Package 'ordinalClust'

July 25, 2019

Type Package	
Title Ordinal Data Clustering, Co-Clustering and Classification	
Version 1.3.4	
Date 2019-07-25	
Author Margot Selosse, Julien Jacques, Christophe Biernacki	
Maintainer Margot Selosse < margot.selosse@gmail.com>	
Description Ordinal data classification, clustering and co-clustering using model-based approach with the Bos distribution for ordinal data (Christophe Biernacki and Julien Jacques (2016) <doi:10.1007 s11222-015-9585-2="">).</doi:10.1007>	
License GPL (>= 2)	
Imports Rcpp ($>= 0.12.11$), methods	
LinkingTo Rcpp, RcppProgress, RcppArmadillo, BH	
Suggests knitr, rmarkdown, caret, ggplot2	
VignetteBuilder knitr	
LazyData true	
SystemRequirements C++11	
Depends R (>= 3.3)	
NeedsCompilation yes	
Repository CRAN	
Date/Publication 2019-07-25 12:40:02 UTC	
R topics documented:	
	2 4 6 9
pejSim	.(

2 bosclassif

plot predict summary	 																	 		 . 11	l
hosclassif	Fun	ctio	n to	ne	rfo	rm	ı a	clo	22.1	ifia	car	tio	n								

Description

This function performs a classification on a dataset with features of the ordinal kind, and a label variable of the integer type (1,2,...,kr). The classification function proposes two classification models. The first one, (chosen by the argument kc=0), is a multivariate BOS model assuming that, conditionally on the class of the observations, the feature are independent. The second model is a parsimonious version of the first model. Parcimony is introduced by grouping the features into clusters (as in co-clustering) and assuming that the features of a cluster have a common distribution. If the data contains ordinal features with D different numbers of levels, the data is going to be seen as D matrices of ordinal data.

Usage

Arguments

х	Matrix made of ordinal data, of dimension N*Jtot. The features with same numbers of levels must be placed side by side. The missing values should be coded as NA.
У	Vector of length N. It should represent the classes corresponding to each row of x . Must be labelled with integers $(1,2,,kr)$.
idx_list	Vector of length D. This argument is useful when variables have different numbers of levels. Element d should indicate where the variables with number of levels $m[d]$ begins in matrix x .
kr	Number of row classes.
kc	Vector of length D. d^{h} element indicates the number of column clusters. Set to 0 to choose a classical multivariate BOS model.
m	Vector of length D. d^th element defines the ordinal data's number of levels.
nbSEM	Number of SEM-Gibbs iterations realized to estimate parameters.
nbSEMburn	Number of SEM-Gibbs burning iterations for estimating parameters. This parameter must be inferior to nbSEM.
nbindmini	Minimum number of cells belonging to a block.
init	String that indicates the kind of initialisation. Must be one of th following words : "kmeans", "random" or "randomBurnin".
percentRando	mB

Vector of length 1. Indicates the percentage of resampling when init is equal to "randomBurnin".

bosclassif 3

Value

Return an object. The slots are:

_	
@zr	Vector of length N with resulting row partitions.
@ z c	List of length D. d^{h} item is a vector of length $J[d]$ representing the columns partitions for the group of variables d .
@J	Vector of length D. d^th item represents the number of columns for d^th group of variables.
@ W	List of length D. Item d is a matrix of dimension $J*kc[d]$ such that $W[j,h]=1$ if j belongs to cluster h.
@ \A	Matrix of dimension N*kr such that V[i,g]=1 if i belongs to cluster g.
@icl	ICL value for co-clustering.
@kr	Number of row classes.
<pre>@name @number_dist:</pre>	Name of the result.
	Number of groups of variables.
@pi	Vector of length kr. Row mixing proportions.
@rho	List of length D. d^{h} item represents the column mixing proportion for d^{h} group of variables.
@dlist	List of length d. d^th item represents the indexes of group of variables d.
@kc	Vector of length D. d^{th} element represents the number of clusters column H for d^{th} group of variables.
@m	Vector of length D. d^th element represents the number of levels of d^th group of variables.
@nbSEM	Number of SEM-Gibbs algorithm iteration.
@params	List of length D. d^th item represents the blocks paramaters for group of variables d.
@xhat	List of length D. d^th item represents the d^th group of variables dataset, with missing values completed.

Author(s)

Margot Selosse, Julien Jacques, Christophe Biernacki.

Examples

```
# loading the real dataset
data("dataqol.classif")
set.seed(5)
# loading the ordinal data
M <- as.matrix(dataqol.classif[,2:29])</pre>
```

4 bosclust

```
# creating the classes values
y <- as.vector(dataqol.classif$death)</pre>
# sampling datasets for training and to predict
nb.sample <- ceiling(nrow(M) \star2/3)
sample.train <- sample(1:nrow(M), nb.sample, replace=FALSE)</pre>
M.train <- M[sample.train,]</pre>
M.validation <- M[-sample.train,]</pre>
nb.missing.validation <- length(which(M.validation==0))</pre>
M.validation[which(M.validation==0)] <- sample(1:m, nb.missing.validation,replace=TRUE)
y.train <- y[sample.train]</pre>
y.validation <- y[-sample.train]</pre>
# configuration for SEM algorithm
nbSEM=50
nbSEMburn=40
nbindmini=1
init="kmeans"
# number of classes to predict
kr <- 2
# different kc to test with cross-validation
kcol <- 1
res <- bosclassif(x=M.train,y=y.train,kr=kr,kc=kcol,m=m,
                   nbSEM=nbSEM, nbSEMburn=nbSEMburn,
                   nbindmini=nbindmini,init=init)
predictions <- predict(res, M.validation)</pre>
```

bosclust

Function to perform a clustering

Description

This function performs a clustering on ordinal data by using the multiple latent block model (cf references for further details). It allows the user to define D groups of variables that have different number of levels. A BOS distribution is used, and the parameters inference is realized with an SEM-Gbbs algorithm.

bosclust 5

Usage

```
bosclust(x, idx_list=c(1), kr, init, nbSEM, nbSEMburn,
        nbindmini, m=0, percentRandomB=0)
```

Arguments

Matrix made of ordinal data, of dimension N*Jtot. The features with same num-Х bers of levels must be placed side by side. The missing values should be coded as NA. idx_list Vector of length D. This argument is useful when variables have different numbers of levels. Element d should indicate where the variables with number of levels m[d] begins in matrix x. Number of row clusters. kr m Vector of length D. d^th element defines the ordinal data's number of levels. nbSEM Number of SEM-Gibbs iterations realized to estimate parameters. Number of SEM-Gibbs burning iterations for estimating parameters. This panbSEMburn rameter must be inferior to nbSEM. nbindmini Minimum number of cells belonging to a block.

String that indicates the kind of initialisation. Must be one of th following words init

: "kmeans", "random" or "randomBurnin".

percentRandomB

Vector of length 1. Indicates the percentage of resampling when init is equal to "randomBurnin".

Value

@ \A	Matrix of dimension $N*kr$ such that $V[i,g]=1$ if i belongs to cluster g.
@zr	Vector of length N with resulting row partitions.
@pi	Vector of length kr. Row mixing proportions.
@m	Vector of length D. d^th element represents the number of levels of d^th group of variables.
@icl	ICL value for clustering.
@name	Name of the result.
@params	List of length D. d^th item stores the resulting position and precision parameters mu and pi.
@paramschain	List of length nbSEMburn. For each iteration of the SEM-Gibbs algorithm, the parameters of the blocks are stored.
@xhat	List of length D. d^{h} item represents the d^{h} group of variables dataset, with missing values completed.
@zrchain	Matrix of dimension nbSEM*N. Row i represents the row cluster partitions at iteration i.
@pichain	List of length nbSEM. Item i is a vector of length kr which contains the row mixing proportions at iteration i .

6 boscoclust

Author(s)

Margot Selosse, Julien Jacques, Christophe Biernacki.

Examples

```
library(ordinalClust)
data("dataqol")
set.seed(5)

# loading the ordinal data
M <- as.matrix(dataqol[,2:29])

m = 4

krow = 4

nbSEM=50
nbSEMburn=40
nbindmini=2
init = "random"

object <- bosclust(x=M, kr=krow, m=m, nbSEM=nbSEM, nbSEMburn=nbSEMburn, nbindmini=nbindmini, init=init)</pre>
```

boscoclust

Function to perform a co-clustering

Description

This function performs a co-clustering on ordinal data by using the latent block model (cf references for further details). A BOS distribution is used, and the parameters inference is realized with an SEM-Gbbs algorithm.

Usage

Arguments

Х

Matrix made of ordinal data, of dimension N*Jtot. The features with same numbers of levels must be placed side by side. The missing values should be coded as NA.

boscoclust 7

idx_list	Vector of length D. This argument is useful when variables have different numbers of levels. Element d should indicate where the variables with number of levels m[d] begins in matrix x.
kr	Number of row classes.
kc	Vector of length D. d^th element indicates the number of column clusters. Set to 0 to choose a classical multivariate BOS model.
m	Vector of length D. d^th element defines the ordinal data's number of levels.
nbSEM	Number of SEM-Gibbs iterations realized to estimate parameters.
nbSEMburn	Number of SEM-Gibbs burning iterations for estimating parameters. This parameter must be inferior to nbSEM.
nbRepeat	Number of times sampling on rows and on colums will be done at each SEM-Gibbs iteration.
nbindmini	Minimum number of cells belonging to a block.
init	String that indicates the kind of initialisation. Must be one of th following words : "kmeans", "random" or "randomBurnin".

Vector of length 2. Indicates the percentage of resampling when init is equal to "randomBurnin".

Value

percentRandomB

@Λ	Matrix of dimension $N*kr$ such that $V[i,g]=1$ if i belongs to cluster g.
@icl	ICL value for co-clustering.
@name	
@paramschain	List of length nbSEMburn. For each iteration of the SEM-Gibbs algorithm, the parameters of the blocks are stored.
@pichain	List of length nbSEM. Item i is a vector of length kr which contains the row mixing proportions at iteration i .
@rhochain	List of length nbSEM. Item i is a list of length D whose d^t contains the column mixing proportions of groups of variables d, at iteration i.
@ z c	List of length D. d^th item is a vector of length $J[d]$ representing the columns partitions for the group of variables d.
@zr	Vector of length N with resulting row partitions.
@W	List of length D. Item d is a matrix of dimension $J*kc[d]$ such that $W[j,h]=1$ if j belongs to cluster h.
@m	Vector of length D. d^{h} element represents the number of levels of d^{h} group of variables.
@params	List of length D. d^{h} item represents the blocks paramaters for group of variables d .
@pi	Vector of length kr. Row mixing proportions.
@rho	List of length D. d^{h} item represents the column mixing proportion for d^{h} group of variables.

8 boscoclust

@xhat	List of length D. d^th item represents the d^th group of variables dataset, with missing values completed.
@zrchain	Matrix of dimension nbSEM*N. Row i represents the row cluster partitions at iteration i.
@zrchain	List of length D. Item d is a matrix of dimension nbSEM*J[d]. Row i represents the column cluster partitions at iteration i.

Author(s)

Margot Selosse, Julien Jacques, Christophe Biernacki.

Examples

```
library(ordinalClust)
# loading the real dataset
data("dataqol")
set.seed(5)
# loading the ordinal data
M <- as.matrix(dataqol[,2:29])</pre>
# defining different number of categories:
m=4
# defining number of row and column clusters
krow = 5
kcol = 4
# configuration for the inference
nbSEM=50
nbSEMburn=40
nbindmini=2
init = "kmeans"
# Co-clustering execution
object <- boscoclust(x=M, kr=krow, kc=kcol, m=m, nbSEM=nbSEM,
          nbSEMburn=nbSEMburn, nbindmini=nbindmini, init=init)
```

dataqol 9

dataqol

Questionnaires Responses Of Patients Affected By Breast Cancer

Description

This dataset contains the responses of 121 patients to 30 questions about their quality of life.

Usage

dataqol

Format

A dataframe with 121 lines and 31 columns. A line represents a patient and a column are information about the patients

Id patient Id

q1-q28 responses to 28 questions with number of levels equals to 4

q29-q30 responses to 22 questions with number of levels equals to 7

Source

The table was determined based on data associated with the package available on: https://cran.r-project.org/package=QoLR

datagol.classif

Questionnaires Responses Of Patients Affected By Breast Cancer

Description

This dataset contains the responses of 40 patients to 30 questions about their quality of life. Furthermore, a variable indicates if the patient survived from the disease.

Usage

```
dataqol.classif
```

Format

A dataframe with 40 lines and 32 columns. A line represents a patient and a column are information about the patients

Id patient Id

q1-q28 responses to 28 questions with number of levels equals to 4

q29-q30 responses to 22 questions with number of levels equals to 7

death if the patient survived (1) or not (2)

10 pejSim

Source

The table was determined based on data associated with the package available on: https://cran.r-project.org/package=QoLR

Msimulated

Matrix of simulated ordinal data

Description

This is a toy dataset for running simple examples.

Usage

Msimulated

Format

An ordinal data matrix with 60 lines and 50 columns. Number of levels is equal to 3. 4 blocks are simulated with (mu,pi) parameters equal to (3,0.5), (2,0.7), (1,0.8) and (2,0.6).

pejSim

pejSim

Description

This function computes the probability for a level ej to be sampled from a BOS distribution of parameters (mu,pi), with a number of levels equals to m. Can be used to generate data wth BOS distribution.

Usage

```
pejSim(ej,m,mu,p)
```

Arguments

еj	levels to be sampled
m	Number of levels.
mu	mu parameter for BOS distribution.

p pi parameter for BOS distribution.

Value

Return the probabiltiy of ej to be sampled from a BOS distribution of parameters (mu,pi), with a number of levels equals to m.

plot 11

Author(s)

Margot Selosse, Julien Jacques, Christophe Biernacki.

Examples

```
library(ordinalClust)
data("dataqol")
set.seed(5)

m=7
nr=10000
mu=5
pi=0.5

probaBOS=rep(0,m)
for (im in 1:m) probaBOS[im]=pejSim(im,m,mu,pi)
M <- sample(1:m,nr,prob = probaBOS, replace=TRUE)</pre>
```

plot

~~ Methods for Function plot in Package ordinalClust ~~

Description

Plots the result of a classification, clustering or co-clustering that were performed from the following functions: bosclassif,boscolust,boscoclust.

Methods

```
signature(object = "ResultClassifOrdinal")
signature(object = "ResultClustOrdinal")
signature(object = "ResultCoclustOrdinal")
```

predict

~~ Methods for Function predict in Package stats ~~

Description

~~ Methods for function predict in package stats ~~

Methods

signature (object = "ResultClassifOrdinal") Use this method with the result of the function bosclassif, and a new sample to predict the classes.

12 summary

summary

~~ Methods for Function summary in Package ordinalClust ~~

Description

Prints the result of a classification, clustering or co-clustering that were performed from the following functions: bosclassif,bosclust,boscoclust.

Methods

```
signature(object = "ResultClassifOrdinal")
signature(object = "ResultClustOrdinal")
signature(object = "ResultCoclustOrdinal")
```