
Package ‘otpr’
May 28, 2020

Title An R Wrapper for the 'OpenTripPlanner' REST API

Version 0.4.1

Description A wrapper for the 'OpenTripPlanner' <http://www.opentripplanner.org/>
REST API. Queries are submitted to the relevant 'OpenTripPlanner' API resource, the response
is parsed and useful R objects are returned.

License MIT + file LICENSE

Language en-GB

Encoding UTF-8

LazyData true

Imports checkmate, httr, geojsonsf, janitor, jsonlite, sf

RoxygenNote 7.1.0

Suggests testthat

NeedsCompilation no

Author Marcus Young [aut, cre] (<https://orcid.org/0000-0003-4627-1116>)

Maintainer Marcus Young <M.A.Young@soton.ac.uk>

Repository CRAN

Date/Publication 2020-05-28 17:30:03 UTC

R topics documented:

otp_connect . 2
otp_get_distance . 3
otp_get_isochrone . 4
otp_get_times . 5

Index 8

1

2 otp_connect

otp_connect Set up and confirm a connection to an OTP instance.

Description

Defines the parameters required to connect to a router on an OTP instance and, if required, confirms
that the instance and router are queryable.

Usage

otp_connect(
hostname = "localhost",
router = "default",
port = 8080,
tz = Sys.timezone(),
ssl = FALSE,
check = TRUE

)

Arguments

hostname A string, e.g. "ec2-34-217-73-26.us-west-2.compute.amazonaws.com". Op-
tional, default is "localhost".

router A string, e.g. "UK2018". Optional, default is "default". Do not specify for
OTPv2 which does not support named routers.

port A positive integer. Optional, default is 8080.

tz A string, containing the time zone of the router’s graph. Optional. This should
be a valid time zone (checked against vector returned by ‘OlsonNames()‘). For
example: "Europe/Berlin". Default is the timezone of the current system (ob-
tained from Sys.timezone()). Using the default will be ok if the current system
time zone is the same as the time zone of the OTP graph.

ssl Logical, indicates whether to use https. Optional, default is FALSE.

check Deprecated and has no effect.

Value

Returns S3 object of class otpconnect if reachable.

Examples

Not run:
otpcon <- otpr_connect()
otpcon <- otpr_connect(router = "UK2018",

ssl = TRUE)
otpcon <- otpr_connect(hostname = "ec2.us-west-2.compute.amazonaws.com",

router = "UK2018",

otp_get_distance 3

port = 8888,
ssl = TRUE)

End(Not run)

otp_get_distance Finds the distance in metres between supplied origin and destination

Description

Finds the distance in metres between supplied origin and destination. Only makes sense for walk,
cycle or car modes (not transit)

Usage

otp_get_distance(otpcon, fromPlace, toPlace, mode = "CAR")

Arguments

otpcon An OTP connection object produced by otp_connect.

fromPlace Numeric vector, Latitude/Longitude pair, e.g. ‘c(53.48805, -2.24258)‘

toPlace Numeric vector, Latitude/Longitude pair, e.g. ‘c(53.36484, -2.27108)‘

mode Character vector, single mode of travel. Valid values are WALK, BICYCLE, or
CAR. Default is CAR.

Value

If OTP has not returned an error then a list containing errorId with the value "OK" and the
distance in metres. If OTP has returned an error then a list containing errorId with the OTP
error code and errorMessage with the error message returned by OTP.

Examples

Not run:
otp_get_distance(otpcon, fromPlace = c(53.48805, -2.24258), toPlace = c(53.36484, -2.27108))

otp_get_distance(otpcon, fromPlace = c(53.48805, -2.24258), toPlace = c(53.36484, -2.27108),
mode = "WALK")

End(Not run)

4 otp_get_isochrone

otp_get_isochrone Returns one or more travel time isochrones (OTPv1 only)

Description

Returns one or more travel time isochrone in either GeoJSON format or as an sf object. Only works
correctly for walk and/or transit modes - a limitation of OTP. Isochrones can be generated either
from a location or to a location.

Usage

otp_get_isochrone(
otpcon,
location,
fromLocation = TRUE,
format = "JSON",
mode = "TRANSIT",
date,
time,
cutoffs,
batch = TRUE,
arriveBy = FALSE,
maxWalkDistance = 800,
walkReluctance = 2,
transferPenalty = 0,
minTransferTime = 0

)

Arguments

otpcon An OTP connection object produced by otp_connect.

location Numeric vector, Latitude/Longitude pair, e.g. ‘c(53.48805, -2.24258)‘

fromLocation Logical. If TRUE (default) the isochrone will be generated from the location.
If FALSE the isochrone will be generated to the location.

format Character, required format of returned isochrone(s). Either JSON (returns Geo-
JSON) or SF (returns simple feature collection). Default is JSON.

mode Character, mode of travel. Valid values are: WALK, TRANSIT, BUS, or RAIL.
Note that WALK mode is automatically included for TRANSIT, BUS and RAIL.
TRANSIT will use all available transit modes. Default is TRANSIT.

date Character, must be in the format mm-dd-yyyy. This is the desired date of travel.
Only relevant if mode includes public transport. Default is current system date.

time Character, must be in the format hh:mm:ss. If arriveBy is FALSE (the default)
this is the desired departure time, otherwise the desired arrival time. Default is
current system time.

otp_get_times 5

cutoffs Numeric vector, containing the cutoff times in seconds, for example: ’c(900,
1800. 2700)’ would request 15, 30 and 60 minute isochrones. Can be a single
value.

batch Logical. If true, goal direction is turned off and a full path tree is built

arriveBy Logical. Whether the specified date and time is for departure (FALSE) or arrival
(TRUE). Default is FALSE.

maxWalkDistance

Numeric. The maximum distance (in meters) the user is willing to walk. Default
= 800.

walkReluctance Integer. A multiplier for how bad walking is, compared to being in transit for
equal lengths of time. Default = 2.

transferPenalty

Integer. An additional penalty added to boardings after the first. The value is in
OTP’s internal weight units, which are roughly equivalent to seconds. Set this
to a high value to discourage transfers. Default is 0.

minTransferTime

Integer. The minimum time, in seconds, between successive trips on different
vehicles. This is designed to allow for imperfect schedule adherence. This is a
minimum; transfers over longer distances might use a longer time. Default is 0.

Value

Returns a list. First element in the list is errorId. This is "OK" if OTP successfully returned the
isochrone(s), otherwise it is "ERROR". The second element of list varies:

• If errorId is "ERROR" then response contains the OTP error message.

• If errorId is "OK" then response contains the the isochrone(s) in either GeoJSON format or
as an sf object, depending on the value of the format argument.

Examples

Not run:
otp_get_isochrone(otpcon, location = c(53.48805, -2.24258), cutoffs = c(900, 1800, 2700))

otp_get_isochrone(otpcon, location = c(53.48805, -2.24258), fromLocation = FALSE,
cutoffs = c(900, 1800, 2700), mode = "BUS")

End(Not run)

otp_get_times Finds the time in minutes between supplied origin and destination

Description

Finds the time in minutes between supplied origin and destination by specified mode(s). If detail
is set to TRUE returns time for each mode, waiting time and number of transfers.

6 otp_get_times

Usage

otp_get_times(
otpcon,
fromPlace,
toPlace,
mode = "CAR",
date,
time,
maxWalkDistance = 800,
walkReluctance = 2,
arriveBy = FALSE,
transferPenalty = 0,
minTransferTime = 0,
detail = FALSE,
includeLegs = FALSE

)

Arguments

otpcon An OTP connection object produced by otp_connect.

fromPlace Numeric vector, Latitude/Longitude pair, e.g. ‘c(53.48805, -2.24258)‘

toPlace Numeric vector, Latitude/Longitude pair, e.g. ‘c(53.36484, -2.27108)‘

mode Character vector, mode(s) of travel. Valid values are: TRANSIT, WALK, BICY-
CLE, CAR, BUS, RAIL, OR ’c("TRANSIT", "BICYCLE")’. Note that WALK
mode is automatically included for TRANSIT, BUS, and RAIL. TRANSIT will
use all available transit modes. Default is CAR.

date Character, must be in the format mm-dd-yyyy. This is the desired date of travel.
Only relevant if mode includes public transport. Default is current system date.

time Character, must be in the format hh:mm:ss. If arriveBy is FALSE (the de-
fault) this is the desired departure time, otherwise the desired arrival time. Only
relevant if mode includes public transport. Default is current system time.

maxWalkDistance

Numeric. The maximum distance (in meters) the user is willing to walk. Default
= 800.

walkReluctance Integer. A multiplier for how bad walking is, compared to being in transit for
equal lengths of time. Default = 2.

arriveBy Logical. Whether trip should depart (FALSE) or arrive (TRUE) at the specified
date and time. Default is FALSE.

transferPenalty

Integer. An additional penalty added to boardings after the first. The value is in
OTP’s internal weight units, which are roughly equivalent to seconds. Set this
to a high value to discourage transfers. Default is 0.

minTransferTime

Integer. The minimum time, in seconds, between successive trips on different
vehicles. This is designed to allow for imperfect schedule adherence. This is a
minimum; transfers over longer distances might use a longer time. Default is 0.

otp_get_times 7

detail Logical. Default is FALSE.

includeLegs Logical. Default is FALSE. Determines whether or not details of each journey
leg are returned. If TRUE then a dataframe of journeys legs will be returned but
only when detail is also TRUE.

Value

Returns a list. First element in the list is errorId. This is "OK" if OTP has not returned an error.
Otherwise it is the OTP error code. Second element of list varies:

• If OTP has returned an error then errorMessage contains the OTP error message.

• If there is no error and detail is FALSE then duration in minutes is returned as integer.

• If there is no error and detail is TRUE then itineraries as a dataframe.

• If there is no error and detail and includelegs are both TRUE then itineraries as a
dataframe and legs as a dataframe. Core columns in the legs dataframe will be consistent
across all queries. However, as the OTP API does not consistently return the same attributes
for the legs, there will be some variation in columns returned in the legs dataframe. You
should bare this in mind if your post processing uses these columns (e.g. by checking for
column existence).

Examples

Not run:
otp_get_times(otpcon, fromPlace = c(53.48805, -2.24258), toPlace = c(53.36484, -2.27108))

otp_get_times(otpcon, fromPlace = c(53.48805, -2.24258), toPlace = c(53.36484, -2.27108),
mode = "BUS", date = "03-26-2019", time = "08:00:00")

otp_get_times(otpcon, fromPlace = c(53.48805, -2.24258), toPlace = c(53.36484, -2.27108),
mode = "BUS", date = "03-26-2019", time = "08:00:00", detail = TRUE)

End(Not run)

Index

otp_connect, 2, 3, 4, 6
otp_get_distance, 3
otp_get_isochrone, 4
otp_get_times, 5

8

	otp_connect
	otp_get_distance
	otp_get_isochrone
	otp_get_times
	Index

