The optimbase Package - version 1.0-9

Sébastien Bihorel

March 1, 2014

optimbase is a R port of a module originally developped for Scilab version 5.2.1 by Michael
Baudin (INRIA - DIGITEO). Information about this software can be found at www.scilab.org.
The following documentation as well as the content of the functions .Rd files are adaptations of the
documentation provided with the original Scilab optimbase module.

Currently, optimbase does not include all functions distributed with the original Scilab module
but only those required for the proper operation of the fminsearch function from the neldermead
package.

1 Overview

1.1 Description

The goal of this package is to provide a building block for a large class of specialized optimization
methods. This package manages the number of variables, the minimum and maximum bounds, the
number of non linear inequality constraints, the logging system, various termination criteria, the
cost function, etc...

The optimization problem to solve is the following;:

minf(x)
Ii <xz; <h;, i=1n
gi(x) >0, i = 1,nbineq

where n is the number of variables and nbineq the number of inequality constraints.

1.2 Basic object

The basic object used by the optimbase package to store the configuration settings and the history
of an optimization is a ’optimization’ object, i.e. a list typically created by optimbase and having
a strictly defined structure (see ?optimbase for more details).

1.3 The cost function

The fun element of the optimization object (thereafter referred to as this) allows to configure the
cost function. The cost function is used, depending on the context, to compute the cost, the non-
linear inequality positive constraints, the gradient of the function and the gradient of the nonlinear
inequality constraints. The cost function can also be used to produce outputs and to terminate an
optimization algorithm. The cost function can also take as input/output an additional argument, if

www.scilab.org

the costfargument element of this is configured. It should be defined as follows:
costf <- function(x, index, fmsfundata)

where
x: is the current point, as a column matrix,
index: an integer representing the value to compute:

e index = 1: nothing is to be computed, the user may display messages, for example
e index = 2: compute
e index = 3: compute g
e index = 4: compute f and g
e index = 5: compute c
e index = 6: compute f and ¢
e index = 7: compute f, g, c and gc
where £ is the value of the objective function (a scalar), g the gradient of the objective function

(a row matrix), ¢ the constraints (a row matrix), and gc the gradient of the constraints (a
matrix),

fmsfundata: an user-provided input/output argument.

The cost function must return a list with the following elements: this, f, g, ¢, gc, index. The
index output parameter has a different meaning than the index input argument; it indicates if the
evaluation of the cost function was possible:

e index > 0: everything went fine,
e index = 0: the optimization must stop,
e index < 0: one function could not be evaluated.

The cost function is typically evaluated at the current point estimate x by using the following
call: optimbase.function(this, x, index).

If the ’type’ attribute of this$costfargument is not "T_FARGS’, the cost function is called
within the optimbase.function as this$fun(x=x,index=index) and returns non NULL elements
for:

e f, and index: if this$withderivatives is FALSE and this$nbineqconst=0 (there is no
nonlinear constraint),

e f, c, and index: if this$withderivatives is FALSE and this$nbineqconst>0 (there are
nonlinear constraints),

e f, g, and index: if this$withderivatives is TRUE and this$nbineqconst=0 (there is no
nonlinear constraint),

e f, g c, gc, and index: if this$withderivatives is TRUE and this$nbineqconst>0 (there
are nonlinear constraints).

If the 'type’ attribute of this$costfargument is "T_FARGS’, the cost function is called within
the optimbase.function as this$fun(x=x,index=index,fmsfundata=this$costfargument) and
returns non NULL elements for:

e f index, and this$costfargument: if this$withderivatives is FALSE and this$nbineqconst=0
(there is no nonlinear constraint),

e f c,index, and this$costfargument: if this$withderivatives is FALSE and this$nbineqconst>0
(there are nonlinear constraints),

e f g index, and this$costfargument: if this$withderivativesis TRUE and this$nbineqconst=0
(there is no nonlinear constraint),

e f g c,gc,index, and this$costfargument: if this$withderivativesis TRUE and this$nbineqconst>0
(there are nonlinear constraints).

Each of these cases corresponds to a particular class of algorithms, including for example un-
constrained, derivative-free algorithms, nonlinearily constrained, derivative-free algorithms, uncon-
strained, derivative-based algorithms, nonlinearily constrained, derivative-based algorithms, etc...
The current package was designed to handle many situations.

1.4 The output function

The outputcommand element of the optimization object allows to configure a command which is
called back at the start of the optimization, at each iteration and at the end of the optimization.
The output function must be defined as follows:

outputcmd <- function(state, data, myobj)

where

state: 1is a string representing the current state of the algorithm. Possible values are ’init’, ’iter’,
and 'done’.

data: a list containing at least the following elements:

x: the current point estimate,
fval: the value of the cost function at the current point estimate,
iteration: the current iteration index,

funccount: the number of function evaluations.

fmsdata: a user-defined parameter. This input parameter is defined with the outputcommandarg
element of the optimization object.

The output function may be used when debugging the specialized optimization algorithm, so
that a verbose logging is produced. It may also be used to write one or several report files in a
specialized format (ASCII, I’ TEX, Excel, etc...). The user-defined parameter may be used in that
case to store file names or logging options.

The data list argument may contain more fields than the current presented ones. These addi-
tionnal fields may contain values which are specific to the specialized algorithm, such as the simplex
in a Nelder-Mead method, the gradient of the cost function in a BFGS method, etc...

1.5 Termination

The optimbase.terminate function provided with the current package takes into account several
generic termination criteria. It is recommended that specialized termination criteria in specialized
optimization algorithms are implemented by calling extra termination criteria function in addition
to the optimbase.terminate, rather than by modification of the function itself.

The optimbase.terminate function uses a set of rules to determine whether the algorithm should
continue or stop. It also updates the termination status to one of the following: ’continue’, ‘'maxiter’,
‘maxfunevals’, 'tolf’ or ’tolx’. The set of rules is the following;:

e By default, the status is ’continue’ and the terminate flag is FALSE.

e The number of iterations is examined and compared to the maxiter element of the optimization
object: if iterations > maxiter, then the status is set to 'maxiter’ and terminate is set to
TRUE.

e The number of function evaluations is examined and compared to the maxfunevals element
of the optimization object: if funevals > maxfunevals, then the status is set to 'maxfuneval’
and terminate is set to TRUE.

e The tolerance on function value is examined depending on the value of the tolfunmethod
element of the optimization object:

FALSE: the tolerance on f is just skipped.

TRUE: if |currentfopt| < tolfunrelative - |previousfopt| + tolfunabsolute, then
the status is set to ’tolf’ and terminate is set to TRUE.

The relative termination criteria on the function value works well if the function value at
optimum is near zero. In that case, the function value at initial guess £x0 may be used as
previousfopt.

The absolute termination criteria on the function value works if the user has an accurate idea
of the optimum function value.

e The tolerance on x is examined depending on the value of the tolxmethod element of the
optimization object:

FALSE: the tolerance on x is just skipped.

TRUE: if norm(currentxopt - previousxopt) < tolxrelative -norm(currentxopt) + tolx-
absolute, then the status is set to ’tolx’ and terminate is set to TRUE.

The relative termination criteria on x works well if x at optimum is different from zero. In
that case, the condition measures the distance between two iterates.

The absolute termination criteria on x works if the user has an accurate idea of the scale of the
optimum x. If the optimum x is near 0, the relative tolerance will not work and the absolute
tolerance is more appropriate.

2 Network of optimbase functions

The network of functions provided in optimbase is illustrated in the network map given in the
neldermead package.

3 Help on optimbase functions

optimbase-package R port of the Scilab optimbase module

Description

The goal of this package is to provide a building block for a large class of specialized optimization
methods. This packages manages:

e the number of variables,

e the minimum and maximum bounds,

e the number of non linear inequality constraints,

e the cost function,

e the logging system,

e various termination criteria,

e ctc...
Features The following is a list of features the optimbase toolbox currently provided:

e Manage cost function
— optionnal additionnal argument
— direct communication of the task to perform: cost function or inequality constraints
e Manage various termination criteria, including:
— maximum number of iterations,
— tolerance on function value (relative or absolute),
— tolerance on the vector of estimated parameter x (relative or absolute),
— maximum number of evaluations of the cost function,
e Manage the history of the convergence, including:
— history of function values,
— history of optimum point.
e Provide query features for
— the status of the optimization process,
— the number of iterations,
— the number of function evaluations,
— function value at initial point,
— function value at optimal point,
— the optimum parameters,
— etc...

Details

Package: optimbase

Type: Package
Version: 1.0-9
Date: 2014-03-01

License: CeCILL-2
LazyLoad: yes

See vignette('optimbase',package='optimbase') for more information.

Author(s)

Author of Scilab optimbase module: Michael Baudin (INRIA - Digiteo)
Author of R adaptation: Sebastien Bihorel (<sb.pmlab@gmail.com>)

asserts Check of Variable Class

Description

Utility functions in optimbase meant to check variable class. Stop the algorithm if the variable
is not of the expected class.

assert.classboolean for logical variables

assert.classfunction for functions

assert.classreal for numeric variables

assert.classinteger for integer variables

assert.classstring for character variables

unknownValueForOption stops the algorithm and returns an error message, when some checks
in optimbase are not successful.

Usage

assert.classboolean(var = NULL, varname = NULL, ivar = NULL)
assert.classfunction(var = NULL, varname = NULL, ivar = NULL)
assert.classreal (var = NULL, varname = NULL, ivar = NULL)
assert.classinteger(var = NULL, varname = NULL, ivar = NULL)
assert.classstring(var = NULL, varname = NULL, ivar = NULL)
unknownValueForOption(value = NULL, optionname = NULL)

Arguments
var The variable name.
varname The name of a variable to which var should have been assigned to.
ivar A integer, meant to provide additional info on varname in the error message.
value A numeric or a string.
optionname The name of a variable for which value is unknown.

Value

Return an error message through the stop function.

Author(s)

Author of Scilab optimbase module: Michael Baudin (INRIA - Digiteo)
Author of R adaptation: Sebastien Bihorel (<sb.pmlab@gmail.com>)

zeros & ones Matriz of zeros or ones.

Description

Creates a matrix of zeros or ones.

Usage

zeros(nx = 1, ny = nx)
ones(nx = 1, ny = nx)

Arguments

nx The number of rows. Default is 1.

ny The number of columns. Default is nx.
Detalils

zeros and ones create full matrices of zeros and ones. If the user only provides an input for nx,
the produced matrices are nx x nx square matrices.
Value

Return of nx x ny matrix of zeros of ones.

Author(s)

Sebastien Bihorel (<sb.pmlab@gmail.com>)

Examples

zeros ()

zeros (3)

ones (4,5)

Not run: omes('3','3"')

optimbase S8 optimbase classes

Description

These functions support the S3 class 'optimbase’ and related S3 classes ’optimbase.outputargs’
and ’optimbase.functionargs’. They are intended to either create objects of these classes, check
if an object is of these classes, or coerce it to one of these classes.

Usage

optimbase(verbose, x0, fx0, xopt, fopt, tolfunabsolute,
tolfunrelative, tolfunmethod, tolxabsolute, tolxrelative, tolxmethod,
maxfunevals, funevals, maxiter, iterations, fun, status, historyxopt,
historyfopt, verbosetermination, outputcommand, outputcommandarg,
numberofvariables, storehistory, costfargument, boundsmin, boundsmax,
nbineqconst, logfile, logfilehandle, logstartup, withderivatives)

optimbase.outputargs(...)
optimbase.functionargs(...)

S3 method for class 'optimbase'
print (x,verbose=FALSE,...)

S3 method for class 'optimbase'
is (x=NULL)

S3 method for class 'optimbase'
summary (object,showhistory,...)

S3 method for class 'optimbase.outputargs'
is(x=NULL)

S3 method for class 'optimbase.outputargs'
as (x=NULL)

S3 method for class 'optimbase.functionargs'
is (x=NULL)

S3 method for class 'optimbase.functionargs'

as (x=NULL)

Arguments

verbose The verbose option, controlling the amount of messages.

x0

£x0

xopt

fopt
tolfunabsolute

tolfunrelative

tolfunmethod

tolxabsolute
tolxrelative
tolxmethod
maxfunevals
funevals
maxiter
iterations
fun

status

historyxopt

historyfopt

The initial guess.
The value of the function for the initial guess.
The optimum parameter.

The optimum function value.

The absolute tolerance on function value.

The relative tolerance on function value.

Logical flag for the tolerance on function value in the termination criteria. This
criteria is suitable for functions which minimum is associated with a function
value equal to 0.

The absolute tolerance on x..

The relative tolerance on x.

Possible values: FALSE, TRUE.

The maximum number of function evaluations.
The number of function evaluations.

The maximum number of iterations.

The number of iterations.

The cost function.

The status of the optimization.

The list to store the history for xopt. The vectors of estimates will be stored
on separated levels of the list, so the length of historyfopt at the end of the
optimization should be the number of iterations.

The vector to store the history for fopt. The values of the cost function will
be stored at each iteration in a new element, so the length of historyfopt at
the end of the optimization should be the number of iterations.

verbosetermination

outputcommand

The verbose option for termination criteria.
The command called back for output. This must be a valid R function accept-
ing the following arguments:
state A character string, typically indicating the status of the algorithm.
data A list containing at least the following elements:
X the current point estimate,
fval the value of the cost function at the current point estimate,
iteration the current iteration index,
funccount the number of function evaluations.
fmsdata An optional object of class ’optimbase.outputargs’.

outputcommandarg

The outputcommand argument is initialized as an empty object of class "op-
timbase.outputargs’ passed to the command defined in the outputcommand
element of the optimbase object. This object has no required structure or con-
tent but is typically a list which may be used to provide some extra information
to the output command.

numberofvariables
The number of variables to optimize.

storehistory The flag which enables/disables the storing of the history.

costfargument The costf argument is initialized as an empty object of class ’optimbase.functionargs’.
This object has no required structure or content but is typically a list which
may be used to provide some information to the cost function’.

boundsmin Minimum bounds for the parameters.
boundsmax Maximum bounds for the parameters.
nbineqconst The number of nonlinear inequality constraints.
logfile The name of the log file.

logfilehandle The handle for the log file.

logstartup Set to TRUE when the logging is started up.
withderivatives
Set to TRUE when the method uses derivatives.

optional arguments to 'print’ or plot’ methods.

X An object of class 'optimbase’.
object An object of class 'optimbase’.
showhistory Optional logical flag, to define whether optimization history must be summa-

rized or not.

Value

The optimbase function returns a new object of class 'optimbase’, i.e. a list containing the
following elements:

verbose Default is FALSE.

x0 Default is NULL.

fx0 Default is NULL.

xopt Default is 0.

fopt Default is 0.

tolfunabsolute Default is 0.

tolfunrelative Default is .Machine$double.eps.
tolfunmethod Default is FALSE.
tolxabsolute Default is 0.

tolxrelative Default is .Machine$double.eps.
tolxmethod Default is TRUE.

maxfunevals Default is 100.

funevals Default is 0.

maxiter Default is 100.

iterations Default is 0.

fun Default is ”.

10

status Default is ”.

historyfopt Default is NULL.
historyxopt Default is NULL.
verbosetermination Default is FALSE.
outputcommand Default is ”.

7

outputcommandarg Default is If the user configures this element, it is expected to be
an object of class ’optimbase.outputargs’ or will be coerced to an object of class ’optim-
base.outputargs’.

numberofvariables Default is 0.
storehistory Default is FALSE.

ki

costfargument Default is If the user configures this element, it is expected to be an
object of class ’optimbase.functionargs’ or will be coerced to an object of class ’optim-
base.functionargs’.

boundsmin Default is NULL.

boundsmax Default is NULL.

nbineqconst Default is 0.

logfile Default is ”.

logfilehandle Default is 0.

logstartup Default is FALSE.

withderivatives Default is FALSE.

The print.optimbase and is.optimbase functions are S3 method for objects of class ’optim-

base’. The showhistory argument can be provided to the print.optimbase function to indicate
whether or not the history of optimization should be printed.

The optimbase.outputargs function returns a new object of class ’optimbase.outputargs’, i.e.
a list of all arguments provided by the user. The is.optimbase.outputargs functions are S3
method for objects of class ’optimbase.outputargs’.

The optimbase.functionargs function returns a new object of class ’optimbase.functionargs’,
i.e. a list of all arguments provided by the user. The is.optimbase.functionargs functions
are S3 method for objects of class ’optimbase.functionargs’.

Author(s)

Author of Scilab optimbase module: Michael Baudin (INRIA - Digiteo)
Author of R adaptation: Sebastien Bihorel (<sb.pmlab@gmail.com>)

11

optimbase.checkbounds
Check bounds.

Description

This function checks if the bounds defined in the optimization object are consistent (same
number of minimal and maximal bounds as the number of variables, minimal bounds lower than
maximal bounds) and puts an error message in the returned object if not.
Usage
optimbase.checkbounds(this = NULL)

Arguments

this An optimization object.

Value
Return a list with the following list:

this The optimization object.
isok TRUE if the bounds are consistent, FALSE otherwise.

errmsg An error message if the bounds are not consistent.

Author(s)

Author of Scilab optimbase module: Michael Baudin (INRIA - Digiteo)
Author of R adaptation: Sebastien Bihorel (<sb.pmlab@gmail.com>)

optimbase.checkcostfun
Check Cost Function

Description

This function checks that the cost function is correctly specified in the optimization object,
including that the elements of this used by the cost function are consistent.

Usage

optimbase.checkcostfun(this = NULL)

Arguments

this An optimization object

12

Details

Depending on the definition of nonlinear constraints (nbineqconst element > 0) and the use of
derivatives (withderivatives element set to TRUE), this function makes several cost function
calls with different index value (see vignette('optimbase',package='optimbase') for more
details about index). If at least one call fails, the function stops the search algorithm.

Following every successful cost function call, optimbase.checkcostfun calls optimbase.checkshape
to check the dimensions of the matrix returned by the cost function against some expectations.

Value

Return the optimization object or an error message if one check is not successful.

Author(s)

Author of Scilab optimbase module: Michael Baudin (INRIA - Digiteo)
Author of R adaptation: Sebastien Bihorel (<sb.pmlab@gmail.com>)

See Also

optimbase.checkshape

optimbase.checkshape Check the Dimensions of the Cost Function Output

Description

This function is called by optimbase.checkcostfun to check whether the dimensions of a cost
function output match the expectations.

Usage

optimbase.checkshape(this = NULL, varname = NULL, data = NULL, index = NULL,
expectednrows = NULL, expectedncols = NULL)

Arguments
this An optimization object.
varname The name of the output being checked, either ’f’, ’c’; or 'g’.
data A content of the output.
index The index (see vignette('optimbase',package='optimbase') for more de-

tails).
expectednrows Number of expected rows.

expectedncols Number of expected columns.

13

Value

Return the optimization object or an error message if the dimensions are inconsistent.

Author(s)

Author of Scilab optimbase module: Michael Baudin (INRIA - Digiteo)
Author of R adaptation: Sebastien Bihorel (<sb.pmlab@gmail.com>)

See Also

optimbase.checkcostfun

optimbase.checkx0 Check Consistency of Initial Guesses

Description

This function checks that the initial guesses defined in the optimization object are consistent
with the defined bounds and the non linear inequality constraints. The actual work is delegated
to optimbase.isfeasible.

Usage

optimbase.checkxO(this = NULL)

Arguments

this An optimization object

Value
Return a list with the following elements:
this The optimization object.
isok TRUE if the initial guesses are consistent with the settings, FALSE otherwise.

Author(s)

Author of Scilab optimbase module: Michael Baudin (INRIA - Digiteo)
Author of R adaptation: Sebastien Bihorel (<sb.pmlab@gmail.com>)

See Also

optimbase.isfeasible

14

optimbase.destroy Erase an optimization history.

Description

Erase the optimization history in an optimization object.

Usage
optimbase.destroy(this = NULL)

Arguments

this An optimization object.

Detalils

This function erases the content of the historyfopt and historyxopt elements in this and
call the optimbase.logshutdown function if the logstartup element in this is set to TRUE.

Value

Return an updated optimization object.

Author(s)

Author of Scilab optimbase module: Michael Baudin (INRIA - Digiteo)
Author of R adaptation: Sebastien Bihorel (<sb.pmlab@gmail.com>)

See Also

optimbase.logshutdown

optimbase.function Call Cost Function

Description

This function calls the cost function defined in the fun element of the current object and returns

the required results. If an additionnal argument for the cost function is defined in current object,

it is passed to the function as the last argument. See vignette ('optimbase',package="'optimbase')
for more details.

Usage

optimbase.function(this = NULL, x = NULL, index = NULL)

15

Arguments

this An optimization object.

X The point estimate where the cost function should be evaluated, i.e. a column
vector.

index An integer between 1 and 6 (see vignette('omptimbase',package='optimbase')

for more details).

Value

Return a list with the following elements:

this The updated optimization object.

f The value of the cost function.

g The gradient of the cost function.

¢ The nonlinear, positive, inequality constraints.

gc The gradient of the nonlinear, positive, inequality constraints.
index An integer:

e if index > 0, everything went fine,
e if index == 0, interrupts the optimization,
e if index < 0, one of the function could not be evaluated.

Author(s)
Author of Scilab optimbase module: Michael Baudin (INRIA - Digiteo)
Author of R adaptation: Sebastien Bihorel (<sb.pmlab@gmail.com>)

optimbase.get Get the value for the given element

Description

Get the value for the given element in an optimization object.
Usage

optimbase.get(this = NULL, key = NULL)
optimbase.histget(this = NULL, iter = NULL, key = NULL)

16

Arguments

this An optimization object.

key The name of the key to quiery. The list of available keys for query with
optimbase.get is: 'verbose’, 'x0’, 'fx0’, 'xopt’, fopt’, "tolfunabsolute’, "tolfun-
relative’, ’tolfunmethod’, 'tolxabsolute’, 'tolxrelative’, ’tolxmethod’, 'maxfu-
nevals’, 'maxiter’, ’iterations’, ’function’, ’status’, "historyfopt’, 'historyxopt’,
'verbosetermination’, ’outputcommand’, ’outputcommandarg’, 'numberofvari-
ables’, 'storehistory’, ’costfargument’, ’boundsmin’, ’boundsmax’, 'nbineqconst’,
"logfile’, "logfilehandle’, "logstartup’, and’withderivatives’.
The list of available keys for query with optimbase.histget is: "historyxopt’
and ’historyfopt’.

iter The iteration at which the data is stored.

Details

While optimbase.get extracts the entire content of the object element, including historyxopt
and historyfopt, optimbase.histget only extracts the content of the history at the iteration
iter.

Value

Return the value of the list element key, or an error message if key does not exist.

Author(s)

Author of Scilab optimbase module: Michael Baudin (INRIA - Digiteo)
Author of R adaptation: Sebastien Bihorel (<sb.pmlab@gmail.com>)

See Also

optimbase, optimbase.set

optimbase.gridsearch Grid evaluation of a constrained or unconstrained cost function

Description
Evaluate a constrained or unconstrained cost function on a grid of points around a given initial
point estimate.

Usage

optimbase.gridsearch(fun = NULL, x0 = NULL, xmin = NULL,
xmax = NULL, npts = 3, alpha = 10)

17

Arguments

fun

x0
Xxmin
xXmax

npts

alpha

Details

A constrained or unconstrained cost function defined as described in the vi-
gnette (vignette('optimbase',package='optimbase')).

The initial point estimate, provided as a numeric vector.
Optional: a vector of lower bounds.
Optional: a vector of upper bounds.

A integer scalar greater than 2, indicating the number of evaluation points will
be used on each dimension to build the search grid.

A vector of numbers greater than 1, which give the factor(s) used to calculate
the evaluation range of each dimension of the search grid (see Details). If
alpha length is lower than that of x0, elements of alpha are recycled. If its
length is higher than that of x0, alpha is truncated.

optimbase.gridsearch evaluates the cost function at each point of a grid of npts~length(x0)
points. If lower (xmin) and upper (xmax) bounds are provided, the range of evaluation points
is limited by those bounds and alpha is not used. Otherwise, the range of evaluation points is
defined as [x0/alpha,xO*alpha].

optimbase.gridsearch also determines if the cost function is feasible at each evaluation point
by calling optimbase.isfeasible.

Value

Return a data.frame with the coordinates of the evaluation point, the value of the cost function
and its feasibility. The data.frame is ordered by feasibility and increasing value of the cost

function.

Author(s)

Sebastien Bihorel (<sb.pmlab@gmail.com>)

See Also

optimbase.

Examples

Problem:
#

H H B H

gridfun <-

isfeasible

find x and y that maximize 3.6%x - 0.4%x"2 + 1.6%y - 0.2%y"2 and
satisfy the constrains:

2*%x - y <= 10

x >0

y>=0

function(x=NULL, index=NULL, fmsfundata=NULL,...){

18

f <- c(Q)
c <- cQ
if (index == 2 | index == 6)
f <= -(3.6%x[1] - 0.4*x[1]*x[1] + 1.6*x[2] - 0.2*x[2]*x[2])
if (index == 5 | index == 6)
c <= c(10 - 2*x[1] - x[2],
x[11,
x[2])

varargout <- list(f = f, g = c(), ¢ = c, gc = c(), index = index)

return(varargout)

x0 <- ¢(0.35,0.3)
npts <- 6
alpha <- 10

res <- optimbase.gridsearch(fun=gridfun,x0=x0,xmin=NULL, xmax=NULL,
npts=npts,alpha=alpha)

3.5 and 3 is the actual solution of the optimization problem
print(res)

Bounds & constraints Query for Bounds and Constraints

Description

optimbase.hasbounds and optimbase.hascons query an optimization object and determine
whether bounds and nonlinear constraints have been specified. Bounds are defined in the
boundsmin and boundsmax elements of the optimization object. The number of nonlinear con-
straints is defined in the nbineqconst element.

optimbase.hasconstraints determine whether any bound or constraint has been specified.

Usage
optimbase.hasbounds(this = NULL)
optimbase.hasnlcons(this = NULL)

optimbase.hasconstraints(this = NULL)

Arguments

this An optimization object.

Value
Return TRUE if bounds or constraints are found, FALSE otherwise.

19

Author(s)

Author of Scilab optimbase module: Michael Baudin (INRIA - Digiteo)
Author of R adaptation: Sebastien Bihorel (<sb.pmlab@gmail.com>)

optimbase.incriter Iteration Log Incrementation

Description
This function increments the number of iterations stored in the iterations element of the
optimization object.

Usage

optimbase.incriter(this = NULL)

Arguments

this An optimization object.

Value
Return the optimization object after increasing the content of the iterations element by 1
unit.

Author(s)

Author of Scilab optimbase module: Michael Baudin (INRIA - Digiteo)
Author of R adaptation: Sebastien Bihorel (<sb.pmlab@gmail.com>)

optimbase.isfeasible Check Point Estimate

Description
This function checks that the point estimate is consistent with the bounds and the non linear
inequality constraints. It is usually called by optimbase.checkxO to check initial guesses.
Usage
optimbase.isfeasible(this = NULL, x = NULL)

Arguments
this An optimization object.
X The point estimate, i.e. a column vector of numerical values.

20

Details

Returns 1 if the given point satisfies bounds constraints and inequality constraints.
Returns 0 if the given point is not in the bounds.

Returns -1 if the given point does not satisfies inequality constraints.

Value
Return a list with the following elements:

this The optimization object.
isfeasible The feasibility flag, either -1, 0 or 1.

Author(s)

Author of Scilab optimbase module: Michael Baudin (INRIA - Digiteo)
Author of R adaptation: Sebastien Bihorel (<sb.pmlab@gmail.com>)

See Also

optimbase.checkx0

Bound and constraint checks
Point Estimate Comparison with Bounds and Constraints

Description

optimbase.isinbounds checks that given parameter estimates are within the defined minimum
and maximum boundaries, while optimbase.isinnonlincons checks that the given point esti-
mate satisfies the defined nonlinear constraints.

Usage

optimbase.isinbounds(this = NULL, x = NULL)
optimbase.isinnonlincons (this=NULL,x=NULL)

Arguments

this An optimization object.

X A column vector of parameter estimates.
Value

Both functions return a list with the following elements:

this The optimization object.
isfeasible TRUE if the parameter estimates satisfy the constraints, FALSE otherwise.

21

Author(s)

Author of Scilab optimbase module: Michael Baudin (INRIA - Digiteo)
Author of R adaptation: Sebastien Bihorel (<sb.pmlab@gmail.com>)

Log functions Optimbase Log functions

Description

optimbase.logstartup initializes logging if verbose logging is enabled (via the verbose element
of the optimization object). If the logging has already been initialized, it generates an error and
stops the optimization.

If verbose logging is enabled, optimbase.log prints the given message in the console. If verbose

logging is disabled, it does nothing. If the logfile element of the optimization object has been
set, it writes the message into the file instead of writing to the console.

optimbase.stoplog prints the given stopping rule message if verbose termination is enabled
(via the verbosetermination element of the optimization object). If verbose termination is
disabled, it does nothing.

optimbase.logshutdown turns verbose logging off.

Usage

optimbase.logstartup(this = NULL)
optimbase.log(this = NULL, msg = NULL)
optimbase.stoplog(this = NULL, msg = NULL)
optimbase.logshutdown(this = NULL)

Arguments
this The optimization object.
msg The message to print.
Value

All functions return the unchanged optimization object.

Author(s)

Author of Scilab optimbase module: Michael Baudin (INRIA - Digiteo)
Author of R adaptation: Sebastien Bihorel (<sb.pmlab@gmail.com>)

22

optimbase.outputcmd Call user-defined output function

Description

Call user-defined output function.

Usage
optimbase.outputcmd(this = NULL, state = NULL, data = NULL)

Arguments
this An optimization object.
state The current state of the algorithm: either ’init’, ’iter’, or ’done’.
data A list containing at least the following elements:
X the current point estimate,
fval the value of the cost function at the current point estimate,
iteration the current iteration index,
funccount the number of function evaluations.
Detalils

The data list argument may contain more levels than those presented above. These additional
levels may contain values which are specific to the specialized algorithm, such as the simplex in
a Nelder-Mead method, the gradient of the cost function in a BFGS method, etc...

Value
Do not return any data, but execute the output function defined in the outputcommand element
of this.

Author(s)

Author of Scilab optimbase module: Michael Baudin (INRIA - Digiteo)
Author of R adaptation: Sebastien Bihorel (<sb.pmlab@gmail.com>)

23

optimbase.outstruct Create Basic Optimization Data Object

Description
This function creates a basic optimization data object by extracting the content of specific fields
of an optimization object.

Usage

optimbase.outstruct(this = NULL)

Arguments

this An optimization object.

Value
Return an object of class 'optimbase.data’, i.e. a list with the following elements:

x The current optimum point estimate (extracted from this$xopt).

fval The value of the cost function at the current optimum point estimate (extracted from
this$fopt).

iteration The current number of iteration (extracted from this$iterations).

funccount The current number of function evaluations (extracted from this$funevals).

Author(s)

Author of Scilab optimbase module: Michael Baudin (INRIA - Digiteo)
Author of R adaptation: Sebastien Bihorel (<sb.pmlab@gmail.com>)

optimbase.proj2bnds Projection of Point Estimate to Bounds

Description

This function determines if all elements of a point estimate are within the defined bounds. In the
case one or more parameter estimates are not, the function projects those to their corresponding
bounds.

Usage
optimbase.proj2bnds(this = NULL, x = NULL)

24

Arguments

this An optimization object.
X A point estimate.
Value

Return a list with the following elements:

this The optimization object.
P A vector of updated paremeter estimes. The ith element of the vector is:

e x[i] if this$boundsmin[i] < x[i] < this$boundsmax[i],
e this$boundsmin[i] if x[i] <= this$boundsmin[i],
e this$boundsmax[i] if this$boundsmax[i] <= x[i].

Author(s)

Author of Scilab optimbase module: Michael Baudin (INRIA - Digiteo)
Author of R adaptation: Sebastien Bihorel (<sb.pmlab@gmail.com>)

optimbase.set Optimization Object Configuration

Description
This functions configures the current optimization object with the given value for the given
key.

Usage

optimbase.set(this = NULL, key = NULL, value = NULL)
optimbase.histset(this = NULL, iter = NULL, key = NULL, value = NULL)

Arguments
this The current optimization object.
key The key to configure. See details for the list of possible keys.
value The value to assign to the key.
iter The iteration at which the data must be stored.

25

Details

optimbase.set set the content of the key element of the optimization object this to value.

The only available keys in optimbase.set are the following:

’verbose’ Set to 1 to enable verbose logging.

’x0° The initial guesses, as a n x 1 column vector, where n is the number of variables.
’fx0° The value of the cost function at the initial point estimate.

’xopt’ The optimum point estimate.

*fopt’ The value of the cost function at the optimum point estimate.
’tolfunabsolute’ The absolute tolerance for the function value.

tolfunrelative’ The relative tolerance for the function value.

’tolfunmethod’ The method used for the tolerance on function value in the termination cri-
teria. The following values are available: TRUE, FALSE. If this criteria is triggered, the
status of the optimization is set to ’tolf’.

’tolxabsolute’ The absolute tolerance on x.
*tolxrelative’ The relative tolerance on x.

’tolxmethod’ The method used for the tolerance on x in the termination criteria. The following
values are available: TRUE, FALSE. If this criteria is triggered during optimization, the
status of the optimization is set to ’tolx’.

’maxfunevals’ The maximum number of function evaluations. If this criteria is triggered dur-
ing optimization, the status of the optimization is set to 'maxfuneval’ (see vignette ('optimbase',package=
for more details).

’funevals’ The number of function evaluations.

’maxiter’ The maximum number of iterations. If this criteria is triggered during optimization,
the status of the optimization is set to ‘maxiter’ (see vignette ('optimbase',package='optimbase')
for more details).

’iterations’ The number of iterations.

’function’ The objective function, which computes the value of the cost function and the non
linear constraints, if any. See vignette('optimbase',package='optimbase') for the de-
tails of the communication between the optimization system and the cost function.

’status’ A string containing the status of the optimization.

’historyxopt’ A list, with nbiter element, containing the history of x during the iterations. This
list is available after optimization if the history storing was enabled with the storehistory
element.

historyfopt’ An vector, with nbiter values, containing the history of the function value during
the iterations. This vector is available after optimization if the history storing was enabled
with the storehistory element.

’verbosetermination’ Set to 1 to enable verbose termination logging.

’outputcommand’ A command which is called back for output. Details of the communica-
tion between the optimization system and the output command function are provided in
vignette('optimbase',package='optimbase').

26

’outputcommandarg’ An additionnal argument, passed to the output command.
‘numberofvariables’ The number of variables to optimize.

’storehistory’ Set to TRUE to enable the history storing.

’costfargument’ An additionnal argument, passed to the cost function.
’boundsmin’ The minimum bounds for the parameters.

’boundsmax’ The maximum bounds for the parameters.

’nbineqconst’ The number of inequality constraints.

’logfile’ The name of the log file.

’logfilehandle’ Set to 1 if logging has been started

’logstartup’ Set to 1 if logging has been started

*withderivatives’ Set to TRUE if the algorithm uses derivatives.

The only available keys in optimbase.histset are ’historyxopt’ and "historyfopt’. Contrary to

optimbase.set, this function only alters the value of historyxopt and historyfopt at the
specific iteration iter.

Value
An updated optimization object.

Author(s)

Author of Scilab optimbase module: Michael Baudin (INRIA - Digiteo)
Author of R adaptation: Sebastien Bihorel (<sb.pmlab@gmail.com>)

See Also

optimbase

optimbase.terminate FEwvaluation of Termation Status

Description

This function determines whether the optimization must continue or terminate. If the verbosetermination
element of the optimization object is enabled, messages are printed detailing the termination
intermediate steps. The optimbase.terminate function takes into account the number of iter-

ations, the number of evaluations of the cost function, the tolerance on x and the tolerance on

f. See the section "Termination” in vignette('optimbase',package='optimbase') for more

details.

Usage

optimbase.terminate(this = NULL, previousfopt = NULL, currentfopt = NULL,
previousxopt = NULL, currentxopt = NULL)

27

Arguments
this An optimization object.
previousfopt The previous value of the objective function.
currentfopt The current value of the objective function.
previousxopt The previous value of the parameter estimate matrix.

currentxopt The current value of the parameter estimate matrix.

Value
Return a list with the following elements:

this The updated optimization object.
terminate TRUE if the algorithm terminates, FALSE if the algorithm must continue.

status The termination status could be 'maxiter’, 'maxfuneval’, ’tolf’ or ’tolx’ if terminate is
set to TRUE, ’continue’ otherwise.
Author(s)

Author of Scilab optimbase module: Michael Baudin (INRIA - Digiteo)
Author of R adaptation: Sebastien Bihorel (<sb.pmlab@gmail.com>)

size Vector, Matriz or Data.Frame Size

Description
size is a utility function which determines the dimensions of vectors (coerced to matrices),
matrices, arrays, data.frames, and list elements.
Usage
size(x = NULL, n = NULL)

Arguments
X A R object.
A integer indicating the dimension of interest.
Details

size is a wrapper function around dim. It returns the n"th dimension of x if n is provided. If n
is not provide, all dimensions will be determined. If x is a list, n is ignored and the dimensions
of all elements of x are recursively determined.

Value

Returns a vector or list of dimensions.

28

Author(s)
Sebastien Bihorel (<sb.pmlab@gmail.com>)

See Also

dim

Examples

<-1

<- letters[1:6]
matrix(1:20,nrow=4,ncol=5)
<- array(1:40, dim=c(2,5,2,2))
<- data.frame(a,b)

<- list(a,b,c,d,e)

H o0 & 0 T e
A
1

size(NULL) #
size (NA)
size(a)
size(b,?2)
size(c)
size(d)
size(e,3)
size(f)

0
1
1
6
4
2

522

H OH H H R

NA

strvec Auto-collapse of Vectors

Description

strvec is a utility function which collapses all elements of a vector into a character scalar.

Usage

strvec(x = NULL)

Arguments

X A string of characters.

Value

A character scalar consisting of all the elements of x separated by a single white space.

Author(s)
Sebastien Bihorel (<sb.pmlab@gmail.com>)

29

Examples

strvec(letters[1:10])
strvec(1:10)

transpose Vector and Matriz Transpose

Description

transpose is a wrapper function around the t function, which tranposes matrices. Contrary to
t, transpose processes vectors as if they were row matrices.

Usage
transpose(object = NULL)

Arguments

object A vector or a matrix.

Value

Return a matrix which is the exact transpose of the vector or matrix x

Author(s)
Sebastien Bihorel (<sb.pmlab@gmail.com>)

See Also

t

Examples

1:6

t(1:6)

transpose(1:6)

mat <- matrix(1:15,nrow=5,ncol=3)
mat

transpose (mat)

30

vec2matrix Vector to Matriz Conversion

Description

This function converts a vector into a row matrix.

Usage

vec2matrix(object = NULL)

Arguments

object A vector or a matrix.

Detalils

If object is already a matrix, object is not modified. If object is not a matrix or a vector,
the algorithm is stopped.

Value

Return a row matrix.

Author(s)

Sebastien Bihorel (<sb.pmlab@gmail.com>)

31

4 CeCILL FREE SOFTWARE LICENSE AGREEMENT

Notice

This Agreement is a Free Software license agreement that is the result
of discussions between its authors in order to ensure compliance with
the two main principles guiding its drafting:

* firstly, compliance with the principles governing the distribution
of Free Software: access to source code, broad rights granted to
users,

* secondly, the election of a governing law, French law, with which
it is conformant, both as regards the law of torts and
intellectual property law, and the protection that it offers to
both authors and holders of the economic rights over software.

The authors of the CeCILL (for Cel[a] C[nrs] I[nria] L[ogiciel] L[ibrel)
license are:

Commissariat a 1'Energie Atomique - CEA, a public scientific, technical
and industrial research establishment, having its principal place of
business at 25 rue Leblanc, immeuble Le Ponant D, 75015 Paris, France.

Centre National de la Recherche Scientifique - CNRS, a public scientific
and technological establishment, having its principal place of business
at 3 rue Michel-Ange, 75794 Paris cedex 16, France.

Institut National de Recherche en Informatique et en Automatique -
INRIA, a public scientific and technological establishment, having its
principal place of business at Domaine de Voluceau, Rocquencourt, BP
105, 78153 Le Chesnay cedex, France.

Preamble
The purpose of this Free Software license agreement is to grant users
the right to modify and redistribute the software governed by this

license within the framework of an open source distribution model.

The exercising of these rights is conditional upon certain obligations
for users so as to preserve this status for all subsequent redistributions.

In consideration of access to the source code and the rights to copy,
modify and redistribute granted by the license, users are provided only
with a limited warranty and the software's author, the holder of the

economic rights, and the successive licensors only have limited liability.

In this respect, the risks associated with loading, using, modifying

32

and/or developing or reproducing the software by the user are brought to
the user's attention, given its Free Software status, which may make it
complicated to use, with the result that its use is reserved for
developers and experienced professionals having in-depth computer
knowledge. Users are therefore encouraged to load and test the
suitability of the software as regards their requirements in conditions
enabling the security of their systems and/or data to be ensured and,
more generally, to use and operate it in the same conditions of
security. This Agreement may be freely reproduced and published,
provided it is not altered, and that no provisions are either added or
removed herefrom.

This Agreement may apply to any or all software for which the holder of
the economic rights decides to submit the use thereof to its provisions.
Article 1 - DEFINITIONS

For the purpose of this Agreement, when the following expressions
commence with a capital letter, they shall have the following meaning:

Agreement: means this license agreement, and its possible subsequent
versions and annexes.

Software: means the software in its Object Code and/or Source Code form
and, where applicable, its documentation, "as is" when the Licensee
accepts the Agreement.

Initial Software: means the Software in its Source Code and possibly its
Object Code form and, where applicable, its documentation, "as is" when

it is first distributed under the terms and conditions of the Agreement.

Modified Software: means the Software modified by at least one
Contribution.

Source Code: means all the Software's instructions and program lines to
which access is required so as to modify the Software.

Object Code: means the binary files originating from the compilation of
the Source Code.

Holder: means the holder(s) of the economic rights over the Initial
Software.

Licensee: means the Software user(s) having accepted the Agreement.

Contributor: means a Licensee having made at least one Contribution.

33

Licensor: means the Holder, or any other individual or legal entity, who
distributes the Software under the Agreement.

Contribution: means any or all modifications, corrections, translations,
adaptations and/or new functions integrated into the Software by any or
all Contributors, as well as any or all Internal Modules.

Module: means a set of sources files including their documentation that
enables supplementary functions or services in addition to those offered
by the Software.

External Module: means any or all Modules, not derived from the
Software, so that this Module and the Software run in separate address
spaces, with one calling the other when they are run.

Internal Module: means any or all Module, connected to the Software so
that they both execute in the same address space.

GNU GPL: means the GNU General Public License version 2 or any
subsequent version, as published by the Free Software Foundation Inc.

Parties: mean both the Licensee and the Licensor.

These expressions may be used both in singular and plural form.

Article 2 - PURPOSE

The purpose of the Agreement is the grant by the Licensor to the
Licensee of a non-exclusive, transferable and worldwide license for the
Software as set forth in Article 5 hereinafter for the whole term of the
protection granted by the rights over said Software.

Article 3 - ACCEPTANCE

3.1 The Licensee shall be deemed as having accepted the terms and
conditions of this Agreement upon the occurrence of the first of the
following events:

* (1) loading the Software by any or all means, notably, by
downloading from a remote server, or by loading from a physical
medium;

* (ii) the first time the Licensee exercises any of the rights
granted hereunder.

3.2 One copy of the Agreement, containing a notice relating to the
characteristics of the Software, to the limited warranty, and to the

34

fact that its use is restricted to experienced users has been provided
to the Licensee prior to its acceptance as set forth in Article 3.1
hereinabove, and the Licensee hereby acknowledges that it has read and
understood it.

Article 4 - EFFECTIVE DATE AND TERM

4.1 EFFECTIVE DATE

The Agreement shall become effective on the date when it is accepted by
the Licensee as set forth in Article 3.1.

4.2 TERM

The Agreement shall remain in force for the entire legal term of
protection of the economic rights over the Software.

Article 5 - SCOPE OF RIGHTS GRANTED

The Licensor hereby grants to the Licensee, who accepts, the following
rights over the Software for any or all use, and for the term of the
Agreement, on the basis of the terms and conditions set forth hereinafter.

Besides, if the Licensor owns or comes to own one or more patents
protecting all or part of the functions of the Software or of its
components, the Licensor undertakes not to enforce the rights granted by
these patents against successive Licensees using, exploiting or
modifying the Software. If these patents are transferred, the Licensor
undertakes to have the transferees subscribe to the obligations set
forth in this paragraph.

5.1 RIGHT OF USE
The Licensee is authorized to use the Software, without any limitation
as to its fields of application, with it being hereinafter specified

that this comprises:

1. permanent or temporary reproduction of all or part of the Software
by any or all means and in any or all form.

2. loading, displaying, running, or storing the Software on any or
all medium.

35

3. entitlement to observe, study or test its operation so as to
determine the ideas and principles behind any or all constituent
elements of said Software. This shall apply when the Licensee
carries out any or all loading, displaying, running, transmission
or storage operation as regards the Software, that it is entitled
to carry out hereunder.

5.2 ENTITLEMENT TO MAKE CONTRIBUTIONS

The right to make Contributions includes the right to translate, adapt,
arrange, or make any or all modifications to the Software, and the right
to reproduce the resulting software.

The Licensee is authorized to make any or all Contributions to the
Software provided that it includes an explicit notice that it is the
author of said Contribution and indicates the date of the creation thereof.

5.3 RIGHT OF DISTRIBUTION

In particular, the right of distribution includes the right to publish,
transmit and communicate the Software to the general public on any or
all medium, and by any or all means, and the right to market, either in
consideration of a fee, or free of charge, one or more copies of the
Software by any means.

The Licensee is further authorized to distribute copies of the modified
or unmodified Software to third parties according to the terms and
conditions set forth hereinafter.

5.3.1 DISTRIBUTION OF SOFTWARE WITHOUT MODIFICATION

The Licensee is authorized to distribute true copies of the Software in
Source Code or Object Code form, provided that said distribution
complies with all the provisions of the Agreement and is accompanied by:

1. a copy of the Agreement,

2. a notice relating to the limitation of both the Licensor's
warranty and liability as set forth in Articles 8 and 9,

and that, in the event that only the Object Code of the Software is
redistributed, the Licensee allows future Licensees unhindered access to
the full Source Code of the Software by indicating how to access it, it
being understood that the additional cost of acquiring the Source Code
shall not exceed the cost of transferring the data.

36

5.3.2 DISTRIBUTION OF MODIFIED SOFTWARE

When the Licensee makes a Contribution to the Software, the terms and
conditions for the distribution of the resulting Modified Software
become subject to all the provisions of this Agreement.

The Licensee is authorized to distribute the Modified Software, in
source code or object code form, provided that said distribution
complies with all the provisions of the Agreement and is accompanied by:

1. a copy of the Agreement,

2. a notice relating to the limitation of both the Licensor's
warranty and liability as set forth in Articles 8 and 9,

and that, in the event that only the object code of the Modified
Software is redistributed, the Licensee allows future Licensees
unhindered access to the full source code of the Modified Software by
indicating how to access it, it being understood that the additiomal
cost of acquiring the source code shall not exceed the cost of
transferring the data.

5.3.3 DISTRIBUTION OF EXTERNAL MODULES

When the Licensee has developed an External Module, the terms and
conditions of this Agreement do not apply to said External Module, that
may be distributed under a separate license agreement.

5.3.4 COMPATIBILITY WITH THE GNU GPL

The Licensee can include a code that is subject to the provisions of one
of the versions of the GNU GPL in the Modified or unmodified Software,
and distribute that entire code under the terms of the same version of
the GNU GPL.

The Licensee can include the Modified or unmodified Software in a code
that is subject to the provisions of one of the versions of the GNU GPL,

and distribute that entire code under the terms of the same version of
the GNU GPL.

Article 6 - INTELLECTUAL PROPERTY

37

6.1 OVER THE INITIAL SOFTWARE

The Holder owns the economic rights over the Initial Software. Any or
all use of the Initial Software is subject to compliance with the terms
and conditions under which the Holder has elected to distribute its work
and no one shall be entitled to modify the terms and conditions for the
distribution of said Initial Software.

The Holder undertakes that the Initial Software will remain ruled at
least by this Agreement, for the duration set forth in Article 4.2.

6.2 OVER THE CONTRIBUTIONS
The Licensee who develops a Contribution is the owner of the
intellectual property rights over this Contribution as defined by
applicable law.

6.3 OVER THE EXTERNAL MODULES
The Licensee who develops an External Module is the owner of the
intellectual property rights over this External Module as defined by
applicable law and is free to choose the type of agreement that shall
govern its distribution.

6.4 JOINT PROVISIONS

The Licensee expressly undertakes:

1. not to remove, or modify, in any manner, the intellectual property
notices attached to the Software;

2. to reproduce said notices, in an identical manner, in the copies
of the Software modified or not.

The Licensee undertakes not to directly or indirectly infringe the
intellectual property rights of the Holder and/or Contributors on the
Software and to take, where applicable, vis-a-vis its staff, any and all
measures required to ensure respect of said intellectual property rights
of the Holder and/or Contributors.

Article 7 - RELATED SERVICES

7.1 Under no circumstances shall the Agreement oblige the Licensor to
provide technical assistance or maintenance services for the Software.

38

However, the Licensor is entitled to offer this type of services. The
terms and conditions of such technical assistance, and/or such
maintenance, shall be set forth in a separate instrument. Only the
Licensor offering said maintenance and/or technical assistance services
shall incur liability therefor.

7.2 Similarly, any Licensor is entitled to offer to its licensees, under
its sole responsibility, a warranty, that shall only be binding upon
itself, for the redistribution of the Software and/or the Modified
Software, under terms and conditions that it is free to decide. Said
warranty, and the financial terms and conditions of its application,
shall be subject of a separate instrument executed between the Licensor
and the Licensee.

Article 8 - LIABILITY

8.1 Subject to the provisions of Article 8.2, the Licensee shall be
entitled to claim compensation for any direct loss it may have suffered
from the Software as a result of a fault on the part of the relevant
Licensor, subject to providing evidence thereof.

8.2 The Licensor's liability is limited to the commitments made under
this Agreement and shall not be incurred as a result of in particular:
(i) loss due the Licensee's total or partial failure to fulfill its
obligations, (ii) direct or consequential loss that is suffered by the
Licensee due to the use or performance of the Software, and (iii) more
generally, any consequential loss. In particular the Parties expressly
agree that any or all pecuniary or business loss (i.e. loss of data,
loss of profits, operating loss, loss of customers or orders,
opportunity cost, any disturbance to business activities) or any or all
legal proceedings instituted against the Licensee by a third party,
shall constitute consequential loss and shall not provide entitlement to
any or all compensation from the Licensor.

Article 9 - WARRANTY

9.1 The Licensee acknowledges that the scientific and technical
state-of-the-art when the Software was distributed did not enable all
possible uses to be tested and verified, nor for the presence of
possible defects to be detected. In this respect, the Licensee's
attention has been drawn to the risks associated with loading, using,
modifying and/or developing and reproducing the Software which are
reserved for experienced users.

The Licensee shall be responsible for verifying, by any or all means,

39

the suitability of the product for its requirements, its good working
order, and for ensuring that it shall not cause damage to either persons
or properties.

9.2 The Licensor hereby represents, in good faith, that it is entitled
to grant all the rights over the Software (including in particular the
rights set forth in Article 5).

9.3 The Licensee acknowledges that the Software is supplied "as is" by
the Licensor without any other express or tacit warranty, other than

that provided for in Article 9.2 and, in particular, without any warranty
as to its commercial value, its secured, safe, innovative or relevant
nature.

Specifically, the Licensor does not warrant that the Software is free
from any error, that it will operate without interruption, that it will
be compatible with the Licensee's own equipment and software
configuration, nor that it will meet the Licensee's requirements.

9.4 The Licensor does not either expressly or tacitly warrant that the
Software does not infringe any third party intellectual property right
relating to a patent, software or any other property right. Therefore,
the Licensor disclaims any and all liability towards the Licensee
arising out of any or all proceedings for infringement that may be
instituted in respect of the use, modification and redistribution of the
Software. Nevertheless, should such proceedings be instituted against
the Licensee, the Licensor shall provide it with technical and legal
assistance for its defense. Such technical and legal assistance shall be
decided on a case-by-case basis between the relevant Licensor and the
Licensee pursuant to a memorandum of understanding. The Licensor
disclaims any and all liability as regards the Licensee's use of the
name of the Software. No warranty is given as regards the existence of
prior rights over the name of the Software or as regards the existence
of a trademark.

Article 10 - TERMINATION

10.1 In the event of a breach by the Licensee of its obligations
hereunder, the Licensor may automatically terminate this Agreement
thirty (30) days after notice has been sent to the Licensee and has
remained ineffective.

10.2 A Licensee whose Agreement is terminated shall no longer be
authorized to use, modify or distribute the Software. However, any
licenses that it may have granted prior to termination of the Agreement
shall remain valid subject to their having been granted in compliance
with the terms and conditions hereof.

40

Article 11 - MISCELLANEOUS

11.1 EXCUSABLE EVENTS

Neither Party shall be liable for any or all delay, or failure to
perform the Agreement, that may be attributable to an event of force
majeure, an act of God or an outside cause, such as defective
functioning or interruptions of the electricity or telecommunications
networks, network paralysis following a virus attack, intervention by
government authorities, natural disasters, water damage, earthquakes,
fire, explosions, strikes and labor unrest, war, etc.

11.2 Any failure by either Party, on one or more occasions, to invoke
one or more of the provisions hereof, shall under no circumstances be
interpreted as being a waiver by the interested Party of its right to
invoke said provision(s) subsequently.

11.3 The Agreement cancels and replaces any or all previous agreements,
whether written or oral, between the Parties and having the same
purpose, and constitutes the entirety of the agreement between said
Parties concerning said purpose. No supplement or modification to the
terms and conditions hereof shall be effective as between the Parties
unless it is made in writing and signed by their duly authorized
representatives.

11.4 In the event that one or more of the provisions hereof were to
conflict with a current or future applicable act or legislative text,
said act or legislative text shall prevail, and the Parties shall make
the necessary amendments so as to comply with said act or legislative
text. All other provisions shall remain effective. Similarly, invalidity
of a provision of the Agreement, for any reason whatsoever, shall not
cause the Agreement as a whole to be invalid.

11.5 LANGUAGE

The Agreement is drafted in both French and English and both versions
are deemed authentic.

Article 12 - NEW VERSIONS OF THE AGREEMENT

12.1 Any person is authorized to duplicate and distribute copies of this
Agreement.

41

12.2 So as to ensure coherence, the wording of this Agreement is
protected and may only be modified by the authors of the License, who
reserve the right to periodically publish updates or new versions of the
Agreement, each with a separate number. These subsequent versions may
address new issues encountered by Free Software.

12.3 Any Software distributed under a given version of the Agreement may
only be subsequently distributed under the same version of the Agreement
or a subsequent version, subject to the provisions of Article 5.3.4.

Article 13 - GOVERNING LAW AND JURISDICTION
13.1 The Agreement is governed by French law. The Parties agree to
endeavor to seek an amicable solution to any disagreements or disputes
that may arise during the performance of the Agreement.
13.2 Failing an amicable solution within two (2) months as from their
occurrence, and unless emergency proceedings are necessary, the

disagreements or disputes shall be referred to the Paris Courts having
jurisdiction, by the more diligent Party.

Version 2.0 dated 2006-09-05.

42

	Overview
	Description
	Basic object
	The cost function
	The output function
	Termination

	Network of optimbase functions
	Help on optimbase functions
	optimbase-package
	asserts
	zeros & ones
	optimbase
	optimbase.checkbounds
	optimbase.checkcostfun
	optimbase.checkshape
	optimbase.checkx0
	optimbase.destroy
	optimbase.function
	optimbase.get
	optimbase.gridsearch
	Bounds & constraints
	optimbase.incriter
	optimbase.isfeasible
	Bound and constraint checks
	Log functions
	optimbase.outputcmd
	optimbase.outstruct
	optimbase.proj2bnds
	optimbase.set
	optimbase.terminate
	size
	strvec
	transpose
	vec2matrix

	CeCILL FREE SOFTWARE LICENSE AGREEMENT

