Package 'passt'

December 5, 2019

Type Package

Title Probability Associator Time (PASS-T)

Version 0.1.1

Description Simulates judgments of frequency and duration based on the Probability Associator Time (PASS-T) model. PASS-T is a memory model based on a simple competitive artificial neural network. It can imitate human judgments of frequency and duration, which have been extensively studied in cognitive psychology (e.g. Hintzman (1970) <doi:10.1037/h0028865>, Betsch et al. (2010) https://psycnet.apa.org/record/2010-18204-003). The PASS-T model is an extension of the PASS model (Sedlmeier, 2002, ISBN:0198508638). The package provides an easy way to run simulations, which can then be compared with empirical data in human judgments of frequency and duration.

License GPL-3
Encoding UTF-8
LazyData true

RoxygenNote 7.0.2

URL https://github.com/johannes-titz/passt

BugReports https://github.com/johannes-titz/passt/issues

Suggests knitr, ggplot2, plyr, testthat (>= 2.1.0), covr

VignetteBuilder knitr

Imports magrittr, methods, dplyr, tidyr, rlang

NeedsCompilation no

Author Johannes Titz [aut, cre]

Maintainer Johannes Titz < johannes . titz@gmail.com>

Repository CRAN

Date/Publication 2019-12-05 14:30:02 UTC

run_exp

R topics documented:

	run_sim	٠	 	٠	 •	•		 •		•	•	•	 •	٠	•	•	•	•	•	•	•	 •		•	•	•		3
Index																												5

run_exp

Run simulations and analyze data

Description

Runs several simulations and returns correlative effect sizes between the frequency/total duration/single duration of each pattern and the output activation of the network for each pattern, respectively. Comparable to running an empirical experiment in judgments of frequency and duration and analyzing the data.

Usage

```
run_exp(
   frequency,
   duration,
   lrate_onset,
   lrate_drop_time,
   lrate_drop_perc,
   patterns = diag(length(duration)),
   number_of_participants = 100,
   cor_noise_sd = 0
)
```

Arguments

frequency presentation frequency for each pattern in the matrix duration presentation duration for each pattern in the matrix lrate_onset learning rate at the onset of a stimulus lrate_drop_time point at which the learning rate drops, must be lower than duration lrate_drop_perc how much the learning rate drops at lrate_drop_time patterns matrix with input patterns, one row is one pattern number_of_participants corresponds with number of simulations run cor_noise_sd the amount of noise added to the final activations of the network, set to 0 if you do not want any noise

run_sim 3

Value

data frame with three columns: f_dv, td_dv, t_dv which are the correlations between the frequency/total duration/single duration of each pattern and the activation of the network for each pattern, respectively.

See Also

```
run_sim
```

Examples

```
run_exp(10:1, 1:10, 0.05, 2, 0.2)
```

run_sim

Run simulations

Description

Runs several simulations and returns output activation for each simulation and each input pattern

Usage

```
run_sim(
  patterns,
  frequency,
  duration,
  lrate_onset,
  lrate_drop_time,
  lrate_drop_perc,
  n_runs = 100,
  n_output_units = ncol(patterns),
  pulses_per_second = 1
)
```

Arguments

```
matrix with input patterns, one row is one pattern
patterns
frequency
                  presentation frequency for each pattern in the matrix
                  presentation duration for each pattern in the matrix
duration
                  learning rate at the onset of a stimulus
lrate_onset
lrate_drop_time
                  point at which the learning rate drops, must be lower than duration
lrate_drop_perc
                  how much the learning rate drops at lrate_drop_time
                  number of simulations to be run, default is 100
n_runs
n_output_units number of output units, defaults to number of input units
pulses_per_second
```

how many time steps should be simulated per second

run_sim

Value

list with following elements

• output: the sum of the activation strengths of the output units for each input pattern

• weight_matrix: final weight_matrix

• pres_matrix: presentation matrix

See Also

```
run_exp
```

Examples

```
run_sim(diag(10), 1:10, 10:1, 0.05, 2, 0.2)
```

Index

```
\begin{array}{c} \text{run\_exp, 2, 4} \\ \text{run\_sim, 3, 3} \end{array}
```