
A generating function for restricted partitions

Robin K. S. Hankin

Auckland University of Technology

Abstract

A generating function for restricted partitions (originally due, as far as I can tell, to
Wilf (2000)) is presented and R idiom using the spray package given. The generating func-
tion approach is shown to be not particularly efficient compared to the direct enumeration
used in the partitions package.

Keywords: Restricted partitions, generating function, R.

1. Introduction

The partitions package gives functionality for various integer partition enumeration problems
including that of restricted partitions, function restrictedparts():

> library("partitions")

> jj <- restrictedparts(7,3)

[1,] 7 6 5 4 5 4 3 3

[2,] 0 1 2 3 1 2 3 2

[3,] 0 0 0 0 1 1 1 2

> ncol(jj)

[1] 8

Here I will consider function R(), which calculates the size of the matrix required:

> R(3,7,include.zero=TRUE)

[1] 8

Function R() is very basic; all it does is to go through all the restricted partitions, counting
them one by one until the recursion bottoms out:

unsigned int numbrestrictedparts(int *x, const int m){

unsigned int count=1;



2 A generating function for restricted partitions

while(c_nextrestrictedpart(x, &m)==0){

count++;

}

return count;

}

To implement a potentially more efficient method, we can use generating functions. Here we
follow Wilf and, using his terminology, define an infinite polynomial P (x, y) as follows:

P (x, y) =

∞
∏

r=0

1

1− xry
(1)

Or, expanding:

P (x, y) =
(

1 + y + y2 + y3 + · · ·

) (

1 + xy + x2y2 + x3y3 + · · ·

)

· · ·

(

1 + xry + x2ry2 + x3ry3 + · · ·

)

· · ·

(2)

The power of x counts the total of the chosen integers (the size of the partition), and the
power of y counts the number of integers chosen (the length of the partition). Thus the
number of partitions of k into at most n parts is the coefficient of xkyn in P (x, y).

In numerical work it is convenient and efficient to ignore terms with a power of x higher
than n (sum of integers chosen exceeds n), or with power of y higher than k (number of
integers chosen exceeds k)

Taking R(3,7,include.zero=TRUE) as an example we would truncate equation 2 as follows:

P (x, y) =
(

1 + y + y2 + y3
) (

1 + xy + x2y2 + x3y3
) (

1 + x2y + x4y2 + x6y3
)

×

(

1 + x3y + x6y2
) (

1 + x4y
) (

1 + x5y
) (

1 + x6y
) (

1 + x7y
)

(3)

and the coefficients of P (x, y) up to x7y3 would correctly count the restricted partitions.

Note that we need consider only at most four terms in each bracket (powers of y above three
being irrelevant) and we may stop the continued product at the x7 term as further brackets
contain only one and powers of x above the eighth.

The R implementation uses the spray package, in particular function ooom(x) which re-
turns 1

1−x
.

> library("spray")

> R_gf <- function(k,n){ # version 1

+ x <- spray(cbind(1,0))

+ y <- spray(cbind(0,1))

+ P <- ooom(y,k) # term x^0; number of zeros chosen

+ for(i in seq_len(k)){ # starts at 1

+ P <- P*ooom(x^i*y,n)

+ }

+ return(value(P[k,n]))

+ }



Robin K. S. Hankin 3

Thus

> R_gf(7,3)

[1] 8

We can do slightly better in terms of efficiency by ruthlessly cutting out powers higher than
needed:

> strip <- function(P,k,n){ # strips out powers higher than needed

+ ind <- index(P)

+ val <- value(P)

+ wanted <- (ind[,1] <= k) & (ind[,2] <= n)

+ spray(ind[wanted,],val[wanted])

+ }

which is used here:

> R_gf2 <- function(k,n,give_poly=FALSE){

+ x <- spray(cbind(x=1,y=0))

+ y <- spray(cbind(x=0,y=1))

+ P <- ooom(y,k) # term x^0

+ for(i in seq_len(k)){ # starts at 1

+ P <- strip(P*ooom(spray(cbind(i,0))*y, min(n,ceiling(k/i))),k,n)

+ }

+ if(give_poly){

+ return(P)

+ } else {

+ return(value(P[k,n]))

+ }

+ }

then

> R_gf2(7,3)

[1] 8

2. Computational efficiency

We can test the computational efficiency of the generating function approach using larger
values of k and n:

> k <- 140

> n <- 4



4 A generating function for restricted partitions

> system.time(jj1 <- R(n,k,include.zero=TRUE))

user system elapsed

0 0 0

> system.time(jj2 <- R_gf2(k,n))

user system elapsed

0.897 0.008 0.905

> jj1==jj2

[1] TRUE

So the generating function approach is not particularly efficient, at least not in this sort of
use-case with the spray package. It might be better with the skimpy package; I don’t know.

Of course, R_gf2() calculates the generating polynomial which gives very much more infor-
mation than is returned. Perhaps this is why it is so slow compared to function R(), although
it is surprising to see direct enumeration so heavily outperforming a generating function.

References

Wilf HS (2000). “Lectures on Integer Partitions.”

Affiliation:

Robin K. S. Hankin
Auckland University of Technology
AUT Tower
Wakefield Street
Auckland, New Zealand
E-mail: hankin.robin@gmail.com


	Introduction
	Computational efficiency

