
Package ‘orderly’
January 12, 2020

Title Lightweight Reproducible Reporting

Version 1.0.4

Description Order, create and store reports from R. By defining a
lightweight interface around the inputs and outputs of an
analysis, a lot of the repetitive work for reproducible research
can be automated. We define a simple format for organising and
describing work that facilitates collaborative reproducible
research and acknowledges that all analyses are run multiple
times over their lifespans.

License MIT + file LICENSE

Encoding UTF-8

URL https://github.com/vimc/orderly

BugReports https://github.com/vimc/orderly/issues

SystemRequirements git

Imports DBI, R6, RSQLite, digest, docopt, fs (>= 1.2.7), ids, withr,
yaml, zip (>= 2.0.0)

Suggests httr, jsonlite, knitr, mockery, processx, rmarkdown,
testthat, vaultr (>= 1.0.0)

RoxygenNote 6.1.1

VignetteBuilder knitr

Language en-GB

NeedsCompilation no

Author Rich FitzJohn [aut, cre],
Robert Ashton [aut],
Alex Hill [aut],
Martin Eden [aut],
Wes Hinsley [aut],
Emma Russell [aut],
James Thompson [aut],
Imperial College of Science, Technology and Medicine [cph]

Maintainer Rich FitzJohn <rich.fitzjohn@gmail.com>

1

https://github.com/vimc/orderly
https://github.com/vimc/orderly/issues

2 orderly_cleanup

Repository CRAN

Date/Publication 2020-01-12 14:40:02 UTC

R topics documented:

orderly_cleanup . 2
orderly_commit . 3
orderly_db . 4
orderly_deduplicate . 6
orderly_default_remote_set . 7
orderly_example . 8
orderly_init . 9
orderly_latest . 10
orderly_list . 11
orderly_list_drafts . 12
orderly_log_on . 13
orderly_migrate . 15
orderly_new . 16
orderly_pull_dependencies . 17
orderly_rebuild . 19
orderly_remote_path . 20
orderly_run . 22
orderly_runner . 24
orderly_run_info . 25
orderly_run_remote . 26
orderly_test_start . 27

Index 29

orderly_cleanup Orderly cleanup

Description

Clean up orderly draft and data directories. Deletes all drafts (possibly just for a set of report
names) and then deletes dangling data sets that are not pointed to by any draft or committed reports.
Running cleanup does not affect any reports that have been committed with orderly_commit (i.e.,
the contents of the archive/ directory).

Usage

orderly_cleanup(name = NULL, root = NULL, locate = TRUE,
draft = TRUE, data = TRUE, failed_only = FALSE)

orderly_commit 3

Arguments

name Optional name; in this case only clean up drafts with this name
root The path to an orderly root directory, or NULL (the default) to search for one from

the current working directory if locate is TRUE.
locate Logical, indicating if the configuration should be searched for. If TRUE and

config is not given, then orderly looks in the working directory and up through
its parents until it finds an orderly_config.yml file.

draft Logical, indicating if drafts should be removed
data Logical, indicating if dangling data should be removed (data not used by any

draft or archived report).
failed_only Delete only failed reports (those without the end-of-run metadata). This will

also clean up drafts created by orderly_test_start

Value

No return value, this function is called only for its side effects

Examples

In a new example orderly, run two reports and commit only the
second one:
path <- orderly::orderly_example("minimal")
id1 <- orderly::orderly_run("example", root = path)
id2 <- orderly::orderly_run("example", root = path)
orderly::orderly_commit(id2, root = path)

We now have one draft and one archive report:
orderly::orderly_list_drafts(root = path)
orderly::orderly_list_archive(root = path)

To clean up the drafts:
orderly::orderly_cleanup(root = path)

We now have no draft and one archive reports:
orderly::orderly_list_drafts(root = path)
orderly::orderly_list_archive(root = path)

orderly_commit Commit a generated report

Description

Commit a generated report, moving it from the draft/ directory to archive/ and updating the
orderly index. Once committed, reports should not be deleted.

Usage

orderly_commit(id, name = NULL, root = NULL, locate = TRUE)

4 orderly_db

Arguments

id The identifier of the report

name The name of the report - this can be omitted and the name will be determined
from the id.

root The path to an orderly root directory, or NULL (the default) to search for one from
the current working directory if locate is TRUE.

locate Logical, indicating if the configuration should be searched for. If TRUE and
config is not given, then orderly looks in the working directory and up through
its parents until it finds an orderly_config.yml file.

Value

The path to the newly committed report

Examples

In a new example orderly, run a report
path <- orderly::orderly_example("minimal")
id <- orderly::orderly_run("example", root = path)

To commit it, all we need is the report id
orderly::orderly_commit(id, root = path)

The report is now committed, and as such could be used as a
depenency in another report and is not subject to deletion by
orderly::orderly_cleanup
orderly::orderly_list_archive(root = path)

orderly_db Connect to orderly databases

Description

Connect to the orderly databases. These should be treated as as read-only.

Usage

orderly_db(type, root = NULL, locate = TRUE, validate = TRUE)

Arguments

type The type of connection to make (source, destination, csv or rds).

root The path to an orderly root directory, or NULL (the default) to search for one from
the current working directory if locate is TRUE.

locate Logical, indicating if the configuration should be searched for. If TRUE and
config is not given, then orderly looks in the working directory and up through
its parents until it finds an orderly_config.yml file.

orderly_db 5

validate Logical, indicating if the database schema should be validated on open (cur-
rently only applicable with type = "destination"). This is primarily intended
for internal use.

Details

Orderly has several databases:

source All of the databases named in the database section of the orderly_config.yml

destination The orderly index database (typically a SQLite database stored at the orderly root)

csv The cache of database query results, in csv format

rds The cache of database query results, in rds format

Value

A database connection, or list of connections in the case of source.

Examples

Create an orderly that has a single commited report:
path <- orderly::orderly_example("minimal")
id <- orderly::orderly_run("example", root = path)
orderly::orderly_commit(id, root = path)

The source database holds the data that might be accessible via
the 'data' entry in orderly.yml:
db <- orderly::orderly_db("source", root = path)
This is a list, with one connection per database listed in the
orderly_config.yml (an empty list if none are specified):
db
DBI::dbListTables(db$source)
head(DBI::dbReadTable(db$source, "data"))
DBI::dbDisconnect(db$source)

The destination database holds information about the archived
reports:
db <- orderly::orderly_db("destination", root = path)
DBI::dbListTables(db)

These tables are documented online:
https://vimc.github.io/orderly/schema
DBI::dbReadTable(db, "report_version")

6 orderly_deduplicate

orderly_deduplicate Deduplicate an orderly archive

Description

Deduplicate an orderly archive. Deduplicating an orderly archive will replace all files that have the
same content with "hard links". This requires hard link support in the underlying operating system,
which is available on all unix-like systems (e.g. MacOS and Linux) and on Windows since Vista.
However, on windows systems this might require somewhat elevated privileges. If you use this
feature, it is very important that you treat your orderly archive as read-only (though you should be
anyway) as changing one copy of a linked file changes all the other instances of it - the files are
literally the same file.

Usage

orderly_deduplicate(root = NULL, locate = TRUE, dry_run = TRUE,
quiet = FALSE)

Arguments

root The path to an orderly root directory, or NULL (the default) to search for one from
the current working directory if locate is TRUE.

locate Logical, indicating if the configuration should be searched for. If TRUE and
config is not given, then orderly looks in the working directory and up through
its parents until it finds an orderly_config.yml file.

dry_run Logical, indicating if the deduplication should be planned but not run
quiet Logical, indicating if the status should not be printed

Details

This function will alter your orderly archive. Ordinarily this is not something that should be done,
so we try to be careful. In order for this to work, it is very important to treat your orderly archive
as read-only generally. If your canonical orderly archive is behind OrderlyWeb this will almost
certainly be the case already.

With "hard linking", two files with the same content can be updated so that both files point at the
same physical bit of data (see this Wikipedia page for more information). This is great, as if the file
is large, then only one copy needs to be stored. However, this means that if a change is made to one
copy of the file, it is immediately reflected in the other, but there is nothing to indicate that the files
are linked!

This approach is worth exploring if you have large files that are outputs of one report and inputs to
another, or large inputs repeatedly used in different reports, or outputs that end up being the same
in multiple reports. If you run the deduplication with dry_run = TRUE, an indication of the savings
will be printed.

Value

Invisibly, information about the duplication status of the archive before deduplication was run.

https://en.wikipedia.org/wiki/Hard_link

orderly_default_remote_set 7

Examples

path <- orderly::orderly_example("demo")
id1 <- orderly::orderly_run("minimal", root = path)
id2 <- orderly::orderly_run("minimal", root = path)
orderly_commit(id1, root = path)
orderly_commit(id2, root = path)
tryCatch(

orderly::orderly_deduplicate(path, dry_run = TRUE),
error = function(e) NULL)

orderly_default_remote_set

Set default remote location

Description

Set and get default remote locations. Default locations are specific to an orderly repository (based
on the path of the repository) so there is no interaction between different orderly projects.

Usage

orderly_default_remote_set(value, root = NULL, locate = TRUE)

orderly_default_remote_get(root = NULL, locate = TRUE)

Arguments

value A string describing a remote, a remote object, or NULL to clear

root The path to an orderly root directory, or NULL (the default) to search for one from
the current working directory if locate is TRUE.

locate Logical, indicating if the configuration should be searched for. If TRUE and
config is not given, then orderly looks in the working directory and up through
its parents until it finds an orderly_config.yml file.

Value

The default remote (for orderly_default_remote_get). The function orderly_default_remote_set
is called for its side effects only.

Examples

Same setup as in orderly_remote_path, with a remote orderly:
path_remote <- orderly::orderly_example("demo")
id <- orderly::orderly_run("other", list(nmin = 0),

root = path_remote, echo = FALSE)
orderly::orderly_commit(id, root = path_remote)
id <- orderly::orderly_run("use_dependency",

8 orderly_example

root = path_remote, echo = FALSE)
orderly::orderly_commit(id, root = path_remote)

And a local orderly
path_local <- orderly::orderly_example("demo")

We'll create an object to interact with this remote using
orderly_remote_path.
remote <- orderly::orderly_remote_path(path_remote)

There is no remote set by default:
try(orderly::orderly_default_remote_get(root = path_local))

We can set one:
orderly::orderly_default_remote_set(remote, root = path_local)

and now we can retrieve it:
orderly::orderly_default_remote_get(root = path_local)

Note that this has not affected the other orderly:
try(orderly::orderly_default_remote_get(root = path_remote))

orderly_example Set up an orderly example

Description

Set up one of the orderly examples included with the package. These are not intended to be starting
points for new orderly repositories, but are used in the package examples and vignettes.

Usage

orderly_example(name, path = tempfile(), run_demo = FALSE,
quiet = FALSE)

Arguments

name Name of the example

path Destination to create the example - if it exists already it must be an empty direc-
tory. By default, creates a new temporary directory

run_demo Logical, indicating if the example is configured as a "demo" (i.e., with a set of
reports to be run and committed), should these be run?

quiet Logical, indicating if informational messages should be suppressed when run-
ning the demo.

Value

Returns the path to the orderly example

orderly_init 9

Examples

Create a new copy of the "minimal" example
path <- orderly::orderly_example("minimal")
dir(path)

Example reports within this repository:
orderly::orderly_list(path)

orderly_init Initialise an orderly store

Description

Initialise an orderly store. This is a helper function that automates getting started with using orderly
for a new project. It is not required to use - you can create the orderly structure yourself (all that is
compulsory is the orderly_config.yml file).

Usage

orderly_init(root, doc = TRUE, quiet = FALSE)

Arguments

root The root of the store; this must be an empty directory or the path of a directory
to create

doc Logical, indicating if documentation should be added to the directories. This
also has the (potentially useful) effect of making these directories noticeable by
git.

quiet Logical, indicating if informational messages should be suppressed.

Details

This function creates a minimal orderly structure, containing:

orderly_config.yml The orderly configuration. Minimally, this can be empty, but it must exist.

src The path where report sources live. This should be placed under version control, and contain
a number of reports, each in their own directory with an orderly.yml describing their inputs
and outputs (artefacts). The orderly_new function can be used to accelerate creation of new
reports.

draft A directory where reports will be run using orderly_run. This directory should be excluded
from version control. orderly will create it as needed if it does not exist when a report is run.

archive A directory where successfully run reports will be moved to after being committed with
orderly_commit. This directory should be excluded from version control. orderly will
create it as needed if it does not exist when a report is committed.

data A directory where data extracted from the database (if used) will be stored. This directory
should be excluded from version control. orderly will create it as needed if it does not exist
when a report is run.

10 orderly_latest

Value

The path to the newly created archive

See Also

orderly_new for creating new reports within a configured orderly repository.

Examples

Initialise a new orderly repository in an temporary directory:
path <- orderly::orderly_init(tempfile())

This has created the directory skeleton that you need to get
started using orderly:
fs::dir_tree(path)

As instructed, the next thing to do is to edit the
orderly_config.yml file to match your needs:
readLines(file.path(path, "orderly_config.yml"))

orderly_latest Find most recent report

Description

Find most recent version of an orderly report. The most recent report is always the most recently
run report that has been committed (regardless of the order in which they were committed).

Usage

orderly_latest(name = NULL, root = NULL, locate = TRUE,
draft = FALSE, must_work = TRUE)

Arguments

name Name of the report to find; if NULL returns the most recent report across all
names

root The path to an orderly root directory, or NULL (the default) to search for one from
the current working directory if locate is TRUE.

locate Logical, indicating if the configuration should be searched for. If TRUE and
config is not given, then orderly looks in the working directory and up through
its parents until it finds an orderly_config.yml file.

draft Find most recent draft report

must_work Throw an error if no report is found. If FALSE, returns NA_character_.

Value

A character string with the id of the most recent report

orderly_list 11

See Also

orderly_list and orderly_list_archive for listing report names and versions.

Examples

path <- orderly::orderly_example("minimal")
id1 <- orderly::orderly_run("example", root = path, echo = FALSE)
id2 <- orderly::orderly_run("example", root = path, echo = FALSE)

With no reports committed there is no latest report:
orderly::orderly_latest("example", root = path, must_work = FALSE)

Commit the first report and it will be reported as latest:
orderly::orderly_commit(id1, root = path)
orderly::orderly_latest("example", root = path)

Commit the second report and it will be reported as latest instead:
orderly::orderly_commit(id2, root = path)
orderly::orderly_latest("example", root = path)

orderly_list List orderly reports

Description

List the names of reports known to orderly. These are the source names, not the results of running
reports. Note that if a report has been committed from a different branch it will not appear here, as
this is simply the set of reports in the src directory that can be run.

Usage

orderly_list(root = NULL, locate = TRUE)

Arguments

root The path to an orderly root directory, or NULL (the default) to search for one from
the current working directory if locate is TRUE.

locate Logical, indicating if the configuration should be searched for. If TRUE and
config is not given, then orderly looks in the working directory and up through
its parents until it finds an orderly_config.yml file.

Value

A character vector of report names

See Also

orderly_list_archive and orderly_list_drafts, which list archived (committed) and draft
reports and their versions.

12 orderly_list_drafts

Examples

The orderly demo, with lots of potential reports:
path <- orderly::orderly_example("demo")

Reports that _could_ be run:
orderly::orderly_list(path)

orderly_list_drafts List draft and archived reports

Description

List draft and archived reports. This returns a data.frame with columns name (see orderly_list)
and id.

Usage

orderly_list_drafts(root = NULL, locate = TRUE)

orderly_list_archive(root = NULL, locate = TRUE)

Arguments

root The path to an orderly root directory, or NULL (the default) to search for one from
the current working directory if locate is TRUE.

locate Logical, indicating if the configuration should be searched for. If TRUE and
config is not given, then orderly looks in the working directory and up through
its parents until it finds an orderly_config.yml file.

Value

A data.frame with columns name and id, containing character vectors of report names and ver-
sions, respectively.

See Also

orderly_list, which lists the names of source reports that can be run, and orderly_latest which
returns the id of the most recent report.

Examples

The orderly demo, with lots of potential reports:
path <- orderly::orderly_example("demo")

Reports that _could_ be run:
orderly::orderly_list(path)

Run a report twice:

orderly_log_on 13

id1 <- orderly::orderly_run("minimal", root = path)
id2 <- orderly::orderly_run("minimal", root = path)

We can see both drafts:
orderly::orderly_list_drafts(path)

Nothing is in the archive:
orderly::orderly_list_archive(path)

Commit a report:
orderly::orderly_commit(id2, root = path)

Only one draft now
orderly::orderly_list_drafts(path)

And the second report is in the archive:
orderly::orderly_list_archive(path)

orderly_log_on Orderly logging and diagnostic messages

Description

Start and stop the orderly log. When active, some actions will print diagnostic information to the
message stream. This is set to be on by default.

Usage

orderly_log_on()

orderly_log_off()

orderly_log(topic, value)

Arguments

topic Up to 9 character text string with the log topic

value Character string with the log entry

Details

The function orderly_log is designed to be used from applications that extend orderly, while the
functions orderly_log_on and orderly_log_off can be used by applications or users to enable
and disable log messages.

The interface here may expand by adding arguments or change behaviour based on global options.
Future versions may support logging to a file, or adding timestamps, or logging in json format, etc.

14 orderly_log_on

Value

orderly_log_on and orderly_log_off invisibly returns a logical indicating if logging was previ-
ously enabled. This allows patterns like:

if (!orderly::orderly_log_off()) {
on.exit(orderly::orderly_log_on())

}

to disable logging within a function (the on.exit block will be run when the function exits).

See Also

orderly_run, which makes use of these log messages

Examples

We are going to log things below
logging_was_enabled <- orderly::orderly_log_on()

path <- orderly::orderly_example("minimal")

By default we get both orderly log messages (e.g.,
"[name] example") and the output of R when it runs the report:
orderly::orderly_run("example", root = path)

Passing FALSE to the echo argument suppresses R's output but not
orderly messages:
orderly::orderly_run("example", root = path, echo = FALSE)

Disabling the log suppresses orderly's messages but still
displays R's output:
orderly::orderly_log_off()
orderly::orderly_run("example", root = path)

And using both will prevent all output
orderly::orderly_run("example", root = path, echo = FALSE)

About orderly log messages:
Orderly log messages have the form "[title] message"
orderly::orderly_log_on()
orderly::orderly_log("title", "message")

If logging is disabled they are not printed:
orderly::orderly_log_off()
orderly::orderly_log("title", "message")

Restore to previous settings:
if (logging_was_enabled) {

orderly::orderly_log_on()
}

orderly_migrate 15

orderly_migrate Migrate an orderly archive

Description

Migrate an orderly archive. This is needed periodically when the orderly archive version changes.
If you get a message like orderly archive needs migrating from a.b.c => x.y.z then you need
to run this function. The archive version is at most equal to the package version.

Usage

orderly_migrate(root = NULL, locate = TRUE, to = NULL,
dry_run = FALSE, skip_failed = FALSE, clean = FALSE)

Arguments

root The path to an orderly root directory, or NULL (the default) to search for one from
the current working directory if locate is TRUE.

locate Logical, indicating if the configuration should be searched for. If TRUE and
config is not given, then orderly looks in the working directory and up through
its parents until it finds an orderly_config.yml file.

to The version to migrate to. The default is the current archive version; this is
almost always what is wanted.

dry_run Logical, indicating if we should try running the migration but not actually ap-
plying it. This is intended primarily for developing new migrations and will
probably not work if you are multiple archive versions behind.

skip_failed Logical, where TRUE we will skip over entries that failed to be migrated. This is
expected to be useful on local archives only because it violates the append-only
nature of orderly. However, if a local archive contains unusual copies of orderly
archives that can’t be migrated this might come in helpful.

clean Logical, where TRUE (and where the migration was successful and dry_run is
FALSE) orderly will clean up all migration backup files. Use this periodically to
clean up the archive.

Details

Sometimes we add change information saved out in the orderly run. This requires patching previ-
ously run versions of the orderly metadata and that’s not something we want to do lightly. This func-
tion uses a relatively safe, and reversible, way of migrating metadata. We modify the orderly_run.rds
files, but will create versioned backups as files are changed.

Value

No return value, this function is called only for its side effects

16 orderly_new

Examples

Without an orderly repository created by a previous version of
orderly, this function does nothing interesting:
path <- orderly::orderly_example("minimal")
orderly::orderly_migrate(path)

orderly_new Create new report

Description

Create new report, starting from a template. Orderly comes with a set of templates, but projects
can bring their own templates; see Details below for how these are configured and discovered by
orderly.

Usage

orderly_new(name, root = NULL, locate = TRUE, quiet = FALSE,
template = NULL)

Arguments

name Name of the new report (will be a directory name).

root The path to an orderly root directory, or NULL (the default) to search for one from
the current working directory if locate is TRUE.

locate Logical, indicating if the configuration should be searched for. If TRUE and
config is not given, then orderly looks in the working directory and up through
its parents until it finds an orderly_config.yml file.

quiet Logical, indicating if informational messages should be suppressed.

template The name of a template. If NULL orderly will search for a template (see Details).
If given it must be the name of a directory within a directory templates in your
project root. The special label "orderly" will use orderly’s builtin template.

Details

To create a custom template, create a directory templates within your orderly root. Within that
directory create directories containing all the files that you would like a report to contain. This must
contain a file orderly.yml but may contain further files (for example, you might want a default
script and Rmd file).

If template is not given (i.e., is NULL) then we look for a template called default (i.e., stored at
template/default), then fall back on the system orderly template.

We first look for a file orderly/template.yml within the orderly root. If that is not found, then a
copy from the orderly package is used. This can always be used by using template = "system".

orderly_pull_dependencies 17

Value

The path of the new source directory, invisibly

See Also

orderly_init for initialising a new orderly repository.

Examples

path <- orderly::orderly_example("minimal")

Create a new report with the name "myreport" in this orderly
repository:
orderly::orderly_new("myreport", root = path)

The directory will be initialised with a orderly.yml file
containing documentation
dir(file.path(path, "src", "myreport"))
readLines(file.path(path, "src", "myreport", "orderly.yml"))

orderly_pull_dependencies

Download dependent reports

Description

Download dependent reports from an orderly remote. This can only be used if the orderly_config.yml
lists a remote. This allows for a centralised workflow where a central orderly store exists and holds
the canonical copies of reports, from which versions can be downloaded into local stores.

Usage

orderly_pull_dependencies(name, root = NULL, locate = TRUE,
remote = NULL)

orderly_pull_archive(name, id = "latest", root = NULL, locate = TRUE,
remote = NULL)

Arguments

name Name of the report to download dependencies for

root The path to an orderly root directory, or NULL (the default) to search for one from
the current working directory if locate is TRUE.

locate Logical, indicating if the configuration should be searched for. If TRUE and
config is not given, then orderly looks in the working directory and up through
its parents until it finds an orderly_config.yml file.

18 orderly_pull_dependencies

remote Description of the location. Typically this is a character string indicating a re-
mote specified in the remotes block of your orderly_config.yml. It is also
possible to pass in a directly created remote object (e.g., using orderly_remote_path,
or one provided by another package). If left NULL, then the default remote for
this orderly repository is used - by default that is the first listed remote.

id The identifier (for orderly_pull_archive). The default is to use the latest
report.

Details

The orderly_pull_archive function pulls report directly (without it being a dependent report).

After setting your username up you can run orderly_pull_dependencies("reportname") to
pull the dependencies of "reportname" down so that "reportname" can be run, or you can run
orderly_pull_archive("reportname") to pull a copy of "reportname" that has been run on the
remote server.

Pulling an archive report from a remote also pulls its dependencies (recursively), and adds all of
these to the local database. This may require migrating old orderly archives (orderly_migrate).
Note that this migration will likely fail for remote orderly versions older than 0.6.8 because the
migration needs to read data files on disk that are not included in the downloaded archive in order
to collect all the information required for the database. In this case, ask the administrator of the
remote orderly archive to migrate their archive, and then re-pull.

Value

No return value, these functions are called only for their side effects

See Also

orderly_remote_path, which implements the remote interface for orderly repositories at a lo-
cal path. See also OrderlyWeb for a system for hosting orderly repositories over an HTTP API.
vignette("remote",package = "orderly") describes the remote system in more detail.

Examples

Suppose we have a "remote" orderly repository at some path.
This might be read-only for you in practice and available via a
network filesystem or a dropbox folder synced to your computer.
We'll populate this with a pair of reports:
path_remote <- orderly::orderly_example("demo")
id <- orderly::orderly_run("other", list(nmin = 0),

root = path_remote, echo = FALSE)
orderly::orderly_commit(id, root = path_remote)
id <- orderly::orderly_run("use_dependency",

root = path_remote, echo = FALSE)
orderly::orderly_commit(id, root = path_remote)

We'll create a an object to interact with this remote using
orderly_remote_path.
remote <- orderly::orderly_remote_path(path_remote)

https://github.com/vimc/orderly-web

orderly_rebuild 19

We can use this object directly
remote$list_reports()
remote$list_versions("other")

More typically one will interact with the functions
orderly_pull_archive and orderly_pull_dependencies.

Now, suppose that you have your "local" copy of this; it shares
the same source (ordinarily these would both be under version
control with git):
path_local <- orderly::orderly_example("demo")

If we wanted to run the report "use_dependency" we need to have
a copy of the report "other", on which it depends:
try(orderly::orderly_run("use_dependency", root = path_local))

We can "pull" depenencies of a report before running
orderly::orderly_pull_dependencies("use_dependency", remote = remote,

root = path_local)

Now we can run the report because we have a local copy of the
dependency:
orderly::orderly_run("use_dependency", root = path_local)

We can also directly pull previously run reports:
orderly::orderly_pull_archive("use_dependency", id, remote = remote,

root = path_local)
orderly::orderly_list_archive(root = path_local)

orderly_rebuild Rebuild the report database

Description

Rebuild the report database. This is necessary when the orderly database schema changes, and you
will be prompted to run this function after upgrading orderly in that case.

Usage

orderly_rebuild(root = NULL, locate = TRUE, verbose = TRUE,
if_schema_changed = FALSE)

Arguments

root The path to an orderly root directory, or NULL (the default) to search for one from
the current working directory if locate is TRUE.

locate Logical, indicating if the configuration should be searched for. If TRUE and
config is not given, then orderly looks in the working directory and up through
its parents until it finds an orderly_config.yml file.

20 orderly_remote_path

verbose Logical, indicating if information about the rebuild should be printed as it runs

if_schema_changed

Logical, indicating if the rebuild should take place only if the schema has changed.
This is designed to be safe to use in (say) deployment scripts because it will be
fast enough to call regularly.

Details

The report database (orderly’s "destination" database) is essentially an index over all the metadata
associated with reports. It is used by orderly itself, and can be used by applications that extend
orderly (e.g., OrderlyWeb). All the data in this database can be rebuilt from files stored with the
committed (archive) orderly reports, using the orderly_rebuild function.

Value

No return value, this function is called only for its side effects

Examples

path <- orderly::orderly_example("minimal")
id <- orderly::orderly_run("example", root = path)
orderly::orderly_commit(id, root = path)

con <- orderly::orderly_db("destination", root = path)
DBI::dbReadTable(con, "report_version")
DBI::dbDisconnect(con)

The database can be removed and will be rebuilt if requested
(this is only a good idea if you do not extend the database with
your own fields - only the fields that orderly looks after can
be recovered!)
file.remove(file.path(path, "orderly.sqlite"))
orderly::orderly_rebuild(path)
file.exists(file.path(path, "orderly.sqlite"))
con <- orderly::orderly_db("destination", root = path)
DBI::dbReadTable(con, "report_version")
DBI::dbDisconnect(con)

It is safe to rebuild a database repeatedly, though this can be
slow with larger databases.
orderly::orderly_rebuild(path)

orderly_remote_path Orderly remote at a different path

https://github.com/vimc/orderly-web

orderly_remote_path 21

Description

Create a "handle" for interacting with orderly repositories that are hosted at a different path. This
might be useful in cases where you have access to an orderly repository via a network mount or a
synchronised folder (e.g., Dropbox, Box, etc). More generally, orderly_remote_path implements
an interface used by orderly to abstract over different ways that orderly repositories might be hosted
remotely, including over HTTP APIs.

Usage

orderly_remote_path(path, name = NULL)

Arguments

path Path to the orderly store

name Name of the remote

Value

An orderly_remote_path object, with methods that orderly will use in order to control this remote

See Also

orderly_pull_dependencies and orderly_pull_archive, which are the primary ways these
remote objects are used. See also OrderlyWeb for a system for hosting orderly repositories over an
HTTP API.

Examples

Suppose we have a "remote" orderly repository at some path.
This might be read-only for you in practice and available via a
network filesystem or a dropbox folder synced to your computer.
We'll populate this with a pair of reports:
path_remote <- orderly::orderly_example("demo")
id <- orderly::orderly_run("other", list(nmin = 0),

root = path_remote, echo = FALSE)
orderly::orderly_commit(id, root = path_remote)
id <- orderly::orderly_run("use_dependency",

root = path_remote, echo = FALSE)
orderly::orderly_commit(id, root = path_remote)

We'll create a an object to interact with this remote using
orderly_remote_path.
remote <- orderly::orderly_remote_path(path_remote)

We can use this object directly
remote$list_reports()
remote$list_versions("other")

More typically one will interact with the functions
orderly_pull_archive and orderly_pull_dependencies.

https://github.com/vimc/orderly-web

22 orderly_run

Now, suppose that you have your "local" copy of this; it shares
the same source (ordinarily these would both be under version
control with git):
path_local <- orderly::orderly_example("demo")

If we wanted to run the report "use_dependency" we need to have
a copy of the report "other", on which it depends:
try(orderly::orderly_run("use_dependency", root = path_local))

We can "pull" depenencies of a report before running
orderly::orderly_pull_dependencies("use_dependency", remote = remote,

root = path_local)

Now we can run the report because we have a local copy of the
dependency:
orderly::orderly_run("use_dependency", root = path_local)

We can also directly pull previously run reports:
orderly::orderly_pull_archive("use_dependency", id, remote = remote,

root = path_local)
orderly::orderly_list_archive(root = path_local)

orderly_run Run a report

Description

Run a report. This will create a new directory in drafts/<reportname>, copy your declared re-
sources there, extract data from databases (if you are using them), run your script and check that all
expected artefacts were created. Once successfully run you can use orderly_commit to move it to
the archive directory.

Usage

orderly_run(name, parameters = NULL, envir = NULL, root = NULL,
locate = TRUE, echo = TRUE, id_file = NULL, fetch = FALSE,
ref = NULL, message = NULL)

Arguments

name Name of the report to run (see orderly_list).

parameters Parameters passed to the report. A named list of parameters declared in the
orderly.yml.

envir The parent of the environment that will be used to evaluate the report script;
by default a new environment will be made with the global environment as the
parent.

root The path to an orderly root directory, or NULL (the default) to search for one from
the current working directory if locate is TRUE.

orderly_run 23

locate Logical, indicating if the configuration should be searched for. If TRUE and
config is not given, then orderly looks in the working directory and up through
its parents until it finds an orderly_config.yml file.

echo Print the result of running the R code to the console

id_file Write the identifier into a file

fetch Logical, indicating if git should be fetched before checking out the reference
ref.

ref A git reference to use for this run (see Details)

message An optional character string containing a message explaining why the report was
run

Details

If ref is provided then before running a report orderly will try to check out (as a detached HEAD)
ref, interpreted as a git reference. This can be a commit, tag, or a branch name (including remote).
The working directory must be clean according to git status and this will require some careful
use of .gitignore to exclude draft, archive, data and orderly.sqlite. The git tree will revert
back to the original branch at completion (or failure to complete) the report.

Parameters are passed to the report as a named list, for example

id <-orderly::orderly_run("other",list(nmin = 0.2),root = path)

(see the examples). The names of the parameters (here, nmin) must correspond to declared parame-
ters in the orderly.yml. It is an error if parameters without a default are omitted, and it is an error
if unknown parameters are provided.

Value

The id of the newly created report

See Also

orderly_log for controlling display of log messages (not just R output)

Examples

path <- orderly::orderly_example("demo")

To run most reports, provide the report name (and the path if
not running in the working directory, as is the case here):
id <- orderly::orderly_run("minimal", root = path)

Every report gets a unique identifier, based on the time (it is
ISO 8601 time with random hex appended to end)
id

After being run, a report is a "draft" and will exist in the
drafts directory:
orderly::orderly_list_drafts(root = path)

24 orderly_runner

Draft reports are always stored in the path
<root>/draft/<name>/<id>, so we have
dir(file.path(path, "draft", "minimal", id))

which contains the files when the report was run.

If a report has parameters, then these must be passed in as a
named list.
id <- orderly::orderly_run("other", list(nmin = 0.2), root = path)

These parameters can be used in SQL queries or in the report
code.

orderly_runner Orderly runner

Description

An orderly runner. This is used to run reports as a server process. It’s designed to be used in
conjunction with OrderlyWeb, so there is no "draft" stage and reports are committed as soon as they
are run. This function is not intended for human end users, only for creating automated tools for
use with orderly.

Usage

orderly_runner(path, allow_ref = NULL, backup_period = 600)

Arguments

path Path to use

allow_ref Allow git to change branches/ref for run. If not given, then we will look to see if
the orderly configuration disallows branch changes (based on the ORDERLY_API_SERVER_IDENTITY
environment variable and the master_only setting of the relevant server block.

backup_period Period (in seconds) between DB backups. This is a guide only as backups cannot
happen while a task is running - if more than this many seconds have elapsed
when the runner is in its idle loop a backup of the db will be performed. This
creates a copy of orderly’s destination database in backup/db with the same
filename as the destination database, even if that database typically lives outside
of the orderly tree. In case of corruption of the database, this backup can be
manually moved into place. This is only needed if you are storing information
alongside the core orderly tables (as done by OrderlyWeb).

Value

A runner object, with methods designed for internal use only.

orderly_run_info 25

Examples

path <- orderly::orderly_example("demo")
runner <- orderly::orderly_runner(path)

orderly_run_info Information on current orderly run

Description

This function allows inspection of some of orderly’s metadata during an orderly run. The format
returned is internal to orderly and subject to change. It is designed to be used within report code. To
use in conjunction with orderly_test_start, you must pass in the path to the report in question.

Usage

orderly_run_info(path = NULL)

Arguments

path Path to the report currently being run. This should be left as NULL when run-
ning a report, and the path to the report being run should be used when using
orderly_test_start

Value

A list of metadata about the current report

Examples

path <- orderly::orderly_example("demo")

This example uses orderly_run_info within its script, saving the
output to "output.rds"
readLines(file.path(path, "src", "use_dependency", "script.R"))

Run the dependency:
id <- orderly::orderly_run("other", list(nmin = 0), root = path)
orderly::orderly_commit(id, root = path)

Then the report
id <- orderly::orderly_run("use_dependency", root = path)

This is the contents:
readRDS(file.path(path, "draft", "use_dependency", id, "info.rds"))

26 orderly_run_remote

orderly_run_remote Run a report on a remote server

Description

Run a report on a remote server. Note that this is only supported for remotes using OrderlyWeb at
present.

Usage

orderly_run_remote(name, parameters = NULL, ref = NULL,
timeout = NULL, wait = 3600, poll = 1, open = TRUE,
stop_on_error = TRUE, stop_on_timeout = TRUE, progress = TRUE,
root = NULL, locate = TRUE, remote = NULL)

Arguments

name Name of the report
parameters Parameters for the report
ref Optional reference, indicating which branch should be used. This cannot be

used if the remote has master_only set.
timeout Time to tell the server to wait before killing the report.
wait Time to wait for the report to be run; if the report takes longer than this time to

run but timeout is longer it will remain running on the server but we will stop
waiting for it and instead throw an error.

poll Period to poll the server for results (in seconds)
open Logical, indicating if the report should be opened in a browser on completion (if

supported by the remote)
stop_on_error Logical, indicating if we should throw an error if the report fails. If you set this

to FALSE it will be much easier to debug, but more annoying in scripts. If the
report times out on the server (i.e., takes longer than timeout) that counts as an
error.

stop_on_timeout

Logical, indicating if we should throw an error if the report takes longer than
wait seconds to complete.

progress Logical, indicating if a progress spinner should be included.
root The path to an orderly root directory, or NULL (the default) to search for one from

the current working directory if locate is TRUE.
locate Logical, indicating if the configuration should be searched for. If TRUE and

config is not given, then orderly looks in the working directory and up through
its parents until it finds an orderly_config.yml file.

remote Description of the location. Typically this is a character string indicating a re-
mote specified in the remotes block of your orderly_config.yml. It is also
possible to pass in a directly created remote object (e.g., using orderly_remote_path,
or one provided by another package). If left NULL, then the default remote for
this orderly repository is used - by default that is the first listed remote.

orderly_test_start 27

Value

No return value, this function is called only for its side effects

Examples

path_remote <- orderly::orderly_example("demo")
path_local <- orderly::orderly_example("demo")
remote <- orderly::orderly_remote_path(path_remote)
Currently, path remotes don't support run
try(orderly::orderly_run_remote(

"minimal", remote = remote, root = path_local))

orderly_test_start Prepare a directory for orderly to use

Description

For interactive testing of orderly code. This runs through and sets everything up as orderly would
(creates a new working directory and copies files into it, pulls data from the database, copies
over any dependent reports) but then rather than running the report hands back to the user. The
orderly_data function returns an environment with the extracted data.

Usage

orderly_test_start(name, parameters = NULL, envir = parent.frame(),
root = NULL, locate = TRUE)

orderly_test_check(path = NULL)

orderly_data(name, parameters = NULL, envir = NULL, root = NULL,
locate = TRUE)

Arguments

name Name of the report to run (see orderly_list).

parameters Parameters passed to the report. A named list of parameters declared in the
orderly.yml.

envir The parent of the environment that will be used to evaluate the report script;
by default a new environment will be made with the global environment as the
parent.

root The path to an orderly root directory, or NULL (the default) to search for one from
the current working directory if locate is TRUE.

locate Logical, indicating if the configuration should be searched for. If TRUE and
config is not given, then orderly looks in the working directory and up through
its parents until it finds an orderly_config.yml file.

path Path to the report that is currently being run

28 orderly_test_start

Details

Previous versions of orderly changed into the created directory when using orderly::orderly_test_start,
which allowed interactive testing of a report, including ensuring that it has created all expected
outputs. However, CRAN rules do not allow changing the working directory, which significantly
reduces the usefulness of this function - as such we may remove it entirely in a future version of
orderly if it does not prove useful in this more limited form.

The new suggested workflow is:

1. run orderly_test_start(...) to prepare a report directory

2. manually change into that directory following the printed instructions

3. use orderly_test_check to check that your report has created the expected artefacts

4. manually change back to your original directory

Value

The path to the report directory

Examples

path <- orderly::orderly_example("minimal")
p <- orderly::orderly_test_start("example", root = path)

The data in the orderly example is now available to use
dat

Check to see which artefacts have been created so far:
orderly::orderly_test_check(p)

Manually the code that this report has in its script
png(file.path(p, "mygraph.png"))
barplot(setNames(dat$number, dat$name), las = 2)
dev.off()

We now confirm that the artefact has been created:
orderly::orderly_test_check(p)
The function orderly_data does all the preparation work that
orderly_run does, but does not run the report; instead it
returns the created environment with all the data and parameters
set.
path <- orderly::orderly_example("demo")
env <- orderly::orderly_data("other", list(nmin = 0.2), root = path)
ls(env)
env$nmin
env$extract

Index

orderly_cleanup, 2
orderly_commit, 2, 3, 9, 22
orderly_data (orderly_test_start), 27
orderly_db, 4
orderly_deduplicate, 6
orderly_default_remote_get

(orderly_default_remote_set), 7
orderly_default_remote_set, 7
orderly_example, 8
orderly_init, 9, 17
orderly_latest, 10, 12
orderly_list, 11, 11, 12, 22, 27
orderly_list_archive, 11
orderly_list_archive

(orderly_list_drafts), 12
orderly_list_drafts, 11, 12
orderly_log, 23
orderly_log (orderly_log_on), 13
orderly_log_off (orderly_log_on), 13
orderly_log_on, 13
orderly_migrate, 15, 18
orderly_new, 9, 10, 16
orderly_pull_archive, 21
orderly_pull_archive

(orderly_pull_dependencies), 17
orderly_pull_dependencies, 17, 21
orderly_rebuild, 19
orderly_remote_path, 18, 20, 26
orderly_run, 9, 14, 22
orderly_run_info, 25
orderly_run_remote, 26
orderly_runner, 24
orderly_test_check

(orderly_test_start), 27
orderly_test_start, 3, 25, 27

29

	orderly_cleanup
	orderly_commit
	orderly_db
	orderly_deduplicate
	orderly_default_remote_set
	orderly_example
	orderly_init
	orderly_latest
	orderly_list
	orderly_list_drafts
	orderly_log_on
	orderly_migrate
	orderly_new
	orderly_pull_dependencies
	orderly_rebuild
	orderly_remote_path
	orderly_run
	orderly_runner
	orderly_run_info
	orderly_run_remote
	orderly_test_start
	Index

