
Using Optmatch on data in SAS, Stata, etc
Ben B. Hansen, Mark Fredrickson, Josh Buckner, Josh Errickson, and Peter Solenberger,

with embedded Fortran code due to Dimitri P. Bertsekas and Paul Tseng
2019-12-06

General comments
If a users preferred data analysis software is other than R, Optmatch can still easily be used to perform the
matching while all other data analysis can be performed in the preferred software.

In general, the procedure will be

1. In your preferred software, export a data set containing a treatment indicator and all variables to match,
exactMatch or caliper on.

• (Optionally, if you wish to match using a propensity score, fit such a model and include the
predicted propensity scores in the data set.)

2. Import the data into R and perform the matching.
3. Export the data from R, including the matches.
4. Import the data back into your preferred software.

The two best ways to import the data back-and-forth are either using comma separated value files (.csv files)
or using the R package foreign.

For .csv files, sample R code may be
> externaldata <- read.csv("externaldata.csv", header=TRUE)
> externaldata$match <- fullmatch(..., data=externaldata)
> write.csv(externaldata, file="externaldata.matched.csv")

Examples of the use of foreign are included within the software-specific sections below.

Using Optmatch with SAS
For this example, lets say we have some simple demographics. We will treat gender as the treatment indicator,
and wish to match on a combination of a propensity score for gender (using both age and height) and age.

data people;
infile datalines dsd dlm=' ' missover;
input gender age height;

datalines;
0 25 62
0 41 68
0 38 63
0 22 62
1 33 70
1 35 71
1 47 68
1 23 64
;
run;

Now we can fit a logistic model to predict gender using age and height.

1

proc logistic data = people;
model gender (event='1') = age height;
output out = preddata p=ppty;

run;

Finally, since we want to match only on the new ppty propensity score and age, we can drop height.

proc data newpeople;
set preddata;
keep gender age ppty;

run;

With this setup, we can now either pass it to R via a .csv file, or directly using the foreign package in R.

Passing SAS data with .csv files
Save the file from SAS.

proc export data=newpeople;
outfile="C:\Users\myuser\Desktop\sasout.csv";

run;

Inside R, we can load this data.
> sasdata <- read.csv("C:/Users/myuser/Desktop/sasout.csv", header=TRUE)

(Depending on your version of Windows, you may need to use
> sasdata <- read.csv("C:\\Users\\myuser\\Desktop\\sasout.csv", header=TRUE)

instead.)

If you have string variables (e.g. race as “White”, “Hispanic”, etc), you may need to include the argument
stringsAsFactors=FALSE.

Now, perform matching as desired, saving the final match to sasdata. For example,
> library(optmatch)
> f <- fullmatch(gender ~ age + ppty, data=sasdata)
> sasdata$match <- f

Save this data back to .csv as follows.
> write.csv(sasdata, "C:/Users/myuser/Desktop/rout.sas.csv", row.names=FALSE)

The use of row.names=FALSE stops R from including the row names (likely 1, 2, 3, etc) as the first column in
the data. If you re-arranged the data at any point, you may need to set that to TRUE, but keep in mind to
handle it properly in SAS, as the default will be to treat it as a variable.

Now, returning to SAS, we can read the new rout.sas.csv file in. The only catch is that we want to ensure
that the match is read as a string by using $, since it may have values like 1.1 and 1.10, representing two
different matches, but which are identical if treated as numeric.

data matchedpeople;
infile "C:/Users/myuser/Desktop/rout.sas.csv" dsd firstobs=2;
input gender age ppty match $;

run;

The argument firstobs=2 skips the variable names; alternatively you could pass col.names=FALSE to R’s
write.csv, but then the rout.sas.csv file lacks any variable information, which may be useful to have.

2

Passing SAS data with R’s foreign
As an alternative to using R’s write.csv, you can use the R package foreign to generate both the data and
SAS code needed.
> library(foreign)
> write.foreign(sasdata, 'C:/Users/myuser/Desktop/rout.sas.txt',
+ 'C:/Users/myuser/Desktop/rout.code.sas', package = 'SAS')

Opening the rout.code.sas file will give you the SAS code to read in the data.

Using Optmatch with Stata
For this example, we will start with the built-in auto data set in Stata.
sysuse auto.dta

We will treat foreign, whether a car is domestic or foreign, as the treatment indicator. (Not to be confused
with the R package foreign!) We will estimate propensity scores using all other variables (excluding make
which is unique per row), and wish to match on the estimated propensity score as well as price and mpg.

First, lets fit the logistic regression model.
logit foreign price mpg rep78 headroom trunk weight length turn displacement gear_ratio
predict ppty, xb

Note that in addition to the treatment indicator and variables to match on, we need to include a unique
identifier. In this case, we can use make. If no such identifier exists, you could use
gen case_id = _n

to generate ID’s 1, 2, etc. These will be needed to merge the match information back in.

We’ll save only the relevant variables (treatment indicator, anything to be matched on (including propensity
score), and an ID variable to merge on) to avoid saving and loading a very large file.
preserve
keep make foreign price mpg ppty
save "C:\Users\myuser\Desktop\toR.dta"
restore

Turning to R, this can be read in using the “haven” package
> library(haven)
> statadata <- read_dta("C:/Users/myuser/Desktop/toR.dta")

(Again, depending on your version of Windows, you may need to use
> statadata <- read.csv("C:\\Users\\myuser\\Desktop\\stataout.csv", header=TRUE)

instead.)

If you have string variables (e.g. race as “White”, “Hispanic”, etc), you may need to include the argument
stringsAsFactors=FALSE.

Now, perform matching as desired, saving the final match to statadata. For example,
> library(optmatch)
> statadata$match <- fullmatch(foreign ~ price + mpg + ppty, data=statadata, max.controls=3)

We’ll use haven again to write the data back to Stata. We do not recommend using .csv files to transfer the
data back to Stata, though the write.csv file would be similar to that for SAS.

3

> write_dta(statadata, "C:/Users/myuser/Desktop/rout.stata.dta")

Back in Stata, you can merge this into the existing data set by the following commands:
sort make
merge 1:1 make using "C:/Users/myuser/Desktop/rout.stata.dta", force

The force option is necessary to overcome type differences. Additional tweaks may be necessary here if you
have special variable types.

4

	General comments
	Using Optmatch with SAS
	Passing SAS data with .csv files
	Passing SAS data with R's foreign

	Using Optmatch with Stata

