
Package ‘parallelSVM’
June 26, 2015

Title A Parallel-Voting Version of the Support-Vector-Machine
Algorithm

Version 0.1-9

Date 2015-06-26

Author Wannes Rosiers (InfoFarm)

Maintainer Wannes Rosiers <wannes.rosiers@infofarm.be>

Description
By sampling your data, running the Support-Vector-Machine algorithm on these samples in paral-
lel on your own machine and letting your models vote on a prediction, we return much faster pre-
dictions than the regular Support-Vector-Machine and possibly even more accurate predictions.

License GPL-2

Depends R (>= 2.14.0), e1071 (>= 1.6-3)

Imports parallel (>= 3.1.1), foreach (>= 1.2.0), doParallel (>= 1.0.8)

URL www.infofarm.be

NeedsCompilation no

Repository CRAN

Date/Publication 2015-06-26 13:34:36

R topics documented:

parallelSVM-package . 2
iris . 3
parallelSVM . 4
registerCores . 7
testData . 7
trainData . 9
trainSample . 11

Index 13

1

2 parallelSVM-package

parallelSVM-package Parallel-voting version of Support-Vector-Machine

Description

By sampling your data, running the Support-Vector-Machine algorithm on these samples in par-
allel on your own machine and letting your models vote on a prediction, we return much faster
predictions than the regular Support-Vector-Machine and possibly even more accurate predictions.

Details

Package: parallelSVM
Type: Package
Version: 1.0
Date: 2015-02-09
License: GPL-2

This package consists of two main functions: parallelSVM A function which allows you to cre-
ate multiple Support-Vector-Machine models: one for each core you provide. It returns a list of
Support-Vector-Machine models. predict: An extension of the predict function, which uses the pre-
diction of each Support-Vector-Machine model. When probability is TRUE, it returns the average
of all predictions, otherwise it returns the class most models agree upon.

Author(s)

Wannes Rosiers

Maintainer: Wannes Rosiers <wannes.rosiers@infofarm.be>

See Also

This package can be regarded as a parallel extension of svm

Examples

Not run:
Create your data
data(iris)
x <- subset(iris, select = -Species)
y <- iris$Species

Create a model
model <- parallelSVM(x, y)

Get prediction
predictions <- predict(model, x)

iris 3

Check the quality
table(predictions,y)

End(Not run)

iris Edgar Anderson’s Iris Data

Description

This famous (Fisher’s or Anderson’s) iris data set gives the measurements in centimeters of the
variables sepal length and width and petal length and width, respectively, for 50 flowers from each
of 3 species of iris. The species are Iris setosa, versicolor, and virginica.

Usage

iris

Format

iris is a data frame with 150 cases (rows) and 5 variables (columns) named Sepal.Length, Sepal.Width,
Petal.Length, Petal.Width, and Species. iris3 gives the same data arranged as a 3-dimensional array
of size 50 by 4 by 3, as represented by S-PLUS. The first dimension gives the case number within
the species subsample, the second the measurements with names Sepal L., Sepal W., Petal L., and
Petal W., and the third the species.

Source

Fisher, R. A. (1936) The use of multiple measurements in taxonomic problems. Annals of Eugenics,
7, Part II, 179–188. The data were collected by Anderson, Edgar (1935). The irises of the Gaspe
Peninsula, Bulletin of the American Iris Society, 59, 2–5.

References

Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988) The New S Language. Wadsworth &
Brooks/Cole. (has iris3 as iris.)

Examples

dni3 <- dimnames(iris3)
ii <- data.frame(matrix(aperm(iris3, c(1,3,2)), ncol = 4,

dimnames = list(NULL, sub(" L.",".Length",
sub(" W.",".Width", dni3[[2]])))),

Species = gl(3, 50, labels = sub("S", "s", sub("V", "v", dni3[[3]]))))
all.equal(ii, iris) # TRUE

4 parallelSVM

parallelSVM Parallel-voting version of Support-Vector-Machine

Description

By sampling your data, running the Support-Vector-Machine algorithm on these samples in par-
allel on your own machine and letting your models vote on a prediction, we return much faster
predictions than the regular Support-Vector-Machine and possibly even more accurate predictions.

Usage

S3 method for class 'formula'
S3 method for class 'formula'
parallelSVM(formula, data= NULL, numberCores = detectCores(),
samplingSize = 0.2, ...,
subset, na.action = na.omit, scale = TRUE)
Default S3 method
Default S3 method:
parallelSVM(x, y = NULL, numberCores = detectCores(),
samplingSize = 0.2, scale = TRUE, type = NULL,
kernel = "radial", degree = 3,
gamma = if (is.vector(x)) 1 else 1/ncol(x),
coef0 = 0, cost = 1, nu = 0.5, class.weights = NULL,
cachesize = 40, tolerance = 0.001, epsilon = 0.1,
shrinking = TRUE, cross = 0, probability = FALSE,
fitted = TRUE, seed = 1L, ..., subset, na.action = na.omit)

Arguments

formula a symbolic description of the model to be fit

data An optional data frame containing the variables in the model. By default the
variables are taken from the environment which ’svm’ is called from.

x A data matrix, a vactor ar a sparse matrix.

y A response vector with one label for each row/component of x. Can be either a
factor (for calssification tasks) or a numeric vector (for regression).

numberCores Number of cores of your machine you want to use. Is set equal to the number of
samples you take.

samplingSize Size of your data or of x you will take in each sample.

scale A logical vector indicating the variables to be scaled. If scale is of length 1, the
value is recycled as many times as needed. Per default, data are scaled internally
(both x and y variables) to zero mean and unit variance. The center and scale
values are returned and used for later predictions.

type Support-Vector-Machine can be used as a classification machine, as a regression
machine, or for novelty detection. Depending of whether y is a factor or not,
the default setting for type is C-classification or eps-regression, respectively,

parallelSVM 5

but may be overwritten by setting an explicit value. Valid options are: - C-
classification - nu-classification - one-classification (for novelty detection) - eps-
regression - nu-regression

kernel the kernel used in training and predicting. You might consider changing some
of the following parameters, depending on the kernel type. - linear - polynomial
- radial basis - sigmoid

degree parameter needed for kernel of type polynomial (default: 3)

gamma parameter needed for all kernels except linear (default: 1/(data dimension))

coef0 parameter needed for kernels of type polynomial and sigmoid (default: 0)

cost cost of constraints violation (default: 1)—it is the ‘C’-constant of the regular-
ization term in the Lagrange formulation.

nu parameter needed for nu-classification, nu-regression, and one-classification

class.weights a named vector of weights for the different classes, used for asymmetric class
sizes. Not all factor levels have to be supplied (default weight: 1). All compo-
nents have to be named.

cachesize cache memory in MB (default 40)

tolerance tolerance of termination criterion (default: 0.001)

epsilon epsilon in the insensitive-loss function (default: 0.1)

shrinking option whether to use the shrinking-heuristics (default: TRUE)

cross if a integer value k>0 is specified, a k-fold cross validation on the training data is
performed to assess the quality of the model: the accuracy rate for classification
and the Mean Squared Error for regression

probability logical indicating whether the model should allow for probability predictions.

fitted logical indicating whether the fitted values should be computed and included in
the model or not (default: TRUE)

seed integer seed for libsvm (used for cross-validation and probability prediction
models).

... additional parameters for the low level fitting function svm.default

subset An index vector specifying the cases to be used in the training sample. (NOTE:
If given, this argument must be named.)

na.action A function to specify the action to be taken if NAs are found. The default action
is na.omit, which leads to rejection of cases with missing values on any required
variable. An alternative is na.fail, which causes an error if NA cases are found.
(NOTE: If given, this argument must be named.)

Value

A list containing of numberCores Support Vector Machine models.

Note

Usage is just like svm, the only difference is the numberCores you want to use (equal to the number
of models you build), and the sampleSize (the size of the sample you want to use to create each
model)

6 parallelSVM

Author(s)

Wannes Rosiers

See Also

This package can be regarded as a parallel extension of svm.

Examples

Not run:
Load the normal svm function
library(e1071)

Example with formula
load trainData and testData
data(magicData)

Calculate the model
Here we use it on bigger data
system.time(serialSvm <- svm(V11 ~ ., trainData[,-1],
probability=TRUE, cost=10, gamma=0.1))
system.time(parallelSvm <- parallelSVM(V11 ~ ., data = trainData[,-1],
numberCores = 8, samplingSize = 0.2,
probability = TRUE, gamma=0.1, cost = 10))

Calculate predictions
system.time(serialPredictions <- predict(serialSvm, testData))
system.time(parallelPredicitions <- predict(parallelSvm, testData))

Check for quality
table(serialPredictions,testData[,"V11"])
table(parallelPredicitions,testData[,"V11"])

Example without formula
load data
data(iris)
x <- subset(iris, select = -Species)
y <- iris$Species

estimate model and predict input values
system.time(model <- parallelSVM(x, y))
system.time(serialmodel <- svm(x, y))

fitted(model)
fitted(serialmodel)

Calculate predictions
system.time(serialPredictions <- predict(serialmodel, x))
system.time(parallelPredicitions <- predict(model, x))

Check for quality
table(serialPredictions,y)

registerCores 7

table(parallelPredicitions,y)

End(Not run)

registerCores registerCores

Description

The registerCores function is used to register the multicore parallel backend via either the doMC or
doSNOW package.

Usage

registerCores(numberCores)

Arguments

numberCores The number of cores to use for parallel execution. If not specified, the number
of cores is set to the number of cores of your machine.

Details

The multicore functionality, originally written by Simon Urbanek and subsumed in the parallel
package in R 2.14.0, provides functions for parallel execution of R code on machines with multiple
cores or processors, using the system fork call to spawn copies of the current process. The multi-
core functionality, and therefore registerCores, should not be used in a GUI environment, because
multiple processes then share the same GUI.

Author(s)

Wannes Rosiers

testData MagicGamma test data

Description

The data are MC generated (see below) to simulate registration of high energy gamma particles in
a ground-based atmospheric Cherenkov gamma telescope using the imaging technique. Cherenkov
gamma telescope observes high energy gamma rays, taking advantage of the radiation emitted by
charged particles produced inside the electromagnetic showers initiated by the gammas, and devel-
oping in the atmosphere. This Cherenkov radiation (of visible to UV wavelengths) leaks through
the atmosphere and gets recorded in the detector, allowing reconstruction of the shower parameters.
The available information consists of pulses left by the incoming Cherenkov photons on the photo-
multiplier tubes, arranged in a plane, the camera. Depending on the energy of the primary gamma, a

8 testData

total of few hundreds to some 10000 Cherenkov photons get collected, in patterns (called the shower
image), allowing to discriminate statistically those caused by primary gammas (signal) from the im-
ages of hadronic showers initiated by cosmic rays in the upper atmosphere (background).

Typically, the image of a shower after some pre-processing is an elongated cluster. Its long axis is
oriented towards the camera center if the shower axis is parallel to the telescope’s optical axis, i.e. if
the telescope axis is directed towards a point source. A principal component analysis is performed
in the camera plane, which results in a correlation axis and defines an ellipse. If the depositions
were distributed as a bivariate Gaussian, this would be an equidensity ellipse. The characteristic
parameters of this ellipse (often called Hillas parameters) are among the image parameters that can
be used for discrimination. The energy depositions are typically asymmetric along the major axis,
and this asymmetry can also be used in discrimination. There are, in addition, further discriminating
characteristics, like the extent of the cluster in the image plane, or the total sum of depositions.

The data set was generated by a Monte Carlo program, Corsika, described in: D. Heck et al.,
CORSIKA, A Monte Carlo code to simulate extensive air showers, Forschungszentrum Karlsruhe
FZKA 6019 (1998). [Web Link]

The program was run with parameters allowing to observe events with energies down to below 50
GeV.

Usage

testData

Format

1. fLength: continuous # major axis of ellipse [mm] 2. fWidth: continuous # minor axis of ellipse
[mm] 3. fSize: continuous # 10-log of sum of content of all pixels [in #phot] 4. fConc: continuous
ratio of sum of two highest pixels over fSize [ratio] 5. fConc1: continuous # ratio of highest
pixel over fSize [ratio] 6. fAsym: continuous # distance from highest pixel to center, projected onto
major axis [mm] 7. fM3Long: continuous # 3rd root of third moment along major axis [mm] 8.
fM3Trans: continuous # 3rd root of third moment along minor axis [mm] 9. fAlpha: continuous
angle of major axis with vector to origin [deg] 10. fDist: continuous # distance from origin to
center of ellipse [mm] 11. class: g,h # gamma (signal), hadron (background)

g = gamma (signal): 12332 h = hadron (background): 6688

For technical reasons, the number of h events is underestimated. In the real data, the h class repre-
sents the majority of the events.

The simple classification accuracy is not meaningful for this data, since classifying a background
event as signal is worse than classifying a signal event as background. For comparison of different
classifiers an ROC curve has to be used. The relevant points on this curve are those, where the
probability of accepting a background event as signal is below one of the following thresholds:
0.01, 0.02, 0.05, 0.1, 0.2 depending on the required quality of the sample of the accepted events for
different experiments.

Source

Bock, R.K., Chilingarian, A., Gaug, M., Hakl, F., Hengstebeck, T., Jirina, M., Klaschka, J., Kotrc,
E., Savicky, P., Towers, S., Vaicilius, A., Wittek W. (2004). Methods for multidimensional event

trainData 9

classification: a case study using images from a Cherenkov gamma-ray telescope. Nucl.Instr.Meth.
A, 516, pp. 511-528.

P. Savicky, E. Kotrc. Experimental Study of Leaf Confidences for Random Forest. Proceedings
of COMPSTAT 2004, In: Computational Statistics. (Ed.: Antoch J.) - Heidelberg, Physica Verlag
2004, pp. 1767-1774.

J. Dvorak, P. Savicky. Softening Splits in Decision Trees Using Simulated Annealing. Proceedings
of ICANNGA 2007, Warsaw, (Ed.: Beliczynski et. al), Part I, LNCS 4431, pp. 721-729.

References

Lichman, M. (2013). UCI Machine Learning Repository [http://archive.ics.uci.edu/ml]. Irvine, CA:
University of California, School of Information and Computer Science.

trainData MagicGamma training data

Description

The data are MC generated (see below) to simulate registration of high energy gamma particles in
a ground-based atmospheric Cherenkov gamma telescope using the imaging technique. Cherenkov
gamma telescope observes high energy gamma rays, taking advantage of the radiation emitted by
charged particles produced inside the electromagnetic showers initiated by the gammas, and devel-
oping in the atmosphere. This Cherenkov radiation (of visible to UV wavelengths) leaks through
the atmosphere and gets recorded in the detector, allowing reconstruction of the shower parameters.
The available information consists of pulses left by the incoming Cherenkov photons on the photo-
multiplier tubes, arranged in a plane, the camera. Depending on the energy of the primary gamma, a
total of few hundreds to some 10000 Cherenkov photons get collected, in patterns (called the shower
image), allowing to discriminate statistically those caused by primary gammas (signal) from the im-
ages of hadronic showers initiated by cosmic rays in the upper atmosphere (background).

Typically, the image of a shower after some pre-processing is an elongated cluster. Its long axis is
oriented towards the camera center if the shower axis is parallel to the telescope’s optical axis, i.e. if
the telescope axis is directed towards a point source. A principal component analysis is performed
in the camera plane, which results in a correlation axis and defines an ellipse. If the depositions
were distributed as a bivariate Gaussian, this would be an equidensity ellipse. The characteristic
parameters of this ellipse (often called Hillas parameters) are among the image parameters that can
be used for discrimination. The energy depositions are typically asymmetric along the major axis,
and this asymmetry can also be used in discrimination. There are, in addition, further discriminating
characteristics, like the extent of the cluster in the image plane, or the total sum of depositions.

The data set was generated by a Monte Carlo program, Corsika, described in: D. Heck et al.,
CORSIKA, A Monte Carlo code to simulate extensive air showers, Forschungszentrum Karlsruhe
FZKA 6019 (1998). [Web Link]

The program was run with parameters allowing to observe events with energies down to below 50
GeV.

10 trainData

Usage

trainData

Format

1. fLength: continuous # major axis of ellipse [mm] 2. fWidth: continuous # minor axis of ellipse
[mm] 3. fSize: continuous # 10-log of sum of content of all pixels [in #phot] 4. fConc: continuous
ratio of sum of two highest pixels over fSize [ratio] 5. fConc1: continuous # ratio of highest
pixel over fSize [ratio] 6. fAsym: continuous # distance from highest pixel to center, projected onto
major axis [mm] 7. fM3Long: continuous # 3rd root of third moment along major axis [mm] 8.
fM3Trans: continuous # 3rd root of third moment along minor axis [mm] 9. fAlpha: continuous
angle of major axis with vector to origin [deg] 10. fDist: continuous # distance from origin to
center of ellipse [mm] 11. class: g,h # gamma (signal), hadron (background)

g = gamma (signal): 12332 h = hadron (background): 6688

For technical reasons, the number of h events is underestimated. In the real data, the h class repre-
sents the majority of the events.

The simple classification accuracy is not meaningful for this data, since classifying a background
event as signal is worse than classifying a signal event as background. For comparison of different
classifiers an ROC curve has to be used. The relevant points on this curve are those, where the
probability of accepting a background event as signal is below one of the following thresholds:
0.01, 0.02, 0.05, 0.1, 0.2 depending on the required quality of the sample of the accepted events for
different experiments.

Source

Bock, R.K., Chilingarian, A., Gaug, M., Hakl, F., Hengstebeck, T., Jirina, M., Klaschka, J., Kotrc,
E., Savicky, P., Towers, S., Vaicilius, A., Wittek W. (2004). Methods for multidimensional event
classification: a case study using images from a Cherenkov gamma-ray telescope. Nucl.Instr.Meth.
A, 516, pp. 511-528.

P. Savicky, E. Kotrc. Experimental Study of Leaf Confidences for Random Forest. Proceedings
of COMPSTAT 2004, In: Computational Statistics. (Ed.: Antoch J.) - Heidelberg, Physica Verlag
2004, pp. 1767-1774.

J. Dvorak, P. Savicky. Softening Splits in Decision Trees Using Simulated Annealing. Proceedings
of ICANNGA 2007, Warsaw, (Ed.: Beliczynski et. al), Part I, LNCS 4431, pp. 721-729.

References

Lichman, M. (2013). UCI Machine Learning Repository [http://archive.ics.uci.edu/ml]. Irvine, CA:
University of California, School of Information and Computer Science.

trainSample 11

trainSample Sample data in parallel

Description

Sample data or data and output in parallel: each core provides one sample of your desired size.

Usage

trainSample(x, y = NULL, numberCores = detectCores(), samplingSize = 0.2)

Arguments

x A data frame, or structure convertable to a data frame, which you want to sample
upon.

y An vector containing a target variable for predictions later on. This target vari-
able could be contained in x as well, then y is set to NULL.

numberCores In this setting equal to number of different training samples you are creating:
one for each core you are using.

samplingSize Size of your training sample in percentage.

Value

If y is null, you get a list of length numberCores. Each core has created one item of your list, namely
a data frame containing a a samplingSize size sample of x. If y is not null, again you get a list of
length numberCores. Each core has created one item of your list, namely:

xSample A data frame containing a samplingSize size sample of x.

ySample A vector with the corresponding y values (corresponding indices with x).

Author(s)

Wannes Rosiers

See Also

Under the hood this function uses foreach, and sample

Examples

Not run:
Create your data
x <- data.frame(1:10,10:1)
y <- 1:10

Sampling with provided y
trainSample(x,y,numberCores=2,samplingSize = 0.5)

12 trainSample

Sampling without provided y
trainSample(x,numberCores=2,samplingSize = 0.5)

End(Not run)

Index

∗Topic package
parallelSVM-package, 2

foreach, 11

iris, 3

parallelSVM, 2, 4
parallelSVM-package, 2
print.parallelSVM (parallelSVM), 4

registerCores, 7

sample, 11
summary.parallelSVM (parallelSVM), 4
svm, 2, 5, 6

testData, 7
trainData, 9
trainSample, 11

13

	parallelSVM-package
	iris
	parallelSVM
	registerCores
	testData
	trainData
	trainSample
	Index

