Package 'orders'

May 16, 2019

Type Package

Title Sampling from Order Statistics of New Families of Distributions
Version 0.1.3
Author Carlos Alberto Cardozo Delgado
Maintainer Carlos Alberto Cardozo Delgado <cardozorpackages@gmail.com></cardozorpackages@gmail.com>
Description Set of tools to generate samples of order statistics from new families of distributions. The main references for this package are: Gentle, J. (2009), Computational Statistics, Springer-Verlag and Naradajah, S. and Rocha, R. (2016), DOI:10.18637/jss.v069.i10>. The families of distributions are: Marshall Olkin G distributions, exponentiated G distributions, beta G distributions, gamma G distributions, Kumaraswamy G distributions, generalized beta G distributions, gamma G distributions, gamma uniform G distributions, beta exponential G distributions, Weibull G distributions, log gamma G I distributions, log gamma G II distributions, exponentiated generalized G distributions, exponentiated Kumaraswamy G distributions, geometric exponential Poisson G distributions, truncated-exponential skew-symmetric G distributions, modified beta G distributions, and exponential Poisson G distributions.
License GPL-3
Encoding UTF-8
LazyData true
RoxygenNote 6.1.0
Imports Newdistns
NeedsCompilation no
Repository CRAN
Date/Publication 2019-05-16 21:10:04 UTC
R topics documented:

2 order_beg

	order_betaexpg	3
	order_betag	4
	order_eepg	5
	order_eg	7
	order_expg	8
	order_expkumg	9
	order_gammag	10
	order_gammag1	11
	order_gammag2	12
	order_gbg	13
	order_kumg	14
	order_loggammag1	
	order_loggammag2	17
	order_mbetag	
	order_mog	19
	order_tessg	
	order_weibullg	
Index		23

order_beg

Random Sampling of Order Statistics from a Beta Extended G Distribution

Description

order_beg is used to obtain a random sample of order statistics from a Beta Extended G Distribution.

Usage

```
order_beg(size, spec, alpha, a, b, k, n, ...)
```

Arguments

size	numeric, represents the size of the sample.
spec	$character, represents \ an \ specific \ G \ distribution. \ Possible \ values \ "norm", "exp", "lnorm", "chisq".$
alpha	numeric, represents the scale parameter. Default value is 1.
a	numeric, represents the first shape parameter. Default value is 1.
b	numeric, represents the second shape parameter. Default value is 1.
k	numeric, represents the Kth smallest value from a sample.
n	numeric, represents the size of the sample to compute the order statistic from.
	represents others parameters of the G distribution.

order_betaexpg 3

Value

A list with a random sample of order statistics from a Beta Extended G Distribution and the value of its join probability density function evaluated in the random sample.

Author(s)

Carlos Alberto Cardozo Delgado <cardozorpackages@gmail.com>.

References

Gentle, J, Computational Statistics, First Edition. Springer - Verlag, 2009.

Naradajah, S. and Rocha, R. (2016) Newdistns: An R Package for New Families of Distributions, Journal of Statistical Software.

Examples

```
library(orders)

# A sample of size 10 of the 3-th order statistics from a Beta Extented Exponential Distribution order_beg(10,"exp",1,1,1,k=3,50)

# A sample of size 10 of the 3-th order statistics from a Beta Extented Normal Distribution order_beg(10,"norm",1,1,1,k=3,50)

# A sample of size 10 of the 3-th order statistics from a Beta Extented Log-normal Distribution order_beg(10,"lnorm",1,1,1,k=3,50)

# A sample of size 10 of the 3-th order statistics from a Beta Extented Chis-square Distribution order_beg(10,"chisq",1,1,1,k=3,50,df=3)
```

order_betaexpg	Random Sampling of Order Statistics from a Beta Exponential G Dis-
	tribution

Description

order_betaexpg is used to obtain a random sample of order statistics from a Beta Exponential G Distribution.

Usage

```
order_betaexpg(size, spec, lambda, a, b, k, n, ...)
```

Arguments

size	numeric, represents the size of the sample.
spec	$character, represents \ an \ specific \ G \ distribution. \ Possible \ values \ "norm", "exp", "lnorm", "chisq".$
lambda	numeric, represents the first shape parameter. Default value is 1.
а	numeric, represents the second shape parameter. Default value is 1.
b	numeric, represents the third shape parameter. Default value is 1.

4 order_betag

k numeric, represents the Kth smallest value from a sample.

n numeric, represents the size of the sample to compute the order statistic from.

... represents others parameters of the G distribution.

Value

A list with a random sample of order statistics from a Beta Exponential G Distribution and the value of its join probability density function evaluated in the random sample.

Author(s)

Carlos Alberto Cardozo Delgado <cardozorpackages@gmail.com>.

References

Gentle, J, Computational Statistics, First Edition. Springer - Verlag, 2009.

Naradajah, S. and Rocha, R. (2016) Newdistns: An R Package for New Families of Distributions, Journal of Statistical Software.

Examples

```
library(orders)
# A sample of size 10 of the 3-th order statistics from
# a Beta Exponential Exponential Distribution
order_betaexpg(10,"exp",1,1,1,k=3,50)
# A sample of size 10 of the 3-th order statistics from
# a Beta Exponential Normal Distribution
order_betaexpg(10,"norm",1,1,1,k=3,50)
# A sample of size 10 of the 3-th order statistics from
# a Beta Exponential Log-normal Distribution
order_betaexpg(10,"lnorm",1,1,1,k=3,50)
# A sample of size 10 of the 3-th order statistics from
# a Beta Exponential Chi-square Distribution
order_betaexpg(10,"chisq",1,1,1,k=3,50,df=3)
```

order_betag

Random Sampling of Order Statistics from a Beta G Distribution

Description

order_betag is used to obtain a random sample of order statistics from a Beta G Distribution.

Usage

```
order_betag(size, spec, a, b, k, n, ...)
```

order_eepg 5

Arguments

size	numeric, represents the size of the sample.
spec	$character, represents \ an \ specific \ G \ distribution. \ Possible \ values \ "norm", "exp", "lnorm", "chisq".$
a	numeric, represents the first shape parameter. Default value is 1.
b	numeric, represents the first shape parameter. Default value is 1.
k	numeric, represents the Kth smallest value from a sample.
n	numeric, represents the size of the sample to compute the order statistic from.
	represents others parameters of the G distribution.

Value

A list with a random sample of order statistics from a Beta G Distribution and the value of its join probability density function evaluated in the random sample.

Author(s)

Carlos Alberto Cardozo Delgado <cardozorpackages@gmail.com>.

References

Gentle, J, Computational Statistics, First Edition. Springer - Verlag, 2009.

Naradajah, S. and Rocha, R. (2016) Newdistns: An R Package for New Families of Distributions, Journal of Statistical Software.

Examples

```
library(orders)
# A sample of size 10 of the 3-th order statistics from a Beta Exponential Distribution order_betag(10,"exp",1,1,k=3,50)
# A sample of size 10 of the 3-th order statistics from a Beta Normal Distribution order_betag(10,"norm",1,1,k=3,50)
# A sample of size 10 of the 3-th order statistics from a Beta Log-normal Distribution order_betag(10,"lnorm",1,1,k=3,50)
# A sample of size 10 of the 3-th order statistics from a Beta Chis-square Distribution order_betag(10,"chisq",1,1,k=3,50,df=3)
```

order_eepg	Random Sampling of Order Statistics from a Exponentiated Exponential Poisson G Distribution

Description

order_eepg is used to obtain a random sample of order statistics from a Exponentiated Exponential Poisson G Distribution.

6 order_eepg

Usage

```
order_eepg(size, spec, lambda, a, k, n, ...)
```

Arguments

size	numeric, represents the size of the sample.
spec	$character, represents \ an \ specific \ G \ distribution. \ Possible \ values \ "norm", "exp", "lnorm", "chisq".$
lambda	numeric, represents a scale parameter. Default value is 1.
а	numeric, represents the shape parameter. Default value is 1.
k	numeric, represents the Kth smallest value from a sample.
n	numeric, represents the size of the sample to compute the order statistic from.
	represents others parameters of the G distribution.

Value

A list with a random sample of order statistics from a Exponentiated Exponential Poisson G Distribution and the value of its join probability density function evaluated in the random sample.

Author(s)

Carlos Alberto Cardozo Delgado <cardozorpackages@gmail.com>.

References

Gentle, J, Computational Statistics, First Edition. Springer - Verlag, 2009.

Naradajah, S. and Rocha, R. (2016) Newdistns: An R Package for New Families of Distributions, Journal of Statistical Software.

Examples

```
library(orders)

# A sample of size 10 of the 3-th order statistics from

# a Exponentiated Exponential Poisson Exponential Distribution
order_eepg(10,"exp",1,1,k=3,50)

# A sample of size 10 of the 3-th order statistics from

# a Exponentiated Exponential Poisson Normal Distribution
order_eepg(10,"norm",1,1,k=3,50)

# A sample of size 10 of the 3-th order statistics from

# a Exponentiated Exponential Poisson Log-normal Distribution
order_eepg(10,"lnorm",1,1,k=3,50)

# A sample of size 10 of the 3-th order statistics from

# a Exponentiated Exponential Poisson Chi-square Distribution
order_eepg(10,"chisq",1,1,k=3,50,df=3)
```

order_eg 7

order_eg	Random Sampling of Order Statistics from a Exponentiated Generalized G Distribution

Description

order_eg is used to obtain a random sample of order statistics from a Exponentiated Generalized G Distribution.

Usage

```
order_eg(size, spec, a, b, k, n, ...)
```

Arguments

size	numeric, represents the size of the sample.
spec	$character, represents \ an \ specific \ G \ distribution. \ Possible \ values \ "norm", "exp", "lnorm", "chisq".$
а	numeric, represents the first shape parameter. Default value is 1.
b	numeric, represents the second shape parameter. Default value is 1.
k	numeric, represents the Kth smallest value from a sample.
n	numeric, represents the size of the sample to compute the order statistic from.
	represents others parameters of the G distribution.

Value

A list with a random sample of order statistics from a Exponentiated Generalized G Distribution and the value of its join probability density function evaluated in the random sample.

Author(s)

Carlos Alberto Cardozo Delgado <cardozorpackages@gmail.com>.

References

Gentle, J, Computational Statistics, First Edition. Springer - Verlag, 2009.

Naradajah, S. and Rocha, R. (2016) Newdistns: An R Package for New Families of Distributions, Journal of Statistical Software.

Examples

```
library(orders)
# A sample of size 10 of the 3-th order statistics from
# a Exponentiated Generalized Exponential Distribution
order_eg(10,"exp",1,1,k=3,50)
# A sample of size 10 of the 3-th order statistics from
# a Exponentiated Generalized Normal Distribution
```

8 order_expg

```
order_eg(10,"norm",1,1,k=3,50)
# A sample of size 10 of the 3-th order statistics from
# a Exponentiated Generalized Log-normal Distribution
order_eg(10,"lnorm",1,1,k=3,50)
# A sample of size 10 of the 3-th order statistics from
# a Exponentiated Generalized Chi-square Distribution
order_eg(10,"chisq",1,1,k=3,50,df=3)
```

order_expg

Random Sampling of Order Statistics from a Exponentiated G Distribution

Description

order_expg is used to obtain a random sample of order statistics from a Exponentiated G Distribution.

Usage

```
order_expg(size, spec, a, k, n, ...)
```

Arguments

size	numeric, represents the size of the sample.
spec	$character, represents \ an \ specific \ G \ distribution. \ Possible \ values \ "norm", "exp", "lnorm", "chisq".$
a	numeric, represents the first shape parameter. Default value is 1.
k	numeric, represents the Kth smallest value from a sample.
n	numeric, represents the size of the sample to compute the order statistic from.
	represents others parameters of the G distribution.

Value

A list with a random sample of order statistics from a Exponentiated G Distribution and the value of its join probability density function evaluated in the random sample.

Author(s)

Carlos Alberto Cardozo Delgado <cardozorpackages@gmail.com>.

References

Gentle, J, Computational Statistics, First Edition. Springer - Verlag, 2009.

Naradajah, S. and Rocha, R. (2016) Newdistns: An R Package for New Families of Distributions, Journal of Statistical Software.

order_expkumg 9

Examples

```
library(orders)
# A sample of size 10 of the 3-th order statistics from a Exponentiated Exponential Distribution order_expg(10,"exp",1,k=3,50)
# A sample of size 10 of the 3-th order statistics from a Exponentiated Normal Distribution order_expg(10,"norm",1,k=3,50)
# A sample of size 10 of the 3-th order statistics from a Exponentiated Log-normal Distribution order_expg(10,"lnorm",1,k=3,50)
# A sample of size 10 of the 3-th order statistics from a Exponentiated Chi-square Distribution order_expg(10,"chisq",1,k=3,50,df=3)
```

order_expkumg Random Sampling of Order Statistics from a Exponentiated Kumaraswamy G Distribution

Description

order_expkumg is used to obtain a random sample of order statistics from a Exponentiated Kumaraswamy G Distribution.

Usage

```
order_expkumg(size, spec, a, b, c, k, n, ...)
```

Arguments

size	numeric, represents the size of the sample.
spec	$character, represents \ an \ specific \ G \ distribution. \ Possible \ values \ "norm", "exp", "lnorm", "chisq".$
a	numeric, represents the first shape parameter. Default value is 1.
b	numeric, represents the second shape parameter. Default value is 1.
С	numeric, represents the third shape parameter. Default value is 1.
k	numeric, represents the Kth smallest value from a sample.
n	numeric, represents the size of the sample to compute the order statistic from.
	represents others parameters of the G distribution.

Value

A list with a random sample of order statistics from a Exponentiated Kumaraswamy G Distribution and the value of its join probability density function evaluated in the random sample.

Author(s)

Carlos Alberto Cardozo Delgado <cardozorpackages@gmail.com>.

10 order_gammag

References

Gentle, J, Computational Statistics, First Edition. Springer - Verlag, 2009.

Naradajah, S. and Rocha, R. (2016) Newdistns: An R Package for New Families of Distributions, Journal of Statistical Software.

Examples

```
library(orders)

# A sample of size 10 of the 3-th order statistics from

# a Exponentiated Kumaraswamy Exponential Distribution
order_expkumg(10,"exp",1,1,1,k=3,50)

# A sample of size 10 of the 3-th order statistics from

# a Exponentiated Kumaraswamy Normal Distribution
order_expkumg(10,"norm",1,1,1,k=3,50)

# A sample of size 10 of the 3-th order statistics from

# a Exponentiated Kumaraswamy Log-normal Distribution
order_expkumg(10,"lnorm",1,1,1,k=3,50)

# A sample of size 10 of the 3-th order statistics from

# a Exponentiated Kumaraswamy Chi-square Distribution
order_expkumg(10,"chisq",1,1,1,k=3,50,df=3)
```

order_gammag

Random Sampling of Order Statistics from a Gamma Uniform G Distribution

Description

order_gammag is used to obtain a random sample of order statistics from a Gamma Uniform G Distribution.

Usage

```
order_gammag(size, spec, a, k, n, ...)
```

Arguments

size	numeric, represents the size of the sample.
spec	$character, represents \ an \ specific \ G \ distribution. \ Possible \ values \ "norm", "exp", "lnorm", "chisq".$
а	numeric, represents the first shape parameter. Default value is 1.
k	numeric, represents the Kth smallest value from a sample.
n	numeric, represents the size of the sample to compute the order statistic from.
	represents others parameters of the G distribution.

Value

A list with a random sample of order statistics from a Gamma Uniform G Distribution and the value of its join probability density function evaluated in the random sample.

order_gammag1 11

Author(s)

Carlos Alberto Cardozo Delgado <cardozorpackages@gmail.com>.

References

Gentle, J, Computational Statistics, First Edition. Springer - Verlag, 2009.

Naradajah, S. and Rocha, R. (2016) Newdistns: An R Package for New Families of Distributions, Journal of Statistical Software.

Examples

```
library(orders)
# A sample of size 10 of the 3-th order statistics from a Gamma Uniform Exponential Distribution order_gammag(10,"exp",1,k=3,50)
# A sample of size 10 of the 3-th order statistics from a Gamma Uniform Normal Distribution order_gammag(10,"norm",1,k=3,50)
# A sample of size 10 of the 3-th order statistics from a Gamma Uniform Log-normal Distribution order_gammag(10,"lnorm",1,k=3,50)
# A sample of size 10 of the 3-th order statistics from a Gamma Uniform Chi-square Distribution order_gammag(10,"chisq",1,k=3,50,df=3)
```

order_gammag1

Random Sampling of Order Statistics from a Gamma G I Distribution

Description

order_gammag1 is used to obtain a random sample of order statistics from a Gamma G I Distribution.

Usage

```
order_gammag1(size, spec, a, k, n, ...)
```

Arguments

size	numeric, represents the size of the sample.
spec	$character, represents \ an \ specific \ G \ distribution. \ Possible \ values \ "norm", "exp", "lnorm", "chisq".$
a	numeric, represents the first shape parameter. Default value is 1.
k	numeric, represents the Kth smallest value from a sample.
n	numeric, represents the size of the sample to compute the order statistic from.
	represents others parameters of the G distribution.

Value

A list with a random sample of order statistics from a Gamma G I Distribution and the value of its join probability density function evaluated in the random sample.

12 order_gammag2

Author(s)

Carlos Alberto Cardozo Delgado <cardozorpackages@gmail.com>.

References

Gentle, J, Computational Statistics, First Edition. Springer - Verlag, 2009.

Naradajah, S. and Rocha, R. (2016) Newdistns: An R Package for New Families of Distributions, Journal of Statistical Software.

Examples

```
library(orders)
# A sample of size 10 of the 3-th order statistics from a Gamma Exponential I Distribution order_gammag1(10,"exp",1,k=3,50)
# A sample of size 10 of the 3-th order statistics from a Gamma Normal I Distribution order_gammag1(10,"norm",1,k=3,50)
# A sample of size 10 of the 3-th order statistics from a Gamma Log-normal I Distribution order_gammag1(10,"lnorm",1,k=3,50)
# A sample of size 10 of the 3-th order statistics from a Gamma Chi-square I Distribution order_gammag1(10,"chisq",1,k=3,50,df=3)
```

order_gammag2

Random Sampling of Order Statistics from a Gamma G II Distribution

Description

order_gammag2 is used to obtain a random sample of order statistics from a Gamma G II Distribution.

Usage

```
order_gammag2(size, spec, a, k, n, ...)
```

Arguments

size	numeric, represents the size of the sample.
spec	$character, represents \ an \ specific \ G \ distribution. \ Possible \ values \ "norm", "exp", "lnorm", "chisq".$
a	numeric, represents the first shape parameter. Default value is 1.
k	numeric, represents the Kth smallest value from a sample.
n	numeric, represents the size of the sample to compute the order statistic from.
	represents others parameters of the G distribution.

Value

A list with a random sample of order statistics from a Gamma G II Distribution and the value of its join probability density function evaluated in the random sample.

order_gbg

Author(s)

Carlos Alberto Cardozo Delgado <cardozorpackages@gmail.com>.

References

Gentle, J, Computational Statistics, First Edition. Springer - Verlag, 2009.

Naradajah, S. and Rocha, R. (2016) Newdistns: An R Package for New Families of Distributions, Journal of Statistical Software.

Examples

```
library(orders) # A sample of size 10 of the 3-th order statistics from a Gamma Exponential II Distribution order_gammag2(10, "exp",1,k=3,50) # A sample of size 10 of the 3-th order statistics from a Gamma Normal II Distribution order_gammag2(10, "norm",1,k=3,50) # A sample of size 10 of the 3-th order statistics from a Gamma Log-normal II Distribution order_gammag2(10, "lnorm",1,k=3,50)
```

A sample of size 10 of the 3-th order statistics from a Gamma Chi-square II Distribution order_gammag2(10,"chisq",1,k=3,50,df=3)

order_gbg	Random Sampling of Order Statistics from a Generalized Beta G Dis-
	tribution

Description

order_gbg is used to obtain a random sample of order statistics from a Generalized Beta G Distribution.

Usage

```
order_gbg(size, spec, a, b, c, k, n, ...)
```

Arguments

size	numeric, represents the size of the sample.
spec	$character, represents \ an \ specific \ G \ distribution. \ Possible \ values \ "norm", "exp", "lnorm", "chisq".$
а	numeric, represents the first shape parameter. Default value is 1.
b	numeric, represents the second shape parameter. Default value is 1.
С	numeric, represents the third shape parameter. Default value is 1.
k	numeric, represents the Kth smallest value from a sample.
n	numeric, represents the size of the sample to compute the order statistic from.
	represents others parameters of the G distribution.

14 order_kumg

Value

A list with a random sample of order statistics from a Generalized Beta G Distribution and the value of its join probability density function evaluated in the random sample.

Author(s)

Carlos Alberto Cardozo Delgado <cardozorpackages@gmail.com>.

References

Gentle, J, Computational Statistics, First Edition. Springer - Verlag, 2009.

Naradajah, S. and Rocha, R. (2016) Newdistns: An R Package for New Families of Distributions, Journal of Statistical Software.

Examples

```
library(orders)
# A sample of size 10 of the 3-th order statistics from
# a Generalized Beta Exponential Distribution
order_gbg(10,"exp",1,1,1,k=3,50)
# A sample of size 10 of the 3-th order statistics from
# a Generalized Beta Normal Distribution
order_gbg(10,"norm",1,1,1,k=3,50)
# A sample of size 10 of the 3-th order statistics from
# a Generalized Beta Log-normal Distribution
order_gbg(10,"lnorm",1,1,1,k=3,50)
# A sample of size 10 of the 3-th order statistics from
# a Generalized Beta Chi-square Distribution
order_gbg(10,"chisq",1,1,1,k=3,50,df=3)
```

order_kumg

Random Sampling of Order Statistics from a Kumaraswamy G Distribution

Description

order_expkumg is used to obtain a random sample of order statistics from a Kumaraswamy G Distribution.

Usage

```
order_kumg(size, spec, a, b, k, n, ...)
```

order_kumg 15

Arguments

size	numeric, represents the size of the sample.
spec	$character, represents \ an \ specific \ G \ distribution. \ Possible \ values \ "norm", "exp", "lnorm", "chisq".$
а	numeric, represents the first shape parameter. Default value is 1.
b	numeric, represents the second shape parameter. Default value is 1.
k	numeric, represents the Kth smallest value from a sample.
n	numeric, represents the size of the sample to compute the order statistic from.
	represents others parameters of the G distribution.

Value

A list with a random sample of order statistics from a Kumaraswamy G Distribution and the value of its join probability density function evaluated in the random sample.

Author(s)

Carlos Alberto Cardozo Delgado <cardozorpackages@gmail.com>.

References

Gentle, J, Computational Statistics, First Edition. Springer - Verlag, 2009.

Naradajah, S. and Rocha, R. (2016) Newdistns: An R Package for New Families of Distributions, Journal of Statistical Software.

Examples

```
library(orders)
# A sample of size 10 of the 3-th order statistics from
# a Kumaraswamy Exponential Distribution
order_kumg(10,"exp",1,1,k=3,50)
# A sample of size 10 of the 3-th order statistics from
# a Kumaraswamy Normal Distribution
order_kumg(10,"norm",1,1,k=3,50)
# A sample of size 10 of the 3-th order statistics from
# a Kumaraswamy Log-normal Distribution
order_kumg(10,"lnorm",1,1,k=3,50)
# A sample of size 10 of the 3-th order statistics from
# a Kumaraswamy Chi-square Distribution
order_kumg(10,"chisq",1,1,k=3,50,df=3)
```

16 order_loggammag1

order_loggammag1	Random Sampling of Order Statistics from a Log Gamma G I Distribution
------------------	---

Description

order_loggammag1 is used to obtain a random sample of order statistics from a Log Gamma G I Distribution.

Usage

```
order_loggammag1(size, spec, a, b, k, n, ...)
```

Arguments

size	numeric, represents the size of the sample.
spec	character, represents an specific G distribution. Possible values "norm", "exp", "lnorm", "chisq".
а	numeric, represents the first shape parameter. Default value is 1.
b	numeric, represents the second shape parameter. Default value is 1.
k	numeric, represents the Kth smallest value from a sample.
n	numeric, represents the size of the sample to compute the order statistic from.
	represents others parameters of the G distribution.

Value

A list with a random sample of order statistics from a Log Gamma G I Distribution and the value of its join probability density function evaluated in the random sample.

Author(s)

Carlos Alberto Cardozo Delgado <cardozorpackages@gmail.com>.

References

Gentle, J, Computational Statistics, First Edition. Springer - Verlag, 2009.

Naradajah, S. and Rocha, R. (2016) Newdistns: An R Package for New Families of Distributions, Journal of Statistical Software.

Examples

```
library(orders)
# A sample of size 10 of the 3-th order statistics from
# a Log Gamma Exponential I Distribution
order_loggammag1(10,"exp",1,1,k=3,50)
# A sample of size 10 of the 3-th order statistics from
# a Log Gamma Normal I Distribution
```

order_loggammag2

```
order_loggammag1(10,"norm",1,1,k=3,50)
# A sample of size 10 of the 3-th order statistics from
# a Log Gamma Log-normal I Distribution
order_loggammag1(10,"lnorm",1,1,k=3,50)
# A sample of size 10 of the 3-th order statistics from
# a Log Gamma Chi-square I Distribution
order_loggammag1(10,"chisq",1,1,k=3,50,df=3)
```

order_loggammag2

Random Sampling of Order Statistics from a Log Gamma G II Distribution

Description

order_loggammag2 is used to obtain a random sample of order statistics from a Log Gamma G II Distribution.

Usage

```
order_loggammag2(size, spec, a, b, k, n, ...)
```

Arguments

size	numeric, represents the size of the sample.
spec	$character, represents \ an \ specific \ G \ distribution. \ Possible \ values \ "norm", "exp", "lnorm", "chisq".$
a	numeric, represents the first shape parameter. Default value is 1.
b	numeric, represents the second shape parameter. Default value is 1.
k	numeric, represents the Kth smallest value from a sample.
n	numeric, represents the size of the sample to compute the order statistic from.
	represents others parameters of the G distribution.

Value

A list with a random sample of order statistics from a Log Gamma G II Distribution and the value of its join probability density function evaluated in the random sample.

Author(s)

Carlos Alberto Cardozo Delgado <cardozorpackages@gmail.com>.

References

Gentle, J, Computational Statistics, First Edition. Springer - Verlag, 2009.

Naradajah, S. and Rocha, R. (2016) Newdistns: An R Package for New Families of Distributions, Journal of Statistical Software.

18 order_mbetag

Examples

```
library(orders)
# A sample of size 10 of the 3-th order statistics from
# a Log Gamma Exponential II Distribution
order_loggammag2(10,"exp",1,1,k=3,50)
# A sample of size 10 of the 3-th order statistics from
# a Log Gamma Normal II Distribution
order_loggammag2(10,"norm",1,1,k=3,50)
# A sample of size 10 of the 3-th order statistics from
# a Log Gamma Log-normal II Distribution
order_loggammag2(10,"lnorm",1,1,k=3,50)
# A sample of size 10 of the 3-th order statistics from
# a Log Gamma Chi-square II Distribution
order_loggammag2(10,"chisq",1,1,k=3,50,df=3)
```

order_mbetag

Random Sampling of Order Statistics from a Modified Beta G Distribution

Description

order_mbetag is used to obtain a random sample of order statistics from a Modified Beta G Distribution.

Usage

```
order_mbetag(size, spec, beta, a, b, k, n, ...)
```

Arguments

size	numeric, represents the size of the sample.
spec	$character, represents \ an \ specific \ G \ distribution. \ Possible \ values \ "norm", "exp", "lnorm", "chisq".$
beta	numeric, represents the scale parameter. Default value is 1.
a	numeric, represents a shape parameter must be positive. Default value is 1.
b	numeric, represents a shape parameter must be positive. Default value is 1.
k	numeric, represents the Kth smallest value from a sample.
n	numeric, represents the size of the sample to compute the order statistic from.
	represents others parameters of the G distribution.

Value

A list with a random sample of order statistics from a Modified Beta G Distribution and the value of its join probability density function evaluated in the random sample.

Author(s)

Carlos Alberto Cardozo Delgado <cardozorpackages@gmail.com>.

order_mog 19

References

Gentle, J, Computational Statistics, First Edition. Springer - Verlag, 2009.

Naradajah, S. and Rocha, R. (2016) Newdistns: An R Package for New Families of Distributions, Journal of Statistical Software.

Examples

```
library(orders)
# A sample of size 10 of the 3-th order statistics from
# a Modified Beta Exponential Distribution
order_mbetag(10,"exp",1,1,1,k=3,50)
# A sample of size 10 of the 3-th order statistics from
# a Modified Beta Normal Distribution
order_mbetag(10,"norm",1,1,1,k=3,50)
# A sample of size 10 of the 3-th order statistics from
# a Modified Beta Log-normal Distribution
order_mbetag(10,"lnorm",1,1,1,k=3,50)
```

order_mog

Random Sampling of Order Statistics from a Marshall Olkin G Distribution

Description

order_mog is used to obtain a random sample of order statistics from a Marshall Olkin G Distribution.

Usage

```
order_mog(size, spec, beta, k, n, ...)
```

Arguments

size	numeric, represents the size of the sample.
spec	$character, represents \ an \ specific \ G \ distribution. \ Possible \ values \ "norm", "exp", "lnorm", "chisq".$
beta	numeric, represents the scale parameter. Default value is 1.
k	numeric, represents the Kth smallest value from a sample.
n	numeric, represents the size of the sample to compute the order statistic from.
	represents others parameters of the G distribution.

Value

A list with a random sample of order statistics from a Marshall Olkin G Distribution and the value of its join probability density function evaluated in the random sample.

20 order_tessg

Author(s)

Carlos Alberto Cardozo Delgado <cardozorpackages@gmail.com>.

References

Gentle, J, Computational Statistics, First Edition. Springer - Verlag, 2009.

Naradajah, S. and Rocha, R. (2016) Newdistns: An R Package for New Families of Distributions, Journal of Statistical Software.

Examples

```
library(orders)
# A sample of size 10 of the 3-th order statistics from
# a Marshall Olkin Exponential Distribution
order_mog(10,"exp",1,k=3,50)
# A sample of size 10 of the 3-th order statistics from
# a Marshall Olkin Normal Distribution
order_mog(10,"norm",1,k=3,50)
# A sample of size 10 of the 3-th order statistics from
# a Marshall Olkin Log-normal Distribution
order_mog(10,"lnorm",1,k=3,50)
```

order_tessg

Random Sampling of Order Statistics from a Truncated-Exponential Skew-Symmetric G Distribution

Description

order_tessg is used to obtain a random sample of order statistics from a Truncated-Exponential Skew-Symmetric G Distribution.

Usage

```
order_tessg(size, spec, lambda, k, n, ...)
```

Arguments

size	numeric, represents the size of the sample.
spec	$character, represents \ an \ specific \ G \ distribution. \ Possible \ values \ "norm", "exp", "lnorm", "chisq".$
lambda	numeric, represents the skewness parameter. Default value is 1.
k	numeric, represents the Kth smallest value from a sample.
n	numeric, represents the size of the sample to compute the order statistic from.
	represents others parameters of the G distribution.

order_weibullg 21

Value

A list with a random sample of order statistics from a Truncated-Exponential Skew-Symmetric G Distribution and the value of its join probability density function evaluated in the random sample.

Author(s)

Carlos Alberto Cardozo Delgado <cardozorpackages@gmail.com>.

References

Gentle, J, Computational Statistics, First Edition. Springer - Verlag, 2009.

Naradajah, S. and Rocha, R. (2016) Newdistns: An R Package for New Families of Distributions, Journal of Statistical Software.

Examples

```
library(orders)
# A sample of size 10 of the 3-th order statistics from
# a Truncated-Exponential Skew-Symmetric Exponential Distribution
order_tessg(10, "exp",1,k=3,50)
# A sample of size 10 of the 3-th order statistics from
# a Truncated-Exponential Skew-Symmetric Normal Distribution
order_tessg(10, "norm",1,k=3,50)
# A sample of size 10 of the 3-th order statistics from
# a Truncated-Exponential Skew-Symmetric Log-normal Distribution
order_tessg(10, "lnorm",1,k=3,50)
# A sample of size 10 of the 3-th order statistics from
# a Truncated-Exponential Skew-Symmetric Chi-square Distribution
order_tessg(10, "chisq",1,k=3,50,df=3)
```

order_weibullg

Random Sampling of Order Statistics from a Weibull G Distribution

Description

order_weibullg is used to obtain a random sample of order statistics from a Weibull G Distribution.

Usage

```
order_weibullg(size, spec, beta, c, k, n, ...)
```

22 order_weibullg

Arguments

size	numeric, represents the size of the sample.
spec	$character, represents \ an \ specific \ G \ distribution. \ Possible \ values \ "norm", "exp", "lnorm", "chisq".$
beta	numeric, represents the scale parameter. Default value is 1.
С	numeric, represents the shape parameter. Default value is 1.
k	numeric, represents the Kth smallest value from a sample.
n	numeric, represents the size of the sample to compute the order statistic from.
	represents others parameters of the G distribution.

Value

A list with a random sample of order statistics from a Weibull G Distribution and the value of its join probability density function evaluated in the random sample.

Author(s)

Carlos Alberto Cardozo Delgado <cardozorpackages@gmail.com>.

References

Gentle, J, Computational Statistics, First Edition. Springer - Verlag, 2009.

Naradajah, S. and Rocha, R. (2016) Newdistns: An R Package for New Families of Distributions, Journal of Statistical Software.

Examples

```
library(orders)
```

```
# A sample of size 10 of the 3-th order statistics from a Weibull Exponential Distribution order_weibullg(10,"exp",beta=1,c=1,k=3,n=50)
```

A sample of size 10 of the 3-th order statistics from a Weibull Normal Distribution order_weibullg(10,"norm",beta=1,c=1,k=3,n=50)

A sample of size 10 of the 3-th order statistics from a Weibull Log-normal Distribution order_weibullg(10,"lnorm",beta=1,c=1,k=3,n=50)

A sample of size 10 of the 3-th order statistics from a Weibull Chi-square Distribution order_weibullg(10,"chisq",beta=1,c=1,k=3,n=50,df=3)

Index

```
order_beg, 2
\verb|order_beta| expg, 3
order_betag, 4
order_eepg, 5
order_eg, 7
order_expg, 8
order\_expkumg, 9
\texttt{order\_gammag}, \textcolor{red}{10}
order\_gammag1, 11
order_gammag2, 12
order_gbg, 13
\texttt{order\_kumg},\, \textcolor{red}{14}
\verb|order_loggammag1|, 16
{\tt order\_loggammag2}, 17
order\_mbetag, 18
order_mog, 19
order_tessg, 20
\verb|order_weibullg|, 21|
```