Package 'overlapping'

March 2, 2020

Type Package
Title Estimation of Overlapping in Empirical Distributions
Version 1.6
Date 2020-03-01
Author Massimiliano Pastore
Maintainer Massimiliano Pastore <massimiliano.pastore@unipd.it></massimiliano.pastore@unipd.it>
Description Functions for estimating the overlapping area of two or more kernel density estimations from empirical data.
Depends R (>= 3.0.0), ggplot2, testthat
License GPL-2
Encoding UTF-8
NeedsCompilation no
Repository CRAN
Date/Publication 2020-03-02 09:30:02 UTC
R topics documented:
boot.overlap
cutnumeric
final.plot
overlap
Index 7

2 boot.overlap

	-	
haat	.over	l วก

Nonparametric Bootstrap for estimated overlapping area

Description

Bootstrap the estimated overlapping area of two or more kernel density estimations from empirical data.

Usage

```
boot.overlap( x, B = 1000, ...)
```

Arguments

x list of numerical vectors to be compared; each vector is an element of the list

B integer, number of bootstrap draws

... options, see function overlap for details

Details

If the list x contains more than two elements (i.e. more than two distributions) it computes bootstrap overlapping between all q number of paired distributions. For example, if x contains three elements, then q=3; if x contains four elements, then q=6, and so on.

Value

It returns a list containing the following components:

OVboot_stats Data frame $q \times 3$; each row containing the following statistics: estOV, estimated

overlapping area, $\hat{\eta}$; bias, difference between the bootstrap's expected value and the observed value of the overlapping area: $E(\hat{\eta}^*) - \hat{\eta}$; se, bootstrap standard

error $\sigma_{\hat{\eta}}$.

OVboot_dist Matrix $B \times q$, B rows (bootstrap replicates) and q columns (depending on the

number of elements of x); each column is a boostrap distribution of an overlap-

ping index.

Note

Call function overlap.

Author(s)

Massimiliano Pastore

cutnumeric 3

References

Pastore, M. (2018). Overlapping: a R package for Estimating Overlapping in Empirical Distributions. The Journal of Open Source Software, 3 (32), 1023. URL: https://doi.org/10.21105/joss.01023

Pastore, M., Calcagnì, A. (2019). Measuring Distribution Similarities Between Samples: A Distribution-Free Overlapping Index. Frontiers in Psychology, 10:1089. URL: https://doi.org/10.3389/fpsyg.2019.01089

Examples

```
set.seed(20150605)
x <- list(X1=rnorm(100), X2=rt(50,8), X3=rchisq(80,2))
## bootstrapping
out <- boot.overlap( x, B = 10 )
out$0Vboot_stats

# bootstrap quantile intervals
apply( out$0Vboot_dist, 2, quantile, probs = c(.05, .9) )

# plot of bootstrap distributions
Y <- stack( data.frame( out$0Vboot_dist ))
ggplot( Y, aes( values )) + facet_wrap( ~ind ) + geom_density()</pre>
```

cutnumeric

Numerical conversion

Description

It divides a numerical variable x in classes, and returns for each class the central value.

Internal function, generally not to be called by the user.

Usage

```
cutnumeric(x, n = 1000)
```

Arguments

x numeric vector
n number of classes

Details

It calls the cut function, and then converts factor classes in numeric classes, returning for each class its central value.

final.plot

Value

It returns a numerical vector. The values are the central points of classes obtained by the function cut

Author(s)

Massimiliano Pastore

See Also

cut

Examples

```
x <- rnorm(50)
cutnumeric(x,5)</pre>
```

final.plot

Final plot

Description

Graphical representation of estimated densities and overlapping area.

Usage

```
final.plot(x, OV = NULL)
```

Arguments

x list of numerical vectors to be compared; each vector is an element of the list, see overlap

OV Optional vector of overlapping areas obtained by overlap

Details

It requires the package ggplot2.

Author(s)

Massimiliano Pastore

Examples

```
set.seed(20150605)
x <- list(X1=rnorm(100), X2=rt(50,8), X3=rchisq(80,2))
out <- overlap(x)
final.plot(x,out$0V)</pre>
```

overlap 5

overlap	Overlapping estimation	
---------	------------------------	--

Description

It gives the overlapped estimated area of two or more kernel density estimations from empirical data

Usage

```
overlap( x, nbins = 1024, plot = FALSE,
    partial.plot = FALSE, boundaries = NULL, ... )
```

Arguments

x	list of numerical vectors to be compared; each vector is an element of the list
nbins	number of equally spaced points at which the overlapping density is evaluated; see density for details
plot	logical, if TRUE, final plot of estimated densities and overlapped areas is produced $% \left(1\right) =\left(1\right) \left($
partial.plot	logical, if TRUE, partial paired distributions are plotted
boundaries	an optional list for bounded distributions, see Details
	optional arguments to be passed to function density

Details

If the list x contains more than two elements (i.e. more than two distributions) it computes overlapping between all paired distributions. Partial plots refer to these paired distributions.

If plot=TRUE, all overlapped areas are plotted. It requires ggplot2.

The optional list boundaries must contain two elements: from and to, indicating the empirical limits of input variables. Each element must be of length equal to the input data list x or, at least, length one when all boundaries are equal for all distributions. See examples below.

Value

It returns a list containing the following components:

DD	Data frame with information used for computing overlapping, containing the following variables: x, coordinates of the points where the density is estimated; y1 and y2, densities; ovy, density for estimating overlapping area (i.e. min(y1,y2)); ally, density for estimating whole area (i.e. max(y1,y2)); dominance, indicates which distribution has the highest density; k, label indicating which distributions are compared.
OV	Estimates of overlapped areas relative to each pair of distributions.
xpoints	List of abscissas of intersection points among the density curves.

6 overlap

Note

Call function final.plot.

Author(s)

Massimiliano Pastore

References

```
Pastore, M. (2018). Overlapping: a R package for Estimating Overlapping in Empirical Distributions. The Journal of Open Source Software, 3 (32), 1023. URL: https://doi.org/10.21105/joss.01023
```

Pastore, M., Calcagnì, A. (2019). Measuring Distribution Similarities Between Samples: A Distribution-Free Overlapping Index. Frontiers in Psychology, 10:1089. URL: https://doi.org/10.3389/fpsyg.2019.01089

Examples

```
set.seed(20150605)
x \leftarrow list(X1=rnorm(100), X2=rt(50,8), X3=rchisq(80,2))
out <- overlap(x, plot=TRUE)</pre>
out$0V
# including boundaries
x <- list(X1=runif(100), X2=runif(100,.5,1))</pre>
boundaries <- list( from = c(0,.5), to = c(1,1) )
out <- overlap(x, plot=TRUE, boundaries=boundaries)</pre>
out$0V
# equal boundaries
x <- list(X1=runif(100), X2=runif(50), X3=runif(30))</pre>
boundaries <- list( from = 0, to = 1 )
out <- overlap(x, plot=TRUE, boundaries=boundaries)</pre>
out$0V
# changing kernel
out <- overlap(x, plot=TRUE, kernel="rectangular")</pre>
out$0V
```

Index

```
*Topic utility
boot.overlap, 2
cutnumeric, 3
final.plot, 4
overlap, 5

boot.overlap, 2

cut, 4
cutnumeric, 3

density, 5

final.plot, 4, 6

overlap, 2, 4, 5
```