Package ‘partial AR’

April 14, 2020
Type Package

Title Partial Autoregression
Version 1.0.12
Date 2020-04-12

Description A time series is said to be partially autoregressive if it can be repre-
sented as a sum of a random walk and an autoregressive sequence without unit roots. This pack-
age fits partially autoregressive time series, where the autoregressive compo-
nent is AR(1). This may be of use in modeling certain financial time series.

License GPL-2 | GPL-3

Imports Rcpp (>=0.11.2), zoo, parallel, ggplot2, MASS, tseries,
data.table, KFAS, urca, plot3D, methods

Suggests egcm, TTR

LinkingTo Rcpp

NeedsCompilation yes

Author Matthew Clegg [aut, cre, cph]

Maintainer Matthew Clegg <matthewcleggphd@gmail . com>
Repository CRAN

Date/Publication 2020-04-14 09:10:02 UTC

R topics documented:

partialAR-package 2
as.data.frame.par.fit 4
ESHMALE.PAT v o e e e e e e e e e e e e e e e 6
fitpar 7
kalman.gain.par e e 11
likelihood_ratio.par e e e 13
loglik.par e 14
PVIOLDAT . . . o ottt et e e e e e e e e e e e e 15
TPAT o v v o e 16
sample.likelihood_ratio.par 18

2 partialAR-package

StatehiStory.par e e e e e e e e e e 20
TESLPAT .« o v v e e e e e e e e e e e e e e e 21
which.hypothesis.partest L 23
Index 25
partialAR-package Partial autoregression
Description

Fits time series models which consist of a sum of a permanent and a transient component. The
permanent component is modeled as a random walk, while the transient component is modeled as
an autoregressive series of order one.

Details

Package: partialAR
Type: Package
Version: 1.0
Date: 2015-01-12
License: GPL-2 | GPL-3

This package fits time series models which consist of a sum of a permanent and a transient compo-
nent. In other words, the model fitted is:

X =M+ R,

My = pM;_1 + ey
Ry = Ri_1+e€ry
-1<p<l1
enrt ~ N(0,0%;)

ert ~ N(0, O’%)

This model may be useful when modeling a time series that is thought to be primarily mean-
reverting but which may also contain some random drift.

Disclaimer

DISCLAIMER: The software in this package is for general information purposes only. It is hoped
that it will be useful, but it is provided WITHOUT ANY WARRANTY; without even the implied
warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. It is not in-
tended to form the basis of any investment decision. USE AT YOUR OWN RISK!

partialAR-package 3

Author(s)

Matthew Clegg
Maintainer: Matthew Clegg <matthewcleggphd @ gmail.com>

References

Summers, Lawrence H. Does the stock market rationally reflect fundamental values? Journal of
Finance, 41(3), 591-601.

Poterba, James M. and Lawrence H. Summers. Mean reversion in stock market prices: Evidence
and implications. Journal of Financial Economics, 22(1), 27-59.

Clegg, Matthew. Modeling Time Series with Both Permanent and Transient Components using the
Partially Autoregressive Model. Available at SSRN: http://ssrn.com/abstract=2556957

See Also

arima ARIMA modeling of time series

egcem Engle-Granger cointegration model

Examples

set.seed(1)
x <- rpar(1000, 0.8, 1, 0.5) # Generate a random PAR sequence

fit.par(x) # Estimate its parameters
plot(fit.par(x)) # Plot the estimate
test.par(x) # Test the goodness of fit

An example involving European stock market data
data(EuStockMarkets) # European Stock Markets 1991-1998

Check for cointegration between German DAX and Swiss SMI
library(egcm)
egcm(log(EuStockMarkets[,c("DAX", "SMI")1))

The series are not found to be cointegrated.

Perhaps they are partially cointegrated? Check the residuals
of the cointegration fit for partial autoregression:
fit.par(egcm(EuStockMarkets[,c("DAX", "SMI")]1)$residuals)

A plot of the model looks promising:
Not run: plot(fit.par(egcm(EuStockMarkets[,c("DAX", "SMI")])$residuals))

74% of the variance is attributed to a mean-reverting

AR(1) process. However, it is important to check whether this is
a better explanation than a simple random walk:
test.par(egcm(EuStockMarkets[,c("DAX", "SMI")]1)$residuals)

The p-value is found to be 0.36, so the random walk hypothesis
cannot be rejected.

4 as.data.frame.par.fit

Another example involving a potential pairs trade between
Coca-Cola and Pepsi.

Fetch the price series for Coca-Cola (KO) and Pepsi (PEP) in 2014
library(TTR)

KO <- getYahooData("K0", 20140101, 20141231)$Close

PEP <- getYahooData("PEP", 20140101, 20141231)$Close

Check whether they were cointegrated
egem(KO, PEP)

It turns out that they are not cointegrated. Perhaps a better
fit can be obtained with the partially autoregressive model:
fit.par(egcem(KO,PEP)$residuals)

The mean-reverting component of the above fit explains 90% of
the variance of the daily returns. Thus, it appears that the
two series are close to being cointegrated. A plot further

confirms this:

plot(fit.par(egcm(KO,PEP)$residuals))

Still, it is important to check whether or not the residual
series is simply a random walk:
test.par(egem(KO,PEP) $residuals)

In this case, the p-value associated with the hypothesis that

the series is partially autoregressive is 0.12. Thus, the

evidence of partial autoregression is marginal. The random walk
may be a better explanation.

as.data.frame.par.fit Convert a fit of the PAR model to a single row data.frame

Description

Convert a fit of the PAR model to a single row data.frame

Usage
S3 method for class 'par.fit'
as.data.frame(x, row.names, optional, ...)
Arguments
X An object of class par.fit. See fit.par
row.names Not used
optional Not used

Not used

as.data.frame.par.fit 5

Value
Returns a single row data.frame, with the following columns:

robust TRUE if robust estimation was used.

nu If robust is TRUE, then this is the degrees-of-freedom parameter used in the
t-distribution for the robust estimation.

opt_method The optimization method that was used for finding these parameters.

n Length of the vector that was fit to the PAR model

rho Estimate of the coefficient of mean reversion

sigma_M Estimate of the standard deviation of the innovations of the transient (mean-

reverting) component.

sigma_R Estimate of the standard deviation of the innovations of the permanent (random
walk) component.

Mo Estimate of the initial value of the transient component.

RO Estimate of the initial value of the permanent component.

rho.se Standard error of the estimate of rho.

sigma_M.se Standard error of the estimate of sigma_M.

sigma_R.se Standard error of the estimate of sigma_R.

MO.se Standard error of the estimate of M.

RO.se Standard error of the estimate of RO.

lambda Value of the penalty factor lambda that was used in computing the estimates.

pvmr Proportion of variance attributable to mean reversion.

negloglik Negative log-likelihood of the model given these parameters.
Author(s)

Matthew Clegg <matthewcleggphd@gmail . com>

See Also

fit.par

Examples

require(TTR)

L <- getYahooData("L", 20120101, 20131231)$Close
fit.par(L)

as.data.frame(fit.par(L))

6 estimate.par

estimate.par Estimates the parameters of a partially autoregressive fit using lagged
variances

Description

Estimates the parameters of a partially autoregressive fit using lagged variances

Usage

estimate.par(X, useR = FALSE, rho.max = 1)

Arguments
X A numeric vector or zoo vector representing the time series whose parameters
are to be estimated
useR If TRUE, the estimation is performed using R code. If FALSE, the estimation is
performed using a faster C++ implementation. Default: FALSE.
rho.max An artificial upper bound to be imposed on the value of rho.
Details

The method of lagged variances provides an analytical formula for the parameter estimates in terms
of the variances of the lags X[t + 1] — X[¢], X[t + 2] — X[t] and X[t + 3] — X[t]. Let

VIk] = var(X[t + k] — X[t]).
Then, the estimated parameter values are given by the following formulas:
rho=—(V[1] =2V [2] + V[3])/(2V[1] — V[2])
sigma%; = (1/2)((rho + 1)/(rho — 1)(V[2] - 2V[1])
sigma}, = (1/2)(V[2] - 2sigma3,)
Value

Returns a numeric vector containing three named components

rho The estimated value of rho

sigma_M The estimated value of sigma_M

sigma_R The estimated value of sigma_R
Author(s)

Matthew Clegg <matthewcleggphd@gmail . com>

fit.par 7

References

Clegg, Matthew. Modeling Time Series with Both Permanent and Transient Components using the
Partially Autoregressive Model. Available at SSRN: http://ssrn.com/abstract=2556957

See Also

fit.par

Examples

set.seed(1)

x <- rpar(1000, 0.5, 1, 2) # Generate a random PAR sequence
estimate.par(x)

fit.par(x) # For comparison

fit.par Fit a partially autoregressive model

Description

Fit a partially autoregressive model

Usage
fit.par(y,
robust = FALSE,
model = c("par”, "arl”, "rw"),
lambda = 0,
opt_method = c("css", "kfas", "ss"),

rho.max = 1,
nu = par.nu.default())

Arguments
Y A numeric vector or zoo vector representing the time series whose parameters
are to be estimated
robust If TRUE, then the error terms in the fit are assumed to follow a Student’s t-
distribution with degrees of freedom parameter given by nu. Otherwise, the
error terms are assumed to be normally distributed. Default: FALSE.
model Specifies the model that is to be fit. Possible values are
* "par" The partially autoregressive model is fit.
e "arl" An autoregressive model of order one is fit.
* "rw" A random walk is fit.
Default: par
lambda A penalty term lambdasigma? is added to the likelihood function. Default:

lambda = 0.

8 fit.par

opt_method Specifies the Kalman filter that will be used for optimization:
* "ss" Steady-state Kalman filter
* "css" Steady-state Kalman filter coded in C++
» "kfas" Kalman filter implementation of the KFAS package
Default: css
rho.max Specifies an upper limit on the value of rho that will be returned.

nu If robust is TRUE, this specifies the value of the degrees-of-freedom parameter
used by the t-distribution. Default: 5

Details

This routine determines the maximum likelihood fit of a time series to the partially autoregressive
model, which is given by the specification:

Xe =M+ Ry

My =pMi_1 +epme
Ry =Ri_1 +e€ry
-1<p<l1
enr ~ N(0,03%))

ert ~ N (0, O’%)

The partially autoregressive model is a candidate for working with time series having both perma-
nent and transient components.

If robust is TRUE, then a form of robust estimation is used. The error term is assumed to follow a
Student’s t-distribution with nu degrees of freedom.

The model parameter is used to alter the model that is fit. If model is "par”, then the partially
autoregressive model is fit. If model is "ar1”, then an AR(1) model is fit. This is performed by
fitting the partially autoregressive model with the restriction that sigmapr = 0. If model is "rw",
then a random walk model is fit. This is performed by fitting the partially autoregressive model with
the restriction that sigmay; = 0.

The parameter 1ambda specifies the weighting of a penalty term that is added to the likelihood func-
tion. When lambda > 0, this drives the optimizer towards a solution that places a greater weight on
the transient (mean-reverting) component, and when lambda < 0, this drives the optimizer towards
a solution that places a greater weight on the permanent (random walk) component.

The fit is performed using maximum likelihood estimation for a Kalman filter representation of
the model. When opt_method is "ss"” or "css”, a steady-state Kalman filter is used. These two
methods should give the same result, although "css” is to be preferred because the implementation
is much faster. When opt_method is "kfas”, the KFAS Kalman Filter package KFAS is used.
Because the Kalman gain matrix takes some time to converge to its steady state value, the "kfas”
implementation will yield values that are close to but not the same as those of "ss"” and "css”.

This routine prints the model that is found. The following is an example of the output obtained in
one particular run:

fit.par 9

Fitted model:
X[t] = M[t] + R[t]
M[t] = ©.9427 M[t-1] + eps_M,t, eps_M,t ~ N(0, ©.8843"2)

(0.0302) (0.0685)
R[t] = R[t-1] + eps_R,t, eps_R,t ~ N(0, 0.2907"2)
(0.1710)

M_0 = 0.0000, R_Q = -5.2574
(NA) (0.9625)
Proportion of variance attributable to mean reversion (pvmr) = 0.9050
Negative log likelihood = 339.51

In this ouptut, the coefficient of mean reversion rho is found to be 0.9427 with a standard error of
0.0302. This corresponds to a half-life of mean reversion of 10g(0.5)/10g(0.9427) = 11.7 days. The
parameter sigma_M is found to be 0.8843 with a standard error 0.0685. The parameter sigma_R
is found to be 0.2907 with a standard error of 0.1710. The parameters M[@] and R[@] are 0.0 and
-5.2574, respectively.

An important measure of the quality of fit of the partially autoregressive model is the proportion of
variance attributable to mean reversion. This is a number between zero and one. When it is zero,
the best fit is a pure random walk, and when it is one, the best fit is a pure mean-reverting series. In
this case, it is found to be 0.9050, indicating that the mean-reverting component dominates.

The negative log likelihood of this particular fit is 339.51.

A plot method is available for plotting the fit, and the test.par method is available for testing the
null hypotheses that an adequate fit can be obtained with a pure random walk or pure autoregressive
series.

Value

An S3 object of class fit.par is returned. The object contains the following values:

data The input vector Y

robust The input parameter robust

nu The input parameter nu

model The input parameter model

lambda The input parameter lambda

opt_method The input parameter opt_method

rho.max The input parameter rho.max

rho The estimate of the parameter rho

sigma_M The estimate of the parameter sigma_M
sigma_R The estimate of the parameter sigma_R

Mo The estimate of the parameter M[@]

RO The estimate of the parameter R[0]

par The vector (rho,sigma_M, sigma_R,M0,R0)
stderr The vector of standard errors

negloglik The negative of the log likelihood score for these parameters

pvmr The proportion of variance attributable to mean reversion (see pvmr.par)

10 fit.par

Disclaimer

DISCLAIMER: The software in this package is for general information purposes only. It is hoped
that it will be useful, but it is provided WITHOUT ANY WARRANTY; without even the implied
warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. It is not in-
tended to form the basis of any investment decision. USE AT YOUR OWN RISK!

Author(s)

Matthew Clegg <matthewcleggphd@gmail.com>

References

Summers, Lawrence H. Does the stock market rationally reflect fundamental values? Journal of
Finance, 41(3), 591-601.

Poterba, James M. and Lawrence H. Summers. Mean reversion in stock market prices: Evidence
and implications. Journal of Financial Economics, 22(1), 27-59.

Clegg, Matthew. Modeling Time Series with Both Permanent and Transient Components using the
Partially Autoregressive Model. Available at SSRN: http://ssrn.com/abstract=2556957

See Also

arima ARIMA modeling of time series

egcm Engle-Granger cointegration model

Examples

set.seed(1)
x <- rpar(1000, 0.8, 1, 0.5) # Generate a random PAR sequence

fit.par(x) # Estimate its parameters
Not run: plot(fit.par(x) # Plot the estimate
test.par(x) # Test the goodness of fit

An example involving European stock market data
data(EuStockMarkets) # European Stock Markets 1991-1998

Check for cointegration between German DAX and Swiss SMI
library(egcm)
egcm(log(EuStockMarkets[,c("DAX", "SMI")1))

The series are not found to be cointegrated.

Perhaps they are partially cointegrated? Check the residuals
of the cointegration fit for partial autoregression:
fit.par(egcm(EuStockMarkets[,c("DAX", "SMI")]1)$residuals)

A plot of the model looks promising:
Not run: plot(fit.par(egcm(EuStockMarkets[,c("DAX", "SMI")])$residuals))

74% of the variance is attributed to a mean-reverting

kalman.gain.par 11

AR(1) process. However, it is important to check whether this is
a better explanation than a simple random walk:
test.par(egecm(EuStockMarkets[,c("DAX", "SMI")])$residuals)

The p-value is found to be 0.36, so the random walk hypothesis
cannot be rejected.

Another example involving a potential pairs trade between
Coca-Cola and Pepsi.

Fetch the price series for Coca-Cola (KO) and Pepsi (PEP) in 2014
library(TTR)

KO <- getYahooData("K0", 20140101, 20141231)$%Close

PEP <- getYahooData("PEP", 20140101, 20141231)$Close

Check whether they were cointegrated
library(egcm)
egem(KO, PEP)

It turns out that they are not cointegrated. Perhaps a better
fit can be obtained with the partially autoregressive model:
fit.par(egcm(KO,PEP)$residuals)

The mean-reverting component of the above fit explains 90% of
the variance of the daily returns. Thus, it appears that the
two series are close to being cointegrated. A plot further

confirms this:

plot(fit.par(egcm(KO,PEP)$residuals))

Still, it is important to check whether or not the residual
series is simply a random walk:
test.par(egem(KO,PEP) $residuals)

In this case, the p-value associated with the hypothesis that

the series is partially autoregressive is 0.12. Thus, the

evidence of partial autoregression is marginal. The random walk
may be a better explanation.

kalman.gain.par Kalman gain matrix of the partially autoregressive model

Description

Kalman gain matrix of the partially autoregressive model

Usage

kalman.gain.par(rho, sigma_M, sigma_R)

12 kalman.gain.par

Arguments
rho The coefficient of mean reversion
sigma_M The standard deviation of the innovations of the mean-reverting component
sigma_R The standard deviation of the innovations of the random walk component
Details

The state space representation of the partially autoregressive model is given as

[M[t] 1] [rho @ 1 [M[t-1] 1] [epsilon_M[t]]
L 1 =TI 1L 1 + []
[RCt]] [o 11 LCRIt-1] 1 [epsilon_R[t]]
where the innovations epsilon_M[t] and epsilon_R[t] have the covariance matrix
[epsilon_M[t] 1] [sigma_M*2 0]
L 1 ~ I]
[epsilon_R[t] 1] [o sigma_R*2 1]

The steady state Kalman gain matrix is given by the matrix

[KM 1
L]
[KR]
where
K = 2sigma’;/(sigmag*(sqrt((rho+1)2sigmas+4sigmai;)+(rho+1)sigmar)+2sigmai,)

anngzl—KM.

Value

Returns a two-component vector (K_M,K_R) representing the Kalman gain matrix.

Author(s)

Matthew Clegg <matthewcleggphd@gmail.com>

References
Clegg, Matthew. Modeling Time Series with Both Permanent and Transient Components using the
Partially Autoregressive Model. Available at SSRN: http://ssrn.com/abstract=2556957

See Also

fit.par

Examples

kalman.gain.par(@, 1, @) # -> c(1, 0) (pure AR(1))
kalman.gain.par(o, @, 1) # -> c(0, 1) (pure random walk)
kalman.gain.par(@.5, 1, 1) # -> c(0.3333, 0.6667)

likelihood_ratio.par 13

likelihood_ratio.par Computes log likelihood ratio for partial autoregressive model

Description

Computes the log likelihood ratio for the partially autoregressive model.

First, a fit is performed for the specified null model. Then, a fit is performed for the alternative
model that the sequence is partially autoregressive. The likelihood scores are computed for both
models, and the log likelihood ratio is returned.

Usage

likelihood_ratio.par(X, robust = FALSE, null_model = c("rw"”, "ar1"),
opt_method = c("css”, "kfas”, "ss"), nu = par.nu.default())

Arguments

X The numeric vector or zoo vector to which the partially autoregressive model is
being fit.

robust If TRUE, then errors are assumed to follow a t-distribution with nu degrees of
freedom. If FALSE, then errors are assumed to follow a normal distribution.
Default: FALSE

null_model Specifies the null hypothesis:

e "rw" Pure random walk (e.g., sigma_M = 0)

e "arl" Pure autoregressive (e.g., sigma_R = 0)
Default: "rw"
opt_method The method to be used for calculating the negative log likelihood.

* "ss" Steady-state Kalman filter with normally distributed errors

* "css" Steady-state Kalman filter with normally distributed errors, coded in
C++

* "kfas" Traditional Kalman filter of the KFAS package
Default: "css”

nu If robust is TRUE, this specifies the number of degrees of freedom of the t-
distribution. Default: 5

Value

A numeric value representing the log likelihood ratio

Author(s)

Matthew Clegg <matthewcleggphd@gmail . com>

14 loglik.par

References

Clegg, Matthew. Modeling Time Series with Both Permanent and Transient Components using the
Partially Autoregressive Model. Available at SSRN: http://ssrn.com/abstract=2556957

See Also
fit.par

loglik.par Negative log likelihood of a partially autoregressive fit

Description

Negative log likelihood of a partially autoregressive fit

Usage
loglik.par(Y, rho, sigma_M, sigma_R, M0 = @, RO = Y[1],

calc_method = c("css”, "kfas", "ss", "sst”, "csst"),
nu = par.nu.default())
Arguments
Y A numeric vector representing the time series to which the partially autoregres-
sive model is being fit.
rho The coefficient of mean reversion
sigma_M Standard deviation of the innovations of the mean-reverting process
sigma_R Standard deviation of the innovations of the random walk process
Mo Initial value of the mean-reverting process
RO Initial value of the random walk process

calc_method The method to be used for calculating the negative log likelihood.

* "ss" Steady-state Kalman filter with normally distributed errors

* "css” Steady-state Kalman filter with normally distributed errors, coded in
C++

e "kfas" Traditional Kalman filter of the KFAS package

* "sst” Steady-state Kalman filter with t-distributed errors

* "csst” Steady-state Kalman filter with t-distributed errors, coded in C++

Default: "css”

nu If calc_method is "sst” or "csst”, this specifies the number of degrees of
freedom of the t-distribution.

Value

Returns the negative log likelihood of fitting the partially autoregressive model with parameters
(rho,sigma_M, sigma_R,M@,R0) to the data series Y.

pvmr.par 15

Author(s)

Matthew Clegg <matthewcleggphd@gmail.com>

References
Clegg, Matthew. Modeling Time Series with Both Permanent and Transient Components using the
Partially Autoregressive Model. Available at SSRN: http://ssrn.com/abstract=2556957

See Also

fit.par

Examples

loglik.par(0,0,0,1) # -> same as -log(dnorm(@))
loglik.par(0,0,1,0) # -> same as -log(dnorm(Q))
loglik.par(@,0,1,1) # -> same as -log(dnorm(@,0,sqrt(2)))

pvmr.par Proportion of variance attributable to mean reversion

Description

Proportion of variance attributable to mean reversion of a partially autoregressive model

Usage

pvmr.par(rho, sigma_M, sigma_R)

Arguments
rho The coefficient of mean reversion
sigma_M The standard deviation of the innovations of the mean-reverting component
sigma_R The standard deviation of the innovations of the random walk component
Details

This routine determines the proportion of variance attributable to mean reversion for a partially
autoregressive model. The partially autoregressive model is given by the specification:

Xi =M+ Ry
My = pM;_1 +ene
Ry =Ri_1 +e€py
-1<p<l1

16 rpar

The proportion of variance attributable to mean reversion is defined as
R*[MR] = Var((1 — B)M[t])/Var((1 — B)X[t])

where M[t] is the mean-reverting component of the system at time t, X[t] is the state of the entire
system at time t, and B is the backshift operator.

It will be a value between zero and one, with zero indicating that none of the variance is attributable
to the mean reverting component, and one indicating that all of the variance is attributable to the
mean-reverting component.

In the case of the partially autoregressive model, the proportion of variance attributable to mean
reversion is given by the following formula:

R?*[MR] = 2sigma3;/(2sigma3,; + (1 4 rho)sigmaZ,)

Value

Returns the proportion of variance attributable to mean reversion for the parameter values (rho, sigma_M, sigma_R).

Author(s)

Matthew Clegg <matthewcleggphd@gmail . com>

References

Clegg, Matthew. Modeling Time Series with Both Permanent and Transient Components using the
Partially Autoregressive Model. Available at SSRN: http://ssrn.com/abstract=2556957

See Also

fit.par

Examples

pvmr.par(0,0,1) # -> 0
pvmr.par(0,1,0) # -> 1
pvmr.par(0,1,1) # -> 0.6667
pvmr.par(0.5,1,1) # -> 0.5714
pvmr.par(0.5,1,2) # -> 0.25

rpar Random partially autoregressive sequence

Description

Random partially autoregressive sequence

rpar

Usage

rpar(n, rho, sigma_M, sigma_R, M0 = @, RO = 0,
include.state =

Arguments
n
rho
sigma_M
sigma_R
Mo
RO

include.state

robust

nu

Details

17

= FALSE, robust = FALSE, nu = par.nu.default())

Length of sequence to generate

The coefficient of mean reversion

The standard deviation of the innovations of the mean-reverting component
The standard deviation of the innovations of the random walk component
Initial state of mean-reverting component

Initial state of random walk component

If TRUE, a data.frame is returned containing the states of the mean-reverting
and random walk components. Otherwise, a numeric vector is returned contain-
ing the state of the system. Default: FALSE.

If TRUE, innovations are t-distributed. Otherwise, they are normally distributed.
Default: FALSE.

If robust is TRUE, then this is the degrees of freedom parameter to be used in
the t-distributed innovations.

Generates a random sequence according to the specification of the partially autoregressive model.
The partially autoregressive model is given as

Xy =M + Ry

My =pMi_1 +epme
Ri=Ri_1 +e€Rpy

-1<p<l1

To generate the random sequence, the sequences epsilon_M[t] and epsilon_R[t] are first gener-
ated. These are then used to build up the sequences M[t], R[t] and X[t].

Value

If include. state is FALSE, then returns the sequence X[t]. Otherwise, returns a data. frame with
the following columns:

X
M
R
eps_M
eps_R

State of the system

State of the mean-reverting component

State of the random walk component
Innovations in the mean-reverting component

Innovations in the random walk component

18 sample.likelihood_ratio.par

Author(s)

Matthew Clegg <matthewcleggphd@gmail.com>

References
Clegg, Matthew. Modeling Time Series with Both Permanent and Transient Components using the
Partially Autoregressive Model. Available at SSRN: http://ssrn.com/abstract=2556957

See Also

fit.par

Examples

set.seed(1)
X <- rpar(10000, 0.5, 2, 1)

library(tseries)

adf. test(x) # Seems to contain a unit root, as expected
estimate.par(x) # Estimate parameters using lagged variances
fit.par(x) # Maximum likelihood estimate

sample.likelihood_ratio.par
Generates random samples of the likelihood ratio for the partially au-
toregressive model

Description

Generates random samples of the likelihood ratio for the partially autoregressive model

Usage

sample.likelihood_ratio.par(n = 500, rho = 0.8, sigma_M = 1, sigma_R =1,
nrep = 1000, use.multicore = TRUE, robust = FALSE,
nu = par.nu.default(), seed.start = 0)

Arguments

n Length of the randomly generated sequence. Possibly a vector.

rho The coefficient of mean reversion. Possibly a vector.

sigma_M Standard deviation of the innovations of the mean-reverting process. Possibly a
vector.

sigma_R Standard deviation of the innovations of the random walk process. Possibly a
vector.

nrep Number of repetitions to perform

use.multicore If TRUE, then the parallel package is used to speed up processing.

robust

nu

seed.start

Details

sample.likelihood_ratio.par 19

If TRUE, then sequences containing t-distributed errors are generated, and robust
fits are performed. Possibly a vector.

If robust is TRUE, then this is the degrees-of-freedom parameter to be used.
Possibly a vector.

Starting seed to use for the random number generator.

The purpose of this function is to facilitate studying the behavior of the fit.par function by gen-
erating random partially autoregressive sequences and determining the maximum likelihood fits to
them. For each combination of parameter values given by n, rho, sigma_M, sigma_R, robust and
nu, generates nrep random partially autoregressive sequences with these parameters. Then, uses
fit.par to fit the sequence using the partially autoregressive model, the pure random walk model
and the pure mean reversion model. Returns a data. frame containing the results of the fits.

Value

A data. frame with the following columns

n
rho

sigma_M
sigma_R
robust

nu

seed

rw_rho
rw_sigma_M
rw_sigma_R
rw_negloglik
mr_rho
mr_sigma_M
mr_sigma_R

mr_negloglik

par_rho
par_sigma_M
par_sigma_R
par_negloglik
rw_lrt

mr_lrt
kpss_stat
kpss_p

pvmr

The length of the sequence

The value of rho that was used for generating the sequence

The value of sigma_M that was used for generating the sequence

The value of sigma_R that was used for generating the sequence

0 if normally distributed innovations, 1 if t-distributed innovations

If t-distributed innovations, the value of the degrees of freedom parameter

The value used for seeding the random number generator

The value of rho estimated using the pure random walk model (always 0)

The value of sigma_M estimated using the pure random walk model (always 0)
The value of sigma_R estimated using the pure random walk model

The negative log likelihood of the fit obtained with the pure random walk model
The value of rho estimated using the pure mean-reversion model

The value of sigma_M estimated using the pure mean-reversion model

The value of sigma_R estimated using the pure mean-reversion model (always
0)

The negative log likelihood of the fit obtained with the pure mean-reversion
model

The value of rho estimated using the PAR model

The value of sigma_M estimated using the PAR model

The value of sigma_R estimated using the PAR model

The negative log likelihood of the fit obtained with the PAR model

The log likelihood ratio of the random walk model vs. the PAR model

The log likelihood ratio of the mean-reversion model vs. the PAR model
Statistic computed by the KPSS test (see ur.kpss)

p-value associated with kpss_stat

Proportion of variance attributable to mean reversion found for PAR fit

20 statehistory.par

Author(s)

Matthew Clegg <matthewcleggphd@gmail.com>

References

Clegg, Matthew. Modeling Time Series with Both Permanent and Transient Components using the
Partially Autoregressive Model. Available at SSRN: http://ssrn.com/abstract=2556957

See Also

fit.par

Examples

sample.likelihood_ratio.par(500, c(0.5,0.75), 1, c(1,2),nrep=3)

statehistory.par Estimates hidden states of a partially autoregressive model

Description

Estimates hidden states of a partially autoregressive model

Usage

statehistory.par(A, data = A$data)

Arguments
A A par.fit object returned from a previous call to fit.par
data A sequence of observed states

Details

Based on the parameters of the model fitted by the previous call to fit. par, produces a data. frame
containing the inferred hidden states of the process.

Value

A data. frame with one row for each observation in data. The columns in the data.frame are as

follows:

X Value of the observed state (data) at this time

M Estimated value of the mean-reverting component at this time
R Estimated value of the random walk component at this time
eps_M Estimated innovation to the mean-reverting component

eps_R Estimated innovation to the random walk component

test.par 21

Author(s)

Matthew Clegg <matthewcleggphd@gmail.com>

References

Clegg, Matthew. Modeling Time Series with Both Permanent and Transient Components using the
Partially Autoregressive Model. Available at SSRN: http://ssrn.com/abstract=2556957

See Also

fit.par

Examples

A simple example to compare the fitted values of the mean-reverting
component with the actual data

set.seed(1)

xactual <- rpar(1000, 0.9, 2, 1, include.state=TRUE)

xfit <- fit.par(xactual$X)

xstates <- statehistory.par(xfit)

summary (Im(xstates$M ~ xactual$M))

Not run:
require(ggplot)
xdf <- rbind(data.frame(data="actual”, x=1:nrow(xactual), value=xactual$M),
data.frame(data="fitted"”, x=1:nrow(xstates), value=xstates$M))
ggplot(xdf, aes(x=x, y=value, colour=data)) + geom_line()

End(Not run)

test.par Likelihood ratio test for partially autoregressive model

Description

Likelihood ratio test for partially autoregressive model

Usage

test.par(Y, alpha = 0.05, null_hyp = c("rw", "ar1"),
arltest = c("1r", "kpss"), robust = FALSE)

Arguments
Y A numeric vector or a par. fit object produced by a previous call to fit.par
alpha The critical value to be used in determining whether or not to reject the null

hypothesis. See which.hypothesis.partest. Default: 0.05.
null_hyp The null hypothesis. This can be one or both of the following:

22

test.par

e "rw" Includes the pure random walk as a null hypothesis

* "ar1" Includes a purely mean-reverting AR(1) series as a null hypothesis
Default: Both "rw” and "ar1”

aritest Specifies the type of test to be performed to reject the AR(1) null hypothesis.

This can be one of the following:

» "1r" Likelihood ratio rest

* "kpss"” Unit root test of Kwiatkowski, Phillips, Schmidt and Shin, as im-

plemented in the package urca.

Default: "1r"

robust TRUE if robust estimation should be used when fitting the models

Details

The partially autoregressive model is fit to Y (or a previously fitted model is re-used if Y is an object
of class par.fit), representing the alternative hypothesis. The null models specified by null_hyp
are also fit. The likelihood ratio test is then used to determine whether or not the null model(s)
should be rejected. Statistics are output containing the test results.

If "ar1” is included in null_hyp and ariltest = "kpss", then the unit root test of Kwiatkowski,
Phillips, Schmidt and Shin is used in place of the likelihood ratio test to reject the null hypothesis
that Y is a pure AR(1) sequence.

An example invocation of this function is as follows:
> test.par(x)

Test of [Random Walk or AR(1)] vs Almost AR(1) [LR test for AR1]

data: x

Hypothesis Statistic p-value
Random Walk -0.62 0.476
AR(1) -0.11 0.062
Combined 0.380

In this invocation, x is tested against the null hypothesis that it is either a pure random walk or a
pure AR(1) series. The test of the random walk null hypothesis produces a likelihood ratio score of
-0.62, which has a corresponding p-value of 0.476. The test of the AR(1) null nypothesis produces
a likelihood ratio score of -0.11, which has a corresponding p-value of 0.062. The p-value for the
combined test representing the union of these two conditions is 0.38. Thus, the null hypothesis
cannot be rejected.

Value

An object of class "partest”

Author(s)

Matthew Clegg <matthewcleggphd@gmail . com>

which.hypothesis.partest 23

References

Matthew Clegg (2015): Modeling Time Series with Both Permanent and Transient Components
using the Partially Autoregressive Model. Available at SSRN: http://ssrn.com/abstract=2556957.

Denis Kwiatkowski, Peter C.B. Phillips, Peter Schmidt, and Yongcheol Shin (1992): Testing the
null hypothesis of stationarity against the alternative of a unit root. Journal of Econometrics 54,
159-178.

See Also

fit.par which.hypothesis.partest

Examples

set.seed(1)
x <- rpar(1000, 0.8, 1, 1)
test.par(x)

which.hypothesis.partest

Returns the preferred hypothesis when testing for partial autoregres-
sion

Description

Returns the preferred hypothesis when testing for partial autoregression

Usage

which.hypothesis.partest(AT)

Arguments

AT An object of class "partest” returned from a previous call to test.par.

Details

Based upon the critical value alpha used in the call to test.par, and based upon the statistics
computed by test.par, selects a preferred explanatory hypothesis for the data and returns a string
representing the chosen hypothesis.

Value
One of the following strings:
"RW" The preferred hypothesis is a pure random walk

"AR1" The preferred hypothesis is a pure AR(1) series

"PAR" The preferred hypothesis is a partially autoregressive series

24 which.hypothesis.partest

"RRW” The preferred hypothesis is a random walk with t-distributed innovations
"RAR1" The preferred hypothesis is a pure AR(1) series with t-distributed innovations
"RPAR" The preferred hypothesis is a partially autoregressive model with t-distributed
innovations
Author(s)

Matthew Clegg <matthewcleggphd@gmail.com>

References

Matthew Clegg (2015): Modeling Time Series with Both Permanent and Transient Components
using the Partially Autoregressive Model. Available at SSRN: http://ssrn.com/abstract=2556957.

See Also

fit.par test.par

Examples

set.seed(1)

which.hypothesis.partest(test.par(rpar(1000, @, 1, 0))) # -> "AR1"
which.hypothesis.partest(test.par(rpar(1000, @, 0, 1))) # -> "RW"
which.hypothesis.partest(test.par(rpar(1000, 0, 1, 1))) # -> "PAR"

which.hypothesis.partest(test.par(rpar(1000, @, 1, @), robust=TRUE)) # -> "RAR1"
which.hypothesis.partest(test.par(rpar(1000, @, @, 1), robust=TRUE)) # -> "RRW"
which.hypothesis.partest(test.par(rpar(1000, 0.5, 1, 1), robust=TRUE)) # -> "RPAR"

Index

«Topic models likelihood_ratio.par, 13
as.data.frame.par.fit, 4 loglik.par, 14
estimate.par, 6
fit.par,7 parallel, 18
kalman.gain.par, 11 partialAR (partialAR-package), 2
likelihood_ratio.par, 13 partialAR-package, 2
loglik.par, 14 pvmr.par, 9, 15
pvmr.par, 15
rpar, 16 rpar, 16

sample.likelihood_ratio.par, 18
statehistory.par, 20
test.par, 21
which.hypothesis.partest, 23 test.par, 9,21, 23, 24
xTopic package
partialAR-package, 2 ur.kpss, 19
*Topic ts
as.data.frame.par.fit, 4 which.hypothesis.partest, 21, 23,23
estimate.par, 6
fit.par,7
kalman.gain.par, 11
likelihood_ratio.par, 13
loglik.par, 14
pvmr.par, 15
rpar, 16
sample.likelihood_ratio.par, 18
statehistory.par, 20
test.par, 21
which.hypothesis.partest, 23

sample.likelihood_ratio.par, 18
statehistory.par, 20

arima, 3, 10
as.data.frame.par.fit, 4

egem, 3, 10
estimate.par, 6

fit.par,4,5,7,7,12,14-16, 18, 20, 21, 23,
24

kalman.gain.par, 11
KFAS, 8, 13, 14

25

	partialAR-package
	as.data.frame.par.fit
	estimate.par
	fit.par
	kalman.gain.par
	likelihood_ratio.par
	loglik.par
	pvmr.par
	rpar
	sample.likelihood_ratio.par
	statehistory.par
	test.par
	which.hypothesis.partest
	Index

