Package ‘originr’

June 12, 2020
Type Package
Title Fetch Species Origin Data from the Web

Description Get species origin data (whether species is native/invasive) from the
following sources on the web: Encyclopedia of Life (<http://eol.org>), Flora
'Europaea’ (<http://rbg-web2.rbge.org.uk/FE/fe.html>), Global Invasive Species
Database (<http://www.iucngisd.org/gisd>), the Native Species Resolver
(<https://bien.nceas.ucsb.edu/bien/tools/nst/>), Integrated Taxonomic
Information Service (<https://www.itis.gov/>), and Global Register of
Introduced and Invasive Species (<http://www.griis.org/>).

Version 0.4.0
License MIT + file LICENSE

URL https://docs.ropensci.org/originr,
https://github.com/ropensci/originr

BugReports https://github.com/ropensci/originr/issues
Encoding UTF-8

LazyLoad yes

LazyData yes

Imports crul, jsonlite, data.table, xml2, taxize (>= 0.9.0)
Suggests testthat, ver

RoxygenNote 7.1.0

X-schema.org-applicationCategory Biology

X-schema.org-keywords species, native, invasive, origin, web, API,
eol, gisd, nsr, itis, griis

X-schema.org-isPartOf https://ropensci.org
NeedsCompilation no

Author Scott Chamberlain [aut, cre] (<https://orcid.org/0000-0003-1444-9135>),
Ignasi Bartomeus [aut]

Maintainer Scott Chamberlain <myrmecocystus@gmail.com>
Repository CRAN
Date/Publication 2020-06-12 05:20:02 UTC

https://docs.ropensci.org/originr
https://github.com/ropensci/originr
https://github.com/ropensci/originr/issues

2 eol

R topics documented:
originr-package e 2
17) 2
flora_europaea. 5
gisd ..o e 6
SUHIS . o e e e e 7
IS NALIVE o o e e 8
17) 9
NST_COUNEIIES . . o v v v o o e e e e e e e e e e e e e e s e 10
nsr_pol_divisionso L. e 11

Index 12

originr-package originr
Description

Species Origin Data

Data sources in the package

Encyclopedia of Life (http://eol.org)

Flora Europaea (http://rbg-web2.rbge.org.uk/FE/fe.html)

Global Invasive Species Database (http://www.iucngisd.org/gisd)

Native Species Resolver (http://bien.nceas.ucsb.edu/bien/tools/nsr/nsr-ws/)

Integrated Taxonomic Information Service (http://www.itis.gov/)

Author(s)

Scott Chamberlain <myrmecocystus@gmail . com>

Ignasi Bartomeus <nacho.bartomeus@gmail.com>

eol

Search for presence of taxonomic names in EOL invasive species
databases.

Description

See Details for important information.

dataset = "all”,
searchby = grep,

per_page = 500,

messages = TRUE,
count = FALSE,

eol
Usage
eol(
name,
page = NULL,
key = NULL,
)

eol_invasive_data(...)

Arguments

name

dataset

searchby

page

per_page
key
messages

count

Details

A taxonomic name, or a vector of names.

One of all, gisd100, gisd, isc, daisie, i3n, or mineps. See the Details for what
each dataset ID.

One of "grep’ (exact match) or ’agrep’ (fuzzy match)

A maximum of 30 results are returned per page. This parameter allows you to
fetch more pages of results if there are more than 30 matches (Default: 1)

Results to get per page. Default: 500
Your EOL API key; loads from .Rprofile.
(logical) If TRUE the actual taxon queried is printed on the console.

(logical) If TRUE, give back a count of number of taxa listed as invasive, if
FALSE (default), the normal output is given.

curl options passed on to HttpClient

eol_invasive_data() gives you the entire data.frame from the "dataset=all", while eol () let’s
you search on a vector of names against any of the datasets

IMPORTANT: note that setting dataset="all" will give you surprising results. EOL does not
include informaiton on which of the invasive datasets (i.e., gisd100, gisd, isc, daisie, i3n, or mineps)
the taxon is found in, and sometimes e.g., if taxon X is in GISD, you might not find it in "all", weird.
I don’t know why that’s happening, but it shouldn’t happen.

IMPORTANT: When you get a returned NaN for a taxon, that means it’s not on the invasive list in
question. If the taxon is found, a taxon identifier is returned.

Beware that some datasets are quite large, and may take 30 sec to a minute to pull down all data
before we can search for your species. Note there is no parameter in this API method for searching

by taxon name.

eol () is vectorized, so you can pass a single name or a vector of names.

4 eol

It’s possible to return JSON or XML with the EOL API. However, this function only returns JSON.

Options for the dataset parameter are

« all - All datasets

* gisd100 - 100 of the World’s Worst Invasive Alien Species (Global Invasive Species Database)
https://eol.org/resources/477

* gisd - Global Invasive Species Database 2013 http://eol.org/collections/54983

¢ isc - Centre for Agriculture and Biosciences International Invasive Species Compendium (ISC)
http://eol.org/collections/55180

* daisie - Delivering Alien Invasive Species Inventories for Europe (DAISIE) Species List http://eol.org/collections/55179

* i3n - IABIN Invasives Information Network (I3N) Species http://eol.org/collections/55176

* mineps - Marine Invaders of the NE Pacific Species http://eol.org/collections/55331
Datasets are not updated that often. Here’s last updated dates for some of the datasets as of 2014-
08-25

* gisd100 updated 6 mos ago

* gisd updated 1 yr ago

* isc updated 1 yr ago

* daisie updated 1 yr ago

* i3n updated 1 yr ago

* mineps updated 1 yr ago

Value

A list of data.frame’s/strings with results, with each element named by the input elements to the
name parameter.

Examples

Not run:

eol(name='Brassica oleracea', dataset='gisd')

eol (name=c('Lymantria dispar', 'Cygnus olor', 'Hydrilla verticillata',
'Pinus concolor'), dataset='gisd')

eol(name="'Sargassum', dataset='gisd')

eol(name='Ciona intestinalis', dataset='mineps')

eol(name=c('Lymantria dispar', 'Cygnus olor', 'Hydrilla verticillata',
'Pinus concolor'), dataset='i3n')

eol(name=c('Branta canadensis', 'Gallus gallus', 'Myiopsitta monachus'),
dataset='daisie')

eol(name=c('Branta canadensis', 'Gallus gallus', 'Myiopsitta monachus'),
dataset="isc"')

Count
eol(name=c('Lymantria dispar', 'Cygnus olor', 'Hydrilla verticillata',

'Pinus concolor'), dataset='gisd', count = TRUE)

curl options

flora_europaea 5

eol(name="'Sargassum', dataset='gisd', verbose = TRUE)

End(Not run)

flora_europaea Check species status (native/exotic) in Flora Europaea

Description

This function check the status (native or exotic) of a species in each of the eu countries.

For that end, it checks Flora Europaea (http://rbg-web2.rbge.org.uk/FE/fe.html) and scrapes the data
from there.

Note that the webpage contains more information.

As expected, the function is as good as the database is. I think for native species is robust but new
exotic species are not added as to my knowledge the database is not updated anymore. The database
is not able to recognize species synonyms.

See http://rbg-web2.rbge.org.uk/FE/data/countries for explanation of the database codes.

Usage
flora_europaea(sp, messages = TRUE, ...)
Arguments
sp character; a vector of length one with a single scientific species names in the
form of c("Genus species”).
messages logical; If TRUE (default), informative messages printed
curl options passed on to HttpClient
Value

A list of vectors containing the countries where the species is native, exotic, ...

Author(s)

Ignasi Bartomeus <nacho.bartomeus@gmail.com>

Examples

Not run:

sp <- c("Lavandula stoechas"”, "Carpobrotus edulis”, "Rhododendron ponticum”,
"Alkanna lutea”, "Anchusa arvensis")

flora_europaea(sp[1])

sapply(sp, flora_europaea, simplify = FALSE)

flora_europaea('Calendula officinalis')

End(Not run)

http://rbg-web2.rbge.org.uk/FE/data/countries

6 gisd

gisd Check invasive species status for a set of species from GISD database

Description
This function check which species (both plants and animals) are considered "invaders" somewhere
in the world.

For that end, it checks GISD (http://www.iucngisd.org/gisd) and returns a value, either "Not in
GISD" or the brief description presented in GISD.

Note that the webpage contains more information. Also note that the function won’t tell you if it’s
exotic in your area, a lot of exotic species are not considered invaders (yet).

As expected, the function is as good as the database is, which I find quite reliable and well main-
tained. The database is also able to recognize a lot (but not all) of the species synonyms.

Note that eol with source of gisd or gisd100 may end up with different results as this function goes
directly to the GISD website, whereas EOL only updates their GISD data occassionally. See notes

in eol.
Usage
gisd(x, simplify = FALSE, messages = TRUE, ...)
Arguments
X character; a vector of scientific species names in the form of c("Genus species").
simplify logical; returns a data.frame with the species name and the values "Invasive",
"Not in GISD". I recomend to check first the not simplified version (default),
which contains raw information about the level of invasiveness.
messages logical; If TRUE (default), informative messages printed.
curl options passed on to HttpClient
Value

A list with species names, native range countries, and invasive range countries

Author(s)

Ignasi Bartomeus <nacho.bartomeus@gmail . com>

Examples
Not run:
sp <- c("Carpobrotus edulis”, "Rosmarinus officinalis")
first species is invasive, second one is not.
gisd(sp)

gisd(sp, simplify = TRUE)

griis 7

sp <- c("Carpobrotus edulis”, "Rosmarinus officinalis"”, "Acacia mangium”,
"Archontophoenix cunninghamiana”, "Antigonon leptopus")
gisd(sp)

gisd(sp, simplify = TRUE)

End(Not run)

griis Check invasive species status for a species from GRIIS database

Description

This retrieves information from GRIIS (http://www.griis.org/) and returns all the queried records.
As other functions in this package, the function is as good as the database is.

Usage

griis(
name = NULL,
impacts = NULL,
verified = NULL,
country = NULL,
kindom = NULL,

type = NULL,
)
Arguments

name character; a string with the scientific species name in the form of "Genus species".
Default is NULL: return all records.

impacts character; "Yes" for returning only records with impacts. Default to NULL:
return all records.

verified character; "Yes" for returning only verified records. Default to NULL: return all
records.

country character containing a valid name of a country for which to filter the results.
Default to NULL: return all records.

kindom character containing a valid name of a kindom (plantae, animalia, fungi, proto-
zoa, chromista, others,) for which to filter the results. Default to NULL: return
all records.

type character containing a valid name of a environment type (terrestrial, freshwater,

marine, brackish, host) for which to filter the results. Default to NULL: return
all records.

curl options passed on to HttpClient

is_native
Value

A data.frame with species names, country where recorded, origin and source among other fields.

Note

It seems as 'name’ overrides 'kindom’, which means records from a a plant species will be returned
even if kindom is set to animalia.

Author(s)

Ignasi Bartomeus <nacho.bartomeus@gmail . com>

Examples
Not run:
griis(name = "Carpobrotus edulis”)
griis(name = "Carpobrotus edulis”, country = "Portugal"”)

End(Not run)

is_native Check if a species is native somewhere

Description

This function check the status (native or exotic) of a species in a given place

For that end, calls itis_native and flora_europaea. See help documentation of those functions
for details.

So many more things can be done, like checking species first with taxize, adding more native lists

to check...
Usage
is_native(sp, where, region = c("america"”, "europe"), ...)
Arguments
sp character; a vector of length one with a single scientific species names in the
form of c("Genus species”).
where character; a vector of length one with a single place. For America has to match

one of those: "Continental US", "Alaska", "Canada", "Caribbean Territories",
"Central Pacific Territories", "Hawaii", "Mexico". For Europe has to match one
of those: "Albania", "Austria", "Azores", "Belgium", "Islas_Baleares", "Britain",
"Bulgaria", "Corse", "Kriti", "Czechoslovakia", "Denmark", "Faroer", "Finland",
"France", "Germany", "Greece", "Ireland", "Switzerland", "Netherlands", "Spain",
"Hungary", "Iceland", "Italy", "Jugoslavia", "Portugal”, "Norway", "Poland",

nsr 9

"Romania", "USSR", "Sardegna", "Svalbard", "Sicilia", "Sweden", "Turkey",
"USSR_Northern_Division", "USSR_Baltic_Division", "USSR_Central_Division",
"USSR_South_western", "USSR_Krym", "USSRSouth_eastern_Division"

region character; a vector of length one with a single region. Only "europe" and "amer-
ica" implemented "europe" checks Flora Europaea and only contain plants. "amer-
ica" checks ITIS and contain both plant and animals.

Curl options passed on to HttpClient

Value

A data.frame, with species name and result of origin check

Author(s)

Ignasi Bartomeus <nacho.bartomeus@gmail . com>

Examples
Not run:
sp <- c(”"Lavandula stoechas”, "Carpobrotus edulis”, "Rhododendron ponticum"”,
"Alkanna lutea”, "Anchusa arvensis")
is_native(sp[1], where = "Islas_Baleares"”, region = "europe")
lapply(sp, is_native, where = "Continental US"”, region = "america")
lapply(sp, is_native, where = "Islas_Baleares”, region = "europe")

combine output for many taxa
res <- lapply(sp, is_native, where = "Continental US"”, region = "america")
do.call(rbind, res)

End(Not run)

nsr Search the Native Species Resolver

Description

Search the Native Species Resolver

Usage

nsr(species, country, stateprovince = NULL, countyparish = NULL, ...)
Arguments

species (character) One or more species names. required.

country (character) A country name. required.

stateprovince (character) A state or province name
countyparish (character) A county or parish name

curl options passed on to crul::HttpClient

10 nsr_countries

Details

Currently, only one name is allowed per request. We loop internally over a list of length > 1, but
this will still be slow due to only 1 name per request.

Note that this service can be quite slow.

political names
* nsr_countries: is a vector of country names that we use to check your country names

* nsr_pol_divisions: is a data.frame of country names and state/province names that we used
to check your parameter inputs - these are for checklists that NSR has complete coverage for

References

http://bien.nceas.ucsb.edu/bien/tools/nsr/nsr-ws/

Examples
Not run:
nsr("Pinus ponderosa”, country = "United States")
nsr(c("Pinus ponderosa”, "Poa annua"), country = "United States")
splist <- c("Pinus ponderosa”, "Poa annua”, "bromus tectorum”, "Ailanthus altissima"”)
nsr(splist, country = "United States”)
nsr(splist, country = "United States”, stateprovince = "California”)

curl options
nsr("Pinus ponderosa”, "United States”, verbose = TRUE)

End(Not run)

nsr_countries Vector of country names for use with NSR

Description

Vector of country names for use with NSR

Format

A vector of countries of length 251

nsr_pol_divisions

11

nsr_pol_divisions NSR political divisions

Description

NSR political divisions

Format
A data frame with 73 rows and 2 variables:

country Country name

state_province State or province name

Index

*Topic data
nsr_countries, 10
nsr_pol_divisions, 11

+Topic package
originr-package, 2

crul::HttpClient, 9

eol, 2,6
eol_invasive_data (eol), 2

flora_europaea, 5, 8

gisd, 6
griis,7

HttpClient, 3, 5-7, 9

is_native, 8
itis_native, 8§

nsr, 9
nsr_countries, 10
nsr_pol_divisions, 11

originr (originr-package), 2

originr-package, 2

12

	originr-package
	eol
	flora_europaea
	gisd
	griis
	is_native
	nsr
	nsr_countries
	nsr_pol_divisions
	Index

