
The optimsimplex Package - version 1.0-7

Sébastien Bihorel

February 12, 2018

optimsimplex is a R port of a module originally developped for Scilab version 5.2.1 by Michael
Baudin (INRIA - DIGITEO). Information about this software can be found at www.scilab.org.
The following documentation as well as the content of the functions .Rd files are adaptations of the
documentation provided with the original Scilab optimsimplex module.

1 Overview

1.1 Description

The goal of this package is to provide a building block for optimization algorithms based on a
simplex. The optimsimplex package may be used in the following optimization methods:

� the simplex method Spendley et al.,

� the method of Nelder and Mead,

� the Box’s algorithm for constrained optimization,

� the multi-dimensional search by Torczon,

� etc ...

This set of commands allows to manage a simplex made of k ≥ n + 1 points in a n-dimensional
space. This component is the building block for a class of direct search optimization methods such
as the Nelder-Mead algorithm or Torczon’s Multi-Dimensionnal Search.

A simplex is designed as a collection of k ≥ n+ 1 vertices. Each vertex is made of a point and a
function value at that point.

The simplex can be created with various shapes. It can be configured and quieried at will. The
simplex can also be reflected or shrinked. The simplex gradient can be computed with a order 1
forward formula and with a order 2 centered formula.

The optimsimplex function allows to create a simplex. If vertices coordinates are given, there
are registered in the simplex. If a function is provided, it is evaluated at each vertex. Sev-
eral functions allow to create a simplex with special shapes and methods, including axes-by-axes
(optimsimplex.axes), regular (optimsimplex.spendley), randomized bounds simplex with arbi-
trary nbve vertices (optimsimplex.randbounds) and an heuristical small variation around a given
point (optimsimplex.pfeffer).

In the functions provided in this package, simplices and vertices are, depending on the functions
either input or output arguments. The following general principle have been used to manage the
storing of the coordinates of the points.

1

www.scilab.org

� The vertices are stored row by row, while the coordinates are stored column by column. This
implies the following rules.

� The coordinates of a vertex are stored in a row vector, i.e. a 1 x n matrix where n is the
dimension of the space.

� The function values are stored in a column vector, i.e. a nbve x 1 matrix where nbve is the
number of vertices.

1.2 Computation of function value at the given vertices

Most functions in the optimsimplex package accept a fun argument, which corresponds to the
function to be evaluated at the given vertices. The function is expected to have the following input
and output arguments:

myfunction <- function(x, this){

...

return(list(f=f,this=this))

}

where x is a row vector, f is the function value, and this an optional user-defined data passed to
the function. If data is provided, it is passed to the callback function both as an input and output
argument. data may be used if the function uses some additionnal parameters. It is returned as an
output parameter because the function may modify the data while computing the function value.
This feature may be used, for example, to count the number of times that the function has been
called.

2 Examples

2.1 Creating a simplex given vertex coordinates

In the following example, one creates a simplex with known vertices coordinates and queries the new
object. The function values at the vertices are unset.

> coords <- matrix(c(0,1,0,0,0,1),ncol=2)

> tmp <- optimsimplex(coords=coords)

> s1 <- tmp$newobj

> s1

Dimension: n=2

Number of vertices: nbve=3

Empty simplex (zero function values)

NA NA

> optimsimplex.getallx(s1)

[,1] [,2]

[1,] 0 0

[2,] 1 0

[3,] 0 1

2

> optimsimplex.getn(s1)

[1] 2

> optimsimplex.getnbve(s1)

[1] 3

2.2 Creating a simplex with randomized bounds

In the following example, one creates a simplex with in the 2D domain c(-5, 5)ˆ2, with c(-1.2, 1.0)
as the first vertex. One uses the randomized bounds method to generate a simplex with 5 vertices.
The function takes an additionnal argument this, which counts the number of times the function
is called. After the creation of the simplex, the value of this$nb is 5, which is the expected result
because there is one function call by vertex.

> rosenbrock <- function(x){

+ y <- 100*(x[2]-x[1]^2)^2+(1-x[1])^2

+ }

> mycostf <- function(x, this){

+ y <- rosenbrock(x)

+ this$nb <- this$nb+1

+ return(list(f=y,this=this))

+ }

> mystuff <- list(nb=0)

> tmp <- optimsimplex(x0=c(-1.2,1.0), fun=mycostf, method='randbounds',

+ boundsmin=c(-5.0,-5.0), boundsmax=c(5.0,5.0), nbve=5,

+ data=mystuff)

> tmp$newobj

Dimension: n=2

Number of vertices: nbve=5

Vertex #1/5 : fv=2.420000e+01, x=-1.200000e+00 1.000000e+00

Vertex #2/5 : fv=7.226505e+04, x=4.726452e+00 -4.540226e+00

Vertex #3/5 : fv=6.970243e+03, x=-2.000067e+00 -4.343138e+00

Vertex #4/5 : fv=1.492464e+04, x=2.822660e+00 -4.247876e+00

Vertex #5/5 : fv=2.144318e+04, x=-3.419136e+00 -2.946329e+00

> tmp$data

$nb

[1] 5

> cat(sprintf("Function evaluations: %d\n",tmp$data$nb))

Function evaluations: 5

3 Initial simplex strategies

In this section, we analyse the various initial simplex which are provided in this component.

3

It is known that direct search methods based on simplex designs are very sensitive to the initial
simplex. This is why the current component provides various ways to create such an initial simplex.

The first historical simplex-based algorithm is the one presented in ”Sequential Application of
Simplex Designs in Optimisation and Evolutionary Operation” by W. Spendley, G. R. Hext and F.
R. Himsworth. The ”spendley” simplex creates the regular simplex which is presented in the paper
[9].

The ”randbounds” simplex is due to M.J. Box in ”A New Method of Constrained Optimization
and a Comparison With Other Methods” [7].

Pfeffer’s method is an heuristic which is presented in ”Global Optimization Of Lennard-Jones
Atomic Clusters” by E. Fan [4]. It is due to L. Pfeffer at Stanford and it is used in the fminsearch

function from the neldermead package.

4 References

The functions distributed in optimsimplex are also based upon the work from Nelder and Mead [5],
Kelley [3], Han and Neumann [6], Torczon [8], Burmen et al. [1], and Price and al. [2].

[1] A. Burmen and J. Puhan and T. Tuma. Grid Restrained Nelder-Mead Algorithm. Computational
Optimization and Applications, 34(3):359–375, July 2006.

[2] C.J. Price and I.D. Coope and D. Byatt. A Convergent Variant of The Nelder-Mead algorithm.
Journal of Optimization Theory and Applications, 113(1):5–19, April 2002.

[3] C.T. Kelley. Iterative Methods for Optimization. SIAM Frontiers in Applied Mathematics,
Philadelphia, PA, 1999.

[4] E. Fan. Global Optimization Of Lennard-Jones Atomic Clusters. Master’s thesis, McMaster
University, February 2002.

[5] J.A. Nelder and R. Mead. A Simplex Method for Function Minimization. The Computer Journal,
7(4):308–313, 1965.

[6] Lixing Han and Michael Neumann. Effect of Dimensionality on the Nelder-Mead Simplex Method.
Optimization methods and software, 21(1):1–16, 2006.

[7] M.J. Box. A New Method of Constrained Optimization and a Comparison With Other Methods.
The Computer Journal, 1(8):42–52, 1965.

[8] V.J. Torczon. Multi-Directional Search: A Direct Search Algorithm for Parallel Machines. PhD
thesis, Rice University, Houston, TX, 1989.

[9] W. Spendley and G.R. Hext and F.R. Himsworth. Sequential Application of Simplex Designs in
Optimisation and Evolutionary Operation. Technometrics, 4:441–461, 1962.

5 Network of optimsimplex functions

The network of functions provided in optimsimplex is illustrated in the network map given in the
neldermead package.

4

6 Help on optimsimplex functions

optimsimplex-package R port of the Scilab optimsimplex module

Description

The goal of this package is to provide a building block for optimization algorithms based on a
simplex. The optimsimplex package may be used in the following optimization methods:

� the simplex method of Spendley et al.,

� the method of Nelder and Mead,

� the Box’s algorithm for constrained optimization,

� the multi-dimensional search by Torczon,

� etc ...

Features The following is a list of features currently provided:

� Manage various simplex initializations

– initial simplex given by user,

– initial simplex computed with a length and along the coordinate axes,

– initial regular simplex computed with Spendley et al. formula,

– initial simplex computed by a small perturbation around the initial guess point,

– initial simplex computed from randomized bounds.

� sort the vertices by increasing function values,

� compute the standard deviation of the function values in the simplex,

� compute the simplex gradient with forward or centered differences,

� shrink the simplex toward the best vertex,

� etc...

Details

Package: optimsimplex
Type: Package
Version: 1.0-7
Date: 2018-02-12
License: CeCILL-2
LazyLoad: yes

See vignette('optimsimplex',package='optimsimplex') for more information.

5

Author(s)

Author of Scilab optimsimplex module: Michael Baudin (INRIA - Digiteo)

Author of R adaptation: Sebastien Bihorel (<sb.pmlab@gmail.com>)

optimsimplex S3 optimsimplex class

Description

These functions support the S3 class ’optimsimplex’ and are intended to either create objects of
this class or check if an object is of this class.

Usage

optimsimplex(coords = NULL, fun = NULL, data = NULL, method = NULL,

x0 = NULL, len = NULL, deltausual = NULL, deltazero = NULL,

boundsmax = NULL, boundsmin = NULL, nbve = NULL,

simplex0 = NULL)

optimsimplex.tostring(x)

S3 method for class 'optimsimplex'

print(x,...)

S3 method for class 'optimsimplex'

is(x)

Arguments

coords The matrix of point estimate coordinates in the simplex. The coords matrix
is expected to be a nbve x n matrix, where n is the dimension of the space and
nbve is the number of vertices in the simplex, with nbve>= n+1. Only used
if method is set to NULL.

fun The function to compute at vertices. The function is expected to have the
following input and output arguments:

myfunction <- function(x, this){
...
return(list(f=f,this=this))
}

where x is a row vector and this a user-defined data, i.e. the data argument.

data A user-defined data passed to the function. If data is provided, it is passed
to the callback function both as an input and output argument. data may be
used if the function uses some additionnal parameters. It is returned as an

6

output parameter because the function may modify the data while computing
the function value. This feature may be used, for example, to count the number
of times that the function has been called.

method The method used to create the new optimsimplex object, either ’axes’, ’pfeffer’,
’randbounds’, ’spendley’ or ’oriented’.

x0 The initial point estimates, as a row vector of length n.

len The dimension of the simplex. If length is a value, that unique length is used
in all directions. If length is a vector with n values, each length is used with
the corresponding direction. Only used if method is set to ’axes’ or ’spendley’.

deltausual The absolute delta for non-zero values. Only used if method is set to ’pfeffer’.

deltazero The absolute delta for zero values. Only used if method is set to ’pfeffer’.

boundsmin A vector of minimum bounds. Only used if method is set to ’randbounds’.

boundsmax A vector of maximum bounds. Only used if method is set to ’randbounds’.

nbve The total number of vertices in the simplex. Only used if method is set to
’randbounds’.

simplex0 The initial simplex. Only used if method is set to ’oriented’.

x An object of class ’optimsimplex’.

... optional arguments to ’print’ or ’plot’ methods.

Details

All arguments of optimsimplex are optional. If no input is provided, the new optimsimplex
object is empty.

If method is NULL, the new optimsimplex object is created by optimsimplex.coords. If coords
is NULL, the optimsimplex object is empty; otherwise, coords is used as the initial vertice
coordinates in the new simplex.

If method is set to ’axes’, the initial vertice coordinates are stored in a nbve x n matrix built as
follows:

[,1] | x0[1] x0[n] | | len[1] ... 0 |
[,.] | | + | |
[,nbve] | x0[1] ... x0[n] | | 0 ... len[n] |

If method is set to ’pfeffer’, the new optimsimplex object is created using the Pfeffer’s method,
i.e. a relative delta for non-zero values and an absolute delta for zero values.

If method is set to ’randbounds’, the initial vertice coordinates are stored in a nbve x n matrix
consisting of the initial point estimates (on the first row) and a (nbve-1) x n matrix of ran-
domly sampled numbers between the specified the bounds. The number of vertices nbve in the
optimsimplex is arbitrary.

If method is set to ’spendley’, the new optimsimplex object is created using the Spendely’s
method, i.e. a regular simplex made of nbve = n+1 vertices.

If method is set to ’oriented’, the new optimsimplex object is created in sorted order. The
new simplex has the same sigma- length of the base simplex, but is ”oriented” depending on

7

the function value. The created optimsimplex may be used, as Kelley suggests, for a restart of
Nelder-Mead algorithm.

The optimsimplex.tostring function is a utility function, which formats the content of a
optimsimplex object into a single string of characters.

Value

The optimsimplex function returns a list with the following elements:

newobj An object of class ’simplex’, i.e. a list with the following elements:

verbose The verbose option, controlling the amount of messages. Set to FALSE.

x The coordinates of the vertices, with size nbve x n.

n The dimension of the space.

fv The values of the function at given vertices. It is a column matrix of length nbve.

nbve The number of vertices.

data The updated data input argument.

Author(s)

Author of Scilab optimsimplex module: Michael Baudin (INRIA - Digiteo)

Author of R adaptation: Sebastien Bihorel (<sb.pmlab@gmail.com>)

References

”A Simplex Method for Function Minimization”, Nelder, J. A. and Mead, R. The Computer
Journal, January, 1965, 308-313

”Sequential Application of Simplex Designs in Optimisation and Evolutionary Operation”, W.
Spendley, G. R. Hext, F. R. Himsworth, Technometrics, Vol. 4, No. 4 (Nov., 1962), pp. 441-461,
Section 3.1

”A New Method of Constrained Optimization and a Comparison With Other Methods”, M. J.
Box, The Computer Journal 1965 8(1):42-52, 1965 by British Computer Society

”Detection and Remediation of Stagnation in the Nelder-Mead Algorithm Using a Sufficient
Decrease Condition”, SIAM J. on Optimization, Kelley C.T., 1999

”Multi-Directional Search: A Direct Search Algorithm for Parallel Machines”, by E. Boyd, Ken-
neth W. Kennedy, Richard A. Tapia, Virginia Joanne Torczon, Virginia Joanne Torczon, 1989,
Phd Thesis, Rice University

”Grid Restrained Nelder-Mead Algorithm”, Arpad Burmen, Janez Puhan, Tadej Tuma, Compu-
tational Optimization and Applications, Volume 34 , Issue 3 (July 2006), Pages: 359 - 375

”A convergent variant of the Nelder-Mead algorithm”, C. J. Price, I. D. Coope, D. Byatt, Journal
of Optimization Theory and Applications, Volume 113 , Issue 1 (April 2002), Pages: 5 - 19,

”Global Optimization Of Lennard-Jones Atomic Clusters”, Ellen Fan, Thesis, February 26, 2002,
McMaster University

8

Examples

myfun <- function(x,this){return(list(f=sum(x^2),this=this))}

mat <- matrix(c(0,1,0,0,0,1),ncol=2)

optimsimplex()

optimsimplex(coords=mat,x0=1:4,fun=myfun)

optimsimplex(method='axes',x0=1:4,fun=myfun)

optimsimplex(method='pfeffer',x0=1:6,fun=myfun)

opt <- optimsimplex(method='randbounds',x0=1:6,boundsmin=rep(0,6),

boundsmax=rep(10,6),fun=myfun)

opt

optimsimplex(method='spendley',x0=1:6,fun=myfun,len=10)

optimsimplex(method='oriented',simplex=opt$newobj,fun=myfun)

Function evaluations Computation of Function Value(s)

Description

These functions compute the value of the function at the vertices points stored in the current
simplex object and stored them back into the simplex object. optimsimplex.computefv deter-
mines how many vertices are stored in the simplex object and delegates the calculation of the
function values to optimsimplex.compsomefv.

Usage

optimsimplex.computefv(this = NULL, fun = NULL, data = NULL)

optimsimplex.compsomefv(this = NULL, fun = NULL, indices = NULL, data = NULL)

Arguments

this The current simplex object, containing the nbve x n matrix of vertice coor-
dinates (i.e. x element), where n is the dimension of the space and nbve the
number of vertices.

fun The function to compute at vertices. The function is expected to have the
following input and output arguments:

myfunction <- function(x, this){
...
return(list(f=f,this=this))
}

where x is a row vector and this a user-defined data, i.e. the data argument.

data A user-defined data passed to the function. If data is provided, it is passed
to the callback function both as an input and output argument. data may be
used if the function uses some additionnal parameters. It is returned as an

9

output parameter because the function may modify the data while computing
the function value. This feature may be used, for example, to count the number
of times that the function has been called.

indices A vector of increasing integers from 1 to nbve.

Value

optimsimplex.computefv and optimsimplex.compsomefv return a list with the following ele-
ments:

this The updated simplex object.

data The updated user-defined data.

Author(s)

Author of Scilab optimsimplex module: Michael Baudin (INRIA - Digiteo)

Author of R adaptation: Sebastien Bihorel (<sb.pmlab@gmail.com>)

See Also

optimsimplex

optimsimplex.destroy Erase Simplex Object

Description

This function erases the coordinates of the vertices (x) and the function values (fv) in a simplex
object

Usage

optimsimplex.destroy(this = NULL)

Arguments

this A simplex object.

Value

Return an updated simplex object for which the content of the x and fv elements were set to
NULL.

Author(s)

Author of Scilab optimsimplex module: Michael Baudin (INRIA - Digiteo)

Author of R adaptation: Sebastien Bihorel (<sb.pmlab@gmail.com>)

10

See Also

optimsimplex

Get functions Optimsimplex Get Function Class

Description

The functions extract the content to various elements of a simplex object:

optimsimplex.getall Get all the coordinates and the function values of all the vertices.

optimsimplex.getallfv Get all the function values of all the vertices.

optimsimplex.getallx Get all the coordinates of all the vertices.

optimsimplex.getfv Get the function value at a given index.

optimsimplex.getn Get the dimension of the space of the simplex.

optimsimplex.getnbve Get the number of vertices of the simplex.

optimsimplex.getve Get the vertex at a given index in the current simplex.

optimsimplex.getx Get the coordinates of the vertex at a given index in the current simplex.

Usage

optimsimplex.getall(this = NULL)

optimsimplex.getallfv(this = NULL)

optimsimplex.getallx(this = NULL)

optimsimplex.getfv(this = NULL, ive = NULL)

optimsimplex.getn(this = NULL)

optimsimplex.getnbve(this = NULL)

optimsimplex.getve(this = NULL, ive = NULL)

optimsimplex.getx(this = NULL, ive = NULL)

Arguments

this A simplex object.

ive Vertex index.

Value

optimsimplex.getall Return a nbve x n+1 matrix, where n is the dimension of the space,
nbve is the number of vertices and with the following content:

� simplex[k,1] is the function value of the vertex k, with k = 1 to nbve,

� simplex[k,2:(n+1)] is the coordinates of the vertex k, with k = 1 to nbve.

optimsimplex.getallfv Return a row vector of function values, which kˆth element is the
function value for the vertex k, with k = 1 to nbve.

11

optimsimplex.getallx Return a nbve x n matrix of vertice coordinates; any given vertex is
expected to be stored at row k, with k = 1 to nbve.

optimsimplex.getfv Return a numeric scalar.

optimsimplex.getn Return a numeric scalar.

optimsimplex.getnbve Return a numeric scalar.

optimsimplex.getve Return an object of class ’vertex’, i.e. a list with the following elements:

n The dimension of the space of the simplex.

x The coordinates of the vertex at index ive.

fv The value of the function at index ive.

optimsimplex.getx Return a row vector, representing the coordinates of the vertex at index
ive.

Author(s)

Author of Scilab optimsimplex module: Michael Baudin (INRIA - Digiteo)

Author of R adaptation: Sebastien Bihorel (<sb.pmlab@gmail.com>)

See Also

optimsimplex

Simplex gradient Simplex Gradient

Description

optimsimplex.gradientfv determines the simplex gradient of the function which is computed
by the secondary functions optimsimplex.gradcenter and optimsimplex.gradforward.

Usage

optimsimplex.gradientfv(this = NULL, fun = NULL, method = "forward",

data = NULL)

optimsimplex.gradcenter(this = NULL, fun = NULL, data = NULL)

optimsimplex.gradforward(this = NULL)

Arguments

this An simplex object

fun The function to compute at vertices. The function is expected to have the
following input and output arguments:

myfunction <- function(x, this){
...
return(list(f=f,this=this))
}

12

where x is a row vector and this a user-defined data, i.e. the data argument.

method The method used to compute the simplex gradient. Two methods are available:
’forward’ and ’centered’. The ’forward’ method uses the current simplex to
compute the gradient (using optimsimplex.dirmat and optimsimplex.deltafv).
The ’centered’ method creates an intermediate simplex and computes the av-
erage.

data A user-defined data passed to the function. If data is provided, it is passed
to the callback function both as an input and output argument. data may be
used if the function uses some additionnal parameters. It is returned as an
output parameter because the function may modify the data while computing
the function value. This feature may be used, for example, to count the number
of times that the function has been called.

Value

optimsimplex.gradientfv returns a list with the following elements:

g A column vector of function gradient (with length this$n).

data The updated user-defined data.

optimsimplex.gradcenter returns a list with the following elements:

g A column vector of function gradient (with length this$n).

data The updated user-defined data.

optimsimplex.gradforward returns a column vector of function gradient (with length this$n).

Author(s)

Author of Scilab optimsimplex module: Michael Baudin (INRIA - Digiteo)

Author of R adaptation: Sebastien Bihorel (<sb.pmlab@gmail.com>)

See Also

optimsimplex, optimsimplex.dirmat, optimsimplex.deltafv

optimsimplex.log Optimsimplex Logging

Description

This function prints a message to screen (or log file).

Usage

optimsimplex.log(this = NULL, msg = NULL)

13

Arguments

this An simplex object.

msg A message to print.

Value

Do not return any value but print msg to screen if the verbose in this is set to 1.

Author(s)

Author of Scilab optimsimplex module: Michael Baudin (INRIA - Digiteo)

Author of R adaptation: Sebastien Bihorel (<sb.pmlab@gmail.com>)

See Also

optimsimplex

optimsimplex.reflect Simplex Reflection

Description

This function returns a new simplex by reflection of the current simplex with respect to the first
vertex in the simplex. This move is used in the centered simplex gradient.

Usage

optimsimplex.reflect(this = NULL, fun = NULL, data = NULL)

Arguments

this An simplex object.

fun The function to compute at vertices. The function is expected to have the
following input and output arguments:

myfunction <- function(x, this){
...
return(list(f=f,this=this))
}

where x is a row vector and this a user-defined data, i.e. the data argument.

data A user-defined data passed to the function. If data is provided, it is passed
to the callback function both as an input and output argument. data may be
used if the function uses some additionnal parameters. It is returned as an
output parameter because the function may modify the data while computing
the function value. This feature may be used, for example, to count the number

14

of times that the function has been called.

Value

Return a list with the following elements:

r The reflected simplex object.

data The updated user-defined data.

Author(s)

Author of Scilab optimsimplex module: Michael Baudin (INRIA - Digiteo)

Author of R adaptation: Sebastien Bihorel (<sb.pmlab@gmail.com>)

See Also

optimsimplex

Set functions Optimsimplex Set Function Class

Description

The functions assign content to various elements of a simplex object:

optimsimplex.setall Set all the coordinates and the function values of all the vertices.

optimsimplex.setallfv Set all the function values of all the vertices.

optimsimplex.setallx Set all the coordinates of all the vertices.

optimsimplex.setfv Set the function value at a givenindex.

optimsimplex.setn Set the dimension of the space of the simplex.

optimsimplex.setnbve Set the number of vertices of the simplex.

optimsimplex.setve Set the coordinates of the vertex and the function values at a given index
in the current simplex.

optimsimplex.setx Set the coordinates of the vertex at a given index in the current simplex.

Usage

optimsimplex.setall(this = NULL, simplex = NULL)

optimsimplex.setallfv(this = NULL, fv = NULL)

optimsimplex.setallx(this = NULL, x = NULL)

optimsimplex.setfv(this = NULL, ive = NULL, fv = NULL)

optimsimplex.setn(this = NULL, n = NULL)

optimsimplex.setnbve(this = NULL, nbve = NULL)

optimsimplex.setve(this = NULL, ive = NULL, fv = NULL, x = NULL)

optimsimplex.setx(this = NULL, ive = NULL, x = NULL)

15

Arguments

this A simplex object.

simplex The simplex to set. It is expected to be a nbve x n+1 matrix where n is the
dimension of the space, nbve is the number of vertices and with the following
content:

� simplex[k,1] is the function value of the vertex k, with k = 1 to nbve,

� simplex[k,2:(n+1)] is the coordinates of the vertex k, with k = 1 to
nbve.

fv A row vector of function values; fv[k] is expected to be the function value for
the vertex k, with k = 1 to nbve. For optimsimplex.setfv, fv is expected to
be a numerical scalar.

x The nbve x n matrix of vertice coordinates; the vertex is expected to be
stored in x[k,1:n], with k = 1 to nbve. For optimsimplex.setve and
optimsimplex.setx, x is expected to be a row matrix.

ive Vertex index.

n The dimension of the space of the simplex.

nbve The number of vertices of the simplex.

Value

Return a updated simplex object this.

Author(s)

Author of Scilab optimsimplex module: Michael Baudin (INRIA - Digiteo)

Author of R adaptation: Sebastien Bihorel (<sb.pmlab@gmail.com>)

See Also

optimsimplex

optimsimplex.shrink Simplex Shrink

Description

This function shrinks the simplex with given coefficient sigma and returns an updated simplex.
The shrink is performed with respect to the first point in the simplex.

Usage

optimsimplex.shrink(this = NULL, fun = NULL, sigma = 0.5, data = NULL)

16

Arguments

this An simplex object

fun The function to compute at vertices. The function is expected to have the
following input and output arguments:

17

myfunction <- function(x, this){
...
return(list(f=f,this=this))
}

where x is a row vector and this a user-defined data, i.e. the data.

sigma The shrinkage coefficient. The default value is 0.5.

data A user-defined data passed to the function. If data is provided, it is passed
to the callback function both as an input and output argument. data may be
used if the function uses some additionnal parameters. It is returned as an
output parameter because the function may modify the data while computing
the function value. This feature may be used, for example, to count the number
of times that the function has been called.

Value

Return a list with the following elements:

this The updated simplex object.

data The updated user-defined data.

Author(s)

Author of Scilab optimsimplex module: Michael Baudin (INRIA - Digiteo)

Author of R adaptation: Sebastien Bihorel (<sb.pmlab@gmail.com>)

See Also

optimsimplex

optimsimplex.utils Optimsimplex Utility Functions

Description

These functions enable various calculations and checks on the current simplex:

optimsimplex.center Compute the center of the current simplex.

optimsimplex.check Check the consistency of the data in the current simplex.

optimsimplex.deltafv Compute the vector of function value differences with respect to the
function value at the first vertex (the lowest).

optimsimplex.deltafvmax Compute the difference of function value between the lowest and
the highest vertices. It is expected that the first vertex (this$x[1,]) is associated with
the smallest function value and that the last vertex (this$x[nbve,]) is associated with
the highest function value.

18

optimsimplex.dirmat Compute the matrix of simplex direction, i.e. the matrix of differences
of vertice coordinates with respect to the first vertex.

optimsimplex.fvmean Compute the mean of the function values in the current simplex.

optimsimplex.fvstdev Compute the standard deviation of the function values in the current
simplex.

optimsimplex.fvvariance Compute the variance of the function values in the current simplex.

optimsimplex.size Determines the size of the simplex.

optimsimplex.sort Sort the simplex by increasing order of function value, so the smallest
function is at the first vertex.

optimsimplex.xbar Compute the center of n vertices, by excluding the vertex with index iexcl.
The default of iexcl is the number of vertices: in that case, if the simplex is sorted in
increasing function value order, the worst vertex is excluded.

Usage

optimsimplex.center(this = NULL)

optimsimplex.check(this = NULL)

optimsimplex.deltafv(this = NULL)

optimsimplex.deltafvmax(this = NULL)

optimsimplex.dirmat(this = NULL)

optimsimplex.fvmean(this = NULL)

optimsimplex.fvstdev(this = NULL)

optimsimplex.fvvariance(this = NULL)

optimsimplex.size(this = NULL, method = NULL)

optimsimplex.sort(this = NULL)

optimsimplex.xbar(this = NULL, iexcl = NULL)

Arguments

this The current simplex.

method The method to use to compute the size of the simplex. The available methods
are the following:

’sigmaplus’ (this is the default) The sigmamplus size is the maximum 2-norm
length of the vector from each vertex to the first vertex. It requires one
loop over the vertices.

’sigmaminus’ The sigmaminus size is the minimum 2-norm length of the
vector from each vertex to the first vertex. It requires one loop over the
vertices.

’Nash’ The ’Nash’ size is the sum of the norm of the norm-1 length of the
vector from the given vertex to the first vertex. It requires one loop over
the vertices.

’diameter’ The diameter is the maximum norm-2 length of all the edges of
the simplex. It requires 2 nested loops over the vertices.

iexcl The index of the vertex to exclude in center computation.

19

Value

optimsimplex.center Return a vector of length nbve, where nbve is the number of vertices in
the current simplex.

optimsimplex.check Return an error message if the dimensions of the various elements of the
current simplex do not match.

optimsimplex.deltafv Return a column vector of length nbve-1.

optimsimplex.deltafvmax Return a numeric scalar.

optimsimplex.dirmat Return a n x n numeric matrix, where n is the dimension of the space
of the simplex.

optimsimplex.fvmean Return a numeric scalar.

optimsimplex.fvstdev Return a numeric scalar.

optimsimplex.fvvariance Return a numeric scalar.

optimsimplex.size Return a numeric scalar.

optimsimplex.sort Return an updated simplex object.

optimsimplex.xbar Return a row vector of length n.

Author(s)

Author of Scilab optimsimplex module: Michael Baudin (INRIA - Digiteo)

Author of R adaptation: Sebastien Bihorel (<sb.pmlab@gmail.com>)

References

”Compact Numerical Methods For Computers - Linear Algebra and Function Minimization”,
J.C. Nash, 1990, Chapter 14. Direct Search Methods

”Iterative Methods for Optimization”, C.T. Kelley, 1999, Chapter 6., section 6.2

See Also

optimsimplex

osimplex S3 osimplex and vertex classes

Description

These functions support the S3 classes ’osimplex’ and ’vertex’. They are intended to either
create objects of these classes or check if an object is of these classes

20

Usage

osimplex(verbose,x,n,fv,nbve)

vertex(x,n,fv)

S3 method for class 'osimplex'

print(x,...)

S3 method for class 'vertex'

print(x,...)

S3 method for class 'osimplex'

is(x)

S3 method for class 'vertex'

is(x)

Arguments

verbose The verbose option, controlling the amount of messages

x The coordinates of the vertices, with size nbve x n in a simplex object or 1 x
n in a vertex.

n The dimension of the space.

fv The values of the function at given vertices. It is a column matrix of length
nbve in a simplex or a single value in a vertex.

nbve The number of vertices in a simplex.

... optional arguments to ’print’ or ’plot’ methods.

Details

A simplex of size n x nbve is essentially a collection of vertex of size n.

Value

osimplex returns a list with the following elements: verbose, x, n, fv, and nbve. vertex returns
a list with the following elements: x, n, and fv.

Author(s)

Author of Scilab optimsimplex module: Michael Baudin (INRIA - Digiteo)

Author of R adaptation: Sebastien Bihorel (<sb.pmlab@gmail.com>)

21

7 CeCILL FREE SOFTWARE LICENSE AGREEMENT

Notice

This Agreement is a Free Software license agreement that is the result

of discussions between its authors in order to ensure compliance with

the two main principles guiding its drafting:

* firstly, compliance with the principles governing the distribution

of Free Software: access to source code, broad rights granted to

users,

* secondly, the election of a governing law, French law, with which

it is conformant, both as regards the law of torts and

intellectual property law, and the protection that it offers to

both authors and holders of the economic rights over software.

The authors of the CeCILL (for Ce[a] C[nrs] I[nria] L[ogiciel] L[ibre])

license are:

Commissariat a l'Energie Atomique - CEA, a public scientific, technical

and industrial research establishment, having its principal place of

business at 25 rue Leblanc, immeuble Le Ponant D, 75015 Paris, France.

Centre National de la Recherche Scientifique - CNRS, a public scientific

and technological establishment, having its principal place of business

at 3 rue Michel-Ange, 75794 Paris cedex 16, France.

Institut National de Recherche en Informatique et en Automatique -

INRIA, a public scientific and technological establishment, having its

principal place of business at Domaine de Voluceau, Rocquencourt, BP

105, 78153 Le Chesnay cedex, France.

Preamble

The purpose of this Free Software license agreement is to grant users

the right to modify and redistribute the software governed by this

license within the framework of an open source distribution model.

The exercising of these rights is conditional upon certain obligations

for users so as to preserve this status for all subsequent redistributions.

In consideration of access to the source code and the rights to copy,

modify and redistribute granted by the license, users are provided only

with a limited warranty and the software's author, the holder of the

economic rights, and the successive licensors only have limited liability.

In this respect, the risks associated with loading, using, modifying

and/or developing or reproducing the software by the user are brought to

22

the user's attention, given its Free Software status, which may make it

complicated to use, with the result that its use is reserved for

developers and experienced professionals having in-depth computer

knowledge. Users are therefore encouraged to load and test the

suitability of the software as regards their requirements in conditions

enabling the security of their systems and/or data to be ensured and,

more generally, to use and operate it in the same conditions of

security. This Agreement may be freely reproduced and published,

provided it is not altered, and that no provisions are either added or

removed herefrom.

This Agreement may apply to any or all software for which the holder of

the economic rights decides to submit the use thereof to its provisions.

Article 1 - DEFINITIONS

For the purpose of this Agreement, when the following expressions

commence with a capital letter, they shall have the following meaning:

Agreement: means this license agreement, and its possible subsequent

versions and annexes.

Software: means the software in its Object Code and/or Source Code form

and, where applicable, its documentation, "as is" when the Licensee

accepts the Agreement.

Initial Software: means the Software in its Source Code and possibly its

Object Code form and, where applicable, its documentation, "as is" when

it is first distributed under the terms and conditions of the Agreement.

Modified Software: means the Software modified by at least one

Contribution.

Source Code: means all the Software's instructions and program lines to

which access is required so as to modify the Software.

Object Code: means the binary files originating from the compilation of

the Source Code.

Holder: means the holder(s) of the economic rights over the Initial

Software.

Licensee: means the Software user(s) having accepted the Agreement.

Contributor: means a Licensee having made at least one Contribution.

Licensor: means the Holder, or any other individual or legal entity, who

23

distributes the Software under the Agreement.

Contribution: means any or all modifications, corrections, translations,

adaptations and/or new functions integrated into the Software by any or

all Contributors, as well as any or all Internal Modules.

Module: means a set of sources files including their documentation that

enables supplementary functions or services in addition to those offered

by the Software.

External Module: means any or all Modules, not derived from the

Software, so that this Module and the Software run in separate address

spaces, with one calling the other when they are run.

Internal Module: means any or all Module, connected to the Software so

that they both execute in the same address space.

GNU GPL: means the GNU General Public License version 2 or any

subsequent version, as published by the Free Software Foundation Inc.

Parties: mean both the Licensee and the Licensor.

These expressions may be used both in singular and plural form.

Article 2 - PURPOSE

The purpose of the Agreement is the grant by the Licensor to the

Licensee of a non-exclusive, transferable and worldwide license for the

Software as set forth in Article 5 hereinafter for the whole term of the

protection granted by the rights over said Software.

Article 3 - ACCEPTANCE

3.1 The Licensee shall be deemed as having accepted the terms and

conditions of this Agreement upon the occurrence of the first of the

following events:

* (i) loading the Software by any or all means, notably, by

downloading from a remote server, or by loading from a physical

medium;

* (ii) the first time the Licensee exercises any of the rights

granted hereunder.

3.2 One copy of the Agreement, containing a notice relating to the

characteristics of the Software, to the limited warranty, and to the

fact that its use is restricted to experienced users has been provided

24

to the Licensee prior to its acceptance as set forth in Article 3.1

hereinabove, and the Licensee hereby acknowledges that it has read and

understood it.

Article 4 - EFFECTIVE DATE AND TERM

4.1 EFFECTIVE DATE

The Agreement shall become effective on the date when it is accepted by

the Licensee as set forth in Article 3.1.

4.2 TERM

The Agreement shall remain in force for the entire legal term of

protection of the economic rights over the Software.

Article 5 - SCOPE OF RIGHTS GRANTED

The Licensor hereby grants to the Licensee, who accepts, the following

rights over the Software for any or all use, and for the term of the

Agreement, on the basis of the terms and conditions set forth hereinafter.

Besides, if the Licensor owns or comes to own one or more patents

protecting all or part of the functions of the Software or of its

components, the Licensor undertakes not to enforce the rights granted by

these patents against successive Licensees using, exploiting or

modifying the Software. If these patents are transferred, the Licensor

undertakes to have the transferees subscribe to the obligations set

forth in this paragraph.

5.1 RIGHT OF USE

The Licensee is authorized to use the Software, without any limitation

as to its fields of application, with it being hereinafter specified

that this comprises:

1. permanent or temporary reproduction of all or part of the Software

by any or all means and in any or all form.

2. loading, displaying, running, or storing the Software on any or

all medium.

3. entitlement to observe, study or test its operation so as to

25

determine the ideas and principles behind any or all constituent

elements of said Software. This shall apply when the Licensee

carries out any or all loading, displaying, running, transmission

or storage operation as regards the Software, that it is entitled

to carry out hereunder.

5.2 ENTITLEMENT TO MAKE CONTRIBUTIONS

The right to make Contributions includes the right to translate, adapt,

arrange, or make any or all modifications to the Software, and the right

to reproduce the resulting software.

The Licensee is authorized to make any or all Contributions to the

Software provided that it includes an explicit notice that it is the

author of said Contribution and indicates the date of the creation thereof.

5.3 RIGHT OF DISTRIBUTION

In particular, the right of distribution includes the right to publish,

transmit and communicate the Software to the general public on any or

all medium, and by any or all means, and the right to market, either in

consideration of a fee, or free of charge, one or more copies of the

Software by any means.

The Licensee is further authorized to distribute copies of the modified

or unmodified Software to third parties according to the terms and

conditions set forth hereinafter.

5.3.1 DISTRIBUTION OF SOFTWARE WITHOUT MODIFICATION

The Licensee is authorized to distribute true copies of the Software in

Source Code or Object Code form, provided that said distribution

complies with all the provisions of the Agreement and is accompanied by:

1. a copy of the Agreement,

2. a notice relating to the limitation of both the Licensor's

warranty and liability as set forth in Articles 8 and 9,

and that, in the event that only the Object Code of the Software is

redistributed, the Licensee allows future Licensees unhindered access to

the full Source Code of the Software by indicating how to access it, it

being understood that the additional cost of acquiring the Source Code

shall not exceed the cost of transferring the data.

26

5.3.2 DISTRIBUTION OF MODIFIED SOFTWARE

When the Licensee makes a Contribution to the Software, the terms and

conditions for the distribution of the resulting Modified Software

become subject to all the provisions of this Agreement.

The Licensee is authorized to distribute the Modified Software, in

source code or object code form, provided that said distribution

complies with all the provisions of the Agreement and is accompanied by:

1. a copy of the Agreement,

2. a notice relating to the limitation of both the Licensor's

warranty and liability as set forth in Articles 8 and 9,

and that, in the event that only the object code of the Modified

Software is redistributed, the Licensee allows future Licensees

unhindered access to the full source code of the Modified Software by

indicating how to access it, it being understood that the additional

cost of acquiring the source code shall not exceed the cost of

transferring the data.

5.3.3 DISTRIBUTION OF EXTERNAL MODULES

When the Licensee has developed an External Module, the terms and

conditions of this Agreement do not apply to said External Module, that

may be distributed under a separate license agreement.

5.3.4 COMPATIBILITY WITH THE GNU GPL

The Licensee can include a code that is subject to the provisions of one

of the versions of the GNU GPL in the Modified or unmodified Software,

and distribute that entire code under the terms of the same version of

the GNU GPL.

The Licensee can include the Modified or unmodified Software in a code

that is subject to the provisions of one of the versions of the GNU GPL,

and distribute that entire code under the terms of the same version of

the GNU GPL.

Article 6 - INTELLECTUAL PROPERTY

6.1 OVER THE INITIAL SOFTWARE

27

The Holder owns the economic rights over the Initial Software. Any or

all use of the Initial Software is subject to compliance with the terms

and conditions under which the Holder has elected to distribute its work

and no one shall be entitled to modify the terms and conditions for the

distribution of said Initial Software.

The Holder undertakes that the Initial Software will remain ruled at

least by this Agreement, for the duration set forth in Article 4.2.

6.2 OVER THE CONTRIBUTIONS

The Licensee who develops a Contribution is the owner of the

intellectual property rights over this Contribution as defined by

applicable law.

6.3 OVER THE EXTERNAL MODULES

The Licensee who develops an External Module is the owner of the

intellectual property rights over this External Module as defined by

applicable law and is free to choose the type of agreement that shall

govern its distribution.

6.4 JOINT PROVISIONS

The Licensee expressly undertakes:

1. not to remove, or modify, in any manner, the intellectual property

notices attached to the Software;

2. to reproduce said notices, in an identical manner, in the copies

of the Software modified or not.

The Licensee undertakes not to directly or indirectly infringe the

intellectual property rights of the Holder and/or Contributors on the

Software and to take, where applicable, vis-a-vis its staff, any and all

measures required to ensure respect of said intellectual property rights

of the Holder and/or Contributors.

Article 7 - RELATED SERVICES

7.1 Under no circumstances shall the Agreement oblige the Licensor to

provide technical assistance or maintenance services for the Software.

28

However, the Licensor is entitled to offer this type of services. The

terms and conditions of such technical assistance, and/or such

maintenance, shall be set forth in a separate instrument. Only the

Licensor offering said maintenance and/or technical assistance services

shall incur liability therefor.

7.2 Similarly, any Licensor is entitled to offer to its licensees, under

its sole responsibility, a warranty, that shall only be binding upon

itself, for the redistribution of the Software and/or the Modified

Software, under terms and conditions that it is free to decide. Said

warranty, and the financial terms and conditions of its application,

shall be subject of a separate instrument executed between the Licensor

and the Licensee.

Article 8 - LIABILITY

8.1 Subject to the provisions of Article 8.2, the Licensee shall be

entitled to claim compensation for any direct loss it may have suffered

from the Software as a result of a fault on the part of the relevant

Licensor, subject to providing evidence thereof.

8.2 The Licensor's liability is limited to the commitments made under

this Agreement and shall not be incurred as a result of in particular:

(i) loss due the Licensee's total or partial failure to fulfill its

obligations, (ii) direct or consequential loss that is suffered by the

Licensee due to the use or performance of the Software, and (iii) more

generally, any consequential loss. In particular the Parties expressly

agree that any or all pecuniary or business loss (i.e. loss of data,

loss of profits, operating loss, loss of customers or orders,

opportunity cost, any disturbance to business activities) or any or all

legal proceedings instituted against the Licensee by a third party,

shall constitute consequential loss and shall not provide entitlement to

any or all compensation from the Licensor.

Article 9 - WARRANTY

9.1 The Licensee acknowledges that the scientific and technical

state-of-the-art when the Software was distributed did not enable all

possible uses to be tested and verified, nor for the presence of

possible defects to be detected. In this respect, the Licensee's

attention has been drawn to the risks associated with loading, using,

modifying and/or developing and reproducing the Software which are

reserved for experienced users.

The Licensee shall be responsible for verifying, by any or all means,

the suitability of the product for its requirements, its good working

29

order, and for ensuring that it shall not cause damage to either persons

or properties.

9.2 The Licensor hereby represents, in good faith, that it is entitled

to grant all the rights over the Software (including in particular the

rights set forth in Article 5).

9.3 The Licensee acknowledges that the Software is supplied "as is" by

the Licensor without any other express or tacit warranty, other than

that provided for in Article 9.2 and, in particular, without any warranty

as to its commercial value, its secured, safe, innovative or relevant

nature.

Specifically, the Licensor does not warrant that the Software is free

from any error, that it will operate without interruption, that it will

be compatible with the Licensee's own equipment and software

configuration, nor that it will meet the Licensee's requirements.

9.4 The Licensor does not either expressly or tacitly warrant that the

Software does not infringe any third party intellectual property right

relating to a patent, software or any other property right. Therefore,

the Licensor disclaims any and all liability towards the Licensee

arising out of any or all proceedings for infringement that may be

instituted in respect of the use, modification and redistribution of the

Software. Nevertheless, should such proceedings be instituted against

the Licensee, the Licensor shall provide it with technical and legal

assistance for its defense. Such technical and legal assistance shall be

decided on a case-by-case basis between the relevant Licensor and the

Licensee pursuant to a memorandum of understanding. The Licensor

disclaims any and all liability as regards the Licensee's use of the

name of the Software. No warranty is given as regards the existence of

prior rights over the name of the Software or as regards the existence

of a trademark.

Article 10 - TERMINATION

10.1 In the event of a breach by the Licensee of its obligations

hereunder, the Licensor may automatically terminate this Agreement

thirty (30) days after notice has been sent to the Licensee and has

remained ineffective.

10.2 A Licensee whose Agreement is terminated shall no longer be

authorized to use, modify or distribute the Software. However, any

licenses that it may have granted prior to termination of the Agreement

shall remain valid subject to their having been granted in compliance

with the terms and conditions hereof.

30

Article 11 - MISCELLANEOUS

11.1 EXCUSABLE EVENTS

Neither Party shall be liable for any or all delay, or failure to

perform the Agreement, that may be attributable to an event of force

majeure, an act of God or an outside cause, such as defective

functioning or interruptions of the electricity or telecommunications

networks, network paralysis following a virus attack, intervention by

government authorities, natural disasters, water damage, earthquakes,

fire, explosions, strikes and labor unrest, war, etc.

11.2 Any failure by either Party, on one or more occasions, to invoke

one or more of the provisions hereof, shall under no circumstances be

interpreted as being a waiver by the interested Party of its right to

invoke said provision(s) subsequently.

11.3 The Agreement cancels and replaces any or all previous agreements,

whether written or oral, between the Parties and having the same

purpose, and constitutes the entirety of the agreement between said

Parties concerning said purpose. No supplement or modification to the

terms and conditions hereof shall be effective as between the Parties

unless it is made in writing and signed by their duly authorized

representatives.

11.4 In the event that one or more of the provisions hereof were to

conflict with a current or future applicable act or legislative text,

said act or legislative text shall prevail, and the Parties shall make

the necessary amendments so as to comply with said act or legislative

text. All other provisions shall remain effective. Similarly, invalidity

of a provision of the Agreement, for any reason whatsoever, shall not

cause the Agreement as a whole to be invalid.

11.5 LANGUAGE

The Agreement is drafted in both French and English and both versions

are deemed authentic.

Article 12 - NEW VERSIONS OF THE AGREEMENT

12.1 Any person is authorized to duplicate and distribute copies of this

Agreement.

12.2 So as to ensure coherence, the wording of this Agreement is

31

protected and may only be modified by the authors of the License, who

reserve the right to periodically publish updates or new versions of the

Agreement, each with a separate number. These subsequent versions may

address new issues encountered by Free Software.

12.3 Any Software distributed under a given version of the Agreement may

only be subsequently distributed under the same version of the Agreement

or a subsequent version, subject to the provisions of Article 5.3.4.

Article 13 - GOVERNING LAW AND JURISDICTION

13.1 The Agreement is governed by French law. The Parties agree to

endeavor to seek an amicable solution to any disagreements or disputes

that may arise during the performance of the Agreement.

13.2 Failing an amicable solution within two (2) months as from their

occurrence, and unless emergency proceedings are necessary, the

disagreements or disputes shall be referred to the Paris Courts having

jurisdiction, by the more diligent Party.

Version 2.0 dated 2006-09-05.

32

	Overview
	Description
	Computation of function value at the given vertices

	Examples
	Creating a simplex given vertex coordinates
	Creating a simplex with randomized bounds

	Initial simplex strategies
	References
	Network of optimsimplex functions
	Help on optimsimplex functions
	optimsimplex-package
	optimsimplex
	Function evaluations
	optimsimplex.destroy
	Get functions
	Simplex gradient
	optimsimplex.log
	optimsimplex.reflect
	Set functions
	optimsimplex.shrink
	optimsimplex.utils
	osimplex

	CeCILL FREE SOFTWARE LICENSE AGREEMENT

