
Package ‘parsnip’
August 4, 2020

Version 0.1.3

Title A Common API to Modeling and Analysis Functions

Description A common interface is provided to allow users to specify a model without having to re-
member the different argument names across different functions or computational en-
gines (e.g. 'R', 'Spark', 'Stan', etc).

Maintainer Max Kuhn <max@rstudio.com>

URL https://parsnip.tidymodels.org,

https://github.com/tidymodels/parsnip

BugReports https://github.com/tidymodels/parsnip/issues

License GPL-2

Encoding UTF-8

LazyData true

ByteCompile true

VignetteBuilder knitr

Depends R (>= 2.10)

Imports dplyr (>= 0.8.0.1), rlang (>= 0.3.1), purrr, utils, tibble (>=
2.1.1), generics, glue, magrittr, stats, tidyr (>= 1.0.0),
globals, prettyunits, vctrs (>= 0.2.0)

RoxygenNote 7.1.1

Suggests testthat, knitr, rmarkdown, survival, keras, xgboost, covr,
C50, sparklyr (>= 1.0.0), earth, kernlab, kknn, randomForest,
ranger, rpart, MASS, nlme, modeldata, liquidSVM

NeedsCompilation no

Author Max Kuhn [aut, cre],
Davis Vaughan [aut],
RStudio [cph]

Repository CRAN

Date/Publication 2020-08-04 21:50:12 UTC

1

https://parsnip.tidymodels.org
https://github.com/tidymodels/parsnip
https://github.com/tidymodels/parsnip/issues

2 add_rowindex

R topics documented:
add_rowindex . 2
boost_tree . 3
control_parsnip . 8
contr_one_hot . 9
decision_tree . 10
descriptors . 14
fit.model_spec . 16
glance.model_fit . 17
linear_reg . 18
logistic_reg . 22
mars . 26
mlp . 28
model_fit . 32
model_spec . 33
multinom_reg . 35
multi_predict . 38
nearest_neighbor . 40
nullmodel . 42
null_model . 43
rand_forest . 44
repair_call . 49
req_pkgs . 50
set_args . 51
set_engine . 52
surv_reg . 53
svm_poly . 55
svm_rbf . 58
tidy.model_fit . 61
tidy.nullmodel . 61
tidy._elnet . 62
translate . 63
varying . 64
varying_args.model_spec . 64

Index 66

add_rowindex Add a column of row numbers to a data frame

Description

Add a column of row numbers to a data frame

Usage

add_rowindex(x)

boost_tree 3

Arguments

x A data frame

Value

The same data frame with a column of 1-based integers named .row.

Examples

mtcars %>% add_rowindex()

boost_tree General Interface for Boosted Trees

Description

boost_tree() is a way to generate a specification of a model before fitting and allows the model
to be created using different packages in R or via Spark. The main arguments for the model are:

• mtry: The number of predictors that will be randomly sampled at each split when creating the
tree models.

• trees: The number of trees contained in the ensemble.

• min_n: The minimum number of data points in a node that are required for the node to be split
further.

• tree_depth: The maximum depth of the tree (i.e. number of splits).

• learn_rate: The rate at which the boosting algorithm adapts from iteration-to-iteration.

• loss_reduction: The reduction in the loss function required to split further.

• sample_size: The amount of data exposed to the fitting routine.

• stop_iter: The number of iterations without improvement before stopping.

These arguments are converted to their specific names at the time that the model is fit. Other options
and argument can be set using the set_engine() function. If left to their defaults here (NULL), the
values are taken from the underlying model functions. If parameters need to be modified, update()
can be used in lieu of recreating the object from scratch.

Usage

boost_tree(
mode = "unknown",
mtry = NULL,
trees = NULL,
min_n = NULL,
tree_depth = NULL,
learn_rate = NULL,
loss_reduction = NULL,

4 boost_tree

sample_size = NULL,
stop_iter = NULL

)

S3 method for class 'boost_tree'
update(
object,
parameters = NULL,
mtry = NULL,
trees = NULL,
min_n = NULL,
tree_depth = NULL,
learn_rate = NULL,
loss_reduction = NULL,
sample_size = NULL,
stop_iter = NULL,
fresh = FALSE,
...

)

Arguments

mode A single character string for the type of model. Possible values for this model
are "unknown", "regression", or "classification".

mtry A number for the number (or proportion) of predictors that will be randomly
sampled at each split when creating the tree models (xgboost only).

trees An integer for the number of trees contained in the ensemble.

min_n An integer for the minimum number of data points in a node that are required
for the node to be split further.

tree_depth An integer for the maximum depth of the tree (i.e. number of splits) (xgboost
only).

learn_rate A number for the rate at which the boosting algorithm adapts from iteration-to-
iteration (xgboost only).

loss_reduction A number for the reduction in the loss function required to split further (xgboost
only).

sample_size A number for the number (or proportion) of data that is exposed to the fitting
routine. For xgboost, the sampling is done at at each iteration while C5.0 sam-
ples once during training.

stop_iter The number of iterations without improvement before stopping (xgboost only).

object A boosted tree model specification.

parameters A 1-row tibble or named list with main parameters to update. If the individual
arguments are used, these will supersede the values in parameters. Also, using
engine arguments in this object will result in an error.

fresh A logical for whether the arguments should be modified in-place of or replaced
wholesale.

... Not used for update().

boost_tree 5

Details

The data given to the function are not saved and are only used to determine the mode of the model.
For boost_tree(), the possible modes are "regression" and "classification".

The model can be created using the fit() function using the following engines:

• R: "xgboost" (the default), "C5.0"

• Spark: "spark"

Value

An updated model specification.

Engine Details

Engines may have pre-set default arguments when executing the model fit call. For this type of
model, the template of the fit calls are below:

xgboost:

boost_tree() %>%
set_engine("xgboost") %>%
set_mode("regression") %>%
translate()

Boosted Tree Model Specification (regression)
##
Computational engine: xgboost
##
Model fit template:
parsnip::xgb_train(x = missing_arg(), y = missing_arg(), nthread = 1,
verbose = 0)

boost_tree() %>%
set_engine("xgboost") %>%
set_mode("classification") %>%
translate()

Boosted Tree Model Specification (classification)
##
Computational engine: xgboost
##
Model fit template:
parsnip::xgb_train(x = missing_arg(), y = missing_arg(), nthread = 1,
verbose = 0)

Note that, for most engines to boost_tree(), the sample_size argument is in terms of the num-
ber of training set points. The xgboost package parameterizes this as the proportion of training
set samples instead. When using the tune, this occurs automatically.
If you would like to use a custom range when tuning sample_size, the dials::sample_prop()
function can be used in that case. For example, using a parameter set:

6 boost_tree

mod <-
boost_tree(sample_size = tune()) %>%
set_engine("xgboost") %>%
set_mode("classification")

update the parameters using the `dials` function
mod_param <-
mod %>%
parameters() %>%
update(sample_size = sample_prop(c(0.4, 0.9)))

Finally, note that xgboost models require that non-numeric predictors (e.g., factors) must be
converted to dummy variables or some other numeric representation. By default, when using
fit() with xgboost, a one-hot encoding is used to convert factor predictors to indicator variables.

C5.0:

boost_tree() %>%
set_engine("C5.0") %>%
set_mode("classification") %>%
translate()

Boosted Tree Model Specification (classification)
##
Computational engine: C5.0
##
Model fit template:
parsnip::C5.0_train(x = missing_arg(), y = missing_arg(), weights = missing_arg())

Note that C50::C5.0() does not require factor predictors to be converted to indicator variables.
fit() does not affect the encoding of the predictor values (i.e. factors stay factors) for this model.

spark:

boost_tree() %>%
set_engine("spark") %>%
set_mode("regression") %>%
translate()

Boosted Tree Model Specification (regression)
##
Computational engine: spark
##
Model fit template:
sparklyr::ml_gradient_boosted_trees(x = missing_arg(), formula = missing_arg(),
type = "regression", seed = sample.int(10^5, 1))

boost_tree() %>%
set_engine("spark") %>%
set_mode("classification") %>%
translate()

boost_tree 7

Boosted Tree Model Specification (classification)
##
Computational engine: spark
##
Model fit template:
sparklyr::ml_gradient_boosted_trees(x = missing_arg(), formula = missing_arg(),
type = "classification", seed = sample.int(10^5, 1))

fit() does not affect the encoding of the predictor values (i.e. factors stay factors) for this model.

Parameter translations:
The standardized parameter names in parsnip can be mapped to their original names in each
engine that has main parameters. Each engine typically has a different default value (shown in
parentheses) for each parameter.

parsnip xgboost C5.0 spark
tree_depth max_depth (6) NA max_depth (5)
trees nrounds (15) trials (15) max_iter (20)
learn_rate eta (0.3) NA step_size (0.1)
mtry colsample_bytree (1) NA feature_subset_strategy (see below)
min_n min_child_weight (1) minCases (2) min_instances_per_node (1)
loss_reduction gamma (0) NA min_info_gain (0)
sample_size subsample (1) sample (0) subsampling_rate (1)
stop_iter early_stop NA NA

For spark, the default mtry is the square root of the number of predictors for classification, and
one-third of the predictors for regression.

Note

For models created using the spark engine, there are several differences to consider. First, only the
formula interface to via fit() is available; using fit_xy() will generate an error. Second, the pre-
dictions will always be in a spark table format. The names will be the same as documented but with-
out the dots. Third, there is no equivalent to factor columns in spark tables so class predictions are
returned as character columns. Fourth, to retain the model object for a new R session (via save()),
the model$fit element of the parsnip object should be serialized via ml_save(object$fit) and
separately saved to disk. In a new session, the object can be reloaded and reattached to the parsnip
object.

See Also

fit(), set_engine()

Examples

boost_tree(mode = "classification", trees = 20)
Parameters can be represented by a placeholder:
boost_tree(mode = "regression", mtry = varying())
model <- boost_tree(mtry = 10, min_n = 3)

8 control_parsnip

model
update(model, mtry = 1)
update(model, mtry = 1, fresh = TRUE)

param_values <- tibble::tibble(mtry = 10, tree_depth = 5)

model %>% update(param_values)
model %>% update(param_values, mtry = 3)

param_values$verbose <- 0
Fails due to engine argument
model %>% update(param_values)

control_parsnip Control the fit function

Description

Options can be passed to the fit() function that control the output and computations

Usage

control_parsnip(verbosity = 1L, catch = FALSE)

fit_control(verbosity = 1L, catch = FALSE)

Arguments

verbosity An integer where a value of zero indicates that no messages or output should be
shown when packages are loaded or when the model is fit. A value of 1 means
that package loading is quiet but model fits can produce output to the screen
(depending on if they contain their own verbose-type argument). A value of 2
or more indicates that any output should be seen.

catch A logical where a value of TRUE will evaluate the model inside of try(,silent
= TRUE). If the model fails, an object is still returned (without an error) that
inherits the class "try-error".

Details

fit_control() is deprecated in favor of control_parsnip().

Value

An S3 object with class "fit_control" that is a named list with the results of the function call

contr_one_hot 9

contr_one_hot Contrast function for one-hot encodings

Description

This contrast function produces a model matrix with indicator columns for each level of each factor.

Usage

contr_one_hot(n, contrasts = TRUE, sparse = FALSE)

Arguments

n A vector of character factor levels or the number of unique levels.

contrasts This argument is for backwards compatibility and only the default of TRUE is
supported.

sparse This argument is for backwards compatibility and only the default of FALSE is
supported.

Details

By default, model.matrix() generates binary indicator variables for factor predictors. When the
formula does not remove an intercept, an incomplete set of indicators are created; no indicator is
made for the first level of the factor.

For example, species and island both have three levels but model.matrix() creates two indicator
variables for each:

library(dplyr)
library(modeldata)
data(penguins)

levels(penguins$species)

[1] "Adelie" "Chinstrap" "Gentoo"

levels(penguins$island)

[1] "Biscoe" "Dream" "Torgersen"

model.matrix(~ species + island, data = penguins) %>%
colnames()

[1] "(Intercept)" "speciesChinstrap" "speciesGentoo" "islandDream"
[5] "islandTorgersen"

10 decision_tree

For a formula with no intercept, the first factor is expanded to indicators for all factor levels but all
other factors are expanded to all but one (as above):

model.matrix(~ 0 + species + island, data = penguins) %>%
colnames()

[1] "speciesAdelie" "speciesChinstrap" "speciesGentoo" "islandDream"
[5] "islandTorgersen"

For inference, this hybrid encoding can be problematic.

To generate all indicators, use this contrast:

Switch out the contrast method
old_contr <- options("contrasts")$contrasts
new_contr <- old_contr
new_contr["unordered"] <- "contr_one_hot"
options(contrasts = new_contr)

model.matrix(~ species + island, data = penguins) %>%
colnames()

[1] "(Intercept)" "speciesAdelie" "speciesChinstrap" "speciesGentoo"
[5] "islandBiscoe" "islandDream" "islandTorgersen"

options(contrasts = old_contr)

Removing the intercept here does not affect the factor encodings.

Value

A diagonal matrix that is n-by-n.

decision_tree General Interface for Decision Tree Models

Description

decision_tree() is a way to generate a specification of a model before fitting and allows the
model to be created using different packages in R or via Spark. The main arguments for the model
are:

• cost_complexity: The cost/complexity parameter (a.k.a. Cp) used by CART models (rpart
only).

• tree_depth: The maximum depth of a tree (rpart and spark only).
• min_n: The minimum number of data points in a node that are required for the node to be split

further.

These arguments are converted to their specific names at the time that the model is fit. Other options
and argument can be set using set_engine(). If left to their defaults here (NULL), the values are
taken from the underlying model functions. If parameters need to be modified, update() can be
used in lieu of recreating the object from scratch.

decision_tree 11

Usage

decision_tree(
mode = "unknown",
cost_complexity = NULL,
tree_depth = NULL,
min_n = NULL

)

S3 method for class 'decision_tree'
update(
object,
parameters = NULL,
cost_complexity = NULL,
tree_depth = NULL,
min_n = NULL,
fresh = FALSE,
...

)

Arguments

mode A single character string for the type of model. Possible values for this model
are "unknown", "regression", or "classification".

cost_complexity

A positive number for the the cost/complexity parameter (a.k.a. Cp) used by
CART models (rpart only).

tree_depth An integer for maximum depth of the tree.

min_n An integer for the minimum number of data points in a node that are required
for the node to be split further.

object A decision tree model specification.

parameters A 1-row tibble or named list with main parameters to update. If the individual
arguments are used, these will supersede the values in parameters. Also, using
engine arguments in this object will result in an error.

fresh A logical for whether the arguments should be modified in-place of or replaced
wholesale.

... Not used for update().

Details

The model can be created using the fit() function using the following engines:

• R: "rpart" (the default) or "C5.0" (classification only)

• Spark: "spark"

Note that, for rpart models, but cost_complexity and tree_depth can be both be specified but
the package will give precedence to cost_complexity. Also, tree_depth values greater than 30
rpart will give nonsense results on 32-bit machines.

12 decision_tree

Engine Details

Engines may have pre-set default arguments when executing the model fit call. For this type of
model, the template of the fit calls are below:

rpart:

decision_tree() %>%
set_engine("rpart") %>%
set_mode("regression") %>%
translate()

Decision Tree Model Specification (regression)
##
Computational engine: rpart
##
Model fit template:
rpart::rpart(formula = missing_arg(), data = missing_arg(), weights = missing_arg())

decision_tree() %>%
set_engine("rpart") %>%
set_mode("classification") %>%
translate()

Decision Tree Model Specification (classification)
##
Computational engine: rpart
##
Model fit template:
rpart::rpart(formula = missing_arg(), data = missing_arg(), weights = missing_arg())

Note that rpart::rpart() does not require factor predictors to be converted to indicator vari-
ables. fit() does not affect the encoding of the predictor values (i.e. factors stay factors) for this
model

C5.0:

decision_tree() %>%
set_engine("C5.0") %>%
set_mode("classification") %>%
translate()

Decision Tree Model Specification (classification)
##
Computational engine: C5.0
##
Model fit template:
parsnip::C5.0_train(x = missing_arg(), y = missing_arg(), weights = missing_arg(),
trials = 1)

Note that C50::C5.0() does not require factor predictors to be converted to indicator variables.
fit() does not affect the encoding of the predictor values (i.e. factors stay factors) for this model

decision_tree 13

spark:

decision_tree() %>%
set_engine("spark") %>%
set_mode("regression") %>%
translate()

Decision Tree Model Specification (regression)
##
Computational engine: spark
##
Model fit template:
sparklyr::ml_decision_tree_regressor(x = missing_arg(), formula = missing_arg(),
seed = sample.int(10^5, 1))

decision_tree() %>%
set_engine("spark") %>%
set_mode("classification") %>%
translate()

Decision Tree Model Specification (classification)
##
Computational engine: spark
##
Model fit template:
sparklyr::ml_decision_tree_classifier(x = missing_arg(), formula = missing_arg(),
seed = sample.int(10^5, 1))

fit() does not affect the encoding of the predictor values (i.e. factors stay factors) for this model

Parameter translations:
The standardized parameter names in parsnip can be mapped to their original names in each
engine that has main parameters. Each engine typically has a different default value (shown in
parentheses) for each parameter.

parsnip rpart C5.0 spark
tree_depth maxdepth (30) NA max_depth (5)
min_n minsplit (20) minCases (2) min_instances_per_node (1)
cost_complexity cp (0.01) NA NA

Note

For models created using the spark engine, there are several differences to consider. First, only the
formula interface to via fit() is available; using fit_xy() will generate an error. Second, the pre-
dictions will always be in a spark table format. The names will be the same as documented but with-
out the dots. Third, there is no equivalent to factor columns in spark tables so class predictions are
returned as character columns. Fourth, to retain the model object for a new R session (via save()),
the model$fit element of the parsnip object should be serialized via ml_save(object$fit) and
separately saved to disk. In a new session, the object can be reloaded and reattached to the parsnip

14 descriptors

object.

See Also

fit()

Examples

decision_tree(mode = "classification", tree_depth = 5)
Parameters can be represented by a placeholder:
decision_tree(mode = "regression", cost_complexity = varying())
model <- decision_tree(cost_complexity = 10, min_n = 3)
model
update(model, cost_complexity = 1)
update(model, cost_complexity = 1, fresh = TRUE)

descriptors Data Set Characteristics Available when Fitting Models

Description

When using the fit() functions there are some variables that will be available for use in arguments.
For example, if the user would like to choose an argument value based on the current number of
rows in a data set, the .obs() function can be used. See Details below.

Usage

.cols()

.preds()

.obs()

.lvls()

.facts()

.x()

.y()

.dat()

Details

Existing functions:

• .obs(): The current number of rows in the data set.

descriptors 15

• .preds(): The number of columns in the data set that are associated with the predictors prior
to dummy variable creation.

• .cols(): The number of predictor columns available after dummy variables are created (if
any).

• .facts(): The number of factor predictors in the dat set.

• .lvls(): If the outcome is a factor, this is a table with the counts for each level (and NA
otherwise).

• .x(): The predictors returned in the format given. Either a data frame or a matrix.

• .y(): The known outcomes returned in the format given. Either a vector, matrix, or data
frame.

• .dat(): A data frame containing all of the predictors and the outcomes. If fit_xy() was
used, the outcomes are attached as the column, ..y.

For example, if you use the model formula circumference ~ . with the built-in Orange data, the
values would be

.preds() = 2 (the 2 remaining columns in `Orange`)

.cols() = 5 (1 numeric column + 4 from Tree dummy variables)

.obs() = 35

.lvls() = NA (no factor outcome)

.facts() = 1 (the Tree predictor)

.y() = <vector> (circumference as a vector)

.x() = <data.frame> (The other 2 columns as a data frame)

.dat() = <data.frame> (The full data set)

If the formula Tree ~ . were used:

.preds() = 2 (the 2 numeric columns in `Orange`)

.cols() = 2 (same)

.obs() = 35

.lvls() = c("1" = 7, "2" = 7, "3" = 7, "4" = 7, "5" = 7)

.facts() = 0

.y() = <vector> (Tree as a vector)

.x() = <data.frame> (The other 2 columns as a data frame)

.dat() = <data.frame> (The full data set)

To use these in a model fit, pass them to a model specification. The evaluation is delayed until the
time when the model is run via fit() (and the variables listed above are available). For example:

library(modeldata)
data("lending_club")

rand_forest(mode = "classification", mtry = .cols() - 2)

When no descriptors are found, the computation of the descriptor values is not executed.

16 fit.model_spec

fit.model_spec Fit a Model Specification to a Dataset

Description

fit() and fit_xy() take a model specification, translate the required code by substituting argu-
ments, and execute the model fit routine.

Usage

S3 method for class 'model_spec'
fit(object, formula, data, control = control_parsnip(), ...)

S3 method for class 'model_spec'
fit_xy(object, x, y, control = control_parsnip(), ...)

Arguments

object An object of class model_spec that has a chosen engine (via set_engine()).

formula An object of class "formula" (or one that can be coerced to that class): a sym-
bolic description of the model to be fitted.

data Optional, depending on the interface (see Details below). A data frame contain-
ing all relevant variables (e.g. outcome(s), predictors, case weights, etc). Note:
when needed, a named argument should be used.

control A named list with elements verbosity and catch. See control_parsnip().

... Not currently used; values passed here will be ignored. Other options required
to fit the model should be passed using set_engine().

x A matrix or data frame of predictors.

y A vector, matrix or data frame of outcome data.

Details

fit() and fit_xy() substitute the current arguments in the model specification into the compu-
tational engine’s code, checks them for validity, then fits the model using the data and the engine-
specific code. Different model functions have different interfaces (e.g. formula or x/y) and these
functions translate between the interface used when fit() or fit_xy() were invoked and the one
required by the underlying model.

When possible, these functions attempt to avoid making copies of the data. For example, if the
underlying model uses a formula and fit() is invoked, the original data are references when the
model is fit. However, if the underlying model uses something else, such as x/y, the formula is
evaluated and the data are converted to the required format. In this case, any calls in the resulting
model objects reference the temporary objects used to fit the model.

If the model engine has not been set, the model’s default engine will be used (as discussed on each
model page). If the verbosity option of control_parsnip() is greater than zero, a warning will
be produced.

glance.model_fit 17

Value

A model_fit object that contains several elements:

• lvl: If the outcome is a factor, this contains the factor levels at the time of model fitting.

• spec: The model specification object (object in the call to fit)

• fit: when the model is executed without error, this is the model object. Otherwise, it is a
try-error object with the error message.

• preproc: any objects needed to convert between a formula and non-formula interface (such
as the terms object)

The return value will also have a class related to the fitted model (e.g. "_glm") before the base class
of "model_fit".

See Also

set_engine(), control_parsnip(), model_spec, model_fit

Examples

Although `glm()` only has a formula interface, different
methods for specifying the model can be used

library(dplyr)
library(modeldata)
data("lending_club")

lr_mod <- logistic_reg()

using_formula <-
lr_mod %>%
set_engine("glm") %>%
fit(Class ~ funded_amnt + int_rate, data = lending_club)

using_xy <-
lr_mod %>%
set_engine("glm") %>%
fit_xy(x = lending_club[, c("funded_amnt", "int_rate")],

y = lending_club$Class)

using_formula
using_xy

glance.model_fit Construct a single row summary "glance" of a model, fit, or other
object

Description

This method glances the model in a parsnip model object, if it exists.

18 linear_reg

Usage

S3 method for class 'model_fit'
glance(x, ...)

Arguments

x model or other R object to convert to single-row data frame

... other arguments passed to methods

Value

a tibble

linear_reg General Interface for Linear Regression Models

Description

linear_reg() is a way to generate a specification of a model before fitting and allows the model
to be created using different packages in R, Stan, keras, or via Spark. The main arguments for the
model are:

• penalty: The total amount of regularization in the model. Note that this must be zero for
some engines.

• mixture: The mixture amounts of different types of regularization (see below). Note that this
will be ignored for some engines.

These arguments are converted to their specific names at the time that the model is fit. Other options
and argument can be set using set_engine(). If left to their defaults here (NULL), the values are
taken from the underlying model functions. If parameters need to be modified, update() can be
used in lieu of recreating the object from scratch.

Usage

linear_reg(mode = "regression", penalty = NULL, mixture = NULL)

S3 method for class 'linear_reg'
update(
object,
parameters = NULL,
penalty = NULL,
mixture = NULL,
fresh = FALSE,
...

)

linear_reg 19

Arguments

mode A single character string for the type of model. The only possible value for this
model is "regression".

penalty A non-negative number representing the total amount of regularization (glmnet,
keras, and spark only). For keras models, this corresponds to purely L2 reg-
ularization (aka weight decay) while the other models can be a combination of
L1 and L2 (depending on the value of mixture; see below).

mixture A number between zero and one (inclusive) that is the proportion of L1 regu-
larization (i.e. lasso) in the model. When mixture = 1, it is a pure lasso model
while mixture = 0 indicates that ridge regression is being used. (glmnet and
spark only).

object A linear regression model specification.

parameters A 1-row tibble or named list with main parameters to update. If the individual
arguments are used, these will supersede the values in parameters. Also, using
engine arguments in this object will result in an error.

fresh A logical for whether the arguments should be modified in-place of or replaced
wholesale.

... Not used for update().

Details

The data given to the function are not saved and are only used to determine the mode of the model.
For linear_reg(), the mode will always be "regression".

The model can be created using the fit() function using the following engines:

• R: "lm" (the default) or "glmnet"

• Stan: "stan"

• Spark: "spark"

• keras: "keras"

Engine Details

Engines may have pre-set default arguments when executing the model fit call. For this type of
model, the template of the fit calls are below.

lm:

linear_reg() %>%
set_engine("lm") %>%
set_mode("regression") %>%
translate()

Linear Regression Model Specification (regression)
##
Computational engine: lm
##
Model fit template:
stats::lm(formula = missing_arg(), data = missing_arg(), weights = missing_arg())

20 linear_reg

glmnet:

linear_reg() %>%
set_engine("glmnet") %>%
set_mode("regression") %>%
translate()

Linear Regression Model Specification (regression)
##
Computational engine: glmnet
##
Model fit template:
glmnet::glmnet(x = missing_arg(), y = missing_arg(), weights = missing_arg(),
family = "gaussian")

For glmnet models, the full regularization path is always fit regardless of the value given to
penalty. Also, there is the option to pass multiple values (or no values) to the penalty argu-
ment. When using the predict() method in these cases, the return value depends on the value of
penalty. When using predict(), only a single value of the penalty can be used. When predict-
ing on multiple penalties, the multi_predict() function can be used. It returns a tibble with a
list column called .pred that contains a tibble with all of the penalty results.

stan:

linear_reg() %>%
set_engine("stan") %>%
set_mode("regression") %>%
translate()

Linear Regression Model Specification (regression)
##
Computational engine: stan
##
Model fit template:
rstanarm::stan_glm(formula = missing_arg(), data = missing_arg(),
weights = missing_arg(), family = stats::gaussian, refresh = 0)

Note that the refresh default prevents logging of the estimation process. Change this value in
set_engine() will show the logs.
For prediction, the stan engine can compute posterior intervals analogous to confidence and
prediction intervals. In these instances, the units are the original outcome and when std_error
= TRUE, the standard deviation of the posterior distribution (or posterior predictive distribution as
appropriate) is returned.

spark:

linear_reg() %>%
set_engine("spark") %>%
set_mode("regression") %>%
translate()

linear_reg 21

Linear Regression Model Specification (regression)
##
Computational engine: spark
##
Model fit template:
sparklyr::ml_linear_regression(x = missing_arg(), formula = missing_arg(),
weight_col = missing_arg())

keras:

linear_reg() %>%
set_engine("keras") %>%
set_mode("regression") %>%
translate()

Linear Regression Model Specification (regression)
##
Computational engine: keras
##
Model fit template:
parsnip::keras_mlp(x = missing_arg(), y = missing_arg(), hidden_units = 1,
act = "linear")

Parameter translations:
The standardized parameter names in parsnip can be mapped to their original names in each
engine that has main parameters. Each engine typically has a different default value (shown in
parentheses) for each parameter.

parsnip glmnet spark keras
penalty lambda reg_param (0) penalty (0)
mixture alpha (1) elastic_net_param (0) NA

Note

For models created using the spark engine, there are several differences to consider. First, only the
formula interface to via fit() is available; using fit_xy() will generate an error. Second, the pre-
dictions will always be in a spark table format. The names will be the same as documented but with-
out the dots. Third, there is no equivalent to factor columns in spark tables so class predictions are
returned as character columns. Fourth, to retain the model object for a new R session (via save()),
the model$fit element of the parsnip object should be serialized via ml_save(object$fit) and
separately saved to disk. In a new session, the object can be reloaded and reattached to the parsnip
object.

See Also

fit(), set_engine()

22 logistic_reg

Examples

linear_reg()
Parameters can be represented by a placeholder:
linear_reg(penalty = varying())
model <- linear_reg(penalty = 10, mixture = 0.1)
model
update(model, penalty = 1)
update(model, penalty = 1, fresh = TRUE)

logistic_reg General Interface for Logistic Regression Models

Description

logistic_reg() is a way to generate a specification of a model before fitting and allows the model
to be created using different packages in R, Stan, keras, or via Spark. The main arguments for the
model are:

• penalty: The total amount of regularization in the model. Note that this must be zero for
some engines.

• mixture: The mixture amounts of different types of regularization (see below). Note that this
will be ignored for some engines.

These arguments are converted to their specific names at the time that the model is fit. Other options
and argument can be set using set_engine(). If left to their defaults here (NULL), the values are
taken from the underlying model functions. If parameters need to be modified, update() can be
used in lieu of recreating the object from scratch.

Usage

logistic_reg(mode = "classification", penalty = NULL, mixture = NULL)

S3 method for class 'logistic_reg'
update(
object,
parameters = NULL,
penalty = NULL,
mixture = NULL,
fresh = FALSE,
...

)

Arguments

mode A single character string for the type of model. The only possible value for this
model is "classification".

logistic_reg 23

penalty A non-negative number representing the total amount of regularization (glmnet,
keras, and spark only). For keras models, this corresponds to purely L2 reg-
ularization (aka weight decay) while the other models can be a combination of
L1 and L2 (depending on the value of mixture).

mixture A number between zero and one (inclusive) that is the proportion of L1 regu-
larization (i.e. lasso) in the model. When mixture = 1, it is a pure lasso model
while mixture = 0 indicates that ridge regression is being used. (glmnet and
spark only).

object A logistic regression model specification.

parameters A 1-row tibble or named list with main parameters to update. If the individual
arguments are used, these will supersede the values in parameters. Also, using
engine arguments in this object will result in an error.

fresh A logical for whether the arguments should be modified in-place of or replaced
wholesale.

... Not used for update().

Details

For logistic_reg(), the mode will always be "classification".

The model can be created using the fit() function using the following engines:

• R: "glm" (the default) or "glmnet"

• Stan: "stan"

• Spark: "spark"

• keras: "keras"

Engine Details

Engines may have pre-set default arguments when executing the model fit call. For this type of
model, the template of the fit calls are below.

glm:

logistic_reg() %>%
set_engine("glm") %>%
set_mode("classification") %>%
translate()

Logistic Regression Model Specification (classification)
##
Computational engine: glm
##
Model fit template:
stats::glm(formula = missing_arg(), data = missing_arg(), weights = missing_arg(),
family = stats::binomial)

glmnet:

24 logistic_reg

logistic_reg() %>%
set_engine("glmnet") %>%
set_mode("classification") %>%
translate()

Logistic Regression Model Specification (classification)
##
Computational engine: glmnet
##
Model fit template:
glmnet::glmnet(x = missing_arg(), y = missing_arg(), weights = missing_arg(),
family = "binomial")

For glmnet models, the full regularization path is always fit regardless of the value given to
penalty. Also, there is the option to pass multiple values (or no values) to the penalty argu-
ment. When using the predict() method in these cases, the return value depends on the value of
penalty. When using predict(), only a single value of the penalty can be used. When predict-
ing on multiple penalties, the multi_predict() function can be used. It returns a tibble with a
list column called .pred that contains a tibble with all of the penalty results.

stan:

logistic_reg() %>%
set_engine("stan") %>%
set_mode("classification") %>%
translate()

Logistic Regression Model Specification (classification)
##
Computational engine: stan
##
Model fit template:
rstanarm::stan_glm(formula = missing_arg(), data = missing_arg(),
weights = missing_arg(), family = stats::binomial, refresh = 0)

Note that the refresh default prevents logging of the estimation process. Change this value in
set_engine() will show the logs.
For prediction, the stan engine can compute posterior intervals analogous to confidence and
prediction intervals. In these instances, the units are the original outcome and when std_error
= TRUE, the standard deviation of the posterior distribution (or posterior predictive distribution as
appropriate) is returned.

spark:

logistic_reg() %>%
set_engine("spark") %>%
set_mode("classification") %>%
translate()

Logistic Regression Model Specification (classification)
##
Computational engine: spark

logistic_reg 25

##
Model fit template:
sparklyr::ml_logistic_regression(x = missing_arg(), formula = missing_arg(),
weight_col = missing_arg(), family = "binomial")

keras:

logistic_reg() %>%
set_engine("keras") %>%
set_mode("classification") %>%
translate()

Logistic Regression Model Specification (classification)
##
Computational engine: keras
##
Model fit template:
parsnip::keras_mlp(x = missing_arg(), y = missing_arg(), hidden_units = 1,
act = "linear")

Parameter translations:
The standardized parameter names in parsnip can be mapped to their original names in each
engine that has main parameters. Each engine typically has a different default value (shown in
parentheses) for each parameter.

parsnip glmnet spark keras
penalty lambda reg_param (0) penalty (0)
mixture alpha (1) elastic_net_param (0) NA

Note

For models created using the spark engine, there are several differences to consider. First, only the
formula interface to via fit() is available; using fit_xy() will generate an error. Second, the pre-
dictions will always be in a spark table format. The names will be the same as documented but with-
out the dots. Third, there is no equivalent to factor columns in spark tables so class predictions are
returned as character columns. Fourth, to retain the model object for a new R session (via save()),
the model$fit element of the parsnip object should be serialized via ml_save(object$fit) and
separately saved to disk. In a new session, the object can be reloaded and reattached to the parsnip
object.

See Also

fit()

Examples

logistic_reg()
Parameters can be represented by a placeholder:
logistic_reg(penalty = varying())

26 mars

model <- logistic_reg(penalty = 10, mixture = 0.1)
model
update(model, penalty = 1)
update(model, penalty = 1, fresh = TRUE)

mars General Interface for MARS

Description

mars() is a way to generate a specification of a model before fitting and allows the model to be
created using R. The main arguments for the model are:

• num_terms: The number of features that will be retained in the final model.

• prod_degree: The highest possible degree of interaction between features. A value of 1
indicates and additive model while a value of 2 allows, but does not guarantee, two-way
interactions between features.

• prune_method: The type of pruning. Possible values are listed in ?earth.

These arguments are converted to their specific names at the time that the model is fit. Other options
and argument can be set using set_engine(). If left to their defaults here (NULL), the values are
taken from the underlying model functions. If parameters need to be modified, update() can be
used in lieu of recreating the object from scratch.

Usage

mars(
mode = "unknown",
num_terms = NULL,
prod_degree = NULL,
prune_method = NULL

)

S3 method for class 'mars'
update(
object,
parameters = NULL,
num_terms = NULL,
prod_degree = NULL,
prune_method = NULL,
fresh = FALSE,
...

)

mars 27

Arguments

mode A single character string for the type of model. Possible values for this model
are "unknown", "regression", or "classification".

num_terms The number of features that will be retained in the final model, including the
intercept.

prod_degree The highest possible interaction degree.

prune_method The pruning method.

object A MARS model specification.

parameters A 1-row tibble or named list with main parameters to update. If the individual
arguments are used, these will supersede the values in parameters. Also, using
engine arguments in this object will result in an error.

fresh A logical for whether the arguments should be modified in-place of or replaced
wholesale.

... Not used for update().

Details

The model can be created using the fit() function using the following engines:

• R: "earth" (the default)

Engine Details

Engines may have pre-set default arguments when executing the model fit call. For this type of
model, the template of the fit calls are below.

earth:

mars() %>%
set_engine("earth") %>%
set_mode("regression") %>%
translate()

MARS Model Specification (regression)
##
Computational engine: earth
##
Model fit template:
earth::earth(formula = missing_arg(), data = missing_arg(), weights = missing_arg(),
keepxy = TRUE)

mars() %>%
set_engine("earth") %>%
set_mode("classification") %>%
translate()

28 mlp

MARS Model Specification (classification)
##
Engine-Specific Arguments:
glm = list(family = stats::binomial)
##
Computational engine: earth
##
Model fit template:
earth::earth(formula = missing_arg(), data = missing_arg(), weights = missing_arg(),
glm = list(family = stats::binomial), keepxy = TRUE)

Note that, when the model is fit, the earth package only has its namespace loaded. However, if
multi_predict is used, the package is attached.
Also, fit() passes the data directly to earth::earth() so that its formula method can create
dummy variables as-needed.

Parameter translations:
The standardized parameter names in parsnip can be mapped to their original names in each
engine that has main parameters. Each engine typically has a different default value (shown in
parentheses) for each parameter.

parsnip earth
num_terms nprune
prod_degree degree (1)
prune_method pmethod (backward)

See Also

fit()

Examples

mars(mode = "regression", num_terms = 5)
model <- mars(num_terms = 10, prune_method = "none")
model
update(model, num_terms = 1)
update(model, num_terms = 1, fresh = TRUE)

mlp General Interface for Single Layer Neural Network

Description

mlp(), for multilayer perceptron, is a way to generate a specification of a model before fitting and
allows the model to be created using different packages in R or via keras The main arguments for
the model are:

mlp 29

• hidden_units: The number of units in the hidden layer (default: 5).

• penalty: The amount of L2 regularization (aka weight decay, default is zero).

• dropout: The proportion of parameters randomly dropped out of the model (keras only,
default is zero).

• epochs: The number of training iterations (default: 20).

• activation: The type of function that connects the hidden layer and the input variables
(keras only, default is softmax).

If parameters need to be modified, this function can be used in lieu of recreating the object from
scratch.

Usage

mlp(
mode = "unknown",
hidden_units = NULL,
penalty = NULL,
dropout = NULL,
epochs = NULL,
activation = NULL

)

S3 method for class 'mlp'
update(
object,
parameters = NULL,
hidden_units = NULL,
penalty = NULL,
dropout = NULL,
epochs = NULL,
activation = NULL,
fresh = FALSE,
...

)

Arguments

mode A single character string for the type of model. Possible values for this model
are "unknown", "regression", or "classification".

hidden_units An integer for the number of units in the hidden model.

penalty A non-negative numeric value for the amount of weight decay.

dropout A number between 0 (inclusive) and 1 denoting the proportion of model param-
eters randomly set to zero during model training.

epochs An integer for the number of training iterations.

activation A single character string denoting the type of relationship between the original
predictors and the hidden unit layer. The activation function between the hidden
and output layers is automatically set to either "linear" or "softmax" depending

30 mlp

on the type of outcome. Possible values are: "linear", "softmax", "relu", and
"elu"

object A multilayer perceptron model specification.

parameters A 1-row tibble or named list with main parameters to update. If the individual
arguments are used, these will supersede the values in parameters. Also, using
engine arguments in this object will result in an error.

fresh A logical for whether the arguments should be modified in-place of or replaced
wholesale.

... Not used for update().

Details

These arguments are converted to their specific names at the time that the model is fit. Other options
and argument can be set using set_engine(). If left to their defaults here (see above), the values
are taken from the underlying model functions. One exception is hidden_units when nnet::nnet
is used; that function’s size argument has no default so a value of 5 units will be used. Also, unless
otherwise specified, the linout argument to nnet::nnet() will be set to TRUE when a regression
model is created. If parameters need to be modified, update() can be used in lieu of recreating the
object from scratch.

The model can be created using the fit() function using the following engines:

• R: "nnet" (the default)

• keras: "keras"

Engine Details

Engines may have pre-set default arguments when executing the model fit call. For this type of
model, the template of the fit calls are below:

keras:

mlp() %>%
set_engine("keras") %>%
set_mode("regression") %>%
translate()

Single Layer Neural Network Specification (regression)
##
Computational engine: keras
##
Model fit template:
parsnip::keras_mlp(x = missing_arg(), y = missing_arg())

mlp() %>%
set_engine("keras") %>%
set_mode("classification") %>%
translate()

mlp 31

Single Layer Neural Network Specification (classification)
##
Computational engine: keras
##
Model fit template:
parsnip::keras_mlp(x = missing_arg(), y = missing_arg())

An error is thrown if both penalty and dropout are specified for keras models.

nnet:

mlp() %>%
set_engine("nnet") %>%
set_mode("regression") %>%
translate()

Single Layer Neural Network Specification (regression)
##
Main Arguments:
hidden_units = 5
##
Computational engine: nnet
##
Model fit template:
nnet::nnet(formula = missing_arg(), data = missing_arg(), weights = missing_arg(),
size = 5, trace = FALSE, linout = TRUE)

mlp() %>%
set_engine("nnet") %>%
set_mode("classification") %>%
translate()

Single Layer Neural Network Specification (classification)
##
Main Arguments:
hidden_units = 5
##
Computational engine: nnet
##
Model fit template:
nnet::nnet(formula = missing_arg(), data = missing_arg(), weights = missing_arg(),
size = 5, trace = FALSE, linout = FALSE)

Parameter translations:
The standardized parameter names in parsnip can be mapped to their original names in each
engine that has main parameters. Each engine typically has a different default value (shown in
parentheses) for each parameter.

parsnip keras nnet
hidden_units hidden_units (5) size
penalty penalty (0) decay (0)

32 model_fit

dropout dropout (0) NA
epochs epochs (20) maxit (100)
activation activation (softmax) NA

See Also

fit()

Examples

mlp(mode = "classification", penalty = 0.01)
Parameters can be represented by a placeholder:
mlp(mode = "regression", hidden_units = varying())
model <- mlp(hidden_units = 10, dropout = 0.30)
model
update(model, hidden_units = 2)
update(model, hidden_units = 2, fresh = TRUE)

model_fit Model Fit Object Information

Description

An object with class "model_fit" is a container for information about a model that has been fit to
the data.

Details

The main elements of the object are:

• lvl: A vector of factor levels when the outcome is is a factor. This is NULL when the outcome
is not a factor vector.

• spec: A model_spec object.

• fit: The object produced by the fitting function.

• preproc: This contains any data-specific information required to process new a sample point
for prediction. For example, if the underlying model function requires arguments x and y and
the user passed a formula to fit, the preproc object would contain items such as the terms
object and so on. When no information is required, this is NA.

As discussed in the documentation for model_spec, the original arguments to the specification are
saved as quosures. These are evaluated for the model_fit object prior to fitting. If the resulting
model object prints its call, any user-defined options are shown in the call preceded by a tilde (see
the example below). This is a result of the use of quosures in the specification.

This class and structure is the basis for how parsnip stores model objects after to seeing the data
and applying a model.

model_spec 33

Examples

Keep the `x` matrix if the data are not too big.
spec_obj <-

linear_reg() %>%
set_engine("lm", x = ifelse(.obs() < 500, TRUE, FALSE))

spec_obj

fit_obj <- fit(spec_obj, mpg ~ ., data = mtcars)
fit_obj

nrow(fit_objfitx)

model_spec Model Specification Information

Description

An object with class "model_spec" is a container for information about a model that will be fit.

Details

The main elements of the object are:

• args: A vector of the main arguments for the model. The names of these arguments may
be different form their counterparts n the underlying model function. For example, for a
glmnet model, the argument name for the amount of the penalty is called "penalty" instead
of "lambda" to make it more general and usable across different types of models (and to not
be specific to a particular model function). The elements of args can varying(). If left to
their defaults (NULL), the arguments will use the underlying model functions default value.
As discussed below, the arguments in args are captured as quosures and are not immediately
executed.

– ...: Optional model-function-specific parameters. As with args, these will be quosures
and can be varying().

– mode: The type of model, such as "regression" or "classification". Other modes will be
added once the package adds more functionality.

– method: This is a slot that is filled in later by the model’s constructor function. It generally
contains lists of information that are used to create the fit and prediction code as well as
required packages and similar data.

– engine: This character string declares exactly what software will be used. It can be a
package name or a technology type.

This class and structure is the basis for how parsnip stores model objects prior to seeing the
data.

34 model_spec

Argument Details

An important detail to understand when creating model specifications is that they are intended to
be functionally independent of the data. While it is true that some tuning parameters are data
dependent, the model specification does not interact with the data at all.

For example, most R functions immediately evaluate their arguments. For example, when calling
mean(dat_vec), the object dat_vec is immediately evaluated inside of the function.

parsnip model functions do not do this. For example, using

rand_forest(mtry = ncol(mtcars) - 1)

does not execute ncol(mtcars) -1 when creating the specification. This can be seen in the output:

> rand_forest(mtry = ncol(mtcars) - 1)
Random Forest Model Specification (unknown)

Main Arguments:
mtry = ncol(mtcars) - 1

The model functions save the argument expressions and their associated environments (a.k.a. a
quosure) to be evaluated later when either fit() or fit_xy() are called with the actual data.

The consequence of this strategy is that any data required to get the parameter values must be
available when the model is fit. The two main ways that this can fail is if:

1. The data have been modified between the creation of the model specification and when the
model fit function is invoked.

2. If the model specification is saved and loaded into a new session where those same data objects
do not exist.

The best way to avoid these issues is to not reference any data objects in the global environment but
to use data descriptors such as .cols(). Another way of writing the previous specification is

rand_forest(mtry = .cols() - 1)

This is not dependent on any specific data object and is evaluated immediately before the model
fitting process begins.

One less advantageous approach to solving this issue is to use quasiquotation. This would insert
the actual R object into the model specification and might be the best idea when the data object is
small. For example, using

rand_forest(mtry = ncol(!!mtcars) - 1)

would work (and be reproducible between sessions) but embeds the entire mtcars data set into the
mtry expression:

multinom_reg 35

> rand_forest(mtry = ncol(!!mtcars) - 1)
Random Forest Model Specification (unknown)

Main Arguments:
mtry = ncol(structure(list(Sepal.Length = c(5.1, 4.9, 4.7, 4.6, 5, <snip>

However, if there were an object with the number of columns in it, this wouldn’t be too bad:

> mtry_val <- ncol(mtcars) - 1
> mtry_val
[1] 10
> rand_forest(mtry = !!mtry_val)
Random Forest Model Specification (unknown)

Main Arguments:
mtry = 10

More information on quosures and quasiquotation can be found at https://tidyeval.tidyverse.
org.

multinom_reg General Interface for Multinomial Regression Models

Description

multinom_reg() is a way to generate a specification of a model before fitting and allows the model
to be created using different packages in R, keras, or Spark. The main arguments for the model are:

• penalty: The total amount of regularization in the model. Note that this must be zero for
some engines.

• mixture: The mixture amounts of different types of regularization (see below). Note that this
will be ignored for some engines.

These arguments are converted to their specific names at the time that the model is fit. Other options
and argument can be set using set_engine(). If left to their defaults here (NULL), the values are
taken from the underlying model functions. If parameters need to be modified, update() can be
used in lieu of recreating the object from scratch.

Usage

multinom_reg(mode = "classification", penalty = NULL, mixture = NULL)

S3 method for class 'multinom_reg'
update(
object,
parameters = NULL,
penalty = NULL,

https://tidyeval.tidyverse.org
https://tidyeval.tidyverse.org

36 multinom_reg

mixture = NULL,
fresh = FALSE,
...

)

Arguments

mode A single character string for the type of model. The only possible value for this
model is "classification".

penalty A non-negative number representing the total amount of regularization (glmnet,
keras, and spark only). For keras models, this corresponds to purely L2 reg-
ularization (aka weight decay) while the other models can be a combination of
L1 and L2 (depending on the value of mixture).

mixture A number between zero and one (inclusive) that is the proportion of L1 regu-
larization (i.e. lasso) in the model. When mixture = 1, it is a pure lasso model
while mixture = 0 indicates that ridge regression is being used. (glmnet and
spark only).

object A multinomial regression model specification.

parameters A 1-row tibble or named list with main parameters to update. If the individual
arguments are used, these will supersede the values in parameters. Also, using
engine arguments in this object will result in an error.

fresh A logical for whether the arguments should be modified in-place of or replaced
wholesale.

... Not used for update().

Details

For multinom_reg(), the mode will always be "classification".

The model can be created using the fit() function using the following engines:

• R: "glmnet" (the default), "nnet"

• Stan: "stan"

• keras: "keras"

Engine Details

Engines may have pre-set default arguments when executing the model fit call. For this type of
model, the template of the fit calls are below.

glmnet:

multinom_reg() %>%
set_engine("glmnet") %>%
set_mode("classification") %>%
translate()

multinom_reg 37

Multinomial Regression Model Specification (classification)
##
Computational engine: glmnet
##
Model fit template:
glmnet::glmnet(x = missing_arg(), y = missing_arg(), weights = missing_arg(),
family = "multinomial")

For glmnet models, the full regularization path is always fit regardless of the value given to
penalty. Also, there is the option to pass multiple values (or no values) to the penalty argu-
ment. When using the predict() method in these cases, the return value depends on the value of
penalty. When using predict(), only a single value of the penalty can be used. When predict-
ing on multiple penalties, the multi_predict() function can be used. It returns a tibble with a
list column called .pred that contains a tibble with all of the penalty results.

nnet:

multinom_reg() %>%
set_engine("nnet") %>%
set_mode("classification") %>%
translate()

Multinomial Regression Model Specification (classification)
##
Computational engine: nnet
##
Model fit template:
nnet::multinom(formula = missing_arg(), data = missing_arg(),
weights = missing_arg(), trace = FALSE)

spark:

multinom_reg() %>%
set_engine("spark") %>%
set_mode("classification") %>%
translate()

Multinomial Regression Model Specification (classification)
##
Computational engine: spark
##
Model fit template:
sparklyr::ml_logistic_regression(x = missing_arg(), formula = missing_arg(),
weight_col = missing_arg(), family = "multinomial")

keras:

multinom_reg() %>%
set_engine("keras") %>%
set_mode("classification") %>%
translate()

38 multi_predict

Multinomial Regression Model Specification (classification)
##
Computational engine: keras
##
Model fit template:
parsnip::keras_mlp(x = missing_arg(), y = missing_arg(), hidden_units = 1,
act = "linear")

Parameter translations:
The standardized parameter names in parsnip can be mapped to their original names in each
engine that has main parameters. Each engine typically has a different default value (shown in
parentheses) for each parameter.

parsnip glmnet spark keras nnet
penalty lambda reg_param (0) penalty (0) decay (0)
mixture alpha (1) elastic_net_param (0) NA NA

Note

For models created using the spark engine, there are several differences to consider. First, only the
formula interface to via fit() is available; using fit_xy() will generate an error. Second, the pre-
dictions will always be in a spark table format. The names will be the same as documented but with-
out the dots. Third, there is no equivalent to factor columns in spark tables so class predictions are
returned as character columns. Fourth, to retain the model object for a new R session (via save()),
the model$fit element of the parsnip object should be serialized via ml_save(object$fit) and
separately saved to disk. In a new session, the object can be reloaded and reattached to the parsnip
object.

See Also

fit()

Examples

multinom_reg()
Parameters can be represented by a placeholder:
multinom_reg(penalty = varying())
model <- multinom_reg(penalty = 10, mixture = 0.1)
model
update(model, penalty = 1)
update(model, penalty = 1, fresh = TRUE)

multi_predict Model predictions across many sub-models

Description

For some models, predictions can be made on sub-models in the model object.

multi_predict 39

Usage

multi_predict(object, ...)

Default S3 method:
multi_predict(object, ...)

S3 method for class '`_xgb.Booster`'
multi_predict(object, new_data, type = NULL, trees = NULL, ...)

S3 method for class '`_C5.0`'
multi_predict(object, new_data, type = NULL, trees = NULL, ...)

S3 method for class '`_elnet`'
multi_predict(object, new_data, type = NULL, penalty = NULL, ...)

S3 method for class '`_lognet`'
multi_predict(object, new_data, type = NULL, penalty = NULL, ...)

S3 method for class '`_earth`'
multi_predict(object, new_data, type = NULL, num_terms = NULL, ...)

S3 method for class '`_multnet`'
multi_predict(object, new_data, type = NULL, penalty = NULL, ...)

S3 method for class '`_train.kknn`'
multi_predict(object, new_data, type = NULL, neighbors = NULL, ...)

Arguments

object A model_fit object.

... Optional arguments to pass to predict.model_fit(type = "raw") such as type.

new_data A rectangular data object, such as a data frame.

type A single character value or NULL. Possible values are "numeric", "class", "prob",
"conf_int", "pred_int", "quantile", or "raw". When NULL, predict() will choose
an appropriate value based on the model’s mode.

trees An integer vector for the number of trees in the ensemble.

penalty A numeric vector of penalty values.

num_terms An integer vector for the number of MARS terms to retain.

neighbors An integer vector for the number of nearest neighbors.

Value

A tibble with the same number of rows as the data being predicted. There is a list-column named
.pred that contains tibbles with multiple rows per sub-model. Note that, within the tibbles, the
column names follow the usual standard based on prediction type (i.e. .pred_class for type =
"class" and so on).

40 nearest_neighbor

nearest_neighbor General Interface for K-Nearest Neighbor Models

Description

nearest_neighbor() is a way to generate a specification of a model before fitting and allows the
model to be created using different packages in R. The main arguments for the model are:

• neighbors: The number of neighbors considered at each prediction.

• weight_func: The type of kernel function that weights the distances between samples.

• dist_power: The parameter used when calculating the Minkowski distance. This corresponds
to the Manhattan distance with dist_power = 1 and the Euclidean distance with dist_power
= 2.

These arguments are converted to their specific names at the time that the model is fit. Other options
and argument can be set using set_engine(). If left to their defaults here (NULL), the values are
taken from the underlying model functions. If parameters need to be modified, update() can be
used in lieu of recreating the object from scratch.

Usage

nearest_neighbor(
mode = "unknown",
neighbors = NULL,
weight_func = NULL,
dist_power = NULL

)

Arguments

mode A single character string for the type of model. Possible values for this model
are "unknown", "regression", or "classification".

neighbors A single integer for the number of neighbors to consider (often called k). For
kknn, a value of 5 is used if neighbors is not specified.

weight_func A single character for the type of kernel function used to weight distances be-
tween samples. Valid choices are: "rectangular", "triangular", "epanechnikov",
"biweight", "triweight", "cos", "inv", "gaussian", "rank", or "optimal".

dist_power A single number for the parameter used in calculating Minkowski distance.

Details

The model can be created using the fit() function using the following engines:

• R: "kknn" (the default)

nearest_neighbor 41

Engine Details

Engines may have pre-set default arguments when executing the model fit call. For this type of
model, the template of the fit calls are below:

kknn:

nearest_neighbor() %>%
set_engine("kknn") %>%
set_mode("regression") %>%
translate()

K-Nearest Neighbor Model Specification (regression)
##
Computational engine: kknn
##
Model fit template:
kknn::train.kknn(formula = missing_arg(), data = missing_arg(),
ks = 5)

nearest_neighbor() %>%
set_engine("kknn") %>%
set_mode("classification") %>%
translate()

K-Nearest Neighbor Model Specification (classification)
##
Computational engine: kknn
##
Model fit template:
kknn::train.kknn(formula = missing_arg(), data = missing_arg(),
ks = 5)

For kknn, the underlying modeling function used is a restricted version of train.kknn() and not
kknn(). It is set up in this way so that parsnip can utilize the underlying predict.train.kknn
method to predict on new data. This also means that a single value of that function’s kernel
argument (a.k.a weight_func here) can be supplied

Parameter translations:
The standardized parameter names in parsnip can be mapped to their original names in each
engine that has main parameters. Each engine typically has a different default value (shown in
parentheses) for each parameter.

parsnip kknn
neighbors ks
weight_func kernel (optimal)
dist_power distance (2)

42 nullmodel

See Also

fit()

Examples

nearest_neighbor(neighbors = 11)

nullmodel Fit a simple, non-informative model

Description

Fit a single mean or largest class model. nullmodel() is the underlying computational function for
the null_model() specification.

Usage

nullmodel(x, ...)

Default S3 method:
nullmodel(x = NULL, y, ...)

S3 method for class 'nullmodel'
print(x, ...)

S3 method for class 'nullmodel'
predict(object, new_data = NULL, type = NULL, ...)

Arguments

x An optional matrix or data frame of predictors. These values are not used in the
model fit

... Optional arguments (not yet used)

y A numeric vector (for regression) or factor (for classification) of outcomes

object An object of class nullmodel

new_data A matrix or data frame of predictors (only used to determine the number of
predictions to return)

type Either "raw" (for regression), "class" or "prob" (for classification)

Details

nullmodel() emulates other model building functions, but returns the simplest model possible
given a training set: a single mean for numeric outcomes and the most prevalent class for factor
outcomes. When class probabilities are requested, the percentage of the training set samples with
the most prevalent class is returned.

null_model 43

Value

The output of nullmodel() is a list of class nullmodel with elements

call the function call

value the mean of y or the most prevalent class

levels when y is a factor, a vector of levels. NULL otherwise

pct when y is a factor, a data frame with a column for each class (NULL otherwise).
The column for the most prevalent class has the proportion of the training sam-
ples with that class (the other columns are zero).

n the number of elements in y

predict.nullmodel() returns a either a factor or numeric vector depending on the class of y. All
predictions are always the same.

Examples

outcome <- factor(sample(letters[1:2],
size = 100,
prob = c(.1, .9),
replace = TRUE))

useless <- nullmodel(y = outcome)
useless
predict(useless, matrix(NA, nrow = 5))

null_model General Interface for null models

Description

null_model() is a way to generate a specification of a model before fitting and allows the model
to be created using R. It doesn’t have any main arguments.

Usage

null_model(mode = "classification")

Arguments

mode A single character string for the type of model. Possible values for this model
are "unknown", "regression", or "classification".

Details

The model can be created using the fit() function using the following engines:

• R: "parsnip"

44 rand_forest

Engine Details

Engines may have pre-set default arguments when executing the model fit call. For this type of
model, the template of the fit calls are below:

parsnip:

null_model() %>%
set_engine("parsnip") %>%
set_mode("regression") %>%
translate()

Model Specification (regression)
##
Computational engine: parsnip
##
Model fit template:
nullmodel(x = missing_arg(), y = missing_arg())

null_model() %>%
set_engine("parsnip") %>%
set_mode("classification") %>%
translate()

Model Specification (classification)
##
Computational engine: parsnip
##
Model fit template:
nullmodel(x = missing_arg(), y = missing_arg())

See Also

fit()

Examples

null_model(mode = "regression")

rand_forest General Interface for Random Forest Models

Description

rand_forest() is a way to generate a specification of a model before fitting and allows the model
to be created using different packages in R or via Spark. The main arguments for the model are:

• mtry: The number of predictors that will be randomly sampled at each split when creating the
tree models.

• trees: The number of trees contained in the ensemble.

rand_forest 45

• min_n: The minimum number of data points in a node that are required for the node to be split
further.

These arguments are converted to their specific names at the time that the model is fit. Other options
and argument can be set using set_engine(). If left to their defaults here (NULL), the values are
taken from the underlying model functions. If parameters need to be modified, update() can be
used in lieu of recreating the object from scratch.

Usage

rand_forest(mode = "unknown", mtry = NULL, trees = NULL, min_n = NULL)

S3 method for class 'rand_forest'
update(
object,
parameters = NULL,
mtry = NULL,
trees = NULL,
min_n = NULL,
fresh = FALSE,
...

)

Arguments

mode A single character string for the type of model. Possible values for this model
are "unknown", "regression", or "classification".

mtry An integer for the number of predictors that will be randomly sampled at each
split when creating the tree models.

trees An integer for the number of trees contained in the ensemble.

min_n An integer for the minimum number of data points in a node that are required
for the node to be split further.

object A random forest model specification.

parameters A 1-row tibble or named list with main parameters to update. If the individual
arguments are used, these will supersede the values in parameters. Also, using
engine arguments in this object will result in an error.

fresh A logical for whether the arguments should be modified in-place of or replaced
wholesale.

... Not used for update().

Details

The model can be created using the fit() function using the following engines:

• R: "ranger" (the default) or "randomForest"

• Spark: "spark"

46 rand_forest

Engine Details

Engines may have pre-set default arguments when executing the model fit call. For this type of
model, the template of the fit calls are below:

ranger:

rand_forest() %>%
set_engine("ranger") %>%
set_mode("regression") %>%
translate()

Random Forest Model Specification (regression)
##
Computational engine: ranger
##
Model fit template:
ranger::ranger(formula = missing_arg(), data = missing_arg(),
case.weights = missing_arg(), num.threads = 1, verbose = FALSE,
seed = sample.int(10^5, 1))

rand_forest() %>%
set_engine("ranger") %>%
set_mode("classification") %>%
translate()

Random Forest Model Specification (classification)
##
Computational engine: ranger
##
Model fit template:
ranger::ranger(formula = missing_arg(), data = missing_arg(),
case.weights = missing_arg(), num.threads = 1, verbose = FALSE,
seed = sample.int(10^5, 1), probability = TRUE)

Note that ranger::ranger() does not require factor predictors to be converted to indicator vari-
ables. fit() does not affect the encoding of the predictor values (i.e. factors stay factors) for this
model.
For ranger confidence intervals, the intervals are constructed using the form estimate +/- z * std_error.
For classification probabilities, these values can fall outside of [0, 1] and will be coerced to be in
this range.

randomForest:

rand_forest() %>%
set_engine("randomForest") %>%
set_mode("regression") %>%
translate()

Random Forest Model Specification (regression)
##
Computational engine: randomForest

rand_forest 47

##
Model fit template:
randomForest::randomForest(x = missing_arg(), y = missing_arg())

rand_forest() %>%
set_engine("randomForest") %>%
set_mode("classification") %>%
translate()

Random Forest Model Specification (classification)
##
Computational engine: randomForest
##
Model fit template:
randomForest::randomForest(x = missing_arg(), y = missing_arg())

Note that randomForest::randomForest() does not require factor predictors to be converted to
indicator variables. fit() does not affect the encoding of the predictor values (i.e. factors stay
factors) for this model.

spark:

rand_forest() %>%
set_engine("spark") %>%
set_mode("regression") %>%
translate()

Random Forest Model Specification (regression)
##
Computational engine: spark
##
Model fit template:
sparklyr::ml_random_forest(x = missing_arg(), formula = missing_arg(),
type = "regression", seed = sample.int(10^5, 1))

rand_forest() %>%
set_engine("spark") %>%
set_mode("classification") %>%
translate()

Random Forest Model Specification (classification)
##
Computational engine: spark
##
Model fit template:
sparklyr::ml_random_forest(x = missing_arg(), formula = missing_arg(),
type = "classification", seed = sample.int(10^5, 1))

fit() does not affect the encoding of the predictor values (i.e. factors stay factors) for this model.

Parameter translations:

48 rand_forest

The standardized parameter names in parsnip can be mapped to their original names in each
engine that has main parameters. Each engine typically has a different default value (shown in
parentheses) for each parameter.

repair_call 49

parsnip ranger randomForest spark
mtry mtry (see below) mtry (see below) feature_subset_strategy (see below)
trees num.trees (500) ntree (500) num_trees (20)
min_n min.node.size (see below) nodesize (see below) min_instances_per_node (1)

• For randomForest and spark, the default mtry is the square root of the number of predictors
for classification, and one-third of the predictors for regression.

• For ranger, the default mtry is the square root of the number of predictors.
• The default min_n for both ranger and randomForest is 1 for classification and 5 for regres-

sion.

Note

For models created using the spark engine, there are several differences to consider. First, only the
formula interface to via fit() is available; using fit_xy() will generate an error. Second, the
predictions will always be in a spark table format. The names will be the same as documented but
without the dots. Third, there is no equivalent to factor columns in spark tables so class predictions
are returned as character columns. Fourth, to retain the model object for a new R session (via save),
the model$fit element of the parsnip object should be serialized via ml_save(object$fit) and
separately saved to disk. In a new session, the object can be reloaded and reattached to the parsnip
object.

See Also

fit()

Examples

rand_forest(mode = "classification", trees = 2000)
Parameters can be represented by a placeholder:
rand_forest(mode = "regression", mtry = varying())
model <- rand_forest(mtry = 10, min_n = 3)
model
update(model, mtry = 1)
update(model, mtry = 1, fresh = TRUE)

repair_call Repair a model call object

Description

When the user passes a formula to fit() and the underyling model function uses a formula, the
call object produced by fit() may not be usable by other functions. For example, some arguments
may still be quosures and the data portion of the call will not correspond to the original data.

Usage

repair_call(x, data)

50 req_pkgs

Arguments

x A fitted parsnip model. An error will occur if the underlying model does not
have a call element.

data A data object that is relavant to the call. In most cases, this is the data frame that
was given to parsnip for the model fit (i.e., the training set data). The name of
this data object is inserted into the call.

Details

repair_call() call can adjust the model objects call to be usable by other functions and methods.

Value

A modified parsnip fitted model.

Examples

fitted_model <-
linear_reg() %>%
set_engine("lm", model = TRUE) %>%
fit(mpg ~ ., data = mtcars)

In this call, note that `data` is not `mtcars` and the `model = ~TRUE`
indicates that the `model` argument is an `rlang` quosure.
fitted_modelfitcall

All better:
repair_call(fitted_model, mtcars)fitcall

req_pkgs Determine required packages for a model

Description

Determine required packages for a model

Usage

req_pkgs(x, ...)

S3 method for class 'model_spec'
req_pkgs(x, ...)

S3 method for class 'model_fit'
req_pkgs(x, ...)

set_args 51

Arguments

x A model specification or fit.

... Not used.

Details

For a model specification, the engine must be set.

The list does not include the parsnip package.

Value

A character string of package names (if any).

Examples

should_fail <- try(req_pkgs(linear_reg()), silent = TRUE)
should_fail

linear_reg() %>%
set_engine("glmnet") %>%
req_pkgs()

linear_reg() %>%
set_engine("lm") %>%
fit(mpg ~ ., data = mtcars) %>%
req_pkgs()

set_args Change elements of a model specification

Description

set_args() can be used to modify the arguments of a model specification while set_mode() is
used to change the model’s mode.

Usage

set_args(object, ...)

set_mode(object, mode)

Arguments

object A model specification.

... One or more named model arguments.

mode A character string for the model type (e.g. "classification" or "regression")

52 set_engine

Details

set_args() will replace existing values of the arguments.

Value

An updated model object.

Examples

rand_forest()

rand_forest() %>%
set_args(mtry = 3, importance = TRUE) %>%
set_mode("regression")

set_engine Declare a computational engine and specific arguments

Description

set_engine() is used to specify which package or system will be used to fit the model, along with
any arguments specific to that software.

Usage

set_engine(object, engine, ...)

Arguments

object A model specification.
engine A character string for the software that should be used to fit the model. This is

highly dependent on the type of model (e.g. linear regression, random forest,
etc.).

... Any optional arguments associated with the chosen computational engine. These
are captured as quosures and can be varying().

Value

An updated model specification.

Examples

First, set general arguments using the standardized names
mod <-

logistic_reg(mixture = 1/3) %>%
now say how you want to fit the model and another other options
set_engine("glmnet", nlambda = 10)

translate(mod, engine = "glmnet")

surv_reg 53

surv_reg General Interface for Parametric Survival Models

Description

surv_reg() is a way to generate a specification of a model before fitting and allows the model to
be created using R. The main argument for the model is:

• dist: The probability distribution of the outcome.

This argument is converted to its specific names at the time that the model is fit. Other options and
argument can be set using set_engine(). If left to its default here (NULL), the value is taken from
the underlying model functions.

If parameters need to be modified, this function can be used in lieu of recreating the object from
scratch.

Usage

surv_reg(mode = "regression", dist = NULL)

S3 method for class 'surv_reg'
update(object, parameters = NULL, dist = NULL, fresh = FALSE, ...)

Arguments

mode A single character string for the type of model. The only possible value for this
model is "regression".

dist A character string for the outcome distribution. "weibull" is the default.
object A survival regression model specification.
parameters A 1-row tibble or named list with main parameters to update. If the individual

arguments are used, these will supersede the values in parameters. Also, using
engine arguments in this object will result in an error.

fresh A logical for whether the arguments should be modified in-place of or replaced
wholesale.

... Not used for update().

Details

The data given to the function are not saved and are only used to determine the mode of the model.
For surv_reg(),the mode will always be "regression".

Since survival models typically involve censoring (and require the use of survival::Surv() ob-
jects), the fit() function will require that the survival model be specified via the formula interface.

Also, for the flexsurv::flexsurvfit engine, the typical strata function cannot be used. To
achieve the same effect, the extra parameter roles can be used (as described above).

For surv_reg(), the mode will always be "regression".

The model can be created using the fit() function using the following engines:

54 surv_reg

• R: "flexsurv", "survival" (the default)

Engine Details

Engines may have pre-set default arguments when executing the model fit call. For this type of
model, the template of the fit calls are below.

flexsurv:

surv_reg() %>%
set_engine("flexsurv") %>%
set_mode("regression") %>%
translate()

Parametric Survival Regression Model Specification (regression)
##
Computational engine: flexsurv
##
Model fit template:
flexsurv::flexsurvreg(formula = missing_arg(), data = missing_arg(),
weights = missing_arg())

survival:

surv_reg() %>%
set_engine("survival") %>%
set_mode("regression") %>%
translate()

Parametric Survival Regression Model Specification (regression)
##
Computational engine: survival
##
Model fit template:
survival::survreg(formula = missing_arg(), data = missing_arg(),
weights = missing_arg(), model = TRUE)

Note that model = TRUE is needed to produce quantile predictions when there is a stratification
variable and can be overridden in other cases.
fit() passes the data directly to survival::curvreg() so that its formula method can create
dummy variables as-needed.

Parameter translations:
The standardized parameter names in parsnip can be mapped to their original names in each
engine that has main parameters. Each engine typically has a different default value (shown in
parentheses) for each parameter.

parsnip flexsurv survival
dist dist dist

svm_poly 55

References

Jackson, C. (2016). flexsurv: A Platform for Parametric Survival Modeling in R. Journal of
Statistical Software, 70(8), 1 - 33.

See Also

fit(), survival::Surv()

Examples

surv_reg()
Parameters can be represented by a placeholder:
surv_reg(dist = varying())

model <- surv_reg(dist = "weibull")
model
update(model, dist = "lnorm")

svm_poly General interface for polynomial support vector machines

Description

svm_poly() is a way to generate a specification of a model before fitting and allows the model to
be created using different packages in R or via Spark. The main arguments for the model are:

• cost: The cost of predicting a sample within or on the wrong side of the margin.

• degree: The polynomial degree.

• scale_factor: A scaling factor for the kernel.

• margin: The epsilon in the SVM insensitive loss function (regression only)

These arguments are converted to their specific names at the time that the model is fit. Other options
and argument can be set using set_engine(). If left to their defaults here (NULL), the values are
taken from the underlying model functions. If parameters need to be modified, update() can be
used in lieu of recreating the object from scratch.

Usage

svm_poly(
mode = "unknown",
cost = NULL,
degree = NULL,
scale_factor = NULL,
margin = NULL

)

S3 method for class 'svm_poly'

56 svm_poly

update(
object,
parameters = NULL,
cost = NULL,
degree = NULL,
scale_factor = NULL,
margin = NULL,
fresh = FALSE,
...

)

Arguments

mode A single character string for the type of model. Possible values for this model
are "unknown", "regression", or "classification".

cost A positive number for the cost of predicting a sample within or on the wrong
side of the margin

degree A positive number for polynomial degree.

scale_factor A positive number for the polynomial scaling factor.

margin A positive number for the epsilon in the SVM insensitive loss function (regres-
sion only)

object A polynomial SVM model specification.

parameters A 1-row tibble or named list with main parameters to update. If the individual
arguments are used, these will supersede the values in parameters. Also, using
engine arguments in this object will result in an error.

fresh A logical for whether the arguments should be modified in-place of or replaced
wholesale.

... Not used for update().

Details

The model can be created using the fit() function using the following engines:

• R: "kernlab" (the default)

Engine Details

Engines may have pre-set default arguments when executing the model fit call. For this type of
model, the template of the fit calls are below:

kernlab:

svm_poly() %>%
set_engine("kernlab") %>%
set_mode("regression") %>%
translate()

svm_poly 57

Polynomial Support Vector Machine Specification (regression)
##
Computational engine: kernlab
##
Model fit template:
kernlab::ksvm(x = missing_arg(), data = missing_arg(), kernel = "polydot")

svm_poly() %>%
set_engine("kernlab") %>%
set_mode("classification") %>%
translate()

Polynomial Support Vector Machine Specification (classification)
##
Computational engine: kernlab
##
Model fit template:
kernlab::ksvm(x = missing_arg(), data = missing_arg(), kernel = "polydot",
prob.model = TRUE)

fit() passes the data directly to kernlab::ksvm() so that its formula method can create dummy
variables as-needed.

Parameter translations:
The standardized parameter names in parsnip can be mapped to their original names in each
engine that has main parameters. Each engine typically has a different default value (shown in
parentheses) for each parameter.

parsnip kernlab
cost C (1)
degree degree (1)
scale_factor scale (1)
margin epsilon (0.1)

See Also

fit()

Examples

svm_poly(mode = "classification", degree = 1.2)
Parameters can be represented by a placeholder:
svm_poly(mode = "regression", cost = varying())
model <- svm_poly(cost = 10, scale_factor = 0.1)
model
update(model, cost = 1)
update(model, cost = 1, fresh = TRUE)

58 svm_rbf

svm_rbf General interface for radial basis function support vector machines

Description

svm_rbf() is a way to generate a specification of a model before fitting and allows the model to be
created using different packages in R or via Spark. The main arguments for the model are:

• cost: The cost of predicting a sample within or on the wrong side of the margin.

• rbf_sigma: The precision parameter for the radial basis function.

• margin: The epsilon in the SVM insensitive loss function (regression only)

These arguments are converted to their specific names at the time that the model is fit. Other options
and argument can be set using set_engine(). If left to their defaults here (NULL), the values are
taken from the underlying model functions. If parameters need to be modified, update() can be
used in lieu of recreating the object from scratch.

Usage

svm_rbf(mode = "unknown", cost = NULL, rbf_sigma = NULL, margin = NULL)

S3 method for class 'svm_rbf'
update(
object,
parameters = NULL,
cost = NULL,
rbf_sigma = NULL,
margin = NULL,
fresh = FALSE,
...

)

Arguments

mode A single character string for the type of model. Possible values for this model
are "unknown", "regression", or "classification".

cost A positive number for the cost of predicting a sample within or on the wrong
side of the margin

rbf_sigma A positive number for radial basis function.

margin A positive number for the epsilon in the SVM insensitive loss function (regres-
sion only)

object A radial basis function SVM model specification.

parameters A 1-row tibble or named list with main parameters to update. If the individual
arguments are used, these will supersede the values in parameters. Also, using
engine arguments in this object will result in an error.

svm_rbf 59

fresh A logical for whether the arguments should be modified in-place of or replaced
wholesale.

... Not used for update().

Details

The model can be created using the fit() function using the following engines:

• R: "kernlab" (the default)

• R: "liquidSVM"

Engine Details

Engines may have pre-set default arguments when executing the model fit call. For this type of
model, the template of the fit calls are below:

kernlab:

svm_rbf() %>%
set_engine("kernlab") %>%
set_mode("regression") %>%
translate()

Radial Basis Function Support Vector Machine Specification (regression)
##
Computational engine: kernlab
##
Model fit template:
kernlab::ksvm(x = missing_arg(), data = missing_arg(), kernel = "rbfdot")

svm_rbf() %>%
set_engine("kernlab") %>%
set_mode("classification") %>%
translate()

Radial Basis Function Support Vector Machine Specification (classification)
##
Computational engine: kernlab
##
Model fit template:
kernlab::ksvm(x = missing_arg(), data = missing_arg(), kernel = "rbfdot",
prob.model = TRUE)

fit() passes the data directly to kernlab::ksvm() so that its formula method can create dummy
variables as-needed.

liquidSVM:

svm_rbf() %>%
set_engine("liquidSVM") %>%
set_mode("regression") %>%
translate()

60 svm_rbf

Radial Basis Function Support Vector Machine Specification (regression)
##
Computational engine: liquidSVM
##
Model fit template:
liquidSVM::svm(x = missing_arg(), y = missing_arg(), folds = 1,
threads = 0)

svm_rbf() %>%
set_engine("liquidSVM") %>%
set_mode("classification") %>%
translate()

Radial Basis Function Support Vector Machine Specification (classification)
##
Computational engine: liquidSVM
##
Model fit template:
liquidSVM::svm(x = missing_arg(), y = missing_arg(), folds = 1,
threads = 0)

Note that models created using the liquidSVM engine cannot be saved like conventional R objects.
The fit slot of the model_fit object has to be saved separately using the liquidSVM::write.liquidSVM()
function. Likewise to restore a model, the fit slot has to be replaced with the model that is read
using the liquidSVM::read.liquidSVM() function.
liquidSVM parameterizes the kernel parameter differently than kernlab. To translate between
engines, sigma = 1/gammas^2. Users will be specifying sigma and the function translates the
value to gamma.
fit() passes the data directly to liquidSVM::svm() so that its formula method can create dummy
variables as-needed.

Parameter translations:
The standardized parameter names in parsnip can be mapped to their original names in each
engine that has main parameters. Each engine typically has a different default value (shown in
parentheses) for each parameter.

parsnip kernlab liquidSVM
cost C (1) lambdas (varies)
rbf_sigma sigma (varies) gammas (varies)
margin epsilon (0.1) NA

See Also

fit()

Examples

svm_rbf(mode = "classification", rbf_sigma = 0.2)
Parameters can be represented by a placeholder:

tidy.model_fit 61

svm_rbf(mode = "regression", cost = varying())
model <- svm_rbf(cost = 10, rbf_sigma = 0.1)
model
update(model, cost = 1)
update(model, cost = 1, fresh = TRUE)

tidy.model_fit Turn a parsnip model object into a tidy tibble

Description

This method tidies the model in a parsnip model object, if it exists.

Usage

S3 method for class 'model_fit'
tidy(x, ...)

Arguments

x An object to be converted into a tidy tibble::tibble().

... Additional arguments to tidying method.

Value

a tibble

tidy.nullmodel Tidy method for null models

Description

Return the results of nullmodel as a tibble

Usage

S3 method for class 'nullmodel'
tidy(x, ...)

Arguments

x A nullmodel object.

... Not used.

Value

A tibble with column value.

62 tidy._elnet

Examples

nullmodel(mtcars[,-1], mtcars$mpg) %>% tidy()

tidy._elnet tidy methods for glmnet models

Description

tidy() methods for the various glmnet models that return the coefficients for the specific penalty
value used by the parsnip model fit.

Usage

S3 method for class '`_elnet`'
tidy(x, penalty = NULL, ...)

S3 method for class '`_lognet`'
tidy(x, penalty = NULL, ...)

S3 method for class '`_multnet`'
tidy(x, penalty = NULL, ...)

S3 method for class '`_fishnet`'
tidy(x, penalty = NULL, ...)

Arguments

x A fitted parsnip model that used the glmnet engine.

penalty A single numeric value. If none is given, the value specified in the model speci-
fication is used.

... Not used

Value

A tibble with columns term, estimate, and penalty. When a multinomial mode is used, an
additional class column is included.

translate 63

translate Resolve a Model Specification for a Computational Engine

Description

translate() will translate a model specification into a code object that is specific to a particular
engine (e.g. R package). It translates generic parameters to their counterparts.

Usage

translate(x, ...)

Default S3 method:
translate(x, engine = x$engine, ...)

Arguments

x A model specification.
... Not currently used.
engine The computational engine for the model (see ?set_engine).

Details

translate() produces a template call that lacks the specific argument values (such as data, etc).
These are filled in once fit() is called with the specifics of the data for the model. The call may
also include varying arguments if these are in the specification.

It does contain the resolved argument names that are specific to the model fitting function/engine.

This function can be useful when you need to understand how parsnip goes from a generic model
specific to a model fitting function.

Note: this function is used internally and users should only use it to understand what the underlying
syntax would be. It should not be used to modify the model specification.

Examples

lm_spec <- linear_reg(penalty = 0.01)

`penalty` is tranlsated to `lambda`
translate(lm_spec, engine = "glmnet")

`penalty` not applicable for this model.
translate(lm_spec, engine = "lm")

`penalty` is tranlsated to `reg_param`
translate(lm_spec, engine = "spark")

with a placeholder for an unknown argument value:
translate(linear_reg(mixture = varying()), engine = "glmnet")

64 varying_args.model_spec

varying A placeholder function for argument values

Description

varying() is used when a parameter will be specified at a later date.

Usage

varying()

varying_args.model_spec

Determine varying arguments

Description

varying_args() takes a model specification or a recipe and returns a tibble of information on all
possible varying arguments and whether or not they are actually varying.

Usage

S3 method for class 'model_spec'
varying_args(object, full = TRUE, ...)

S3 method for class 'recipe'
varying_args(object, full = TRUE, ...)

S3 method for class 'step'
varying_args(object, full = TRUE, ...)

Arguments

object A model_spec or a recipe.

full A single logical. Should all possible varying parameters be returned? If FALSE,
then only the parameters that are actually varying are returned.

... Not currently used.

Details

The id column is determined differently depending on whether a model_spec or a recipe is used.
For a model_spec, the first class is used. For a recipe, the unique step id is used.

varying_args.model_spec 65

Value

A tibble with columns for the parameter name (name), whether it contains any varying value
(varying), the id for the object (id), and the class that was used to call the method (type).

Examples

List all possible varying args for the random forest spec
rand_forest() %>% varying_args()

mtry is now recognized as varying
rand_forest(mtry = varying()) %>% varying_args()

Even engine specific arguments can vary
rand_forest() %>%

set_engine("ranger", sample.fraction = varying()) %>%
varying_args()

List only the arguments that actually vary
rand_forest() %>%

set_engine("ranger", sample.fraction = varying()) %>%
varying_args(full = FALSE)

rand_forest() %>%
set_engine(
"randomForest",
strata = Class,
sampsize = varying()

) %>%
varying_args()

Index

∗ models
nullmodel, 42

.cols (descriptors), 14

.dat (descriptors), 14

.facts (descriptors), 14

.lvls (descriptors), 14

.obs (descriptors), 14

.preds (descriptors), 14

.x (descriptors), 14

.y (descriptors), 14

add_rowindex, 2

boost_tree, 3

C50::C5.0(), 6, 12
contr_one_hot, 9
control_parsnip, 8
control_parsnip(), 16, 17

decision_tree, 10
descriptors, 14

fit(), 7, 8, 14, 21, 25, 28, 32, 34, 38, 42, 44,
49, 53, 55, 57, 60

fit.model_spec, 16
fit_control (control_parsnip), 8
fit_xy(), 34
fit_xy.model_spec (fit.model_spec), 16

glance.model_fit, 17

linear_reg, 18
logistic_reg, 22

mars, 26
mlp, 28
model_fit, 32
model_spec, 32, 33
multi_predict, 38
multinom_reg, 35

nearest_neighbor, 40
null_model, 43
nullmodel, 42

predict.nullmodel (nullmodel), 42
print.nullmodel (nullmodel), 42

rand_forest, 44
randomForest::randomForest(), 47
ranger::ranger(), 46
repair_call, 49
req_pkgs, 50
rpart::rpart(), 12

set_args, 51
set_engine, 52
set_engine(), 7, 16, 17, 21
set_mode (set_args), 51
surv_reg, 53
survival::Surv(), 53, 55
svm_poly, 55
svm_rbf, 58

tibble::tibble(), 61
tidy._elnet, 62
tidy._fishnet (tidy._elnet), 62
tidy._lognet (tidy._elnet), 62
tidy._multnet (tidy._elnet), 62
tidy.model_fit, 61
tidy.nullmodel, 61
translate, 63

update.boost_tree (boost_tree), 3
update.decision_tree (decision_tree), 10
update.linear_reg (linear_reg), 18
update.logistic_reg (logistic_reg), 22
update.mars (mars), 26
update.mlp (mlp), 28
update.multinom_reg (multinom_reg), 35
update.rand_forest (rand_forest), 44
update.surv_reg (surv_reg), 53

66

INDEX 67

update.svm_poly (svm_poly), 55
update.svm_rbf (svm_rbf), 58

varying, 64
varying(), 64
varying_args.model_spec, 64
varying_args.recipe

(varying_args.model_spec), 64
varying_args.step

(varying_args.model_spec), 64

	add_rowindex
	boost_tree
	control_parsnip
	contr_one_hot
	decision_tree
	descriptors
	fit.model_spec
	glance.model_fit
	linear_reg
	logistic_reg
	mars
	mlp
	model_fit
	model_spec
	multinom_reg
	multi_predict
	nearest_neighbor
	nullmodel
	null_model
	rand_forest
	repair_call
	req_pkgs
	set_args
	set_engine
	surv_reg
	svm_poly
	svm_rbf
	tidy.model_fit
	tidy.nullmodel
	tidy._elnet
	translate
	varying
	varying_args.model_spec
	Index

