() + p2

\

To have more control over spacing, you can use the ‘plot.margin
parameter for “theme()‘ on each individual plot.

(p1 + theme(plot.margin = unit(c(0,30,0,0), "pt"))) +
(p2 + theme(plot.margin = unit(c(0,0,0,30), "pt")))

wrap_elements Wrap arbitrary graphics in a patchwork-compliant patch

Description

In order to add non-ggplot2 element to a patchwork they can be converted to a compliant repre-
sentation using the wrap_elements() function. This allows you to position either grobs, ggplot
objects, patchwork objects, or even base graphics (if passed as a formula) in either the full area, the
full plotting area (anything between and including the axis label), or the panel area (only the actual
area where data is drawn). Further you can still add title, subtitle, tag, and caption using the same
approach as with normal ggplots (using ggtitle() and labs()) as well as styling using theme(). For
the latter, only the theme elements targeting plot margins and background as well as title, subtitle,
etc styling will have an effect. If a patchwork or ggplot object is wrapped, it will be fixated in its
state and will no longer respond to addition of styling, geoms, etc.. When grobs and formulas are
added directly, they will implicitly be converted to wrap_elements(full = x).

12 wrap_elements

Usage
wrap_elements(
panel = NULL,
plot = NULL,
full = NULL,
clip = TRUE,
ignore_tag = FALSE
)
Arguments

panel, plot, full
A grob, ggplot, patchwork, or formula object to add to the respective area.

clip Should the grobs be clipped if expanding outside its area

ignore_tag Should tags be ignored for this patch. This is relevant when using automatic
tagging of plots and the content of the patch does not qualify for a tag.

Value

A wrapped_patch object

Examples

library(ggplot2)
library(grid)

Combine grobs with each other
wrap_elements(panel = textGrob('Here are some text')) +
wrap_elements(
panel = rectGrob(gp = gpar(fill = 'steelblue')),
full = rectGrob(gp = gpar(fill = 'goldenrod'))
)

wrapped elements can still get titles etc like ggplots
wrap_elements(panel = textGrob('Here are some text')) +
wrap_elements(
panel = rectGrob(gp = gpar(fill = 'steelblue')),
full = rectGrob(gp = gpar(fill = 'goldenrod'))
) +
ggtitle('Title for the amazing rectangles')

You can also pass in ggplots or patchworks to e.g. have it fill out the
panel area

pl <- ggplot(mtcars) + geom_point(aes(mpg, disp))

pl + wrap_elements(panel = p1 + ggtitle('Look at me shrink'))

You can even add base graphics if you pass it as a formula
pl + wrap_elements(full = ~ plot(mtcars$mpg, mtcars$disp))

Adding a grob or formula directly is equivalent to placing it in “full®

wrap_ggplot_grob 13

pl + ~ plot(mtcars$mpg, mtcars$disp)

wrap_ggplot_grob Make a gtable created from a ggplot object patchwork compliant

Description

This function converts a gtable, as produced by ggplot2: :ggplotGrob() and makes it ready to be
added to a patchwork. In contrast to passing the gtable to wrap_elements(), wrap_ggplot_grob()
ensures proper alignment as expected. On the other hand major restructuring of the gtable will result
in an object that doesn’t work properly with wrap_ggplot_grob().

Usage
wrap_ggplot_grob(x)

Arguments

X A gtable as produced by ggplot2::ggplotGrob()

Value

A table_patch object to be added to a patchwork

Examples

library(grid)
library(gtable)
library(ggplot2)

p1 <- ggplot(mtcars) + geom_point(aes(mpg, disp)) + ggtitle('disp and mpg seems connected')
p2 <- ggplot(mtcars) + geom_boxplot(aes(gear, disp, group = gear))

Convert p2 so we can add new stuff to it

p2_table <- ggplotGrob(p2)

stamp <- textGrob('TOP SECRET', rot = 35,
gp = gpar(fontsize = 72, fontface = 'bold')

)

p2_table <- gtable_add_grob(p2_table, stamp,
t=1,1=1, b =nrow(p2_table), r = ncol(p2_table)

)

Adding it directly will loose alignhment
pl + p2_table

Use wrap_ggplot_grob to keep alignment
pl + wrap_ggplot_grob(p2_table)

14

wrap_plots

wrap_plots

Wrap plots into a patchwork

Description

While the use of + is a natural way to add plots together, it can be difficult to string together multiple
plots programmatically if the number of plots is not known beforehand. wrap_plots makes it easy
to take a list of plots and add them into one composition, along with layout specifications.

Usage
wrap_plots(
ncol = NULL,
nrow = NULL,
byrow = NULL,
widths = NULL,
heights = NULL,
guides = NULL,
tag_level = NULL,
design = NULL
)
Arguments
multiple ggplots or a list containing ggplot objects
ncol The dimensions of the grid to create - if both are NULL it will use the same logic
as facet_wrap() to set the dimensions
nrow The dimensions of the grid to create - if both are NULL it will use the same logic
as facet_wrap() to set the dimensions
byrow Analogous to byrow in matrix(). If FALSE the plots will be filled in in column-
major order
widths The relative widths and heights of each column and row in the grid. Will get
repeated to match the dimensions of the grid.
heights The relative widths and heights of each column and row in the grid. Will get
repeated to match the dimensions of the grid.
guides A string specifying how guides should be treated in the layout. 'collect' will
collect guides below to the given nesting level, removing duplicates. 'keep'
will stop collection at this level and let guides be placed alongside their plot.
auto will allow guides to be collected if a upper level tries, but place them along-
side the plot if not. If you modify default guide "position" with theme(legend.position=...
while also collecting guides you must apply that change to the overall patchwork
(see example).
tag_level A string ('keep' or 'new') to indicate how auto-tagging should behave. See

plot_annotation().

wrap_plots 15

design Specification of the location of areas in the layout. Can either be specified as a
text string or by concatenating calls to area() together. See the examples for
further information on use.

Details

If design is specified as a text string and the plots are named (e.g. wrap_plots(A=pl1,...))
and all plot names are single characters represented in the design layout string, the plots will be
matched to their respective area by name. Otherwise the areas will be filled out sequentially in the
same manner as using the + operator. See the examples for more.

Value

A patchwork object

Examples

library(ggplot2)

p1 <- ggplot(mtcars)
p2 <- ggplot(mtcars)
p3 <- ggplot(mtcars)
p4 <- ggplot(mtcars)
p5 <- ggplot(mtcars)

geom_point(aes(mpg, disp))
geom_boxplot(aes(gear, disp, group = gear))
geom_bar (aes(gear)) + facet_wrap(~cyl)
geom_bar (aes(carb))

geom_violin(aes(cyl, mpg, group = cyl))

+ + 4+ + o+

Either add the plots as single arguments
wrap_plots(pl, p2, p3, p4, p5)

Or add them as a list...
plots <- list(p1, p2, p3, p4, p5)
wrap_plots(plots)

Match plots to areas by name
design <- "#BB
AAH#"
wrap_plots(B = p1, A = p2, design = design)

Compare to not using named plot arguments
wrap_plots(pl, p2, design = design)

Index

*

.gg (plot_arithmetic), 7
-.ggplot (plot_arithmetic), 7
.ggplot (plot_arithmetic), 7
.gg (plot_arithmetic), 7

2~

align_patches (multipage_align), 4
area, 2
area(), 9,15

facet_wrap(), 9, 14

get_dim (multipage_align), 4
get_max_dim (multipage_align), 4
ggplot2: :ggplotGrob(), I3
ggtitle(), 11

guide_area, 3

labs(), 11

matrix(), 9, 14
multipage_align, 4

plot_annotation, 5
plot_annotation(), 9, 14
plot_arithmetic, 7
plot_layout, 6, 8
plot_layout(), 2, 3,5
plot_spacer, 10
plot_spacer(), 3

set_dim (multipage_align), 4

theme(), 11
theme(legend.position=...), 9, 14

wrap_elements, 11
wrap_elements(), 13
wrap_ggplot_grob, 13
wrap_plots, 14

16

	area
	guide_area
	multipage_align
	plot_annotation
	plot_arithmetic
	plot_layout
	plot_spacer
	wrap_elements
	wrap_ggplot_grob
	wrap_plots
	Index

