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bootstrap_model Model bootstrapping

Description

Bootstrap a statistical model n times to return a data frame of estimates.

Usage

bootstrap_model(model, iterations = 1000, verbose = FALSE, ...)
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Arguments

model Statistical model.

iterations The number of draws to simulate/bootstrap.

verbose Show or hide possible warnings and messages.

... Arguments passed to or from other methods.

Value

A data frame.

See Also

bootstrap_parameters, simulate_model, simulate_parameters

Examples

model <- lm(mpg ~ wt + cyl, data = mtcars)
head(bootstrap_model(model))

bootstrap_parameters Parameters bootstrapping

Description

Compute bootstrapped parameters and their related indices such as Confidence Intervals (CI) and
p-values.

Usage

bootstrap_parameters(
model,
iterations = 1000,
centrality = "median",
ci = 0.95,
ci_method = "quantile",
test = "p-value",
...

)

Arguments

model Statistical model.

iterations The number of draws to simulate/bootstrap.

centrality The point-estimates (centrality indices) to compute. Character (vector) or list
with one or more of these options: "median", "mean", "MAP" or "all".
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ci Value or vector of probability of the CI (between 0 and 1) to be estimated. De-
fault to .89 (89%) for Bayesian models and .95 (95%) for frequentist models.

ci_method The type of index used for Credible Interval. Can be "HDI" (default, see hdi),
"ETI" (see eti) or "SI" (see si).

test The indices to compute. Character (vector) with one or more of these options:
"p-value" (or "p"), "p_direction" (or "pd"), "rope", "p_map", "equivalence_test"
(or "equitest"), "bayesfactor" (or "bf") or "all" to compute all tests. For
each "test", the corresponding bayestestR function is called (e.g. rope or p_direction)
and its results included in the summary output.

... Arguments passed to or from other methods.

Details

This function first calls bootstrap_model to generate bootstrapped coefficients. The resulting
replicated for each coefficient are treated as "distribution", and is passed to describe_posterior()
to calculate the related indices defined in the "test" argument.

Value

Bootstrapped parameters.

References

Davison, A. C., & Hinkley, D. V. (1997). Bootstrap methods and their application (Vol. 1). Cam-
bridge university press.

See Also

bootstrap_model, simulate_parameters, simulate_model

Examples

library(parameters)

model <- lm(Sepal.Length ~ Species * Petal.Width, data = iris)
bootstrap_parameters(model)

check_clusterstructure

Check suitability of data for clustering
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Description

This checks whether the data is appropriate for clustering using the Hopkins’ H statistic of given
data. If the value of Hopkins statistic is close to 0 (below 0.5), then we can reject the null hypothesis
and conclude that the dataset is significantly clusterable. A value for H lower than 0.25 indicates a
clustering tendency at the 90% confidence level. The visual assessment of cluster tendency (VAT)
approach (Bezdek and Hathaway, 2002) consists in investigating the heatmap of the ordered dis-
similarity matrix. Following this, one can potentially detect the clustering tendency by counting the
number of square shaped blocks along the diagonal.

Usage

check_clusterstructure(x, standardize = TRUE, distance = "euclidean", ...)

Arguments

x A data frame.

standardize Standardize the dataframe before clustering (default).

distance Distance method used. Other methods than "euclidean" (default) are exploratory
in the context of clustering tendency. See dist() for list of available methods.

... Arguments passed to or from other methods.

Value

The H statistic (numeric)

References

• Lawson, R. G., & Jurs, P. C. (1990). New index for clustering tendency and its application to
chemical problems. Journal of chemical information and computer sciences, 30(1), 36-41.

• Bezdek, J. C., & Hathaway, R. J. (2002, May). VAT: A tool for visual assessment of (cluster)
tendency. In Proceedings of the 2002 International Joint Conference on Neural Networks.
IJCNN02 (3), 2225-2230. IEEE.

See Also

check_kmo, check_sphericity and check_factorstructure.

Examples

library(parameters)
check_clusterstructure(iris[, 1:4])
plot(check_clusterstructure(iris[, 1:4]))



check_factorstructure 7

check_factorstructure Check suitability of data for Factor Analysis (FA)

Description

This checks whether the data is appropriate for Factor Analysis (FA) by running the Bartlett’s Test
of Sphericity and the Kaiser, Meyer, Olkin (KMO) Measure of Sampling Adequacy (MSA).

Usage

check_factorstructure(x, ...)

Arguments

x A dataframe.

... Arguments passed to or from other methods.

Value

A list of lists of indices related to sphericity and KMO.

See Also

check_kmo, check_sphericity and check_clusterstructure.

Examples

library(parameters)
check_factorstructure(mtcars)

check_heterogeneity Compute group-meaned and de-meaned variables

Description

demean() computes group- and de-meaned versions of a variable that can be used in regression
analysis to model the between- and within-subject effect. check_heterogeneity() checks if
model predictors or variables may cause a heterogeneity bias, i.e. if variables have a within- and/or
between-effect.
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Usage

check_heterogeneity(x, select = NULL, group = NULL)

demean(
x,
select,
group,
suffix_demean = "_within",
suffix_groupmean = "_between",
add_attributes = TRUE,
verbose = TRUE

)

Arguments

x A data frame. For check_heterogeneity(), may also be a mixed model object.

select Character vector (or formula) with names of variables to select that should be
group- and de-meaned. For check_heterogeneity(), if x is a mixed model
object, this argument be ignored.

group Character vector (or formula) with the name of the variable that indicates the
group- or cluster-ID. For check_heterogeneity(), if x is a model object, this
argument be ignored.

suffix_demean, suffix_groupmean

String value, will be appended to the names of the group-meaned and de-meaned
variables of x. By default, de-meaned variables will be suffixed with "_within"
and grouped-meaned variables with "_between".

add_attributes Logical, if TRUE, the returned variables gain attributes to indicate the within- and
between-effects. This is only relevant when printing model_parameters() - in
such cases, the within- and between-effects are printed in separated blocks.

verbose Toggle off warnings.

Details

Heterogeneity Bias: Mixed models include different levels of sources of variability, i.e. error
terms at each level. When macro-indicators (or level-2 predictors, or higher-level units, or more
general: group-level predictors that vary within and across groups) are included as fixed effects
(i.e. treated as covariate at level-1), the variance that is left unaccounted for this covariate will
be absorbed into the error terms of level-1 and level-2 (Bafumi and Gelman 2006; Gelman and
Hill 2007, Chapter 12.6.): “Such covariates contain two parts: one that is specific to the higher-
level entity that does not vary between occasions, and one that represents the difference between
occasions, within higher-level entities” (Bell et al. 2015 ). Hence, the error terms will be correlated
with the covariate, which violates one of the assumptions of mixed models (iid, independent
and identically distributed error terms). This bias is also called the heterogeneity bias (Bell et
al. 2015 ). To resolve this problem, level-2 predictors used as (level-1) covariates should be
separated into their "within" and "between" effects by "de-meaning" and "group-meaning": After
demeaning time-varying predictors, “at the higher level, the mean term is no longer constrained
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by Level 1 effects, so it is free to account for all the higher-level variance associated with that
variable” (Bell et al. 2015 ).

Panel data and correlating fixed and group effects: demean() is intended to create group- and
de-meaned variables for panel regression models (fixed effects models), or for complex random-
effect-within-between models (see Bell et al. 2015, 2018 ), where group-effects (random effects)
and fixed effects correlate (see Bafumi and Gelman 2006 ). This can happen, for instance, when
analyzing panel data, which can lead to Heterogeneity Bias. To control for correlating predictors
and group effects, it is recommended to include the group-meaned and de-meaned version of time-
varying covariates (and group-meaned version of time-invariant covariates that are on a higher
level, e.g. level-2 predictors) in the model. By this, one can fit complex multilevel models for
panel data, including time-varying predictors, time-invariant predictors and random effects.

Why mixed models are preferred over fixed effects models: A mixed models approach can
model the causes of endogeneity explicitly by including the (separated) within- and between-
effects of time-varying fixed effects and including time-constant fixed effects. Furthermore, mixed
models also include random effects, thus a mixed models approach is superior to classic fixed-
effects models, which lack information of variation in the group-effects or between-subject ef-
fects. Furthermore, fixed effects regression cannot include random slopes, which means that fixed
effects regressions are neglecting “cross-cluster differences in the effects of lower-level controls
(which) reduces the precision of estimated context effects, resulting in unnecessarily wide confi-
dence intervals and low statistical power” (Heisig et al. 2017 ).

Terminology: The group-meaned variable is simply the mean of an independent variable within
each group (or id-level or cluster) represented by group. It represents the cluster-mean of an
independent variable. The de-meaned variable is then the centered version of the group-meaned
variable. De-meaning is sometimes also called person-mean centering or centering within clus-
ters.

De-meaning with continuous predictors: For continuous time-varying predictors, the recom-
mendation is to include both their de-meaned and group-meaned versions as fixed effects, but
not the raw (untransformed) time-varying predictors themselves. The de-meaned predictor should
also be included as random effect (random slope). In regression models, the coefficient of the de-
meaned predictors indicates the within-subject effect, while the coefficient of the group-meaned
predictor indicates the between-subject effect.

De-meaning with binary predictors: For binary time-varying predictors, the recommendation
is to include the raw (untransformed) binary predictor as fixed effect only and the de-meaned vari-
able as random effect (random slope) (Hoffmann 2015, chapter 8-2.I ). demean() will thus coerce
categorical time-varying predictors to numeric to compute the de- and group-meaned versions for
these variables.

De-meaning of factors with more than 2 levels: Factors with more than two levels are de-
meaned in two ways: first, these are also converted to numeric and de-meaned; second, dummy
variables are created (binary, with 0/1 coding for each level) and these binary dummy-variables
are de-meaned in the same way (as described above). Packages like panelr internally convert
factors to dummies before demeaning, so this behaviour can be mimicked here.
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De-meaning interaction terms: There are multiple ways to deal with interaction terms of
within- and between-effects. A classical approach is to simply use the product term of the de-
meaned variables (i.e. introducing the de-meaned variables as interaction term in the model for-
mula, e.g. y ~ x_within * time_within). This approach, however, might be subject to bias (see
Giesselmann & Schmidt-Catran 2020 ).

Another option is to first calculate the product term and then apply the de-meaning to it. This
approach produces an estimator “that reflects unit-level differences of interacted variables whose
moderators vary within units”, which is desirable if no within interaction of two time-dependent
variables is required.

A third option, when the interaction should result in a genuine within estimator, is to "double
de-mean" the interaction terms (Giesselmann & Schmidt-Catran 2018 ), however, this is currently
not supported by demean(). If this is required, the wmb() function from the panelr package
should be used.

To de-mean interaction terms for within-between models, simply specify the term as interaction
for the select-argument, e.g. select = "a*b" (see ’Examples’).

Analysing panel data with mixed models using lme4: A description of how to translate the
formulas described in Bell et al. 2018 into R using lmer() from lme4 can be found in this
vignette.

Value

A data frame with the group-/de-meaned variables, which get the suffix "_between" (for the group-
meaned variable) and "_within" (for the de-meaned variable) by default.

References

• Bafumi J, Gelman A. 2006. Fitting Multilevel Models When Predictors and Group Effects
Correlate. In. Philadelphia, PA: Annual meeting of the American Political Science Associa-
tion.

• Bell A, Fairbrother M, Jones K. 2019. Fixed and Random Effects Models: Making an In-
formed Choice. Quality & Quantity (53); 1051-1074

• Bell A, Jones K. 2015. Explaining Fixed Effects: Random Effects Modeling of Time-Series
Cross-Sectional and Panel Data. Political Science Research and Methods, 3(1), 133–153.

• Gelman A, Hill J. 2007. Data Analysis Using Regression and Multilevel/Hierarchical Models.
Analytical Methods for Social Research. Cambridge, New York: Cambridge University Press

• Giesselmann M, Schmidt-Catran, AW. 2020. Interactions in fixed effects regression models.
Sociological Methods & Research, 1–28. https://doi.org/10.1177/0049124120914934

• Heisig JP, Schaeffer M, Giesecke J. 2017. The Costs of Simplicity: Why Multilevel Mod-
els May Benefit from Accounting for Cross-Cluster Differences in the Effects of Controls.
American Sociological Review 82 (4): 796–827.

• Hoffman L. 2015. Longitudinal analysis: modeling within-person fluctuation and change.
New York: Routledge

https://easystats.github.io/parameters/articles/demean.html
https://easystats.github.io/parameters/articles/demean.html
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Examples

data(iris)
iris$ID <- sample(1:4, nrow(iris), replace = TRUE) # fake-ID
iris$binary <- as.factor(rbinom(150, 1, .35)) # binary variable

x <- demean(iris, select = c("Sepal.Length", "Petal.Length"), group = "ID")
head(x)

x <- demean(iris, select = c("Sepal.Length", "binary", "Species"), group = "ID")
head(x)

check_heterogeneity(iris, select = c("Sepal.Length", "Petal.Length"), group = "ID")

# demean interaction term x*y
dat <- data.frame(

a = c(1, 2, 3, 4, 1, 2, 3, 4),
x = c(4, 3, 3, 4, 1, 2, 1, 2),
y = c(1, 2, 1, 2, 4, 3, 2, 1),
ID = c(1, 2, 3, 1, 2, 3, 1, 2)

)
demean(dat, select = c("a", "x*y"), group = "ID")

# or in formula-notation
demean(dat, select = ~a + x * y, group = ~ID)

check_kmo Kaiser, Meyer, Olkin (KMO) Measure of Sampling Adequacy (MSA)
for Factor Analysis

Description

Kaiser (1970) introduced a Measure of Sampling Adequacy (MSA), later modified by Kaiser and
Rice (1974). The Kaiser-Meyer-Olkin (KMO) statistic, which can vary from 0 to 1, indicates the
degree to which each variable in a set is predicted without error by the other variables.

Usage

check_kmo(x, ...)

Arguments

x A dataframe.

... Arguments passed to or from other methods.
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Details

A value of 0 indicates that the sum of partial correlations is large relative to the sum correlations,
indicating factor analysis is likely to be inappropriate. A KMO value close to 1 indicates that the
sum of partial correlations is not large relative to the sum of correlations and so factor analysis
should yield distinct and reliable factors.

Kaiser (1975) suggested that KMO > .9 were marvelous, in the .80s, meritourious, in the .70s,
middling, in the .60s, mediocre, in the .50s, miserable, and less than .5, unacceptable. Hair et
al. (2006) suggest accepting a value > 0.5. Values between 0.5 and 0.7 are mediocre, and values
between 0.7 and 0.8 are good.

This function is strongly inspired by the KMO function in the psych package (Revelle, 2016). All
credits go to its author.

Value

A list of indices related to KMO.

References

• Revelle, W. (2016). How To: Use the psych package for Factor Analysis and data reduction.
• Kaiser, H. F. (1970). A second generation little jiffy. Psychometrika, 35(4), 401-415.
• Kaiser, H. F., & Rice, J. (1974). Little jiffy, mark IV. Educational and psychological measure-

ment, 34(1), 111-117.
• Kaiser, H. F. (1974). An index of factorial simplicity. Psychometrika, 39(1), 31-36.

Examples

library(parameters)
check_kmo(mtcars)

check_multimodal Check if a distribution is unimodal or multimodal

Description

For univariate distributions (one-dimensional vectors), this functions performs a Ameijeiras-Alonso
et al. (2018) excess mass test. For multivariate distributions (dataframes), it uses mixture modelling.
However, it seems that it always returns a significant result (suggesting that the distribution is mul-
timodal). A better method might be needed here.

Usage

check_multimodal(x, ...)

Arguments

x A numeric vector or a data frame.
... Arguments passed to or from other methods.
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References

• Ameijeiras-Alonso, J., Crujeiras, R. M., \& Rodríguez-Casal, A. (2019). Mode testing, critical
bandwidth and excess mass. Test, 28(3), 900-919.

Examples

if (require("multimode")) {
# Univariate
x <- rnorm(1000)
check_multimodal(x)

}

if (require("multimode") && require("mclust")) {
x <- c(rnorm(1000), rnorm(1000, 2))
check_multimodal(x)

# Multivariate
m <- data.frame(
x = rnorm(200),
y = rbeta(200, 2, 1)

)
plot(m$x, m$y)
check_multimodal(m)

m <- data.frame(
x = c(rnorm(100), rnorm(100, 4)),
y = c(rbeta(100, 2, 1), rbeta(100, 1, 4))

)
plot(m$x, m$y)
check_multimodal(m)

}

check_sphericity Bartlett’s Test of Sphericity

Description

Bartlett (1951) introduced the test of sphericity, which tests whether a matrix is significantly differ-
ent from an identity matrix. This statistical test for the presence of correlations among variables,
providing the statistical probability that the correlation matrix has significant correlations among at
least some of variables. As for factor analysis to work, some relationships between variables are
needed, thus, a significant Bartlett’s test of sphericity is required, say p < .001.

Usage

check_sphericity(x, ...)
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Arguments

x A dataframe.

... Arguments passed to or from other methods.

Details

This function is strongly inspired by the cortest.bartlett function in the psych package (Rev-
elle, 2016). All credits go to its author.

Value

A list of indices related to sphericity.

References

• Revelle, W. (2016). How To: Use the psych package for Factor Analysis and data reduction.

• Bartlett, M. S. (1951). The effect of standardization on a Chi-square approximation in factor
analysis. Biometrika, 38(3/4), 337-344.

Examples

library(parameters)
check_sphericity(mtcars)

ci.merMod Confidence Intervals (CI)

Description

Compute confidence intervals (CI) for frequentist models.

Usage

## S3 method for class 'merMod'
ci(
x,
ci = 0.95,
method = c("wald", "ml1", "betwithin", "satterthwaite", "kenward", "boot"),
...

)

## Default S3 method:
ci(x, ci = 0.95, method = NULL, ...)

## S3 method for class 'glm'
ci(x, ci = 0.95, method = c("profile", "wald", "robust"), ...)
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## S3 method for class 'polr'
ci(x, ci = 0.95, method = c("profile", "wald", "robust"), ...)

## S3 method for class 'mixor'
ci(x, ci = 0.95, effects = c("all", "fixed", "random"), ...)

## S3 method for class 'DirichletRegModel'
ci(x, ci = 0.95, component = c("all", "conditional", "precision"), ...)

## S3 method for class 'glmmTMB'
ci(
x,
ci = 0.95,
component = c("all", "conditional", "zi", "zero_inflated", "dispersion"),
method = c("wald", "ml1", "betwithin", "robust"),
...

)

## S3 method for class 'zeroinfl'
ci(
x,
ci = 0.95,
component = c("all", "conditional", "zi", "zero_inflated", "dispersion"),
method = c("wald", "ml1", "betwithin", "robust"),
...

)

## S3 method for class 'hurdle'
ci(
x,
ci = 0.95,
component = c("all", "conditional", "zi", "zero_inflated", "dispersion"),
method = c("wald", "ml1", "betwithin", "robust"),
...

)

## S3 method for class 'MixMod'
ci(
x,
ci = 0.95,
component = c("all", "conditional", "zi", "zero_inflated"),
...

)

## S3 method for class 'poissonmfx'
ci(
x,
ci = 0.95,
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component = c("all", "conditional", "marginal"),
method = NULL,
...

)

## S3 method for class 'betamfx'
ci(
x,
ci = 0.95,
component = c("all", "conditional", "precision", "marginal"),
method = NULL,
...

)

## S3 method for class 'betareg'
ci(x, ci = 0.95, component = c("all", "conditional", "precision"), ...)

## S3 method for class 'clm2'
ci(x, ci = 0.95, component = c("all", "conditional", "scale"), ...)

## S3 method for class 'lme'
ci(x, ci = 0.95, method = c("wald", "betwithin", "ml1", "satterthwaite"), ...)

Arguments

x A statistical model.

ci Confidence Interval (CI) level. Default to 0.95 (95%).

method For mixed models, can be "wald" (default), "ml1" or "betwithin". For lin-
ear mixed model, can also be "satterthwaite", "kenward" or "boot" and
lme4::confint.merMod). For (generalized) linear models, can be "robust" to
compute confidence intervals based on robust standard errors, and for general-
ized linear models, may also be "profile" (default) or "wald".

... Arguments passed down to standard_error_robust() when confidence inter-
vals or p-values based on robust standard errors should be computed.

effects Should standard errors for fixed effects or random effects be returned? Only
applies to mixed models. May be abbreviated. When standard errors for random
effects are requested, for each grouping factor a list of standard errors (per group
level) for random intercepts and slopes is returned.

component Should all parameters, parameters for the conditional model, or for the zero-
inflated part of the model be returned? Applies to models with zero-inflated
component. component may be one of "conditional", "zi", "zero-inflated"
or "all" (default). May be abbreviated.

Value

A data frame containing the CI bounds.
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Note

ci_robust() resp. ci(method = "robust") rely on the sandwich or clubSandwich package (the
latter if vcov_estimation = "CR" for cluster-robust standard errors) and will thus only work for
those models supported by those packages.

Examples

library(parameters)
if (require("glmmTMB")) {

model <- glmmTMB(
count ~ spp + mined + (1 | site),
ziformula = ~mined,
family = poisson(),
data = Salamanders

)

ci(model)
ci(model, component = "zi")

}

ci_betwithin Between-within approximation for SEs, CIs and p-values

Description

Approximation of degrees of freedom based on a "between-within" heuristic.

Usage

ci_betwithin(model, ci = 0.95)

dof_betwithin(model)

p_value_betwithin(model, dof = NULL)

se_betwithin(model)

Arguments

model A mixed model.

ci Confidence Interval (CI) level. Default to 0.95 (95%).

dof Degrees of Freedom.
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Details

Small Sample Cluster corrected Degrees of Freedom: Inferential statistics (like p-values,
confidence intervals and standard errors) may be biased in mixed models when the number of
clusters is small (even if the sample size of level-1 units is high). In such cases it is recommended
to approximate a more accurate number of degrees of freedom for such inferential statistics (see
Li and Redden 2015 ). The Between-within denominator degrees of freedom approximation is
recommended in particular for (generalized) linear mixed models with repeated measurements
(longitudinal design). dof_betwithin) implements a heuristic based on the between-within ap-
proach. Note that this implementation does not return exactly the same results as shown in Li and
Redden 2015, but similar.

Degrees of Freedom for Longitudinal Designs (Repeated Measures): In particular for re-
peated measure designs (longitudinal data analysis), the between-within heuristic is likely to be
more accurate than simply using the residual or infinite degrees of freedom, because dof_betwithin()
returns different degrees of freedom for within-cluster and between-cluster effects.

Value

A data frame.

References

• Elff, M.; Heisig, J.P.; Schaeffer, M.; Shikano, S. (2019). Multilevel Analysis with Few Clus-
ters: Improving Likelihood-based Methods to Provide Unbiased Estimates and Accurate In-
ference, British Journal of Political Science.

• Li, P., Redden, D. T. (2015). Comparing denominator degrees of freedom approximations
for the generalized linear mixed model in analyzing binary outcome in small sample cluster-
randomized trials. BMC Medical Research Methodology, 15(1), 38. doi: 10.1186/s12874015-
0026x

See Also

dof_betwithin() and se_betwithin() are small helper-functions to calculate approximated de-
grees of freedom and standard errors of model parameters, based on the "between-within" heuristic.

Examples

if (require("lme4")) {
data(sleepstudy)
model <- lmer(Reaction ~ Days + (1 + Days | Subject), data = sleepstudy)
dof_betwithin(model)
p_value_betwithin(model)

}

https://doi.org/10.1186/s12874-015-0026-x
https://doi.org/10.1186/s12874-015-0026-x
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ci_kenward Kenward-Roger approximation for SEs, CIs and p-values

Description

An approximate F-test based on the Kenward-Roger (1997) approach.

Usage

ci_kenward(model, ci = 0.95)

dof_kenward(model)

p_value_kenward(model, dof = NULL)

se_kenward(model)

Arguments

model A statistical model.

ci Confidence Interval (CI) level. Default to 0.95 (95%).

dof Degrees of Freedom.

Details

Inferential statistics (like p-values, confidence intervals and standard errors) may be biased in mixed
models when the number of clusters is small (even if the sample size of level-1 units is high). In
such cases it is recommended to approximate a more accurate number of degrees of freedom for
such inferential statistics. Unlike simpler approximation heuristics like the "m-l-1" rule (dof_ml1),
the Kenward-Roger approximation is also applicable in more complex multilevel designs, e.g. with
cross-classified clusters. However, the "m-l-1" heuristic also applies to generalized mixed models,
while approaches like Kenward-Roger or Satterthwaite are limited to linear mixed models only.

Value

A data frame.

References

Kenward, M. G., & Roger, J. H. (1997). Small sample inference for fixed effects from restricted
maximum likelihood. Biometrics, 983-997.
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See Also

dof_kenward() and se_kenward() are small helper-functions to calculate approximated degrees of
freedom and standard errors for model parameters, based on the Kenward-Roger (1997) approach.

dof_satterthwaite() and dof_ml1() approximate degrees of freedom based on Satterthwaite’s
method or the "m-l-1" rule.

Examples

if (require("lme4")) {
model <- lmer(Petal.Length ~ Sepal.Length + (1 | Species), data = iris)
p_value_kenward(model)

}

ci_ml1 "m-l-1" approximation for SEs, CIs and p-values

Description

Approximation of degrees of freedom based on a "m-l-1" heuristic as suggested by Elff et al. (2019).

Usage

ci_ml1(model, ci = 0.95)

dof_ml1(model)

p_value_ml1(model, dof = NULL)

se_ml1(model)

Arguments

model A mixed model.

ci Confidence Interval (CI) level. Default to 0.95 (95%).

dof Degrees of Freedom.

Details

Small Sample Cluster corrected Degrees of Freedom: Inferential statistics (like p-values,
confidence intervals and standard errors) may be biased in mixed models when the number of
clusters is small (even if the sample size of level-1 units is high). In such cases it is recommended
to approximate a more accurate number of degrees of freedom for such inferential statitics (see Li
and Redden 2015 ). The m-l-1 heuristic is such an approach that uses a t-distribution with fewer
degrees of freedom (dof_ml1) to calculate p-values (p_value_ml1), standard errors (se_ml1) and
confidence intervals (ci(method = "ml1")).
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Degrees of Freedom for Longitudinal Designs (Repeated Measures): In particular for re-
peated measure designs (longitudinal data analysis), the m-l-1 heuristic is likely to be more ac-
curate than simply using the residual or infinite degrees of freedom, because dof_ml1() returns
different degrees of freedom for within-cluster and between-cluster effects.

Limitations of the "m-l-1" Heuristic: Note that the "m-l-1" heuristic is not applicable (or at
least less accurate) for complex multilevel designs, e.g. with cross-classified clusters. In such
cases, more accurate approaches like the Kenward-Roger approximation (dof_kenward()) is rec-
ommended. However, the "m-l-1" heuristic also applies to generalized mixed models, while ap-
proaches like Kenward-Roger or Satterthwaite are limited to linear mixed models only.

Value

A data frame.

References

• Elff, M.; Heisig, J.P.; Schaeffer, M.; Shikano, S. (2019). Multilevel Analysis with Few Clus-
ters: Improving Likelihood-based Methods to Provide Unbiased Estimates and Accurate In-
ference, British Journal of Political Science.

• Li, P., Redden, D. T. (2015). Comparing denominator degrees of freedom approximations
for the generalized linear mixed model in analyzing binary outcome in small sample cluster-
randomized trials. BMC Medical Research Methodology, 15(1), 38. doi: 10.1186/s12874015-
0026x

See Also

dof_ml1() and se_ml1() are small helper-functions to calculate approximated degrees of freedom
and standard errors of model parameters, based on the "m-l-1" heuristic.

Examples

if (require("lme4")) {
model <- lmer(Petal.Length ~ Sepal.Length + (1 | Species), data = iris)
p_value_ml1(model)

}

ci_satterthwaite Satterthwaite approximation for SEs, CIs and p-values

Description

An approximate F-test based on the Satterthwaite (1946) approach.

https://doi.org/10.1186/s12874-015-0026-x
https://doi.org/10.1186/s12874-015-0026-x
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Usage

ci_satterthwaite(model, ci = 0.95)

dof_satterthwaite(model)

p_value_satterthwaite(model, dof = NULL)

se_satterthwaite(model)

Arguments

model A statistical model.

ci Confidence Interval (CI) level. Default to 0.95 (95%).

dof Degrees of Freedom.

Details

Inferential statistics (like p-values, confidence intervals and standard errors) may be biased in mixed
models when the number of clusters is small (even if the sample size of level-1 units is high). In such
cases it is recommended to approximate a more accurate number of degrees of freedom for such
inferential statitics. Unlike simpler approximation heuristics like the "m-l-1" rule (dof_ml1), the
Satterthwaite approximation is also applicable in more complex multilevel designs. However, the
"m-l-1" heuristic also applies to generalized mixed models, while approaches like Kenward-Roger
or Satterthwaite are limited to linear mixed models only.

Value

A data frame.

References

Satterthwaite FE (1946) An approximate distribution of estimates of variance components. Biomet-
rics Bulletin 2 (6):110–4.

See Also

dof_satterthwaite() and se_satterthwaite() are small helper-functions to calculate approx-
imated degrees of freedom and standard errors for model parameters, based on the Satterthwaite
(1946) approach.

dof_kenward() and dof_ml1() approximate degrees of freedom based on Kenward-Roger’s method
or the "m-l-1" rule.

Examples

if (require("lme4")) {
model <- lmer(Petal.Length ~ Sepal.Length + (1 | Species), data = iris)
p_value_satterthwaite(model)
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}

ci_wald Wald-test approximation for CIs and p-values

Description

The Wald-test approximation treats t-values as Wald z. Since the t distribution converges to the z
distribution as degrees of freedom increase, this is like assuming infinite degrees of freedom. While
this is unambiguously anti-conservative, this approximation appears as reasonable for reasonable
sample sizes (Barr et al., 2013). That is, if we take the p-value to measure the probability of a false
positive, this approximation produces a higher false positive rate than the nominal 5% at p = 0.05.

Usage

ci_wald(
model,
ci = 0.95,
dof = NULL,
effects = c("fixed", "random", "all"),
component = c("all", "conditional", "zi", "zero_inflated", "dispersion", "precision",

"scale", "smooth_terms", "full", "marginal"),
robust = FALSE,
...

)

p_value_wald(model, ...)

## S3 method for class 'merMod'
p_value_wald(model, dof = Inf, ...)

Arguments

model A statistical model.

ci Confidence Interval (CI) level. Default to 0.95 (95%).

dof Degrees of Freedom. If not specified, for ci_wald(), defaults to model’s resid-
ual degrees of freedom (i.e. n-k, where n is the number of observations and k is
the number of parameters). For p_value_wald(), defaults to Inf.

effects Should standard errors for fixed effects or random effects be returned? Only
applies to mixed models. May be abbreviated. When standard errors for random
effects are requested, for each grouping factor a list of standard errors (per group
level) for random intercepts and slopes is returned.

component Should all parameters, parameters for the conditional model, or for the zero-
inflated part of the model be returned? Applies to models with zero-inflated
component. component may be one of "conditional", "zi", "zero-inflated"
or "all" (default). May be abbreviated.
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robust Logical, if TRUE, robust standard errors are calculated (if possible), and con-
fidence intervals and p-values are based on these robust standard errors. Addi-
tional arguments like vcov_estimation or vcov_type are passed down to other
methods, see standard_error_robust() for details.

... Arguments passed down to standard_error_robust() when confidence inter-
vals or p-values based on robust standard errors should be computed.

Value

A data frame.

References

Barr, D. J. (2013). Random effects structure for testing interactions in linear mixed-effects models.
Frontiers in psychology, 4, 328.

Examples

if (require("lme4")) {
model <- lmer(Petal.Length ~ Sepal.Length + (1 | Species), data = iris)
p_value_wald(model)
ci_wald(model, ci = c(0.90, 0.95))

}

cluster_analysis Compute cluster analysis and return group indices

Description

Compute hierarchical or kmeans cluster analysis and return the group assignment for each observa-
tion as vector.

Usage

cluster_analysis(
x,
n_clusters = NULL,
method = c("hclust", "kmeans"),
distance = c("euclidean", "maximum", "manhattan", "canberra", "binary", "minkowski"),
agglomeration = c("ward", "ward.D", "ward.D2", "single", "complete", "average",

"mcquitty", "median", "centroid"),
iterations = 20,
algorithm = c("Hartigan-Wong", "Lloyd", "MacQueen"),
force = TRUE,
package = c("NbClust", "mclust"),
verbose = TRUE

)
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Arguments

x A data frame.

n_clusters Number of clusters used for the cluster solution. By default, the number of
clusters to extract is determined by calling n_clusters.

method Method for computing the cluster analysis. By default ("hclust"), a hierar-
chical cluster analysis, will be computed. Use "kmeans" to compute a kmeans
cluster analysis. You can specify the initial letters only.

distance Distance measure to be used when method = "hclust" (for hierarchical clus-
tering). Must be one of "euclidean", "maximum", "manhattan", "canberra",
"binary" or "minkowski". See dist. If is method = "kmeans" this argument
will be ignored.

agglomeration Agglomeration method to be used when method = "hclust" (for hierarchical
clustering). This should be one of "ward", "single", "complete", "average",
"mcquitty", "median" or "centroid". Default is "ward" (see hclust). If
method = "kmeans" this argument will be ignored.

iterations Maximum number of iterations allowed. Only applies, if method = "kmeans".
See kmeans for details on this argument.

algorithm Algorithm used for calculating kmeans cluster. Only applies, if method = "kmeans".
May be one of "Hartigan-Wong" (default), "Lloyd" (used by SPSS), or "MacQueen".
See kmeans for details on this argument.

force Logical, if TRUE, ordered factors (ordinal variables) are converted to numeric
values, while character vectors and factors are converted to dummy-variables
(numeric 0/1) and are included in the cluster analysis. If FALSE, factors and
character vectors are removed before computing the cluster analysis.

package These are the packages from which methods are used to determine the num-
ber of clusters. Can be "all" or a vector containing "NbClust", "mclust",
"cluster" and "M3C".

verbose Toggle off warnings.

Details

The print() and plot() methods show the (standardized) mean value for each variable within
each cluster. Thus, a higher absolute value indicates that a certain variable characteristic is more
pronounced within that specific cluster (as compared to other cluster groups with lower absolute
mean values).

Value

The group classification for each observation as vector. The returned vector includes missing values,
so it has the same length as nrow(x).

Note

There is also a plot()-method implemented in the see-package.

https://easystats.github.io/see/articles/parameters.html
https://easystats.github.io/see/
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References

Maechler M, Rousseeuw P, Struyf A, Hubert M, Hornik K (2014) cluster: Cluster Analysis Basics
and Extensions. R package.

See Also

n_clusters to determine the number of clusters to extract, cluster_discrimination to deter-
mine the accuracy of cluster group classification and check_clusterstructure to check suitability
of data for clustering.

Examples

# Hierarchical clustering of mtcars-dataset
groups <- cluster_analysis(iris[, 1:4], 3)
groups

# K-means clustering of mtcars-dataset, auto-detection of cluster-groups
## Not run:
groups <- cluster_analysis(iris[, 1:4], method = "k")
groups

## End(Not run)

cluster_discrimination

Compute a linear discriminant analysis on classified cluster groups

Description

Computes linear discriminant analysis on classified cluster groups, and determines the goodness of
classification for each cluster group.

Usage

cluster_discrimination(x, cluster_groups = NULL)

Arguments

x A data frame

cluster_groups Group classification of the cluster analysis, which can be retrieved from the
cluster_analysis function.

See Also

n_clusters to determine the number of clusters to extract, cluster_analysis to compute a cluster
analysis and check_clusterstructure to check suitability of data for clustering.
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Examples

## Not run:
# retrieve group classification from hierarchical cluster analysis
groups <- cluster_analysis(iris[, 1:4])

# goodness of group classificatoin
cluster_discrimination(iris[, 1:4], cluster_groups = groups)

## End(Not run)

convert_data_to_numeric

Convert data to numeric

Description

Convert data to numeric by converting characters to factors and factors to either numeric levels or
dummy variables.

Usage

convert_data_to_numeric(x, dummy_factors = TRUE, ...)

data_to_numeric(x, dummy_factors = TRUE, ...)

Arguments

x A data frame or a vector.

dummy_factors Transform factors to dummy factors (all factor levels as different columns filled
with a binary 0-1 value).

... Arguments passed to or from other methods.

Value

A data frame of numeric variables.

Examples

head(convert_data_to_numeric(iris))
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convert_efa_to_cfa Conversion between EFA results and CFA structure

Description

Enables a conversion between Exploratory Factor Analysis (EFA) and Confirmatory Factor Analy-
sis (CFA) lavaan-ready structure.

Usage

convert_efa_to_cfa(model, ...)

## S3 method for class 'fa'
convert_efa_to_cfa(model, threshold = "max", names = NULL, ...)

efa_to_cfa(model, ...)

Arguments

model An EFA model (e.g., a psych::fa object).

... Arguments passed to or from other methods.

threshold A value between 0 and 1 indicates which (absolute) values from the loadings
should be removed. An integer higher than 1 indicates the n strongest loadings
to retain. Can also be "max", in which case it will only display the maximum
loading per variable (the most simple structure).

names Vector containing dimension names.

Value

Converted index.

Examples

library(parameters)
if (require("psych") && require("lavaan")) {

efa <- psych::fa(attitude, nfactors = 3)

model1 <- efa_to_cfa(efa)
model2 <- efa_to_cfa(efa, threshold = 0.3)

anova(
lavaan::cfa(model1, data = attitude),
lavaan::cfa(model2, data = attitude)

)
}
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data_partition Partition data into a test and a training set

Description

Creates a training and a test set based on a dataframe. Can also be stratified (i.e., evenly spread a
given factor) using the group argument.

Usage

data_partition(x, training_proportion = 0.7, group = NULL)

Arguments

x A data frame, or an object that can be coerced to a data frame.

training_proportion

The proportion (between 0 and 1) of the training set. The remaining part will be
used for the test set.

group A character vector indicating the name(s) of the column(s) used for stratified
partitioning.

Value

A list of two data frames, named test and training.

Examples

df <- iris
df$Smell <- rep(c("Strong", "Light"), 75)

head(data_partition(df))
head(data_partition(df, group = "Species"))
head(data_partition(df, group = c("Species", "Smell")))

degrees_of_freedom Degrees of Freedom (DoF)

Description

Estimate or extract degrees of freedom of models parameters.
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Usage

degrees_of_freedom(model, ...)

## Default S3 method:
degrees_of_freedom(model, method = "analytical", ...)

dof(model, ...)

Arguments

model A statistical model.

... Currently not used.

method Can be "analytical" (default, DoFs are estimated based on the model type),
"fit", in which case they are directly taken from the model if available (for
Bayesian models, the goal (looking for help to make it happen) would be to refit
the model as a frequentist one before extracting the DoFs), "ml1" (see dof_ml1),
"betwithin" (see dof_betwithin), "satterthwaite" (see dof_satterthwaite),
"kenward" (see dof_kenward) or "any", which tries to extract DoF by any of
those methods, whichever succeeds.

Details

Methods for calculating degrees of freedom:

• "analytical" for models of class lmerMod, Kenward-Roger approximated degrees of free-
doms are calculated, for other models, n-k (number of observations minus number of param-
eters).

• "fit" tries to extract residual degrees of freedom, and returns Inf if residual degrees of
freedom could not be extracted.

• "any" first tries to extract residual degrees of freedom, and if these are not available, extracts
analytical degrees of freedom.

• "nokr" same as "analytical", but does not Kenward-Roger approximation for models of
class lmerMod. Instead, always uses n-k to calculate df for any model.

• "wald" returns Inf.

• "kenward" calls dof_kenward.

• "satterthwaite" calls dof_satterthwaite.

• "ml1" calls dof_ml1.

• "betwithin" calls dof_betwithin.

For models with z-statistic, the returned degrees of freedom for model parameters is Inf (unless
method = "ml1" or method = "betwithin"), because there is only one distribution for the related
test statistic.
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Examples

model <- lm(Sepal.Length ~ Petal.Length * Species, data = iris)
dof(model)

model <- glm(vs ~ mpg * cyl, data = mtcars, family = "binomial")
dof(model)

if (require("lme4")) {
model <- lmer(Sepal.Length ~ Petal.Length + (1 | Species), data = iris)
dof(model)

}

if (require("rstanarm")) {
model <- stan_glm(
Sepal.Length ~ Petal.Length * Species,
data = iris,
chains = 2,
refresh = 0

)
dof(model)

}

describe_distribution Describe a distribution

Description

This function describes a distribution by a set of indices (e.g., measures of centrality, dispersion,
range, skewness, kurtosis).

Usage

describe_distribution(x, ...)

## S3 method for class 'numeric'
describe_distribution(
x,
centrality = "mean",
dispersion = TRUE,
iqr = TRUE,
range = TRUE,
ci = NULL,
iterations = 100,
...

)

## S3 method for class 'factor'
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describe_distribution(x, dispersion = TRUE, range = TRUE, ...)

## S3 method for class 'data.frame'
describe_distribution(
x,
centrality = "mean",
dispersion = TRUE,
iqr = TRUE,
range = TRUE,
include_factors = FALSE,
ci = NULL,
iterations = 100,
...

)

Arguments

x A numeric vector.

... Additional arguments to be passed to or from methods.

centrality The point-estimates (centrality indices) to compute. Character (vector) or list
with one or more of these options: "median", "mean", "MAP" or "all".

dispersion Logical, if TRUE, computes indices of dispersion related to the estimate(s) (SD
and MAD for mean and median, respectively).

iqr Logical, if TRUE, the interquartile range is calculated (based on IQR, using type
= 6).

range Return the range (min and max).

ci Confidence Interval (CI) level. Default is NULL, i.e. no confidence intervals are
computed. If not NULL, confidence intervals are based on bootstrap replicates
(see iterations).

iterations The number of bootstrap replicates for computing confidence intervals. Only
applies when ci is not NULL.

include_factors

Logical, if TRUE, factors are included in the output, however, only columns for
range (first and last factor levels) as well as n and missing will contain informa-
tion.

Value

A data frame with columns that describe the properties of the variables.

Note

There is also a plot()-method implemented in the see-package.

https://easystats.github.io/see/articles/parameters.html
https://easystats.github.io/see/
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Examples

describe_distribution(rnorm(100))

data(iris)
describe_distribution(iris)
describe_distribution(iris, include_factors = TRUE)

equivalence_test.lm Equivalence test

Description

Compute the (conditional) equivalence test for frequentist models.

Usage

## S3 method for class 'lm'
equivalence_test(
x,
range = "default",
ci = 0.95,
rule = "bayes",
p_values = FALSE,
verbose = TRUE,
...

)

## S3 method for class 'merMod'
equivalence_test(
x,
range = "default",
ci = 0.95,
rule = "bayes",
effects = c("fixed", "random"),
p_values = FALSE,
verbose = TRUE,
...

)

Arguments

x A statistical model.

range The range of practical equivalence of an effect. May be "default", to automat-
ically define this range based on properties of the model’s data.

ci Confidence Interval (CI) level. Default to 0.95 (95%).
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rule Character, indicating the rules when testing for practical equivalence. Can be
"bayes", "classic" or "cet". See ’Details’.

p_values Logical, if TRUE, adjusted p-values for equivalence testing are calculated.

verbose Toggle off warnings.

... Arguments passed to or from other methods.

effects Should parameters for fixed effects, random effects or both be returned? Only
applies to mixed models. May be abbreviated.

Details

In classical null hypothesis significance testing (NHST) within a frequentist framework, it is not
possible to accept the null hypothesis, H0 - unlike in Bayesian statistics, where such probability
statements are possible. “[...] one can only reject the null hypothesis if the test statistics falls
into the critical region(s), or fail to reject this hypothesis. In the latter case, all we can say is
that no significant effect was observed, but one cannot conclude that the null hypothesis is true.”
(Pernet 2017 ). One way to address this issues without Bayesian methods is Equivalence Testing, as
implemented in equivalence_test(). While you either can reject the null hypothesis or claim an
inconclusive result in NHST, the equivalence test adds a third category, "accept". Roughly speaking,
the idea behind equivalence testing in a frequentist framework is to check whether an estimate and
its uncertainty (i.e. confidence interval) falls within a region of "practical equivalence". Depending
on the rule for this test (see below), statistical significance does not necessarily indicate whether the
null hypothesis can be rejected or not, i.e. the classical interpretation of the p-value may differ from
the results returned from the equivalence test.

Calculation of equivalence testing:

"bayes" - Bayesian rule (Kruschke 2018) This rule follows the “HDI+ROPE decision rule” (Kr-
uschke, 2014, 2018) used for the Bayesian counterpart. This means, if the confidence
intervals are completely outside the ROPE, the "null hypothesis" for this parameter is "re-
jected". If the ROPE completely covers the CI, the null hypothesis is accepted. Else, it’s
undecided whether to accept or reject the null hypothesis. Desirable results are low propor-
tions inside the ROPE (the closer to zero the better).

"classic" - The TOST rule (Lakens 2017) This rule follows the “TOST rule”, i.e. a two one-
sided test procedure (Lakens 2017 ). Following this rule, practical equivalence of an effect
(i.e. H0) is rejected, when the coefficient is statistically significant and the narrow confidence
intervals (i.e. 1-2*alpha) include or exceed the ROPE boundaries. Practical equivalence is
assumed (i.e. H0 accepted) when the narrow confidence intervals are completely inside the
ROPE, no matter if the effect is statistically significant or not. Else, the decision whether to
accept or reject H0 is undecided.

"cet" - Conditional Equivalence Testing (Campbell/Gustafson 2018) The Conditional Equiv-
alence Testing as described by Campbell and Gustafson 2018. According to this rule, prac-
tical equivalence is rejected when the coefficient is statistically significant. When the effect
is not significant and the narrow confidence intervals are completely inside the ROPE, we
accept H0, else it is undecided.

Levels of Confidence Intervals used for Equivalence Testing: For rule = "classic", "nar-
row" confidence intervals are used for equivalence testing. "Narrow" means, the the intervals is
not 1 - alpha, but 1 - 2 * alpha. Thus, if ci = .95, alpha is assumed to be 0.05 and internally a
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ci-level of 0.90 is used. rule = "cet" uses both regular and narrow confidence intervals, while
rule = "bayes" only uses the regular intervals.

Second Generation p-Value (SGPV): Second generation p-values (SGPV) were proposed as a
statistic that represents “the proportion of data-supported hypotheses that are also null hypotheses”
(Blume et al. 2018). This statistic is actually computed in the same way as the percentage inside
the ROPE as returned by equivalence_test() (see Lakens and Delacre 2020 for details on
computation of the SGPV). Thus, the "inside ROPE" column reflects the SGPV.

Adjustment for multiple testing: The calculation of p-values is somewhat "experimental". For
parameters, where H0...

• ... is rejected, the p-value equals a NHST as if the upper / lower boundary of the ROPE (see
range) would be the point-null to test against.

• ... is accepted, the p-value is set to 1.
• ... is undecided, the p-value equals a NHST against the point-null, however, the "uncertainty"

(i.e. ROPE range) is added to the confidence intervals (so the upper confidence interval limit
equals the regular upper confidence interval limit + half the ROPE range).

All p-values are then adjusted for multiple testing (using p.adjust with method = "fdr").

ROPE range: Some attention is required for finding suitable values for the ROPE limits (argu-
ment range). See ’Details’ in rope_range for further information.

Value

A data frame.

Note

There is also a plot()-method implemented in the see-package.

References

• Blume, J. D., D’Agostino McGowan, L., Dupont, W. D., & Greevy, R. A. (2018). Second-
generation p-values: Improved rigor, reproducibility, & transparency in statistical analyses.
PLOS ONE, 13(3), e0188299. https://doi.org/10.1371/journal.pone.0188299

• Campbell, H., & Gustafson, P. (2018). Conditional equivalence testing: An alternative remedy
for publication bias. PLOS ONE, 13(4), e0195145. doi: 10.1371/journal.pone.0195145

• Kruschke, J. K. (2014). Doing Bayesian data analysis: A tutorial with R, JAGS, and Stan.
Academic Press

• Kruschke, J. K. (2018). Rejecting or accepting parameter values in Bayesian estimation. Ad-
vances in Methods and Practices in Psychological Science, 1(2), 270-280. doi: 10.1177/2515245918771304

• Lakens, D. (2017). Equivalence Tests: A Practical Primer for t Tests, Correlations, and Meta-
Analyses. Social Psychological and Personality Science, 8(4), 355–362. doi: 10.1177/1948550617697177

• Lakens, D., & Delacre, M. (2020). Equivalence Testing and the Second Generation P-Value.
Meta-Psychology, 4. https://doi.org/10.15626/MP.2018.933

• Pernet, C. (2017). Null hypothesis significance testing: A guide to commonly misunderstood
concepts and recommendations for good practice. F1000Research, 4, 621. doi: 10.12688/f1000research.6963.5

https://easystats.github.io/see/articles/parameters.html
https://easystats.github.io/see/
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See Also

For more details, see equivalence_test(). Further readings can be found in the references.

Examples

data(qol_cancer)
model <- lm(QoL ~ time + age + education, data = qol_cancer)

# default rule
equivalence_test(model)

# conditional equivalence test
equivalence_test(model, rule = "cet")

# plot method
if (require("see")) {

result <- equivalence_test(model)
plot(result)

}

factor_analysis Factor Analysis (FA)

Description

This function performs a Factor Analysis (FA).

Usage

factor_analysis(
x,
n = "auto",
rotation = "none",
sort = FALSE,
threshold = NULL,
standardize = TRUE,
cor = NULL,
...

)

Arguments

x A data frame or a statistical model.

n Number of components to extract. If n="all", then n is set as the number of
variables minus 1 (ncol(x)-1). If n="auto" (default) or n=NULL, the number of
components is selected through n_factors. In reduce_parameters, can also
be "max", in which case it will select all the components that are maximally
pseudo-loaded (i.e., correlated) by at least one variable.
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rotation If not "none", the PCA / FA will be computed using the psych package. Possible
options include "varimax", "quartimax", "promax", "oblimin", "simplimax",
and "cluster". See fa for details.

sort Sort the loadings.

threshold A value between 0 and 1 indicates which (absolute) values from the loadings
should be removed. An integer higher than 1 indicates the n strongest loadings
to retain. Can also be "max", in which case it will only display the maximum
loading per variable (the most simple structure).

standardize A logical value indicating whether the variables should be standardized (cen-
tered and scaled) to have unit variance before the analysis takes place (in gen-
eral, such scaling is advisable).

cor An optional correlation matrix that can be used (note that the data must still be
passed as the first argument). If NULL, will compute it by running cor() on the
passed data.

... Arguments passed to or from other methods.

Details

Complexity: Complexity represents the number of latent components needed to account for the
observed variables. Whereas a perfect simple structure solution has a complexity of 1 in that each
item would only load on one factor, a solution with evenly distributed items has a complexity
greater than 1 (Hofman, 1978; Pettersson and Turkheimer, 2010 ) .

FA or PCA?: There is a simplified rule of thumb that may help do decide whether to run a
principal component analysis or a factor analysis:

• Run factor analysis if you assume or wish to test a theoretical model of latent factors causing
observed variables.

• Run principal component analysis If you want to simply reduce your correlated observed
variables to a smaller set of important independent composite variables.

(Source: CrossValidated)

Value

A data frame of loadings.

Note

There is a summary()-method that prints the Eigenvalues and (explained) variance for each ex-
tracted component.

References

• Hofmann, R. (1978). Complexity and simplicity as objective indices descriptive of factor solu-
tions. Multivariate Behavioral Research, 13:2, 247-250, doi: 10.1207/s15327906mbr1302_9

• Pettersson, E., & Turkheimer, E. (2010). Item selection, evaluation, and simple structure in
personality data. Journal of research in personality, 44(4), 407-420, doi: 10.1016/j.jrp.2010.03.002

https://stats.stackexchange.com/q/1576/54740
https://doi.org/10.1207/s15327906mbr1302_9
https://doi.org/10.1016/j.jrp.2010.03.002
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Examples

library(parameters)

factor_analysis(mtcars[, 1:7], n = "all", threshold = 0.2)
factor_analysis(mtcars[, 1:7], n = 2, rotation = "oblimin", threshold = "max", sort = TRUE)
factor_analysis(mtcars[, 1:7], n = 2, threshold = 2, sort = TRUE)

efa <- factor_analysis(mtcars[, 1:5], n = 2)
summary(efa)
predict(efa)

# Automated number of components
factor_analysis(mtcars[, 1:4], n = "auto")

fish Sample data set

Description

A sample data set, used in tests and some examples.

format_algorithm Model Algorithm formatting

Description

Model Algorithm formatting

Usage

format_algorithm(model)

Arguments

model A statistical model.

Examples

model <- lm(Sepal.Length ~ Species, data = iris)
format_algorithm(model)
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format_model Model Name formatting

Description

Model Name formatting

Usage

format_model(model)

Arguments

model A statistical model.

Examples

model <- lm(Sepal.Length ~ Species, data = iris)
format_model(model)

format_order Order (first, second, ...) formatting

Description

Format order.

Usage

format_order(order, textual = TRUE, ...)

Arguments

order value or vector of orders.

textual Return number as words. If FALSE, will run format_value().

... Arguments to be passed to format_value if textual is FALSE.

Value

A formatted string.

Examples

format_order(2)
format_order(8)
format_order(25, textual = FALSE)
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format_parameters Parameter names formatting

Description

Parameter names formatting

Usage

format_parameters(model)

Arguments

model A statistical model.

Value

The formatted parameter names.

Examples

library(parameters)

model <- lm(Sepal.Length ~ Species * Sepal.Width, data = iris)
format_parameters(model)

model <- lm(Sepal.Length ~ Species / Petal.Length, data = iris)
format_parameters(model)

model <- lm(Sepal.Length ~ Petal.Length + (Species / Sepal.Width), data = iris)
format_parameters(model)

model <- lm(Sepal.Length ~ Species + poly(Sepal.Width, 2), data = iris)
format_parameters(model)

model <- lm(Sepal.Length ~ Species + poly(Sepal.Width, 2, raw = TRUE), data = iris)
format_parameters(model)

get_scores Get Scores from Principal Component Analysis (PCA)

Description

get_scores() takes n_items amount of items that load the most (either by loading cutoff or num-
ber) on a component, and then computes their average.



model_parameters 41

Usage

get_scores(x, n_items = NULL)

Arguments

x An object returned by principal_components.

n_items Number of required (i.e. non-missing) items to build the sum score. If NULL, the
value is chosen to match half of the number of columns in a data frame.

Details

get_scores() takes the results from principal_components and extracts the variables for each
component found by the PCA. Then, for each of these "subscales", row means are calculated (which
equals adding up the single items and dividing by the number of items). This results in a sum score
for each component from the PCA, which is on the same scale as the original, single items that were
used to compute the PCA.

Value

A data frame with subscales, which are average sum scores for all items from each component.

Examples

library(parameters)
pca <- principal_components(mtcars[, 1:7], n = 2, rotation = "varimax")

# PCA extracted two components
pca

# assignment of items to each component
closest_component(pca)

# now we want to have sum scores for each component
get_scores(pca)

# compare to manually computed sum score for 2nd component, which
# consists of items "hp" and "qsec"
(mtcars$hp + mtcars$qsec) / 2

model_parameters Model Parameters

Description

Compute and extract model parameters. See the documentation for your object’s class:

• Correlations and t-tests

• ANOVAs
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• Regression models (lm, glm, survey, ...)

• Additive models (gam, gamm, ...)

• Zero-inflated models (hurdle, zeroinfl, zerocount)

• Multinomial, ordinal and cumulative link models (bracl, multinom, mlm, ...)

• Mixed models (lme4, nlme, glmmTMB, ...)

• Bayesian tests (BayesFactor)

• Bayesian models (rstanarm, brms, MCMCglmm, ...)

• PCA and FA (psych)

• CFA and SEM (lavaan, blavaan)

• Cluster models (k-means, ...)

• Meta-Analysis via linear (mixed) models (rma)

• Hypothesis Testing (glht)

Usage

model_parameters(model, ...)

parameters(model, ...)

Arguments

model Statistical Model.

... Arguments passed to or from other methods. Non-documented arguments are
digits, p_digits and ci_digits to set the number of digits for the output.
See ’Examples’ in model_parameters.default.

Details

Standardization is based on standardize_parameters(). In case of standardize = "refit", the
data used to fit the model will be standardized and the model is completely refitted. In such cases,
standard errors and confidence intervals refer to the standardized coefficient.

Value

A data frame of indices related to the model’s parameters.

Note

The print() method has several arguments to tweak the output. There is also a plot()-method
implemented in the see-package.

See Also

standardize_names() to rename columns into a consistent, standardized naming scheme.

https://easystats.github.io/see/articles/parameters.html
https://easystats.github.io/see/
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model_parameters.aov Parameters from ANOVAs

Description

Parameters from ANOVAs.

Usage

## S3 method for class 'aov'
model_parameters(
model,
omega_squared = NULL,
eta_squared = NULL,
epsilon_squared = NULL,
df_error = NULL,
type = NULL,
...

)

Arguments

model Object of class aov, anova or aovlist.

omega_squared Compute omega squared as index of effect size. Can be "partial" (adjusted
for effect size) or "raw".

eta_squared Compute eta squared as index of effect size. Can be "partial" (adjusted for
effect size), "raw" or "adjusted" (the latter option only for anova-tables from
mixed models).

epsilon_squared

Compute epsilon squared as index of effect size. Can be "partial" (adjusted
for effect size) or "raw".

df_error Denominator degrees of freedom (or degrees of freedom of the error estimate,
i.e., the residuals). This is used to compute effect sizes for anova tables from
mixed models. See ’Examples’.

type Numeric, type of sums of squares. May be 1, 2 or 3. If 2 or 3, anova-tables
using car::Anova() will be returned.

... Arguments passed to or from other methods.

Value

A data frame of indices related to the model’s parameters.

Note

For anova-tables from mixed models (i.e. anova(lmer())), only partial or adjusted effect sizes can
be computed.
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Examples

if (requireNamespace("effectsize", quietly = TRUE)) {
df <- iris
df$Sepal.Big <- ifelse(df$Sepal.Width >= 3, "Yes", "No")

model <- aov(Sepal.Length ~ Sepal.Big, data = df)
model_parameters(
model,
omega_squared = "partial",
eta_squared = "partial",
epsilon_squared = "partial"

)

model <- anova(lm(Sepal.Length ~ Sepal.Big, data = df))
model_parameters(model)
model_parameters(

model,
omega_squared = "partial",
eta_squared = "partial",
epsilon_squared = "partial"

)

model <- aov(Sepal.Length ~ Sepal.Big + Error(Species), data = df)
model_parameters(model)

if (require("lme4")) {
mm <- lmer(Sepal.Length ~ Sepal.Big + Petal.Width + (1 | Species),

data = df)
model <- anova(mm)

# simple parameters table
model_parameters(model)

# parameters table including effect sizes
model_parameters(

model,
eta_squared = "partial",
df_error = dof_satterthwaite(mm)

)
}

}

model_parameters.befa Parameters from PCA/FA

Description

Format PCA/FA objects from the psych package (Revelle, 2016).
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Usage

## S3 method for class 'befa'
model_parameters(
model,
sort = FALSE,
centrality = "median",
dispersion = FALSE,
ci = 0.89,
ci_method = "hdi",
test = NULL,
...

)

Arguments

model Bayesian EFA created by the BayesFM::befa.

sort Sort the loadings.

centrality The point-estimates (centrality indices) to compute. Character (vector) or list
with one or more of these options: "median", "mean", "MAP" or "all".

dispersion Logical, if TRUE, computes indices of dispersion related to the estimate(s) (SD
and MAD for mean and median, respectively).

ci Value or vector of probability of the CI (between 0 and 1) to be estimated. De-
fault to .89 (89%) for Bayesian models and .95 (95%) for frequentist models.

ci_method The type of index used for Credible Interval. Can be "HDI" (default, see hdi),
"ETI" (see eti) or "SI" (see si).

test The indices of effect existence to compute. Character (vector) or list with one or
more of these options: "p_direction" (or "pd"), "rope", "p_map", "equivalence_test"
(or "equitest"), "bayesfactor" (or "bf") or "all" to compute all tests. For
each "test", the corresponding bayestestR function is called (e.g. rope or p_direction)
and its results included in the summary output.

... Arguments passed to or from other methods.

Value

A data frame of loadings.

Examples

library(parameters)

if (require("BayesFM")) {
efa <- BayesFM::befa(mtcars, iter = 1000)
results <- model_parameters(efa, sort = TRUE)
results
efa_to_cfa(results)

}
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model_parameters.BFBayesFactor

Parameters from BayesFactor objects

Description

Parameters of BayesFactor objects.

Usage

## S3 method for class 'BFBayesFactor'
model_parameters(
model,
centrality = "median",
dispersion = FALSE,
ci = 0.89,
ci_method = "hdi",
test = c("pd", "rope"),
rope_range = "default",
rope_ci = 0.89,
priors = TRUE,
...

)

Arguments

model Object of class BFBayesFactor.
centrality The point-estimates (centrality indices) to compute. Character (vector) or list

with one or more of these options: "median", "mean", "MAP" or "all".
dispersion Logical, if TRUE, computes indices of dispersion related to the estimate(s) (SD

and MAD for mean and median, respectively).
ci Value or vector of probability of the CI (between 0 and 1) to be estimated. De-

fault to .89 (89%) for Bayesian models and .95 (95%) for frequentist models.
ci_method The type of index used for Credible Interval. Can be "HDI" (default, see hdi),

"ETI" (see eti) or "SI" (see si).
test The indices of effect existence to compute. Character (vector) or list with one or

more of these options: "p_direction" (or "pd"), "rope", "p_map", "equivalence_test"
(or "equitest"), "bayesfactor" (or "bf") or "all" to compute all tests. For
each "test", the corresponding bayestestR function is called (e.g. rope or p_direction)
and its results included in the summary output.

rope_range ROPE’s lower and higher bounds. Should be a list of two values (e.g., c(-0.1,0.1))
or "default". If "default", the bounds are set to x +-0.1*SD(response).

rope_ci The Credible Interval (CI) probability, corresponding to the proportion of HDI,
to use for the percentage in ROPE.

priors Add the prior used for each parameter.
... Additional arguments to be passed to or from methods.
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Value

A data frame of indices related to the model’s parameters.

Examples

library(BayesFactor)
model <- ttestBF(x = rnorm(100, 1, 1))
model_parameters(model)

model_parameters.gam Parameters from Generalized Additive (Mixed) Models

Description

Extract and compute indices and measures to describe parameters of generalized additive models
(GAM(M)s).

Usage

## S3 method for class 'gam'
model_parameters(
model,
ci = 0.95,
bootstrap = FALSE,
iterations = 1000,
standardize = NULL,
exponentiate = FALSE,
robust = FALSE,
p_adjust = NULL,
...

)

## S3 method for class 'rqss'
model_parameters(
model,
ci = 0.95,
bootstrap = FALSE,
iterations = 1000,
component = c("conditional", "smooth_terms", "all"),
standardize = NULL,
exponentiate = FALSE,
...

)
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## S3 method for class 'cgam'
model_parameters(
model,
ci = 0.95,
bootstrap = FALSE,
iterations = 1000,
component = c("conditional", "smooth_terms", "all"),
standardize = NULL,
exponentiate = FALSE,
...

)

Arguments

model A gam/gamm model.

ci Confidence Interval (CI) level. Default to 0.95 (95%).

bootstrap Should estimates be based on bootstrapped model? If TRUE, then arguments of
Bayesian regressions apply (see also bootstrap_parameters()).

iterations The number of bootstrap replicates. This only apply in the case of bootstrapped
frequentist models.

standardize The method used for standardizing the parameters. Can be "refit", "posthoc",
"smart", "basic" or NULL (default) for no standardization. See ’Details’ in
standardize_parameters. Note that robust estimation (i.e. robust=TRUE) of
standardized parameters only works when standardize="refit".

exponentiate Logical, indicating whether or not to exponentiate the the coefficients (and re-
lated confidence intervals). This is typical for, say, logistic regressions, or more
generally speaking: for models with log or logit link. Note: standard errors
are also transformed (by multiplying the standard errors with the exponentiated
coefficients), to mimic behaviour of other software packages, such as Stata.

robust Logical, if TRUE, robust standard errors are calculated (if possible), and con-
fidence intervals and p-values are based on these robust standard errors. Addi-
tional arguments like vcov_estimation or vcov_type are passed down to other
methods, see standard_error_robust() for details.

p_adjust Character vector, if not NULL, indicates the method to adjust p-values. See
p.adjust for details.

... Arguments passed to or from other methods. For instance, when bootstrap =
TRUE, arguments like ci_method are passed down to describe_posterior.

component Model component for which parameters should be shown. May be one of
"conditional", "precision" (betareg), "scale" (ordinal), "extra" (glmx),
"marginal" (mfx) or "all".

Value

A data frame of indices related to the model’s parameters.
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See Also

standardize_names() to rename columns into a consistent, standardized naming scheme.

Examples

library(parameters)
if (require("mgcv")) {

dat <- gamSim(1, n = 400, dist = "normal", scale = 2)
model <- gam(y ~ s(x0) + s(x1) + s(x2) + s(x3), data = dat)
model_parameters(model)

}

model_parameters.glht Parameters from Hypothesis Testing

Description

Parameters from Hypothesis Testing.

Usage

## S3 method for class 'glht'
model_parameters(model, ci = 0.95, exponentiate = FALSE, ...)

Arguments

model Object of class glht (multcomp).

ci Confidence Interval (CI) level. Default to 0.95 (95%).

exponentiate Logical, indicating whether or not to exponentiate the the coefficients (and re-
lated confidence intervals). This is typical for, say, logistic regressions, or more
generally speaking: for models with log or logit link. Note: standard errors
are also transformed (by multiplying the standard errors with the exponentiated
coefficients), to mimic behaviour of other software packages, such as Stata.

... Arguments passed to or from other methods. For instance, when bootstrap =
TRUE, arguments like ci_method are passed down to describe_posterior.

Value

A data frame of indices related to the model’s parameters.
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Examples

if (require("multcomp")) {
# multiple linear model, swiss data
lmod <- lm(Fertility ~ ., data = swiss)
mod <- glht(
model = lmod,
linfct = c(

"Agriculture = 0",
"Examination = 0",
"Education = 0",
"Catholic = 0",
"Infant.Mortality = 0"

)
)
model_parameters(mod)

}

model_parameters.htest

Parameters from Correlations and t-tests

Description

Parameters of h-tests (correlations, t-tests).

Usage

## S3 method for class 'htest'
model_parameters(model, bootstrap = FALSE, ...)

Arguments

model Object of class htest.

bootstrap Should estimates be bootstrapped?

... Arguments passed to or from other methods.

Value

A data frame of indices related to the model’s parameters.
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Examples

model <- cor.test(mtcars$mpg, mtcars$cyl, method = "pearson")
model_parameters(model)

model <- t.test(iris$Sepal.Width, iris$Sepal.Length)
model_parameters(model)

model <- t.test(mtcars$mpg ~ mtcars$vs)
model_parameters(model)

model <- t.test(iris$Sepal.Width, mu = 1)
model_parameters(model)

model_parameters.kmeans

Parameters from Cluster Models (k-means, ...)

Description

Format cluster models obtained for example by kmeans.

Usage

## S3 method for class 'kmeans'
model_parameters(model, ...)

Arguments

model Cluster model.

... Arguments passed to or from other methods.

Examples

library(parameters)

model <- kmeans(iris[1:4], centers = 3)
model_parameters(model)
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model_parameters.lavaan

Parameters from CFA/SEM models

Description

Format CFA/SEM objects from the (b)lavaan package (Rosseel, 2012; Merkle and Rosseel 2018).

Usage

## S3 method for class 'lavaan'
model_parameters(
model,
ci = 0.95,
standardize = FALSE,
type = c("regression", "correlation", "loading"),
...

)

Arguments

model CFA or SEM created by the lavaan::cfa or lavaan::sem functions (or from
blavaan).

ci Confidence Interval (CI) level. Default to 0.95 (95%).

standardize Return standardized parameters (standardized coefficients). See lavaan::standardizedsolution.

type What type of links to return. Can be "all" or some of c("regression","correlation","loading","variance","mean").

... Arguments passed to or from other methods.

Value

A data frame of indices related to the model’s parameters.

Note

There is also a plot()-method implemented in the see-package.

References

• Rosseel Y (2012). lavaan: An R Package for Structural Equation Modeling. Journal of Statis-
tical Software, 48(2), 1-36.

• Merkle EC , Rosseel Y (2018). blavaan: Bayesian Structural Equation Models via Parameter
Expansion. Journal of Statistical Software, 85(4), 1-30. http://www.jstatsoft.org/v85/i04/

https://easystats.github.io/see/articles/parameters.html
https://easystats.github.io/see/
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Examples

library(parameters)

# lavaan -------------------------------------
if (require("lavaan")) {

# Confirmatory Factor Analysis (CFA) ---------

structure <- " visual =~ x1 + x2 + x3
textual =~ x4 + x5 + x6
speed =~ x7 + x8 + x9 "

model <- lavaan::cfa(structure, data = HolzingerSwineford1939)
model_parameters(model)
model_parameters(model, standardize = TRUE)

# Structural Equation Model (SEM) ------------

structure <- "
# latent variable definitions

ind60 =~ x1 + x2 + x3
dem60 =~ y1 + a*y2 + b*y3 + c*y4
dem65 =~ y5 + a*y6 + b*y7 + c*y8

# regressions
dem60 ~ ind60
dem65 ~ ind60 + dem60

# residual correlations
y1 ~~ y5
y2 ~~ y4 + y6
y3 ~~ y7
y4 ~~ y8
y6 ~~ y8

"
model <- lavaan::sem(structure, data = PoliticalDemocracy)
model_parameters(model)
model_parameters(model, standardize = TRUE)

}

model_parameters.logitor

Parameters from (General) Linear Models

Description

Extract and compute indices and measures to describe parameters of (general) linear models (GLMs).

Usage

## S3 method for class 'logitor'
model_parameters(
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model,
ci = 0.95,
bootstrap = FALSE,
iterations = 1000,
standardize = NULL,
exponentiate = TRUE,
robust = FALSE,
p_adjust = NULL,
...

)

## S3 method for class 'poissonmfx'
model_parameters(
model,
ci = 0.95,
bootstrap = FALSE,
iterations = 1000,
component = c("all", "conditional", "marginal"),
standardize = NULL,
exponentiate = FALSE,
robust = FALSE,
p_adjust = NULL,
...

)

## S3 method for class 'betamfx'
model_parameters(
model,
ci = 0.95,
bootstrap = FALSE,
iterations = 1000,
component = c("all", "conditional", "precision", "marginal"),
standardize = NULL,
exponentiate = FALSE,
robust = FALSE,
p_adjust = NULL,
...

)

## Default S3 method:
model_parameters(
model,
ci = 0.95,
bootstrap = FALSE,
iterations = 1000,
standardize = NULL,
exponentiate = FALSE,
robust = FALSE,
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p_adjust = NULL,
...

)

## S3 method for class 'glm'
model_parameters(
model,
ci = 0.95,
df_method = "profile",
bootstrap = FALSE,
iterations = 1000,
standardize = NULL,
exponentiate = FALSE,
robust = FALSE,
p_adjust = NULL,
...

)

## S3 method for class 'betareg'
model_parameters(
model,
ci = 0.95,
bootstrap = FALSE,
iterations = 1000,
component = c("conditional", "precision", "all"),
standardize = NULL,
exponentiate = FALSE,
p_adjust = NULL,
...

)

## S3 method for class 'clm2'
model_parameters(
model,
ci = 0.95,
bootstrap = FALSE,
iterations = 1000,
component = c("all", "conditional", "scale"),
standardize = NULL,
exponentiate = FALSE,
p_adjust = NULL,
...

)

## S3 method for class 'glmx'
model_parameters(
model,
ci = 0.95,
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bootstrap = FALSE,
iterations = 1000,
component = c("all", "conditional", "extra"),
standardize = NULL,
exponentiate = FALSE,
p_adjust = NULL,
...

)

Arguments

model Model object.

ci Confidence Interval (CI) level. Default to 0.95 (95%).

bootstrap Should estimates be based on bootstrapped model? If TRUE, then arguments of
Bayesian regressions apply (see also bootstrap_parameters()).

iterations The number of bootstrap replicates. This only apply in the case of bootstrapped
frequentist models.

standardize The method used for standardizing the parameters. Can be "refit", "posthoc",
"smart", "basic" or NULL (default) for no standardization. See ’Details’ in
standardize_parameters. Note that robust estimation (i.e. robust=TRUE) of
standardized parameters only works when standardize="refit".

exponentiate Logical, indicating whether or not to exponentiate the the coefficients (and re-
lated confidence intervals). This is typical for, say, logistic regressions, or more
generally speaking: for models with log or logit link. Note: standard errors
are also transformed (by multiplying the standard errors with the exponentiated
coefficients), to mimic behaviour of other software packages, such as Stata.

robust Logical, if TRUE, robust standard errors are calculated (if possible), and con-
fidence intervals and p-values are based on these robust standard errors. Addi-
tional arguments like vcov_estimation or vcov_type are passed down to other
methods, see standard_error_robust() for details.

p_adjust Character vector, if not NULL, indicates the method to adjust p-values. See
p.adjust for details.

... Arguments passed to or from other methods. For instance, when bootstrap =
TRUE, arguments like ci_method are passed down to describe_posterior.

component Model component for which parameters should be shown. May be one of
"conditional", "precision" (betareg), "scale" (ordinal), "extra" (glmx),
"marginal" (mfx) or "all".

df_method Method for computing degrees of freedom for confidence intervals (CI). Only
applies to models of class glm or polr. May be "profile" or "wald".

Value

A data frame of indices related to the model’s parameters.

See Also

standardize_names() to rename columns into a consistent, standardized naming scheme.
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Examples

library(parameters)
model <- lm(mpg ~ wt + cyl, data = mtcars)

model_parameters(model)

# bootstrapped parameters
model_parameters(model, bootstrap = TRUE)

# standardized parameters
model_parameters(model, standardize = "refit")

# different p-value style in output
model_parameters(model, p_digits = 5)
model_parameters(model, digits = 3, ci_digits = 4, p_digits = "scientific")

# logistic regression model
model <- glm(vs ~ wt + cyl, data = mtcars, family = "binomial")
model_parameters(model)

# show odds ratio / exponentiated coefficients
model_parameters(model, exponentiate = TRUE)

model_parameters.Mclust

Parameters from Mixture Models

Description

Format mixture models obtained for example by mclust::Mclust.

Usage

## S3 method for class 'Mclust'
model_parameters(model, ...)

Arguments

model Mixture model.

... Arguments passed to or from other methods.

Examples

library(parameters)
library(mclust)

model <- mclust::Mclust(iris[1:4], verbose = FALSE)
model_parameters(model)
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model_parameters.merMod

Parameters from Mixed Models

Description

Parameters from (linear) mixed models.

Usage

## S3 method for class 'merMod'
model_parameters(
model,
ci = 0.95,
bootstrap = FALSE,
df_method = "wald",
iterations = 1000,
standardize = NULL,
exponentiate = FALSE,
robust = FALSE,
details = FALSE,
p_adjust = NULL,
...

)

## S3 method for class 'glmmTMB'
model_parameters(
model,
ci = 0.95,
bootstrap = FALSE,
iterations = 1000,
component = c("all", "conditional", "zi", "zero_inflated", "dispersion"),
standardize = NULL,
exponentiate = FALSE,
df_method = NULL,
details = FALSE,
...

)

## S3 method for class 'mixor'
model_parameters(
model,
ci = 0.95,
effects = c("all", "fixed", "random"),
bootstrap = FALSE,
iterations = 1000,
standardize = NULL,
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exponentiate = FALSE,
details = FALSE,
...

)

## S3 method for class 'clmm'
model_parameters(
model,
ci = 0.95,
bootstrap = FALSE,
iterations = 1000,
standardize = NULL,
exponentiate = FALSE,
details = FALSE,
df_method = NULL,
...

)

Arguments

model A mixed model.

ci Confidence Interval (CI) level. Default to 0.95 (95%).

bootstrap Should estimates be based on bootstrapped model? If TRUE, then arguments of
Bayesian regressions apply (see also bootstrap_parameters()).

df_method Method for computing degrees of freedom for p values, standard errors and
confidence intervals (CI). May be "wald" (default, see degrees_of_freedom),
"ml1" (see dof_ml1), "betwithin" (see dof_betwithin), "satterthwaite"
(see dof_satterthwaite) or "kenward" (see dof_kenward). Note that when
df_method is not "wald", robust standard errors etc. cannot be computed.

iterations The number of bootstrap replicates. This only apply in the case of bootstrapped
frequentist models.

standardize The method used for standardizing the parameters. Can be "refit", "posthoc",
"smart", "basic" or NULL (default) for no standardization. See ’Details’ in
standardize_parameters. Note that robust estimation (i.e. robust=TRUE) of
standardized parameters only works when standardize="refit".

exponentiate Logical, indicating whether or not to exponentiate the the coefficients (and re-
lated confidence intervals). This is typical for, say, logistic regressions, or more
generally speaking: for models with log or logit link. Note: standard errors
are also transformed (by multiplying the standard errors with the exponentiated
coefficients), to mimic behaviour of other software packages, such as Stata.

robust Logical, if TRUE, robust standard errors are calculated (if possible), and con-
fidence intervals and p-values are based on these robust standard errors. Addi-
tional arguments like vcov_estimation or vcov_type are passed down to other
methods, see standard_error_robust() for details.

details Logical, if TRUE, a summary of the random effects is included. See random_parameters
for details.
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p_adjust Character vector, if not NULL, indicates the method to adjust p-values. See
p.adjust for details.

... Arguments passed to or from other methods. For instance, when bootstrap =
TRUE, arguments like ci_method are passed down to describe_posterior.

component Model component for which parameters should be shown. May be one of
"conditional", "precision" (betareg), "scale" (ordinal), "extra" (glmx),
"marginal" (mfx) or "all".

effects Should parameters for fixed effects, random effects or both be returned? Only
applies to mixed models. May be abbreviated.

Value

A data frame of indices related to the model’s parameters.

Note

There is also a plot()-method implemented in the see-package.

See Also

standardize_names() to rename columns into a consistent, standardized naming scheme.

Examples

library(parameters)
if (require("lme4")) {

data(mtcars)
model <- lmer(mpg ~ wt + (1 | gear), data = mtcars)
model_parameters(model)

}

if (require("glmmTMB")) {
data(Salamanders)
model <- glmmTMB(
count ~ spp + mined + (1 | site),
ziformula = ~mined,
family = poisson(),
data = Salamanders

)
model_parameters(model, details = TRUE)

# plot-method
if (require("see")) {

result <- model_parameters(model)
plot(result)

}
}

if (require("lme4")) {
model <- lmer(mpg ~ wt + (1 | gear), data = mtcars)
model_parameters(model, bootstrap = TRUE, iterations = 50)

https://easystats.github.io/see/articles/parameters.html
https://easystats.github.io/see/
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}

model_parameters.mlm Parameters from multinomial or cumulative link models

Description

Parameters from multinomial or cumulative link models

Usage

## S3 method for class 'mlm'
model_parameters(
model,
ci = 0.95,
bootstrap = FALSE,
iterations = 1000,
standardize = NULL,
exponentiate = FALSE,
p_adjust = NULL,
...

)

## S3 method for class 'multinom'
model_parameters(
model,
ci = 0.95,
bootstrap = FALSE,
iterations = 1000,
standardize = NULL,
exponentiate = FALSE,
p_adjust = NULL,
...

)

## S3 method for class 'bracl'
model_parameters(
model,
ci = 0.95,
bootstrap = FALSE,
iterations = 1000,
standardize = NULL,
exponentiate = FALSE,
p_adjust = NULL,
...

)
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## S3 method for class 'DirichletRegModel'
model_parameters(
model,
ci = 0.95,
bootstrap = FALSE,
iterations = 1000,
component = c("all", "conditional", "precision"),
standardize = NULL,
exponentiate = FALSE,
...

)

Arguments

model A model with multinomial or categorical response value.
ci Confidence Interval (CI) level. Default to 0.95 (95%).
bootstrap Should estimates be based on bootstrapped model? If TRUE, then arguments of

Bayesian regressions apply (see also bootstrap_parameters()).
iterations The number of bootstrap replicates. This only apply in the case of bootstrapped

frequentist models.
standardize The method used for standardizing the parameters. Can be "refit", "posthoc",

"smart", "basic" or NULL (default) for no standardization. See ’Details’ in
standardize_parameters. Note that robust estimation (i.e. robust=TRUE) of
standardized parameters only works when standardize="refit".

exponentiate Logical, indicating whether or not to exponentiate the the coefficients (and re-
lated confidence intervals). This is typical for, say, logistic regressions, or more
generally speaking: for models with log or logit link. Note: standard errors
are also transformed (by multiplying the standard errors with the exponentiated
coefficients), to mimic behaviour of other software packages, such as Stata.

p_adjust Character vector, if not NULL, indicates the method to adjust p-values. See
p.adjust for details.

... Arguments passed to or from other methods. For instance, when bootstrap =
TRUE, arguments like ci_method are passed down to describe_posterior.

component Model component for which parameters should be shown. May be one of
"conditional", "precision" (betareg), "scale" (ordinal), "extra" (glmx),
"marginal" (mfx) or "all".

Details

Multinomial or cumulative link models, i.e. models where the response value (dependent variable)
is categorical and has more than two levels, usually return coefficients for each response level.
Hence, the output from model_parameters() will split the coefficient tables by the different levels
of the model’s response.

Value

A data frame of indices related to the model’s parameters.
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See Also

standardize_names() to rename columns into a consistent, standardized naming scheme.

Examples

library(parameters)
if (require("brglm2")) {

data("stemcell")
model <- bracl(
research ~ as.numeric(religion) + gender,
weights = frequency,
data = stemcell,
type = "ML"

)
model_parameters(model)

}

model_parameters.PCA Parameters from Structural Models (PCA, EFA, ...)

Description

Format structural models from the psych or FactoMineR packages.

Usage

## S3 method for class 'PCA'
model_parameters(model, sort = FALSE, threshold = NULL, labels = NULL, ...)

## S3 method for class 'principal'
model_parameters(model, sort = FALSE, threshold = NULL, labels = NULL, ...)

## S3 method for class 'omega'
model_parameters(model, ...)

Arguments

model PCA or FA created by the psych or FactoMineR packages (e.g. through psych::principal,
psych::fa or psych::omega).

sort Sort the loadings.

threshold A value between 0 and 1 indicates which (absolute) values from the loadings
should be removed. An integer higher than 1 indicates the n strongest loadings
to retain. Can also be "max", in which case it will only display the maximum
loading per variable (the most simple structure).

labels A character vector containing labels to be added to the loadings data. Usually,
the question related to the item.

... Arguments passed to or from other methods.
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Details

For the structural models obtained with psych, the following indices are present:

• Complexity (Hoffman’s, 1978; Pettersson and Turkheimer, 2010 ) represents the number of
latent components needed to account for the observed variables. Whereas a perfect simple
structure solution has a complexity of 1 in that each item would only load on one factor, a
solution with evenly distributed items has a complexity greater than 1.

• Uniqueness represents the variance that is ’unique’ to the variable and not shared with other
variables. It is equal to 1 communality (variance that is shared with other variables). A
uniqueness of 0.20 suggests that 20% or that variable’s variance is not shared with other
variables in the overall factor model. The greater ’uniqueness’ the lower the relevance of the
variable in the factor model.

• MSA represents the Kaiser-Meyer-Olkin Measure of Sampling Adequacy (Kaiser and Rice,
1974 ) for each item. It indicates whether there is enough data for each factor give reliable
results for the PCA. The value should be > 0.6, and desirable values are > 0.8 (Tabachnick and
Fidell, 2013 ).

Value

A data frame of loadings.

References

• Kaiser, H.F. and Rice. J. (1974). Little jiffy, mark iv. Educational and Psychological Mea-
surement, 34(1):111–117

• Pettersson, E., \& Turkheimer, E. (2010). Item selection, evaluation, and simple structure in
personality data. Journal of research in personality, 44(4), 407-420.

• Revelle, W. (2016). How To: Use the psych package for Factor Analysis and data reduction.

• Tabachnick, B. G., and Fidell, L. S. (2013). Using multivariate statistics (6th ed.). Boston:
Pearson Education.

Examples

library(parameters)
if (require("psych")) {

# Principal Component Analysis (PCA) ---------
pca <- psych::principal(attitude)
model_parameters(pca)

pca <- psych::principal(attitude, nfactors = 3, rotate = "none")
model_parameters(pca, sort = TRUE, threshold = 0.2)

principal_components(attitude, n = 3, sort = TRUE, threshold = 0.2)

# Exploratory Factor Analysis (EFA) ---------
efa <- psych::fa(attitude, nfactors = 3)
model_parameters(efa, threshold = "max", sort = TRUE, labels = as.character(1:ncol(attitude)))
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# Omega ---------
omega <- psych::omega(mtcars, nfactors = 3)
params <- model_parameters(omega)
params
summary(params)

}

# FactoMineR ---------
## Not run:
if( require("FactoMineR")) {

model <- FactoMineR::PCA(iris[, 1:4], ncp = 2)
model_parameters(model)
attributes(model_parameters(model))$scores

model <- FactoMineR::FAMD(iris, ncp = 2)
model_parameters(model)

}

## End(Not run)

model_parameters.rma Parameters from Meta-Analysis

Description

Extract and compute indices and measures to describe parameters of meta-analysis models.

Usage

## S3 method for class 'rma'
model_parameters(
model,
ci = 0.95,
bootstrap = FALSE,
iterations = 1000,
standardize = NULL,
exponentiate = FALSE,
...

)

Arguments

model Model object.

ci Confidence Interval (CI) level. Default to 0.95 (95%).

bootstrap Should estimates be based on bootstrapped model? If TRUE, then arguments of
Bayesian regressions apply (see also bootstrap_parameters()).
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iterations The number of bootstrap replicates. This only apply in the case of bootstrapped
frequentist models.

standardize The method used for standardizing the parameters. Can be "refit", "posthoc",
"smart", "basic" or NULL (default) for no standardization. See ’Details’ in
standardize_parameters. Note that robust estimation (i.e. robust=TRUE) of
standardized parameters only works when standardize="refit".

exponentiate Logical, indicating whether or not to exponentiate the the coefficients (and re-
lated confidence intervals). This is typical for, say, logistic regressions, or more
generally speaking: for models with log or logit link. Note: standard errors
are also transformed (by multiplying the standard errors with the exponentiated
coefficients), to mimic behaviour of other software packages, such as Stata.

... Arguments passed to or from other methods. For instance, when bootstrap =
TRUE, arguments like ci_method are passed down to describe_posterior.

Value

A data frame of indices related to the model’s parameters.

Examples

library(parameters)
mydat <<- data.frame(

effectsize = c(-0.393, 0.675, 0.282, -1.398),
stderr = c(0.317, 0.317, 0.13, 0.36)

)
if (require("metafor")) {

model <- rma(yi = effectsize, sei = stderr, method = "REML", data = mydat)
model_parameters(model)

}

## Not run:
# with subgroups
if (require("metafor")) {

data(dat.bcg)
dat <- escalc(
measure = "RR",
ai = tpos,
bi = tneg,
ci = cpos,
di = cneg,
data = dat.bcg

)
dat$alloc <- ifelse(dat$alloc == "random", "random", "other")
model <- rma(yi, vi, mods = ~ alloc, data = dat, digits = 3, slab = author)
model_parameters(model)

}

## End(Not run)
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model_parameters.stanreg

Parameters from Bayesian Models

Description

Parameters of Bayesian models.

Usage

## S3 method for class 'stanreg'
model_parameters(
model,
centrality = "median",
dispersion = FALSE,
ci = 0.89,
ci_method = "hdi",
test = c("pd", "rope"),
rope_range = "default",
rope_ci = 1,
bf_prior = NULL,
diagnostic = c("ESS", "Rhat"),
priors = TRUE,
effects = "fixed",
exponentiate = FALSE,
standardize = NULL,
group_level = FALSE,
...

)

## S3 method for class 'brmsfit'
model_parameters(
model,
centrality = "median",
dispersion = FALSE,
ci = 0.89,
ci_method = "hdi",
test = c("pd", "rope"),
rope_range = "default",
rope_ci = 1,
bf_prior = NULL,
diagnostic = c("ESS", "Rhat"),
priors = TRUE,
effects = "fixed",
component = "all",
exponentiate = FALSE,
standardize = NULL,
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group_level = FALSE,
...

)

Arguments

model Bayesian model. May also be a data frame with posterior samples.

centrality The point-estimates (centrality indices) to compute. Character (vector) or list
with one or more of these options: "median", "mean", "MAP" or "all".

dispersion Logical, if TRUE, computes indices of dispersion related to the estimate(s) (SD
and MAD for mean and median, respectively).

ci Credible Interval (CI) level. Default to 0.89 (89%). See ci for further details.

ci_method The type of index used for Credible Interval. Can be "HDI" (default, see hdi),
"ETI" (see eti) or "SI" (see si).

test The indices of effect existence to compute. Character (vector) or list with one or
more of these options: "p_direction" (or "pd"), "rope", "p_map", "equivalence_test"
(or "equitest"), "bayesfactor" (or "bf") or "all" to compute all tests. For
each "test", the corresponding bayestestR function is called (e.g. rope or p_direction)
and its results included in the summary output.

rope_range ROPE’s lower and higher bounds. Should be a list of two values (e.g., c(-0.1,0.1))
or "default". If "default", the bounds are set to x +-0.1*SD(response).

rope_ci The Credible Interval (CI) probability, corresponding to the proportion of HDI,
to use for the percentage in ROPE.

bf_prior Distribution representing a prior for the computation of Bayes factors / SI. Used
if the input is a posterior, otherwise (in the case of models) ignored.

diagnostic Diagnostic metrics to compute. Character (vector) or list with one or more of
these options: "ESS", "Rhat", "MCSE" or "all".

priors Add the prior used for each parameter.

effects Should results for fixed effects, random effects or both be returned? Only applies
to mixed models. May be abbreviated.

exponentiate Logical, indicating whether or not to exponentiate the the coefficients (and re-
lated confidence intervals). This is typical for, say, logistic regressions, or more
generally speaking: for models with log or logit link. Note: standard errors
are also transformed (by multiplying the standard errors with the exponentiated
coefficients), to mimic behaviour of other software packages, such as Stata.

standardize The method used for standardizing the parameters. Can be "refit", "posthoc",
"smart", "basic" or NULL (default) for no standardization. See ’Details’ in
standardize_parameters. Note that robust estimation (i.e. robust=TRUE) of
standardized parameters only works when standardize="refit".

group_level Logical, for multilevel models (i.e. models with random effects) and when
effects = "all" or effects = "random", include the parameters for each group
level from random effects. If group_level = FALSE (the default), only informa-
tion on SD and COR are shown.

... Arguments passed to or from other methods. For instance, when bootstrap =
TRUE, arguments like ci_method are passed down to describe_posterior.
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component Model component for which parameters should be shown. May be one of
"conditional", "precision" (betareg), "scale" (ordinal), "extra" (glmx),
"marginal" (mfx) or "all".

Details

Currently supported models are brmsfit, stanreg, stanmvreg, MCMCglmm, mcmc and bcplm.

Value

A data frame of indices related to the model’s parameters.

Note

When standardize = "refit", columns diagnostic, bf_prior and priors refer to the original
model. If model is a data frame, arguments diagnostic, bf_prior and priors are ignored.

There is also a plot()-method implemented in the see-package.

See Also

standardize_names() to rename columns into a consistent, standardized naming scheme.

Examples

library(parameters)
if (require("rstanarm")) {
model <- stan_glm(

Sepal.Length ~ Petal.Length * Species,
data = iris, iter = 500, refresh = 0

)
model_parameters(model)

}

model_parameters.zeroinfl

Parameters from Zero-Inflated Models

Description

Parameters from zero-inflated models.

https://easystats.github.io/see/articles/parameters.html
https://easystats.github.io/see/
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Usage

## S3 method for class 'zeroinfl'
model_parameters(
model,
ci = 0.95,
bootstrap = FALSE,
iterations = 1000,
component = c("all", "conditional", "zi", "zero_inflated"),
standardize = NULL,
exponentiate = FALSE,
robust = FALSE,
p_adjust = NULL,
...

)

Arguments

model A model with zero-inflation component.
ci Confidence Interval (CI) level. Default to 0.95 (95%).
bootstrap Should estimates be based on bootstrapped model? If TRUE, then arguments of

Bayesian regressions apply (see also bootstrap_parameters()).
iterations The number of bootstrap replicates. This only apply in the case of bootstrapped

frequentist models.
component Model component for which parameters should be shown. May be one of

"conditional", "precision" (betareg), "scale" (ordinal), "extra" (glmx),
"marginal" (mfx) or "all".

standardize The method used for standardizing the parameters. Can be "refit", "posthoc",
"smart", "basic" or NULL (default) for no standardization. See ’Details’ in
standardize_parameters. Note that robust estimation (i.e. robust=TRUE) of
standardized parameters only works when standardize="refit".

exponentiate Logical, indicating whether or not to exponentiate the the coefficients (and re-
lated confidence intervals). This is typical for, say, logistic regressions, or more
generally speaking: for models with log or logit link. Note: standard errors
are also transformed (by multiplying the standard errors with the exponentiated
coefficients), to mimic behaviour of other software packages, such as Stata.

robust Logical, if TRUE, robust standard errors are calculated (if possible), and con-
fidence intervals and p-values are based on these robust standard errors. Addi-
tional arguments like vcov_estimation or vcov_type are passed down to other
methods, see standard_error_robust() for details.

p_adjust Character vector, if not NULL, indicates the method to adjust p-values. See
p.adjust for details.

... Arguments passed to or from other methods. For instance, when bootstrap =
TRUE, arguments like ci_method are passed down to describe_posterior.

Value

A data frame of indices related to the model’s parameters.
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See Also

standardize_names() to rename columns into a consistent, standardized naming scheme.

Examples

library(parameters)
if (require("pscl")) {

data("bioChemists")
model <- zeroinfl(art ~ fem + mar + kid5 + ment | kid5 + phd, data = bioChemists)
model_parameters(model)

}

n_clusters Number of clusters to extract

Description

This function runs many existing procedures for determining how many clusters are present in your
data. It returns the number of clusters based on the maximum consensus. In case of ties, it will
select the solution with the less clusters.

Usage

n_clusters(
x,
standardize = TRUE,
force = FALSE,
package = c("NbClust", "mclust", "cluster", "M3C"),
fast = TRUE,
...

)

Arguments

x A data frame.

standardize Standardize the dataframe before clustering (default).

force Logical, if TRUE, factors are converted to numerical values in order to be in-
cluded in the data for determining the number of clusters. By default, factors
are removed, because most methods that determine the number of clusters need
numeric input only.

package These are the packages from which methods are used to determine the num-
ber of clusters. Can be "all" or a vector containing "NbClust", "mclust",
"cluster" and "M3C".

fast If FALSE, will compute 4 more indices (sets index = "allong" in NbClust).
This has been deactivated by default as it is computationally heavy.

... Arguments passed to or from other methods.
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Note

There is also a plot()-method implemented in the see-package.

Examples

library(parameters)

n_clusters(iris[, 1:4], package = c("NbClust", "mclust", "cluster"))

n_factors Number of components/factors to retain in PCA/FA

Description

This function runs many existing procedures for determining how many factors to retain for your
factor analysis (FA) or dimension reduction (PCA). It returns the number of factors based on the
maximum consensus between methods. In case of ties, it will keep the simplest models and select
the solution with the less factors.

Usage

n_factors(
x,
type = "FA",
rotation = "varimax",
algorithm = "default",
package = c("nFactors", "psych"),
cor = NULL,
safe = TRUE,
...

)

n_components(
x,
type = "PCA",
rotation = "varimax",
algorithm = "default",
package = c("nFactors", "psych"),
cor = NULL,
safe = TRUE,
...

)

https://easystats.github.io/see/articles/parameters.html
https://easystats.github.io/see/


n_factors 73

Arguments

x A data frame.

type Can be "FA" or "PCA", depending on what you want to do.

rotation Only used for VSS (Very Simple Structure criterion, see VSS). The rotation to
apply. Can be "none", "varimax", "quartimax", "bentlerT", "equamax",
"varimin", "geominT" and "bifactor" for orthogonal rotations, and "promax",
"oblimin", "simplimax", "bentlerQ", "geominQ", "biquartimin" and "cluster"
for oblique transformations.

algorithm Factoring method used by VSS. Can be "pa" for Principal Axis Factor Analysis,
"minres" for minimum residual (OLS) factoring, "mle" for Maximum Likeli-
hood FA and "pc" for Principal Components. "default" will select "minres"
if type = "FA" and "pc" if type = "PCA".

package These are the packages from which methods are used. Can be "all" or a vector
containing "nFactors", "psych" and "EGAnet". However, "EGAnet" can be
very slow for bigger datasets. Thus, by default, c("nFactors","psych") are
selected.

cor An optional correlation matrix that can be used (note that the data must still be
passed as the first argument). If NULL, will compute it by running cor() on the
passed data.

safe If TRUE, will run all the procedures in try blocks, and will only return those that
work and silently skip the ones that may fail.

... Arguments passed to or from other methods.

Value

A data frame.

Note

There is also a plot()-method implemented in the see-package. n_components() is a convenient
short for n_factors(type = "PCA").

References

• Bartlett, M. S. (1950). Tests of significance in factor analysis. British Journal of statistical
psychology, 3(2), 77-85.

• Bentler, P. M., & Yuan, K. H. (1996). Test of linear trend in eigenvalues of a covariance matrix
with application to data analysis. British Journal of Mathematical and Statistical Psychology,
49(2), 299-312.

• Cattell, R. B. (1966). The scree test for the number of factors. Multivariate behavioral re-
search, 1(2), 245-276.

• Finch, W. H. (2019). Using Fit Statistic Differences to Determine the Optimal Number of
Factors to Retain in an Exploratory Factor Analysis. Educational and Psychological Measure-
ment.

https://easystats.github.io/see/articles/parameters.html
https://easystats.github.io/see/
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• Zoski, K. W., & Jurs, S. (1996). An objective counterpart to the visual scree test for factor
analysis: The standard error scree. Educational and Psychological Measurement, 56(3), 443-
451.

• Zoski, K., & Jurs, S. (1993). Using multiple regression to determine the number of factors to
retain in factor analysis. Multiple Linear Regression Viewpoints, 20(1), 5-9.

• Nasser, F., Benson, J., & Wisenbaker, J. (2002). The performance of regression-based vari-
ations of the visual scree for determining the number of common factors. Educational and
psychological measurement, 62(3), 397-419.

• Golino, H., Shi, D., Garrido, L. E., Christensen, A. P., Nieto, M. D., Sadana, R., & Thiyagara-
jan, J. A. (2018). Investigating the performance of Exploratory Graph Analysis and traditional
techniques to identify the number of latent factors: A simulation and tutorial.

• Golino, H. F., & Epskamp, S. (2017). Exploratory graph analysis: A new approach for esti-
mating the number of dimensions in psychological research. PloS one, 12(6), e0174035.

• Revelle, W., & Rocklin, T. (1979). Very simple structure: An alternative procedure for esti-
mating the optimal number of interpretable factors. Multivariate Behavioral Research, 14(4),
403-414.

• Velicer, W. F. (1976). Determining the number of components from the matrix of partial
correlations. Psychometrika, 41(3), 321-327.

Examples

library(parameters)

n_factors(mtcars, type = "PCA")

result <- n_factors(mtcars[1:5], type = "FA")
as.data.frame(result)
summary(result)

n_factors(mtcars, type = "PCA", package = "all")
n_factors(mtcars, type = "FA", algorithm = "mle", package = "all")

n_parameters Count number of parameters in a model

Description

Returns the number of parameters of a model.

Usage

n_parameters(x, ...)

## Default S3 method:
n_parameters(x, ...)
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## S3 method for class 'merMod'
n_parameters(x, effects = c("fixed", "random"), ...)

## S3 method for class 'glmmTMB'
n_parameters(
x,
effects = c("fixed", "random"),
component = c("all", "conditional", "zi", "zero_inflated"),
...

)

## S3 method for class 'zeroinfl'
n_parameters(
x,
component = c("all", "conditional", "zi", "zero_inflated"),
...

)

## S3 method for class 'gam'
n_parameters(x, component = c("all", "conditional", "smooth_terms"), ...)

## S3 method for class 'brmsfit'
n_parameters(
x,
effects = c("all", "fixed", "random"),
component = c("all", "conditional", "zi", "zero_inflated", "dispersion", "simplex",

"sigma", "smooth_terms"),
...

)

Arguments

x A statistical model.

... Arguments passed to or from other methods.

effects Should number of parameters for fixed effects, random effects or both be re-
turned? Only applies to mixed models. May be abbreviated.

component Should total number of parameters, number parameters for the conditional model,
the zero-inflated part of the model, the dispersion term or the instrumental vari-
ables be returned? Applies to models with zero-inflated and/or dispersion for-
mula, or to models with instrumental variable (so called fixed-effects regres-
sions). May be abbreviated.

Value

The number of parameters in the model.
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Examples

data(iris)
model <- lm(Sepal.Length ~ Sepal.Width * Species, data = iris)
n_parameters(model)

parameters_table Parameter table formatting

Description

Parameter table formatting

Usage

parameters_table(
x,
pretty_names = TRUE,
stars = FALSE,
digits = 2,
ci_digits = 2,
p_digits = 3,
...

)

Arguments

x A data frame of model’s parameters.

pretty_names Pretty parameters’ names.

stars Add significance stars (e.g., p < .001***).

digits Number of decimal places for numeric values (except confidence intervals and
p-values).

ci_digits Number of decimal places for confidence intervals.

p_digits Number of decimal places for p-values. May also be "scientific" for scien-
tific notation of p-values.

... Arguments passed to or from other methods.

Value

A data frame.
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Examples

library(parameters)

x <- model_parameters(lm(Sepal.Length ~ Species * Sepal.Width, data = iris))
as.data.frame(parameters_table(x))
as.data.frame(parameters_table(x, p_digits = "scientific"))

if (require("rstanarm")) {
model <- stan_glm(Sepal.Length ~ Species, data = iris, refresh = 0, seed = 123)
x <- model_parameters(model, ci = c(0.69, 0.89, 0.95))
as.data.frame(parameters_table(x))

}

parameters_type Type of model parameters

Description

Type of model parameters

Usage

parameters_type(model, ...)

Arguments

model A statistical model.

... Arguments passed to or from other methods.

Value

A data frame.

Examples

library(parameters)

model <- lm(Sepal.Length ~ Petal.Length + Species, data = iris)
parameters_type(model)

model <- lm(Sepal.Length ~ Species + poly(Sepal.Width, 2), data = iris)
parameters_type(model)

model <- lm(Sepal.Length ~ Species + poly(Sepal.Width, 2, raw = TRUE), data = iris)
parameters_type(model)

# Interactions
model <- lm(Sepal.Length ~ Sepal.Width * Species, data = iris)
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parameters_type(model)

model <- lm(Sepal.Length ~ Sepal.Width * Species * Petal.Length, data = iris)
parameters_type(model)

model <- lm(Sepal.Length ~ Species * Sepal.Width, data = iris)
parameters_type(model)

model <- lm(Sepal.Length ~ Species / Sepal.Width, data = iris)
parameters_type(model)

# Complex interactions
data <- iris
data$fac2 <- ifelse(data$Sepal.Width > mean(data$Sepal.Width), "A", "B")
model <- lm(Sepal.Length ~ Species / fac2 / Petal.Length, data = data)
parameters_type(model)

model <- lm(Sepal.Length ~ Species / fac2 * Petal.Length, data = data)
parameters_type(model)

principal_components Principal Component Analysis (PCA)

Description

This function performs a principal component analysis (PCA) and returns the loadings as a data
frame.

Usage

principal_components(
x,
n = "auto",
rotation = "none",
sort = FALSE,
threshold = NULL,
standardize = TRUE,
...

)

closest_component(x)

Arguments

x A data frame or a statistical model.

n Number of components to extract. If n="all", then n is set as the number of
variables minus 1 (ncol(x)-1). If n="auto" (default) or n=NULL, the number of
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components is selected through n_factors. In reduce_parameters, can also
be "max", in which case it will select all the components that are maximally
pseudo-loaded (i.e., correlated) by at least one variable.

rotation If not "none", the PCA / FA will be computed using the psych package. Possible
options include "varimax", "quartimax", "promax", "oblimin", "simplimax",
and "cluster". See fa for details.

sort Sort the loadings.

threshold A value between 0 and 1 indicates which (absolute) values from the loadings
should be removed. An integer higher than 1 indicates the n strongest loadings
to retain. Can also be "max", in which case it will only display the maximum
loading per variable (the most simple structure).

standardize A logical value indicating whether the variables should be standardized (cen-
tered and scaled) to have unit variance before the analysis takes place (in gen-
eral, such scaling is advisable).

... Arguments passed to or from other methods.

Details

Complexity: Complexity represents the number of latent components needed to account for the
observed variables. Whereas a perfect simple structure solution has a complexity of 1 in that each
item would only load on one factor, a solution with evenly distributed items has a complexity
greater than 1 (Hofman, 1978; Pettersson and Turkheimer, 2010 ) .

Uniqueness: Uniqueness represents the variance that is ’unique’ to the variable and not shared
with other variables. It is equal to 1 communality (variance that is shared with other variables). A
uniqueness of 0.20 suggests that 20% or that variable’s variance is not shared with other variables
in the overall factor model. The greater ’uniqueness’ the lower the relevance of the variable in the
factor model.

MSA: MSA represents the Kaiser-Meyer-Olkin Measure of Sampling Adequacy (Kaiser and
Rice, 1974 ) for each item. It indicates whether there is enough data for each factor give reliable
results for the PCA. The value should be > 0.6, and desirable values are > 0.8 (Tabachnick and
Fidell, 2013 ).

PCA or FA?: There is a simplified rule of thumb that may help do decide whether to run a factor
analysis or a principal component analysis:

• Run factor analysis if you assume or wish to test a theoretical model of latent factors causing
observed variables.

• Run principal component analysis If you want to simply reduce your correlated observed
variables to a smaller set of important independent composite variables.

(Source: CrossValidated)

Value

A data frame of loadings.

https://stats.stackexchange.com/q/1576/54740
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Note

There is a summary()-method that prints the Eigenvalues and (explained) variance for each ex-
tracted component. closest_component() will return a numeric vector with the assigned compo-
nent index for each column from the original data frame. There is also a plot()-method imple-
mented in the see-package.

References

• Kaiser, H.F. and Rice. J. (1974). Little jiffy, mark iv. Educational and Psychological Mea-
surement, 34(1):111–117

• Hofmann, R. (1978). Complexity and simplicity as objective indices descriptive of factor solu-
tions. Multivariate Behavioral Research, 13:2, 247-250, doi: 10.1207/s15327906mbr1302_9

• Pettersson, E., & Turkheimer, E. (2010). Item selection, evaluation, and simple structure in
personality data. Journal of research in personality, 44(4), 407-420, doi: 10.1016/j.jrp.2010.03.002

• Tabachnick, B. G., and Fidell, L. S. (2013). Using multivariate statistics (6th ed.). Boston:
Pearson Education.

See Also

check_itemscale to compute various measures of internal consistencies applied to the (sub)scales
(i.e. components) extracted from the PCA.

Examples

library(parameters)
if (require("psych")) {

principal_components(mtcars[, 1:7], n = "all", threshold = 0.2)
principal_components(mtcars[, 1:7], n = 2, rotation = "oblimin",

threshold = "max", sort = TRUE)
principal_components(mtcars[, 1:7], n = 2, threshold = 2, sort = TRUE)

pca <- principal_components(mtcars[, 1:5], n = 2, rotation = "varimax")
summary(pca)
predict(pca)

# which variables from the original data belong to which extracted component?
closest_component(pca)

# Automated number of components
principal_components(mtcars[, 1:4], n = "auto")

}

https://easystats.github.io/see/articles/parameters.html
https://easystats.github.io/see/
https://doi.org/10.1207/s15327906mbr1302_9
https://doi.org/10.1016/j.jrp.2010.03.002
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print Print model parameters

Description

A print()-method for objects from model_parameters().

Usage

## S3 method for class 'parameters_model'
print(
x,
pretty_names = TRUE,
split_components = TRUE,
select = NULL,
digits = 2,
ci_digits = 2,
p_digits = 3,
...

)

Arguments

x An object returned by model_parameters().

pretty_names Pretty parameters’ names.
split_components

Logical, if TRUE (default), For models with multiple components (zero-inflation,
smooth terms, ...), each component is printed in a separate table. If FALSE, model
parameters are printed in a single table and a Component column is added to the
output.

select Character vector (or numeric index) of column names that should be printed.
If NULL (default), all columns are printed. The shortcut select = "minimal"
prints coefficient, confidence intervals and p-values.

digits Number of decimal places for numeric values (except confidence intervals and
p-values).

ci_digits Number of decimal places for confidence intervals.

p_digits Number of decimal places for p-values. May also be "scientific" for scien-
tific notation of p-values.

... Arguments passed to or from other methods.

Value

NULL
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Examples

library(parameters)
if (require("glmmTMB")) {

model <- glmmTMB(
count ~ spp + mined + (1 | site),
ziformula = ~mined,
family = poisson(),
data = Salamanders

)
mp <- model_parameters(model)

print(mp, pretty_names = FALSE)

print(mp, split_components = FALSE)

print(mp, select = c("Parameter", "Coefficient", "SE"))

print(mp, select = "minimal")
}

p_value p-values

Description

This function attempts to return, or compute, p-values of a model’s parameters. The nature of the
p-values is different depending on the model:

• Mixed models (lme4): By default, p-values are based on Wald-test approximations (see p_value_wald).
For certain situations, the "m-l-1" rule might be a better approximation. That is, for method
= "ml1", p_value_ml1 is called. For lmerMod objects, if method = "kenward", p-values are
based on Kenward-Roger approximations, i.e. p_value_kenward is called, and method =
"satterthwaite" calls p_value_satterthwaite.

• Bayesian models (rstanarm, brms): For Bayesian models, the p-values corresponds to the
probability of direction (p_direction), which is converted to a p-value using bayestestR::convert_pd_to_p().

Usage

p_value(model, ...)

## Default S3 method:
p_value(model, method = NULL, ...)

## S3 method for class 'lmerMod'
p_value(model, method = "wald", ...)

## S3 method for class 'merMod'
p_value(model, method = "wald", ...)
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## S3 method for class 'rlmerMod'
p_value(model, method = "wald", ...)

## S3 method for class 'glmmTMB'
p_value(
model,
component = c("all", "conditional", "zi", "zero_inflated", "dispersion"),
...

)

## S3 method for class 'MixMod'
p_value(model, component = c("all", "conditional", "zi", "zero_inflated"), ...)

## S3 method for class 'mixor'
p_value(model, effects = c("all", "fixed", "random"), ...)

## S3 method for class 'emmGrid'
p_value(model, ci = 0.95, adjust = "none", ...)

## S3 method for class 'poissonmfx'
p_value(model, component = c("all", "conditional", "marginal"), ...)

## S3 method for class 'betamfx'
p_value(
model,
component = c("all", "conditional", "precision", "marginal"),
...

)

## S3 method for class 'averaging'
p_value(model, component = c("conditional", "full"), ...)

## S3 method for class 'DirichletRegModel'
p_value(model, component = c("all", "conditional", "precision"), ...)

## S3 method for class 'clm2'
p_value(model, component = c("all", "conditional", "scale"), ...)

## S3 method for class 'gee'
p_value(model, method = NULL, ...)

Arguments

model A statistical model.

... Arguments passed down to standard_error_robust() when confidence inter-
vals or p-values based on robust standard errors should be computed.

method For mixed models, can be "wald" (default), "ml1", "betwithin", "satterthwaite"
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or "kenward". For models that are supported by the sandwich or clubSandwich
packages, may also be method = "robust" to compute p-values based ob robust
standard errors.

component Should all parameters, parameters for the conditional model, or for the zero-
inflated part of the model be returned? Applies to models with zero-inflated
component. component may be one of "conditional", "zi", "zero-inflated"
or "all" (default). May be abbreviated.

effects Should standard errors for fixed effects or random effects be returned? Only
applies to mixed models. May be abbreviated. When standard errors for random
effects are requested, for each grouping factor a list of standard errors (per group
level) for random intercepts and slopes is returned.

ci Confidence Interval (CI) level. Default to 0.95 (95%).

adjust Character value naming the method used to adjust p-values or confidence inter-
vals. See ?emmeans::summary.emmGrid for details.

Value

The p-values.

Note

p_value_robust() resp. p_value(method = "robust") rely on the sandwich or clubSandwich
package (the latter if vcov_estimation = "CR" for cluster-robust standard errors) and will thus only
work for those models supported by those packages.

Examples

if (require("lme4")) {
data(iris)
model <- lmer(Petal.Length ~ Sepal.Length + (1 | Species), data = iris)
p_value(model)

}

qol_cancer Sample data set

Description

A sample data set with longitudinal data, used in the vignette describing the demean() function.
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random_parameters Summary information from random effects

Description

This function extracts the different variance components of a mixed model and returns the result as
a data frame.

Usage

random_parameters(model)

Arguments

model A mixed effects model (including stanreg models).

Details

The variance components are obtained from get_variance and are denoted as following:

Within-group (or residual) variance: The residual variance, σ2
ε , is the sum of the distribution-

specific variance and the variance due to additive dispersion. It indicates the within-group vari-
ance.

Between-group random intercept variance: The random intercept variance, or between-group
variance for the intercept (τ00), is obtained from VarCorr(). It indicates how much groups or
subjects differ from each other.

Between-group random slope variance: The random slope variance, or between-group variance
for the slopes (τ11) is obtained from VarCorr(). This measure is only available for mixed models
with random slopes. It indicates how much groups or subjects differ from each other according to
their slopes.

Random slope-intercept correlation: The random slope-intercept correlation (ρ01) is obtained
from VarCorr(). This measure is only available for mixed models with random intercepts and
slopes.

Note: For the within-group and between-group variance, variance and standard deviations (which
are simply the square root of the variance) are shown.

Value

A data frame with random effects statistics for the variance components, including number of levels
per random effect group, as well as complete observations in the model.
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Examples

if (require("lme4")) {
data(sleepstudy)
model <- lmer(Reaction ~ Days + (1 + Days | Subject), data = sleepstudy)
random_parameters(model)

}

reduce_parameters Dimensionality reduction (DR) / Features Reduction

Description

This function performs a reduction in the parameters space (the number of variables). It starts by
creating a new set of variables, based on a given method (the default method is "PCA", but other
are available via the method argument, such as "cMDS", "DRR" or "ICA"). Then, it names this
new dimensions using the original variables that correlates the most with it. For instance, a variable
named ’V1_0.97/V4_-0.88’ means that the V1 and the V4 variables correlate maximally (with
respective coefficients of .97 and -.88) with this dimension. Although this function can be useful
in exploratory data analysis, it’s best to perform the dimension reduction step in a separate and
dedicated stage, as this is a very important process in the data analysis workflow. reduce_data()
is an alias for reduce_parameters.data.frame().

Usage

reduce_parameters(x, method = "PCA", n = "max", distance = "euclidean", ...)

reduce_data(x, method = "PCA", n = "max", distance = "euclidean", ...)

Arguments

x A data frame or a statistical model.

method The features reduction method. Can be one of ’PCA’, ’cMDS’, ’DRR’, ’ICA’
(see the Details section).

n Number of components to extract. If n="all", then n is set as the number of
variables minus 1 (ncol(x)-1). If n="auto" (default) or n=NULL, the number of
components is selected through n_factors. In reduce_parameters, can also
be "max", in which case it will select all the components that are maximally
pseudo-loaded (i.e., correlated) by at least one variable.

distance The distance measure to be used. Only applies when method = "cMDS". This
must be one of "euclidean", "maximum", "manhattan", "canberra", "binary" or
"minkowski". Any unambiguous substring can be given.

... Arguments passed to or from other methods.
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Details

The different methods available are described below:

Supervised Methods:

• PCA: See principal_components.
• cMDS / PCoA: Classical Multidimensional Scaling (cMDS) takes a set of dissimilarities

(i.e., a distance matrix) and returns a set of points such that the distances between the points
are approximately equal to the dissimilarities.

• DRR: Dimensionality Reduction via Regression (DRR) is a very recent technique extending
PCA (Laparra et al., 2015). Starting from a rotated PCA, it predicts redundant informa-
tion from the remaining components using non-linear regression. Some of the most notable
advantages of performing PCR are avoidance of multicollinearity between predictors and
overfitting mitigation. PCR tends to perform well when the first principal components are
enough to explain most of the variation in the predictors. Requires the DRR package to be
installed.

• ICA: Performs an Independent Component Analysis using the FastICA algorithm. Con-
trary to PCA, that attempts to find uncorrelated sources (through least squares minimization),
ICA attempts to find independent sources, i.e., the source space that maximizes the "non-
gaussianity" of all sources. Contrary to PCA, ICA does not rank each source, which makes
it a poor tool for dimensionality reduction. Requires the fastICA package to be installed.

See also package vignette.

References

• Nguyen, L. H., \& Holmes, S. (2019). Ten quick tips for effective dimensionality reduction.
PLOS Computational Biology, 15(6).

• Laparra, V., Malo, J., & Camps-Valls, G. (2015). Dimensionality reduction via regression
in hyperspectral imagery. IEEE Journal of Selected Topics in Signal Processing, 9(6), 1026-
1036.

Examples

data(iris)
model <- lm(Sepal.Width ~ Species * Sepal.Length + Petal.Width, data = iris)
model
reduce_parameters(model)

out <- reduce_data(iris, method = "PCA", n = "max")
head(out)

rescale_weights Rescale design weights for multilevel analysis

https://CRAN.R-project.org/package=parameters/vignettes/parameters_reduction.html
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Description

Most functions to fit multilevel and mixed effects models only allow to specify frequency weights,
but not design (i.e. sampling or probability) weights, which should be used when analyzing complex
samples and survey data. rescale_weights() implements an algorithm proposed by Asparouhov
(2006) and Carle (2009) to rescale design weights in survey data to account for the grouping struc-
ture of multilevel models, which then can be used for multilevel modelling.

Usage

rescale_weights(data, group, probability_weights, nest = FALSE)

Arguments

data A data frame.

group Variable names (as character vector, or as formula), indicating the grouping
structure (strata) of the survey data (level-2-cluster variable). It is also possi-
ble to create weights for multiple group variables; in such cases, each created
weighting variable will be suffixed by the name of the group variable.

probability_weights

Variable indicating the probability (design or sampling) weights of the survey
data (level-1-weight).

nest Logical, if TRUE and group indicates at least two group variables, then groups
are "nested", i.e. groups are now a combination from each group level of the
variables in group.

Details

Rescaling is based on two methods: For pweights_a, the sample weights probability_weights
are adjusted by a factor that represents the proportion of group size divided by the sum of sampling
weights within each group. The adjustment factor for pweights_b is the sum of sample weights
within each group divided by the sum of squared sample weights within each group (see Carle
(2009), Appendix B).

Regarding the choice between scaling methods A and B, Carle suggests that "analysts who wish
to discuss point estimates should report results based on weighting method A. For analysts more
interested in residual between-group variance, method B may generally provide the least biased es-
timates". In general, it is recommended to fit a non-weighted model and weighted models with both
scaling methods and when comparing the models, see whether the "inferential decisions converge",
to gain confidence in the results.

Though the bias of scaled weights decreases with increasing group size, method A is preferred
when insufficient or low group size is a concern.

The group ID and probably PSU may be used as random effects (e.g. nested design, or group
and PSU as varying intercepts), depending on the survey design that should be mimicked.
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Value

data, including the new weighting variables: pweights_a and pweights_b, which represent the
rescaled design weights to use in multilevel models (use these variables for the weights argument).

References

• Carle A.C. (2009). Fitting multilevel models in complex survey data with design weights:
Recommendations. BMC Medical Research Methodology 9(49): 1-13

• Asparouhov T. (2006). General Multi-Level Modeling with Sampling Weights. Communica-
tions in Statistics - Theory and Methods 35: 439-460

Examples

if (require("sjstats")) {
data(nhanes_sample, package = "sjstats")
head(rescale_weights(nhanes_sample, "SDMVSTRA", "WTINT2YR"))

# also works with multiple group-variables...
head(rescale_weights(nhanes_sample, c("SDMVSTRA", "SDMVPSU"), "WTINT2YR"))

# or nested structures.
x <- rescale_weights(
data = nhanes_sample,
group = c("SDMVSTRA", "SDMVPSU"),
probability_weights = "WTINT2YR",
nest = TRUE

)
head(x)

}

if (require("lme4") && require("sjstats")) {
data(nhanes_sample, package = "sjstats")
nhanes_sample <- rescale_weights(nhanes_sample, "SDMVSTRA", "WTINT2YR")
glmer(

total ~ factor(RIAGENDR) * (log(age) + factor(RIDRETH1)) + (1 | SDMVPSU),
family = poisson(),
data = nhanes_sample,
weights = pweights_a

)
}

reshape_loadings Reshape loadings between wide/long formats

Description

Reshape loadings between wide/long formats.
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Usage

reshape_loadings(x, ...)

## S3 method for class 'parameters_efa'
reshape_loadings(x, threshold = NULL, ...)

## S3 method for class 'data.frame'
reshape_loadings(x, threshold = NULL, loadings_columns = NULL, ...)

Arguments

x A data frame or a statistical model.

... Arguments passed to or from other methods.

threshold A value between 0 and 1 indicates which (absolute) values from the loadings
should be removed. An integer higher than 1 indicates the n strongest loadings
to retain. Can also be "max", in which case it will only display the maximum
loading per variable (the most simple structure).

loadings_columns

Vector indicating the columns corresponding to loadings.

Examples

library(parameters)
library(psych)

pca <- model_parameters(psych::fa(attitude, nfactors = 3))
loadings <- reshape_loadings(pca)

loadings
reshape_loadings(loadings)

select_parameters Automated selection of model parameters

Description

This function performs an automated selection of the ’best’ parameters, updating and returning the
"best" model.

Usage

select_parameters(model, ...)

## S3 method for class 'lm'
select_parameters(model, direction = "both", steps = 1000, k = 2, ...)

## S3 method for class 'merMod'
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select_parameters(model, direction = "backward", steps = 1000, ...)

## S3 method for class 'stanreg'
select_parameters(model, method = NULL, cross_validation = FALSE, ...)

Arguments

model A statistical model (of class lm, glm, merMod, stanreg or brmsfit).

... Arguments passed to or from other methods.

direction the mode of stepwise search, can be one of "both", "backward", or "forward",
with a default of "both". If the scope argument is missing the default for
direction is "backward". Values can be abbreviated.

steps the maximum number of steps to be considered. The default is 1000 (essentially
as many as required). It is typically used to stop the process early.

k the multiple of the number of degrees of freedom used for the penalty. Only k =
2 gives the genuine AIC: k = log(n) is sometimes referred to as BIC or SBC.

method The method used in the variable selection. Can be NULL (default), "forward" or
"L1". See projpred::varsel.

cross_validation

Select with cross-validation.

Details

Classical lm and glm: For frequentist GLMs, select_parameters() performs an AIC-based
stepwise selection.

Mixed models: For mixed models of class merMod, stepwise selection is based on stepcAIC().
This step function only searches the "best" model based on the random effects structure, i.e.
select_parameters() adds or excludes random effects until the cAIC can’t be improved further.

Bayesian models: For Bayesian models, it uses the projpred package.

Value

The model refitted with optimal number of parameters.

Examples

model <- lm(mpg ~ ., data = mtcars)
select_parameters(model)

model <- lm(mpg ~ cyl * disp * hp * wt, data = mtcars)
select_parameters(model)

# lme4 -------------------------------------------
if (require("lme4")) {

model <- lmer(
Sepal.Width ~ Sepal.Length * Petal.Width * Petal.Length + (1 | Species),
data = iris
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)
select_parameters(model)

}

# rstanarm -------------------------------------------
if (require("rstanarm")) {

model <- stan_glm(
mpg ~ ., data = mtcars,
iter = 500, refresh = 0, verbose = FALSE

)
select_parameters(model, cross_validation = TRUE)

model <- stan_glm(
mpg ~ cyl * disp * hp, data = mtcars,
iter = 500, refresh = 0, verbose = FALSE

)
select_parameters(model, cross_validation = FALSE)

}

simulate_model Simulated draws from model coefficients

Description

Simulate draws from a statistical model to return a data frame of estimates.

Usage

simulate_model(model, iterations = 1000, ...)

## S3 method for class 'glmmTMB'
simulate_model(
model,
iterations = 1000,
component = c("all", "conditional", "zi", "zero_inflated", "dispersion"),
verbose = FALSE,
...

)

Arguments

model Statistical model (no Bayesian models).
iterations The number of draws to simulate/bootstrap.
... Arguments passed to or from other methods.
component Should all parameters, parameters for the conditional model, or for the zero-

inflated part of the model be returned? Applies to models with zero-inflated
component. component may be one of "conditional", "zi", "zero-inflated"
or "all" (default). May be abbreviated.
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verbose Show or hide possible warnings and messages.

Details

Technical Details: simulate_model() is a computationally faster alternative to bootstrap_model().
Simulated draws for coefficients are based on a multivariate normal distribution (MASS::mvrnorm())
with mean mu = coef(model) and variance Sigma = vcov(model).

Models with Zero-Inflation Component: For models from packages glmmTMB, pscl, GLM-
Madaptive and countreg, the component argument can be used to specify which parameters
should be simulated. For all other models, parameters from the conditional component (fixed
effects) are simulated. This may include smooth terms, but not random effects.

Value

A data frame.

See Also

simulate_parameters(), bootstrap_model(), bootstrap_parameters()

Examples

library(parameters)
model <- lm(Sepal.Length ~ Species * Petal.Width + Petal.Length, data = iris)
head(simulate_model(model))

if (require("glmmTMB")) {
model <- glmmTMB(
count ~ spp + mined + (1 | site),
ziformula = ~mined,
family = poisson(),
data = Salamanders

)
head(simulate_model(model))
head(simulate_model(model, component = "zero_inflated"))

}

simulate_parameters Simulate Model Parameters

Description

Compute simulated draws of parameters and their related indices such as Confidence Intervals (CI)
and p-values. Simulating parameter draws can be seen as a (computationally faster) alternative to
bootstrapping.
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Usage

simulate_parameters(model, ...)

## Default S3 method:
simulate_parameters(
model,
iterations = 1000,
centrality = "median",
ci = 0.95,
ci_method = "quantile",
test = "p-value",
...

)

## S3 method for class 'glmmTMB'
simulate_parameters(
model,
iterations = 1000,
centrality = "median",
ci = 0.95,
ci_method = "quantile",
test = "p-value",
...

)

Arguments

model Statistical model (no Bayesian models).

... Arguments passed to or from other methods.

iterations The number of draws to simulate/bootstrap.

centrality The point-estimates (centrality indices) to compute. Character (vector) or list
with one or more of these options: "median", "mean", "MAP" or "all".

ci Value or vector of probability of the CI (between 0 and 1) to be estimated. De-
fault to .89 (89%) for Bayesian models and .95 (95%) for frequentist models.

ci_method The type of index used for Credible Interval. Can be "HDI" (default, see hdi),
"ETI" (see eti) or "SI" (see si).

test The indices of effect existence to compute. Character (vector) or list with one or
more of these options: "p_direction" (or "pd"), "rope", "p_map", "equivalence_test"
(or "equitest"), "bayesfactor" (or "bf") or "all" to compute all tests. For
each "test", the corresponding bayestestR function is called (e.g. rope or p_direction)
and its results included in the summary output.

Details

Technical Details: simulate_parameters() is a computationally faster alternative to bootstrap_parameters().
Simulated draws for coefficients are based on a multivariate normal distribution (MASS::mvrnorm())
with mean mu = coef(model) and variance Sigma = vcov(model).
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Models with Zero-Inflation Component: For models from packages glmmTMB, pscl, GLM-
Madaptive and countreg, the component argument can be used to specify which parameters
should be simulated. For all other models, parameters from the conditional component (fixed
effects) are simulated. This may include smooth terms, but not random effects.

Value

A data frame with simulated parameters.

Note

There is also a plot()-method implemented in the see-package.

References

Gelman A, Hill J. Data analysis using regression and multilevel/hierarchical models. Cambridge;
New York: Cambridge University Press 2007: 140-143

See Also

bootstrap_model, bootstrap_parameters, simulate_model

Examples

library(parameters)

model <- lm(Sepal.Length ~ Species * Petal.Width + Petal.Length, data = iris)
simulate_parameters(model)

if (require("glmmTMB")) {
model <- glmmTMB(
count ~ spp + mined + (1 | site),
ziformula = ~mined,
family = poisson(),
data = Salamanders

)
simulate_parameters(model, centrality = "mean")
simulate_parameters(model, ci = c(.8, .95), component = "zero_inflated")

}

skewness Compute Skewness and Kurtosis

Description

Compute Skewness and Kurtosis

https://easystats.github.io/see/articles/parameters.html
https://easystats.github.io/see/
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Usage

skewness(x, na.rm = TRUE, type = "2", iterations = NULL, ...)

kurtosis(x, na.rm = TRUE, type = "2", iterations = NULL, ...)

## S3 method for class 'parameters_kurtosis'
print(x, digits = 3, test = FALSE, ...)

## S3 method for class 'parameters_skewness'
print(x, digits = 3, test = FALSE, ...)

Arguments

x A numeric vector or data.frame.

na.rm Remove missing values.

type Type of algorithm for computing skewness. May be one of 1 (or "1", "I"
or "classic"), 2 (or "2", "II" or "SPSS" or "SAS") or 3 (or "3", "III" or
"Minitab"). See ’Details’.

iterations The number of bootstrap replicates for computing standard errors. If NULL (de-
fault), parametric standard errors are computed. See ’Details’.

... Arguments passed to or from other methods.

digits Number of decimal places.

test Logical, if TRUE, tests if skewness or kurtosis is significantly different from zero.

Details

Skewness: Symmetric distributions have a skewness around zero, while a negative skewness
values indicates a "left-skewed" distribution, and a positive skewness values indicates a "right-
skewed" distribution. Examples for the relationship of skewness and distributions are:

• Normal distribution (and other symmetric distribution) has a skewness of 0
• Half-normal distribution has a skewness just below 1
• Exponential distribution has a skewness of 2
• Lognormal distribution can have a skewness of any positive value, depending on its parame-

ters

(https://en.wikipedia.org/wiki/Skewness)

Types of Skewness: skewness() supports three different methods for estimating skewness, as
discussed in Joanes and Gill (1988) :

• Type "1" is the "classical" method, which is g1 = (sum((x -mean(x))^3) / n) / (sum((x
-mean(x))^2) / n)^1.5

• Type "2" first calculates the type-1 skewness, than adjusts the result: G1 = g1 * sqrt(n * (n
-1)) / (n -2). This is what SAS and SPSS usually return

• Type "3" first calculates the type-1 skewness, than adjusts the result: b1 = g1 * ((1 -1 /
n))^1.5. This is what Minitab usually returns.
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Kurtosis: The kurtosis is a measure of "tailedness" of a distribution. A distribution with a
kurtosis values of about zero is called "mesokurtic". A kurtosis value larger than zero indicates a
"leptokurtic" distribution with fatter tails. A kurtosis value below zero indicates a "platykurtic"
distribution with thinner tails (https://en.wikipedia.org/wiki/Kurtosis).

Types of Kurtosis: kurtosis() supports three different methods for estimating kurtosis, as
discussed in Joanes and Gill (1988) :

• Type "1" is the "classical" method, which is g2 = n * sum((x -mean(x))^4) / (sum((x -mean(x))^2)^2)
-3.

• Type "2" first calculates the type-1 kurtosis, than adjusts the result: G2 = ((n + 1) * g2 + 6)
* (n -1)/((n -2) * (n -3)). This is what SAS and SPSS usually return

• Type "3" first calculates the type-1 kurtosis, than adjusts the result: b2 = (g2 + 3) * (1 -1 /
n)^2 -3. This is what Minitab usually returns.

Standard Errors: It is recommended to compute empirical (bootstrapped) standard errors (via
the iterations argument) than relying on analytic standard errors (Wright & Herrington, 2011 ).

Value

Values of skewness or kurtosis.

References

• D. N. Joanes and C. A. Gill (1998). Comparing measures of sample skewness and kurtosis.
The Statistician, 47, 183–189.

• Wright, D. B., & Herrington, J. A. (2011). Problematic standard errors and confidence inter-
vals for skewness and kurtosis. Behavior research methods, 43(1), 8-17.

Examples

skewness(rnorm(1000))
kurtosis(rnorm(1000))

smoothness Quantify the smoothness of a vector

Description

Quantify the smoothness of a vector

Usage

smoothness(x, method = "cor", lag = 1, iterations = NULL, ...)
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Arguments

x Numeric vector (similar to a time series).

method Can be "diff" (the standard deviation of the standardized differences) or "cor"
(default, lag-one autocorrelation).

lag An integer indicating which lag to use. If less than 1, will be interpreted as
expressed in percentage of the length of the vector.

iterations The number of bootstrap replicates for computing standard errors. If NULL (de-
fault), parametric standard errors are computed. See ’Details’.

... Arguments passed to or from other methods.

Value

Value of smoothness.

References

https://stats.stackexchange.com/questions/24607/how-to-measure-smoothness-of-a-time-series-in-r

Examples

x <- (-10:10)^3 + rnorm(21, 0, 100)
plot(x)
smoothness(x, method = "cor")
smoothness(x, method = "diff")

standardize_names Standardize column names

Description

Standardize column names from data frames, in particular objects returned from model_parameters(),
so column names are consistent and the same for any model object.

Usage

standardize_names(data, ...)

## S3 method for class 'parameters_model'
standardize_names(data, style = c("easystats", "broom"), ...)

Arguments

data A data frame. Currently, only objects from model_parameters() are accepted.

... Currently not used.

style Standardization can either be based on the naming conventions from the easys-
tats project, or on broom’s naming scheme.
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Details

This method is in particular useful for package developers or users who use model_parameters()
in their own code or functions to retrieve model parameters for further processing. As model_parameters()
returns a data frame with varying column names (depending on the input), accessing the required
information is probably not quite straightforward. In such cases, standardize_names() can be
used to get consistent, i.e. always the same column names, no matter what kind of model was used
in model_parameters().

For style = "broom", column names are renamed to match broom’s naming scheme, i.e. Parameter
is renamed to term, Coefficient becomes estimate and so on.

Value

A data frame, with standardized column names.

Examples

library(parameters)
model <- lm(mpg ~ wt + cyl, data = mtcars)
mp <- model_parameters(model)

as.data.frame(mp)
standardize_names(mp)
standardize_names(mp, style = "broom")

standard_error Standard Errors

Description

standard_error() attempts to return standard errors of model parameters, while standard_error_robust()
attempts to return robust standard errors.

Usage

standard_error(model, ...)

## S3 method for class 'factor'
standard_error(model, force = FALSE, verbose = TRUE, ...)

## Default S3 method:
standard_error(model, method = NULL, ...)

## S3 method for class 'merMod'
standard_error(model, effects = c("fixed", "random"), method = NULL, ...)

## S3 method for class 'glmmTMB'
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standard_error(
model,
effects = c("fixed", "random"),
component = c("all", "conditional", "zi", "zero_inflated", "dispersion"),
...

)

## S3 method for class 'MixMod'
standard_error(
model,
effects = c("fixed", "random"),
component = c("all", "conditional", "zi", "zero_inflated"),
...

)

## S3 method for class 'zeroinfl'
standard_error(
model,
component = c("all", "conditional", "zi", "zero_inflated"),
method = NULL,
...

)

## S3 method for class 'coxph'
standard_error(model, method = NULL, ...)

## S3 method for class 'mixor'
standard_error(model, effects = c("all", "fixed", "random"), ...)

## S3 method for class 'clm2'
standard_error(model, component = c("all", "conditional", "scale"), ...)

## S3 method for class 'betareg'
standard_error(model, component = c("all", "conditional", "precision"), ...)

## S3 method for class 'DirichletRegModel'
standard_error(model, component = c("all", "conditional", "precision"), ...)

## S3 method for class 'poissonmfx'
standard_error(model, component = c("all", "conditional", "marginal"), ...)

## S3 method for class 'betamfx'
standard_error(
model,
component = c("all", "conditional", "precision", "marginal"),
...

)
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## S3 method for class 'averaging'
standard_error(model, component = c("conditional", "full"), ...)

Arguments

model A model.

... Arguments passed to or from other methods. For standard_error(), if method
= "robust", arguments vcov_estimation, vcov_type and vcov_args can be
passed down to standard_error_robust().

force Logical, if TRUE, factors are converted to numerical values to calculate the stan-
dard error, with the lowest level being the value 1 (unless the factor has numeric
levels, which are converted to the corresponding numeric value). By default, NA
is returned for factors or character vectors.

verbose Toggle off warnings.

method If "robust", robust standard errors are computed by calling standard_error_robust().
standard_error_robust(), in turn, calls one of the vcov*()-functions from
the sandwich or clubSandwich package for robust covariance matrix estima-
tors. For certain mixed models, method may also be one of "wald", "ml1",
"betwithin", "satterthwaite" or "kenward".

effects Should standard errors for fixed effects or random effects be returned? Only
applies to mixed models. May be abbreviated. When standard errors for random
effects are requested, for each grouping factor a list of standard errors (per group
level) for random intercepts and slopes is returned.

component Should all parameters, parameters for the conditional model, or for the zero-
inflated part of the model be returned? Applies to models with zero-inflated
component. component may be one of "conditional", "zi", "zero-inflated"
or "all" (default). May be abbreviated.

Value

A data frame.

Note

For Bayesian models (from rstanarm or brms), the standard error is the SD of the posterior sam-
ples.

Examples

model <- lm(Petal.Length ~ Sepal.Length * Species, data = iris)
standard_error(model)
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standard_error_robust Robust estimation

Description

standard_error_robust(), ci_robust() and p_value_robust() attempt to return indices based
on robust estimation of the variance-covariance matrix, using the packages sandwich and club-
Sandwich.

Usage

standard_error_robust(
model,
vcov_estimation = "HC",
vcov_type = NULL,
vcov_args = NULL,
...

)

p_value_robust(
model,
vcov_estimation = "HC",
vcov_type = NULL,
vcov_args = NULL,
...

)

ci_robust(
model,
ci = 0.95,
vcov_estimation = "HC",
vcov_type = NULL,
vcov_args = NULL,
...

)

Arguments

model A model.
vcov_estimation

String, indicating the suffix of the vcov*()-function from the sandwich or
clubSandwich package, e.g. vcov_estimation = "CL" (which calls vcovCL to
compute clustered covariance matrix estimators), or vcov_estimation = "HC"
(which calls vcovHC() to compute heteroskedasticity-consistent covariance ma-
trix estimators).

vcov_type Character vector, specifying the estimation type for the robust covariance matrix
estimation (see vcovHC() or clubSandwich::vcovCR() for details).
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vcov_args List of named vectors, used as additional arguments that are passed down to the
sandwich-function specified in vcov_estimation.

... Arguments passed to or from other methods. For standard_error(), if method
= "robust", arguments vcov_estimation, vcov_type and vcov_args can be
passed down to standard_error_robust().

ci Confidence Interval (CI) level. Default to 0.95 (95%).

Value

A data frame.

Note

These functions rely on the sandwich or clubSandwich package (the latter if vcov_estimation
= "CR" for cluster-robust standard errors) and will thus only work for those models supported by
those packages.

Examples

if (require("sandwich")) {
# robust standard errors, calling sandwich::vcovHC(type="HC3") by default
model <- lm(Petal.Length ~ Sepal.Length * Species, data = iris)
standard_error_robust(model)

}

if (require("clubSandwich")) {
# cluster-robust standard errors, using clubSandwich
iris$cluster <- factor(rep(LETTERS[1:8], length.out = nrow(iris)))
standard_error_robust(

model,
vcov_type = "CR2",
vcov_args = list(cluster = iris$cluster)

)
}
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