
The patchDVI package

Duncan Murdoch

May 4, 2020

Abstract

The patchDVI package works with Sweave [Leisch, 2002] and knitr
[Xie, 2013] and document previewers to facilitate editing: it modifies
the links that LATEX puts into the output so that they refer to the
original source. It also includes a few project management functions
to make large multi-file documents easier to handle.

1

Contents

1 Introduction 3

2 Quick Start Instructions 3

3 patchDVI History 5

4 Sweave Concordances 6
4.1 Technical description of concordance records 6

5 Patching .dvi Files 8

6 Patching .synctex Files 8

7 Project Management Functions 8
7.1 The Complete Process 10
7.2 Installing or Loading Packages 11

8 Conclusion 11

A Using patchDVI with TeXShop 13

B Using patchDVI with TeXWorks 14

C Using patchDVI with WinEdt 16

D Using patchDVI with RStudio 16

2

1 Introduction

Most implementations of LATEX allow source references to be emitted,
so that previewers of the .dvi or .pdf output file can link back to
the original source line. This has been a feature of the yap previewer
for .dvi files in MikTeX [Schenk, 2010] for many years. Support for
source references has appeared more recently for .pdf output, first
in pdfsync. Most recently Synctex [Laurens, 2008] links have been
implemented in pdflatex and other LATEX processors.

Unfortunately for knitr/Sweave users, these links point to the .tex
source that was processed, which is not the true source code in the
knitr/Sweave .Rnw or .Snw or other input file. (I will refer to all of
these as .Rnw files.) Clicking on “go to source” in a previewer will
jump to the .tex file; changes made there will be lost the next time
the .Rnw input is processed.

I wrote the patchDVI package to address this problem. It works as
follows. If the knitr/Sweave file is processed with the option concor-

dance=TRUE, knitr or Sweave will output a record of the concordance
between the lines in the input file and the output file. When the file
is processed by LATEX, this information is embedded in the output.
(Details of the embedding are described in sections 4 to 6 below.) Af-
ter producing the .dvi or .pdf file, a patchDVI function is run to
read the concordance information and to patch the source reference
information produced by LATEX. Once this has been done, previewers
will see references to the original .Rnw source rather than the LATEX
intermediate file.

Besides the technical details mentioned above, this paper describes
the history of patchDVI in Section 3 and in section 7 some project
management functions. It concludes with a short discussion.

2 Quick Start Instructions

There are several ways to make use of patchDVI. This section de-
scribes some common ones.

In all cases the package needs to be installed first; the current
release is on CRAN and can be installed using

> install.packages("patchDVI")

Source code is maintained on R-forge, and the latest development
version can be installed using

3

> install.packages("patchDVI", repos="http://R-forge.r-project.org")

The document also needs to have an option set to produce the
“concordances” (links between the .Rnw source and the .tex output
of knitr/Sweave). If you are using knitr, include these lines in a code
chunk in your document:

> opts_knit$set(concordance = TRUE)

For Sweave, put these lines outside of a code chunk near the start of
your document:
\usepackage{Sweave}

\SweaveOpts{concordance=TRUE}

The simplest way to proceed is from within R. Assuming doc.Rnw

is the knitr/Sweave document to process and it is in the current work-
ing directory, run

> library(patchDVI)

> knitPDF("doc.Rnw")

or

> library(patchDVI)

> SweavePDF("doc.Rnw")

This runs doc.Rnw through knitr/Sweave, runs any other chapters
in the project through knitr/Sweave, then runs the main .tex file
(typically doc.tex, but not necessarily; see section 7 below) through
pdflatex, and patches the source links. To produce DVI output in-
stead of PDF substitute knitDVI for knitPDF, and to use latex and
dvipdfm to produce PDF output, use knitDVIPDFM. If you are using
MikTeX on Windows, the functions knitPDFMiktex and knitMik-

tex correspond to the first two of these respectively, and use a few
MikTeX-specific features.

These functions all have an optional argument preview, which can
contain a command line to run a .pdf or .dvi previewer (with the
filename replaced by %s). The .pdf previewer should be one that
can handle Synctex links; unfortunately, Acrobat Reader and MacOS
Preview are both deficient in this area. On Windows, SumatraPDF

works, as do the built-in previewers in TeXShop and TeXWorks on
MacOS X and other platforms.

MikTeX includes the yap previewer for .dvi files; the knitMiktex

command sets it as the default.

4

Another way to proceed is directly from within your text editor.
The instructions here depend on your editor; I have included a few
in the Appendices: TeXShop in Appendix A, WinEdt in Appendix
C, and TeXWorks in Appendix B. Some editors (e.g. TeXShop and
TeXWorks) include a previewer that can handle the source links.

Finally, you may want to run knitr from the command line, outside
of R. This line (or the obvious variants with replacements for knitPDF)
should do it:

Rscript -e 'patchDVI::knitPDF("doc.Rnw")'

3 patchDVI History

Initially patchDVI only worked for .dvi files (hence the name). It
required changes to the Sweave function in R, which first appeared
around the release of R version 2.5.0. with incompatible changes in R
version 2.8.0 when .pdf support was added to patchDVI.

Using patchDVI requires a pre-processing step (knitr/Sweave), LATEX
processing, and a post-processing step (patching). This is usually fol-
lowed by a preview of the resulting output file. It quickly became
apparent that it was convenient to package these steps into a single
R function, so the user only needed to make a single call. But the
details of LATEX processing vary from platform to platform, so I wrote
functions SweaveMiktex and SweavePDFMiktex specific to the Mik-
Tex platform, with the intention of adding others as I used them or
users told me what needed adding. This never happened, but in the
meantime, Brian Ripley made the tools::texi2dvi function in R
much more flexible, and in version 1.7 of patchDVI I included a mod-
ified version of it with the hope that patchDVI should be more nearly
platform neutral.

The 1.7 release was motivated by an attempt to support TeXWorks
[Kew, 2008], a cross-platform LATEX targetted editor. TeXWorks was
still in its early days (I was working with version 0.2 on Windows),
and it did not have enough flexibility to handle large knitr/Sweave
projects, where for example, each chapter of a book requires separate
knitr/Sweave processing, but LATEX processes only a main wrapper
file. This prompted me to include more make-style capabilities into
patchDVI. It is now possible to specify a list of knitr/Sweave input
files to process (optionally only if they have changed since the last

5

processing) and the main wrapper file, all within code chunks in a
single file, using the knitAll/SweaveAll functions.

The SweaveDVIPDFM function is a recent addition. For English lan-
guage processing, I find pdflatex to be the most convenient processor,
but it does not work well in languages like Japanese. During a visit
to the Institute of Statistical Mathematics in Tokyo I learned of the
issues, and with the help of Prof. H. Okumura and Junji Nakano I
worked out SweaveDVIPDFM to handle the two step conversion to PDF.

In 2015 I added support for other non-Sweave processors, such as
knitr, and in 2020 improved the documentation for knitr users.

4 Sweave Concordances

knitr/Sweave processes the code chunks in the .Rnw file, replacing each
with the requested output from the command. This means that the
output .tex file alternates between copied LATEX source and newly
produced blocks of output. Each line in the .tex file can thus be
mapped to one or more lines of input, and that is what the concordance
does.

4.1 Technical description of concordance records

The concordance records are text records in the following format.
There are four parts, separated by colons:

1. The label concordance to indicate the type of record.

2. The output .tex filename.

3. The input .Rnw filename.

4. The input line numbers corresponding to each output line.

The third component is compressed using a simple encoding: The
first number is the first line number; the remainder of line numbers
are a run-length encoding of the differences. Thus if the input file
is as shown in Table 1, the output file would be as shown in Table
2, with the concordance as shown there in the second column. This
concordance would be recorded in the file sample-concordance.tex

as

\Sconcordance{concordance:sample.tex:sample.Rnw:%

1 1 1 1 2 7 0 1 2}

The numeric part of this file may be interpreted as shown in Table 3.

6

Table 1: Input file for simple example.

Line number Input text
1 \SweaveOpts{concordance=TRUE}

2 This is text
3 <<>>=

4 123

5 @

6 This is more text

Table 2: Output file for simple example.

Output line Input line Output text
1 1 \input{sample-concordance}

2 2 This is text.
3 4 \begin{Schunk}

4 4 \begin{Sinput}

5 4 > 123

6 4 \end{Sinput}

7 4 \begin{Soutput}

8 4 [1] 123

9 4 \end{Soutput}

10 4 \end{Schunk}

11 6 This is more text

Table 3: Encoding of numeric part of concordance record.

Values Interpretation Expansion
1 line 1 1
1 1 1 increase of 1 2
1 2 1 increase of 2 4
7 0 7 increases of 0 4 4 4 4 4 4 4
1 2 1 increase of 2 6

7

5 Patching .dvi Files

The \Sconcordance macro expands to a \special macro when pro-
ducing a .dvi file. This is included verbatim in the .dvi file. The
“concordance:” prefix identifies it as a patchDVI concordance. The
patchDVI function scans the whole file until it finds this sort of record.
(There may be more than one, if multiple files make up the document.)
Source references are also recorded by LATEX in \special records; their
prefix is “src:”. The patchDVI function reads each “src:” special and if
it refers to a file in a “concordance:” special, makes the substitution.
At the end, it rewrites the whole .dvi file.

6 Patching .synctex Files

When using pdflatex, the \Sconcordance macro expands to a \pdfobj
macro containing the concordance, which eventually is embedded in
the .pdf file. However, the Synctex scheme of source references does
not write the references to the .pdf file directly. Instead, they are
written to a separate file with extension .synctex, or a compressed
version of that file, with extension .synctex.gz. The patchSync-

tex function reads the concordances from either the .pdf file (when
pdflatex was used) or the .dvi file, and the source references from
the Synctex file. It rewrites only the Synctex file when it makes its
changes.

7 Project Management Functions

As mentioned above, there are a number of steps involved in running
patchDVI with a complex knitr/Sweave project:

1. Run knitr/Sweave on each input file.

2. Run LATEX on the main wrapper file.

3. Run the appropriate patchDVI function on the output file.

4. Preview or print the result.

Moreover, step 1 needs to be repeated once for each .Rnw file, but
only if the content has changed since the last run, while the other
steps need only be done once.

To manage this complication, the patchDVI package includes two
simple project management functions, knitAll and SweaveAll. These

8

are really the same function with different defaults, and will be de-
scribed in terms of SweaveAll. This function runs Sweave on multiple
files and determines the name of the main wrapper file. It is used in-
ternally by the functions described in Section 7.1 below, but can also
be called directly by the user.

Here is how it works. SweaveAll takes a vector of filenames as
input, and runs Sweave on each. After each run, it examines the global
environment for the four variables .PostSweaveHook, .SweaveFiles,
.SweaveMake and .TexRoot. (The first three variables can instead be
named .PostKnitHook, .knitFiles, .knitMake. If both versions are
present, the choice is undefined, so don’t do that.)

A code chunk in a .Rnw file may produce a function (or the name of
a function; match.fun is used to look it up) named .PostSweaveHook.
If present, this should be a function taking a single argument. Immedi-
ately after running Sweave, SweaveAll will call this function, passing
the name of the .tex output file as the only argument. The hook can
do any required postprocessing, for example, it could remove local
pathnames from output strings.

The optional parameter PostSweaveHook to the SweaveAll func-
tion can provide a default hook function. Hooks specified using the
.PostSweaveHook variable take precedence in any given input file.

SweaveAll will also use the character variable named .SweaveFiles.
It should contain the names of .Rnw files in the project. If no corre-
sponding .tex file exists, or the .Rnw file is newer, they will be run
through Sweave. They may in turn name additional .Rnw files to
process; each file is processed only once, even if it is named several
times.

There is an optional parameter named make to the SweaveAll func-
tion. If make = 1 (the default), things proceed as described above. If
make = 0, the .SweaveFiles variable is ignored, and only the explic-
itly named files in the call to SweaveAll are processed. If make = 2,
then all files are processed, whether they are newer than their .tex

file or not. The .SweaveMake variable will override the value of make.
An .Rnw file may also set the value of .TexRoot to the name of

a .tex file. If it does, then that is the file that should be passed
to LATEX for processing. If none is given, then the first file in the
call to SweaveAll will be assumed to be the root file. (If multiple
different .TexRoot variables are specified by different .Rnw files, one
of them will be used, but it is hard to predict which: so don’t do that.)
Whichever file is determined to be the root file is the name returned

9

by the SweaveAll call.
SweaveAll is called by all of the functions described in subsection

7.1 below to do step 1 of the patchDVI steps.
The workflow this is designed for is as follows. Each .Rnw chapter

(named for example “chapter.Rnw”) in a large project should specify
the .TexRoot, e.g. using the code chunk

<<echo=FALSE>>=

.TexRoot <- "wrapper.tex"

@

Similarly, the wrapper file (named for example“wrapper.Rnw”) should
be a .Rnw file that sets .SweaveFiles to the complete list of files in
the project. Then one can build an initial copy of the entire document
by calling any of knitPDF, SweavePDF, knitMiktex, SweaveMiktex,
knitDVI, SweaveDVI, knitDVIPDFM, SweaveDVIPDFM with argument
"wrapper.Rnw". Later, while one is working on "chapter.Rnw", one
can call one of those functions with argument "chapter.Rnw" and the
chapter will be processed through the full sequence, without running
knitr/Sweave on the other chapters.

More complicated schemes are possible. For example:

• Each chapter can have subsections in separate files; then the
chapter would name the subsections, but the main wrapper would
only need to name the chapters if you can assume that only the
chapter being edited was changed.

• If one wants to “make” the full project every time, then include
"wrapper.Rnw" in .SweaveFiles in each chapter.

7.1 The Complete Process

The patchDVI package contains five functions for each of knitr and
Sweave designed to run all four of the steps listed at the start of this
section. The functions knitDVI/SweaveDVI and knitMiktex/SweaveMiktex
produce .dvi output in the general case and for MikTeX respectively;
knitPDF/SweavePDF and knitPDFMiktex/SweavePDFMiktex do the
same for direct .pdf output from pdflatex. Finally, knitDVIPDFM/SweaveDVIPDFM
run the two-step conversion using first latex and then dvipdfm.

In each case, the TEX processing functions are customizable.
For example, a few years ago I had a text editor that allowed me

to call external functions with arguments depending on the name of

10

the current file and the line number within it. I had it call a Windows
batch file with the line set as argument %1 and the filename set as
argument %2; the batch file invoked R using the command line

echo patchDVI::SweaveMiktex('%2',
preview='yap -1 -s"%1%2" "\x25s"')
| Rterm --slave

(all on one long line). This passed the current file to SweaveMiktex,
and set the preview command to use the yap options -1 to update
the current view (rather than opening a new window), and to jump
to the line corresponding to the editor line. The code "\x25s" is
simply "%s" encoded without an explicit percent sign, which would be
misinterpreted by the Windows command processor. When patchDVI
calls the previewer, the main .dvi filename will be substituted for %s.

7.2 Installing or Loading Packages

In a complex project, there are often a number of different packages
required. When updating R, you may end up with a tedious exercise
to make sure these are all installed and updated.

The needsPackages() function helps with this. It takes a charac-
ter vector naming packages that will be used in the current document.
By default, it installs any that are not already installed. Optionally,
it can update them using update.packages(), load them, or attach
them to the search list. For example, this document uses no packages
other than patchDVI itself, so it could have

> patchDVI::needsPackages("patchDVI")

near the start to ensure it is available, if this wasn’t a nonsensical
statement. (Why would you be able to run it if patchDVI wasn’t
already installed?)

8 Conclusion

As described in this paper, the patchDVI package is a convenient way
to work with knitr/Sweave in a modern setting, allowing fast switching
from source input to preview. It also offers some features to make the
management of larger projects easier.

Other possibilities may exist to make use of the code in this pack-
age. In order to read and patch .dvi, .pdf and .synctex files,

11

patchDVI includes code to work with each of those formats. Users
may find imaginative uses for this capability, which I’ve tried to leave
in general form. The low-level .dvi editing is done by C functions
called from R, while the PDF related work is done in pure R code.

References

Jonathan Kew. TEXworks: Lowering the barrier to entry. TUGBoat,
29:362–364, 2008. URL http://tug.org/texworks/.

Jerôme Laurens. Direct and reverse synchronization with SyncTEX.
TUGBoat, 29:365–371, 2008.

Friedrich Leisch. Sweave: Dynamic generation of statistical reports
using literate data analysis. In Wolfgang Härdle and Bernd Rönz,
editors, Compstat 2002 — Proceedings in Computational Statistics,
pages 575–580. Physica Verlag, Heidelberg, 2002. URL http://

www.stat.uni-muenchen.de/~leisch/Sweave. ISBN 3-7908-1517-
9.

Christian Schenk. About MikTeX, 2010. URL http://www.miktex.

org/about. Web page http://www.miktex.org/about, retrieved
August 13, 2010.

Yihui Xie. Dynamic Documents with R and knitr. Chapman and
Hall/CRC, 2013. URL http://yihui.name/knitr/. ISBN 978-
1482203530.

12

http://tug.org/texworks/
http://www.stat.uni-muenchen.de/~leisch/Sweave
http://www.stat.uni-muenchen.de/~leisch/Sweave
http://www.miktex.org/about
http://www.miktex.org/about
http://www.miktex.org/about
http://yihui.name/knitr/

A Using patchDVI with TeXShop

TeXShop is a nice TEX editor on MacOS. Dave Gabrielson of the
University of Manitoba helped me to work out these instructions. I
have updated them in December, 2013 for TeXShop 2.47.

1. In Preferences – Typesetting – Sync Method, choose “SyncTeX”.

2. (a) To use with Sweave, create a file called
Library/TeXShop/Engines/Sweave.engine

containing the lines

#!/bin/bash

export LC_ALL=<locale>

Rscript -e "patchDVI::SweavePDF('$1')"
in your home directory, and give it executable permissions.
Replace <locale> with your locale string, e.g. en_CA.UTF-
8 for Canadian English using UTF-8 encoding. The locale
line can be omitted if you only use plain ASCII characters,
but is probably necessary for other cases.

(b) To use with knitr, create a file called
Library/TeXShop/Engines/knitr.engine

containing the lines

#!/bin/bash

export LC_ALL=<locale>

Rscript -e "patchDVI::knitPDF('$1',\
envir = globalenv())"

in your home directory, and give it executable permissions.
Replace <locale> with your locale string, e.g. en_CA.UTF-
8 for Canadian English using UTF-8 encoding. The locale
line can be omitted if you only use plain ASCII characters,
but is probably necessary for other cases.

(c) For other vignette engines, use a weave argument in the
above, as appropriate.

3. Install the patchDVI package into R.

4. When editing a .Rnw file in TeXShop, choose the knitr or Sweave
engine from the menu.

5. If you have multiple files in your project, your main file must
be a .Rnw file (e.g. Main.Rnw) which lists all .Rnw files in a
.SweaveFiles variable, and you need to add the line

13

%!TEX root = Main.Rnw

to each subordinate file.

6. For Sweave, add the \SweaveOpts{concordance=TRUE} line to
your document. For knitr, add a code chunk similar to this:

<<results='asis'>>=
patchDVI::useknitr()

@

somewhere near the start of your document.

The TeXShop previewer supports SyncTeX; you right click in the
preview, and choose Sync from the menu to jump to your source lo-
cation.

B Using patchDVI with TeXWorks

TeXWorks is an editor for multiple platforms, somewhat similar to
TeXShop. These instructions have been tested in version 0.4.5, with
MikTeX 2.9 on Windows, and version 0.6.2 from MacTeX on MacOS.

NB: Some versions of TeXWorks had a bug in setting the HOME

directory of the user. With those versions, R will not find a lo-
cally installed copy of patchDVI. To work around the bug, set the
R_USER environment variable to your Windows home directory, e.g.
R_USER=C:/Users/Murdoch.

TeXWorks can work with the patchDVI project management fea-
tures using a script to tell it to process the current file through knitr/Sweave,
but preview the main file. See the instructions below for my current
best attempt at such a script. It can also use the TeXShop approach
of specifying the TEX root file to be a .Rnw file.

The instructions are given first for Sweave, then below for knitr.

1. Add a new SweavePDF command: In

Edit | Preferences | Typesetting

click on the “+” sign near the bottom. Set the name of the
tool to be SweavePDF. Set the program to Rscript.

Add two arguments, one per line:

(a) -e

14

(b) patchDVI::SweavePDF('$fullname')

2. Install the patchDVI package into R.

3. Tell TeXWorks to open Sweave files by editing the file pattern
configuration file texworks-config.txt. This file is in the con-

figuration folder of the TeXWorks home directory. For exam-
ple, I have this line in my file:

file-open-filter: Sweave and TeX documents (*.Rnw *.tex)

4. When editing a .Rnw file in TeXWorks, choose the SweavePDF
engine from the menu.

5. Add the \SweaveOpts{concordance=TRUE} line to your docu-
ment.

6. If you are using the project management features of patchDVI

and are editing a subordinate file, TeXWorks will not open or
update the PDF preview after it processes changes. There are
four workarounds for this.

The simplest is to manually open the .pdf file the first time.
After that it will be updated automatically. Unfortunately, if
you happen to be editing the main file, the .pdf will be opened
automatically, and then updates won’t happen if you later edit
a subordinate file.

The next simplest is the TeXShop approach: include a line

%!TEX root = Main.Rnw

near the top of the file, and make sure that Main.Rnw refers to
all subordinate Sweave files.

To use TeXWorks with knitr, the instructions are very similar to
those above, but with two changes.

In step 1, replace the second line of the command (the SweavePDF

call) with the following longer command, all on one line:

patchDVI::SweavePDF('$fullname', weave = knitr::knit,

envir = globalenv())

In step 5, insert the following code chunk into your file:

<<results='asis'>>=
patchDVI::useknitr()

@

15

C Using patchDVI with WinEdt

WinEdt is a Windows editor with TEX support. The configuration
options have changed a number of times; I do not know how to imple-
ment these instructions in the latest version. These instructions apply
to version 5.5, and assume you are using it with MikTeX.

1. In Options – Execution Modes choose Texify, and click on Browse
for Executable. Find the Rscript executable in your R instal-
lation, directory bin/i386 or bin/x64, and choose it. In the
Switches line, put

-e

and in the Parameters line, put

"patchDVI::SweaveMiktex('%n%t', '%N.tex')"

The quotes are necessary!

2. Do the same for the PDF Texify command, replacing SweaveMik-

tex with SweavePDFMiktex.

3. In Options – Execution modes, make sure Start Viewer and For-
ward Search are selected for LaTeX and PDF LaTeX.

When you preview a file in yap, double clicking should jump back
to the editor. If it doesn’t (or it opens the wrong editor), while you’re
in yap choose View – Options – Inverse DVI search. You should see
“WinEdt (auto-detected)” as an option; if so, select it. If not, create
a new entry for WinEdt, and for the command line, put in

"path\to\winedt.exe" "[Open(|%f|);SelPar(%l,8)]"

after editing the path as necessary.

D Using patchDVI with RStudio

RStudio is a very nice front end for working in R and with individual
.Rnw or Markdown files. If you are using it, I’m going to assume you’re
using knitr as well, and these instructions have been worked out for
that combination.

RStudio is less flexible than the other editors for specifying cus-
tomized processing of a file, so these instructions were worked out

16

assuming that you already have it configured for knitr. It is probably
possible to do something similar for Sweave; I just haven’t tried.

You need to set up your individual chapter files as for TeXShop/TeXWorks,
i.e. with a

%!TEX root = Main.Rnw

comment at the top of each. This tells RStudio to run knitr on the
main file when you click Compile PDF. (It will also work if you use
the knitr style

%!RNW root = Main.Rnw

but then your files won’t work in TeXShop/TeXWorks.)
In the main file, you need a code chunk containing a line to set

the .SweaveFiles variable naming all chapter files (but not the main
file), and then running knitInRStudio:

> .SweaveFiles <- c("a.Rnw", "b.Rnw")

> patchDVI::knitInRStudio()

It is safe to put these lines in your file even if you sometimes process
it in a different way: if you are not in RStudio, knitInRStudio does
nothing.

One remaining issue with this approach is that you won’t see the
knitr progress messages from knitting the chapter files. If you want
to see those messages, add the chunk option childOutput = TRUE to
the code chunk holding this code.

17

	Introduction
	Quick Start Instructions
	patchDVI History
	Sweave Concordances
	Technical description of concordance records

	Patching .dvi Files
	Patching .synctex Files
	Project Management Functions
	The Complete Process
	Installing or Loading Packages

	Conclusion
	Using patchDVI with TeXShop
	Using patchDVI with TeXWorks
	Using patchDVI with WinEdt
	Using patchDVI with RStudio

