
parallelDist

Alexander Eckert

parallelDist version 0.2.4 as of December 12, 2018

Abstract

This document highlights the performance gains for calculating distance matrices with the
parallelDist package and provides basic usage examples.

Contents

1 Introduction 1

2 Performance 1

3 Quick start 3
3.1 Using matrices as input parameter . 3
3.2 Using a list of matrices as input parameter . 4
3.3 Using user-defined distance functions . 4
3.4 Using objects of other R packages . 5

1 Introduction

The parallelDist package provides a fast parallelized alternative to R’s native dist function
to calculate distance matrices for continuous, binary, and multi-dimensional input matrices
and offers a broad variety of predefined distance functions from the stats, proxy and dtw R
packages, as well as support for user-defined distance functions written in C++. For ease of use,
the parDist function extends the signature of the dist function and uses the same parameter
naming conventions as distance methods of existing R packages.

The package is mainly implemented in C++ and leverages the Rcpp [EF11] and RcppParallel
[AFU+16] package to parallelize the distance computations with the help of the TinyThread
library. Furthermore, the Armadillo linear algebra library [San10] is used via RcppArmadillo
[ES14] for optimized matrix operations for distance calculations. The curiously recurring
template pattern (CRTP) technique is applied to avoid virtual functions, which improves
the Dynamic Time Warping calculations while keeping the implementation flexible enough to
support different step patterns and normalization methods.

2 Performance

The inital motivation for building this package was the need for a fast Dynamic Time Warping
implementation which uses multiple cores and supports multi-dimensional (time) series. DTW

1

http://www.rdocumentation.org/packages/stats/functions/dist
http://www.rdocumentation.org/packages/parallelDist/functions/parDist
http://www.rdocumentation.org/packages/stats/functions/dist

● ●
●

●

● ● ● ● ● ●
● ● ● ● ● ●0

5000

10000

15000

20000

25000

10 100 1000 10000 20000 30000

Number of series (length 10)

C
om

pu
ta

tio
n

tim
e

in
 s

method ● ● ●dtw parDist threads=1 parDist threads=8

Distance matrix computation time (dtw, parDist)

Figure 1: Distance matrix computation time for Dynamic Time Warping

is an expensive distance measure, where the computation of the DTW distance between two
series of length N has a complexity of O (N 2). This motivates an efficient and parallelized
implementation in C++.

Figure 1 shows a performance comparison between the parDist function of parallelDist and
the dist function in conjunction with the dtw package.

The benchmark has been performed on a system with the following specifications:

• Intel(R) Xeon(R) E3-1230 v3 @ 3.30 GHz, 4 cores with hyper-threading

• 32 Gb RAM

As depicted in figure 1, parDist makes the calculation of large distance matrices with DTW
up to 3 orders of magnitudes faster.

The parDist function can be used as a replacement for the dist function of the stats package,
since it supports all other distance methods of the stats package and most of the distances of
the proxy package. Figure 2 shows the performance comparison of the parDist function with

2

http://www.rdocumentation.org/packages/parallelDist/functions/parDist
http://www.rdocumentation.org/packages/stats/functions/dist
http://www.rdocumentation.org/packages/parallelDist/functions/parDist
http://www.rdocumentation.org/packages/parallelDist/functions/parDist
http://www.rdocumentation.org/packages/stats/functions/dist
http://www.rdocumentation.org/packages/parallelDist/functions/parDist

yule2
yule

whittaker
wave

tanimoto
stiles

soergel
simpson

simple matching
russel

podani
phi

ochiai
mozley

mountford
michael

maximum
manhattan

kullback
kulczynski2
kulczynski1

hellinger
hamman
geodesic
fJaccard

faith
fager

euclidean
divergence

dice
chord

canberra
bray

braun−blanquet
binary

bhjattacharyya

0 250 500 750

Computation time in s

D
is

ta
nc

e
m

et
ho

d

Method

dist

parDist

Distance matrix computation time (5000 series of length 10)

Excluded distances for better comparison: dtw, mahalanobis, minkowski

Figure 2: Distance matrix computation times

the distance methods of stats and the proxy package when calculating distance matrices with
5000 series of length 10.

3 Quick start

3.1 Using matrices as input parameter

The function signature of parDist is based on dist. To calculate a distance matrix for 10 series
of length 10, a matrix is passed to the parDist function where each row corresponds to one
series.

> # matrix where each row corresponds to one series

> sample.matrix <- matrix(c(1:100), ncol = 10)

Here the parDist function calculates the distance matrix using the euclidean distance and

3

http://www.rdocumentation.org/packages/parallelDist/functions/parDist
http://www.rdocumentation.org/packages/parallelDist/functions/parDist
http://www.rdocumentation.org/packages/parallelDist/functions/parDist

returns a dist object, like the dist function.

> # euclidean distance

> dist.euclidean <- parDist(sample.matrix, method = "euclidean")

The dist object can easily converted into a matrix, or can be used as an input for R’s
clustering algorithms.

> # convert to matrix

> as.matrix(dist.euclidean)

> # create hierarchical agglomerative clustering model

> hclust.model <- hclust(dist.euclidean, method="ward")

Some distance methods require additional arguments (see ?parDist). These additional
arguments can be passed directly to the parDist function.

> # minkowski distance with parameter p=2

> parDist(x = sample.matrix, method = "minkowski", p=2)

> # dynamic time warping distance normalized with warping path length

> parDist(x = sample.matrix, method = "dtw", norm.method="path.length")

A list of all available distance methods can be found in the parDist documentation.

> ?parDist

The number of threads to use can be set via the threads parameter.

> # use 2 threads

> dist.euclidean <- parDist(sample.matrix, method = "euclidean", threads = 2)

3.2 Using a list of matrices as input parameter

parDist also supports the calculation of distances between multi-dimensional series. Instead of
one single matrix a list of matrices is used as input parameter. One matrix with M rows and N
columns corresponds to a series with M dimensions and length N.

In the example below, a list with 2 matrices is defined where each matrix corresponds to a
series with 2 dimensions of length 10.

> # defining a list of matrices, where each

> # list entry row corresponds to a two dimensional series

> tmp.mat <- matrix(c(1:40), ncol = 10)

> sample.matrix.list <- list(tmp.mat[1:2,], tmp.mat[3:4,])

The sample matrix now can be used to calculate a distance matrix for the multi-dimensional
DTW distance.

> # multi-dimensional dynamic time warping

> parDist(x = sample.matrix.list, method = "dtw")

3.3 Using user-defined distance functions

Since version 0.2.0 of parallelDist custom user-defined distance measures can be defined to
calculate distances matrices in parallel. To ensure a performant execution, the user-defined
function needs to be defined and compiled in C++ and an external pointer to the compiled
C++ function needs to be passed to parDist with the func argument.

The user-defined function needs to have the following signature:

4

http://www.rdocumentation.org/packages/parallelDist/functions/parDist
http://www.rdocumentation.org/packages/parallelDist/functions/parDist
http://www.rdocumentation.org/packages/parallelDist/functions/parDist
http://www.rdocumentation.org/packages/parallelDist/functions/parDist

double customDist(const arma::mat &A, const arma::mat &B)

Note that the return value must be a double and the two parameters must be of type const

arma::mat ¶m. More information about the Armadillo library can be found at [Arm] or as
part of the documentation of the RcppArmadillo [ES14] package.

Defining and compiling the function, as well as creating an external pointer to the user-
defined function can easily be achieved with the cppXPtr function of the RcppXPtrUtils package.
The following code shows a full example of defining and using a user-defined euclidean distance
function:

> # RcppArmadillo is used as dependency

> library(RcppArmadillo)

> # Use RcppXPtrUtils for simple usage of C++ external pointers

> library(RcppXPtrUtils)

> # compile user-defined function and return pointer (RcppArmadillo is used as dependency)

> euclideanFuncPtr <- cppXPtr("double customDist(const arma::mat &A, const arma::mat &B) {

+ return sqrt(arma::accu(arma::square(A - B))); }",

+ depends = c("RcppArmadillo"))

> # distance matrix for user-defined euclidean distance function

> # (note that method is set to "custom")

> parDist(matrix(1:16, ncol=2), method="custom", func = euclideanFuncPtr)

As displayed in table 1, the performance between a user-defined and a predefined distance
function is close to equal for large matrices.

matrix method min lq mean median uq max neval

1 10x10 euclidean 0.04 0.05 0.08 0.06 0.13 0.17 100.00
2 10x10 custom 0.16 0.18 0.24 0.22 0.30 0.40 100.00
3 100x10 euclidean 0.09 0.11 0.14 0.13 0.18 0.24 100.00
4 100x10 custom 0.22 0.24 0.31 0.29 0.37 0.51 100.00
5 1000x10 euclidean 4.19 4.29 4.44 4.35 4.50 5.54 100.00
6 1000x10 custom 4.34 4.48 4.66 4.60 4.80 5.14 100.00
7 10000x10 euclidean 448.87 451.33 490.99 453.26 465.36 644.65 100.00
8 10000x10 custom 452.83 454.99 492.68 456.36 464.66 678.49 100.00

Table 1: Performance comparison between user-defined and predefined euclidean distance function
(in ms)

3.4 Using objects of other R packages

The parDist supports different kinds of step patterns for calculating DTW distance matrices
(see ?parDist). For ease of use, it is also possible to use the StepPattern objects of the dtw
package as input parameters for parDist.

> # load dtw package

> library(dtw)

> # print the step pattern

> print(symmetric2)

> # use the symmetric2 object as input parameter for the parDist function

> parDist(x = sample.matrix, method = "dtw", step.pattern = symmetric2)

5

http://www.rdocumentation.org/packages/RcppXPtrUtils/functions/cppXPtr
http://www.rdocumentation.org/packages/parallelDist/functions/parDist
http://www.rdocumentation.org/packages/parallelDist/functions/parDist

References

[AFU+16] JJ Allaire, Romain Francois, Kevin Ushey, Gregory Vandenbrouck, Marcus Geelnard,
and Intel. RcppParallel: Parallel Programming Tools for ’Rcpp’, 2016. R package
version 4.3.20.

[Arm] Armadillo: C++ linear algebra library documentation.
http://arma.sourceforge.net/docs.html.

[EF11] Dirk Eddelbuettel and Romain François. Rcpp: Seamless R and C++ integration.
Journal of Statistical Software, 40(8):1–18, 2011.

[ES14] Dirk Eddelbuettel and Conrad Sanderson. Rcpparmadillo: Accelerating r with
high-performance c++ linear algebra. Computational Statistics and Data Analysis,
71:1054–1063, March 2014.

[San10] Conrad Sanderson. Armadillo: An open source C++ algebra library for fast pro-
totyping and computationally intensive experiments. Technical report, NICTA,
2010.

6

	Introduction
	Performance
	Quick start
	Using matrices as input parameter
	Using a list of matrices as input parameter
	Using user-defined distance functions
	Using objects of other R packages

