
Package ‘openSTARS’
May 21, 2020

Type Package

Title An Open Source Implementation of the 'ArcGIS' Toolbox 'STARS'

Description An open source implementation of the 'STARS' toolbox
(Peterson & Ver Hoef, 2014, <doi:10.18637/jss.v056.i02>) using 'R' and 'GRASS GIS'.
It prepares the *.ssn object needed for the 'SSN' package.
A Digital Elevation Model (DEM) is used to derive stream networks
(in contrast to 'STARS' that can clean an existing stream network).

Version 1.2.0

URL https://github.com/MiKatt/openSTARS

Depends R (>= 3.3), data.table, rgrass7

License MIT + file LICENSE

Encoding UTF-8

LazyLoad true

LazyData true

Imports methods, progress, rgdal, sp, raster, SSN

RoxygenNote 7.1.0

Suggests knitr, rmarkdown

VignetteBuilder knitr

NeedsCompilation no

Author Mira Kattwinkel [aut, cre],
Eduard Szöcs [aut]

Maintainer Mira Kattwinkel <mira.kattwinkel@gmx.net>

Repository CRAN

Date/Publication 2020-05-21 19:30:03 UTC

R topics documented:
calc_attributes_edges . 2
calc_attributes_sites_approx . 5

1

https://github.com/MiKatt/openSTARS

2 calc_attributes_edges

calc_attributes_sites_exact . 8
calc_binary . 11
calc_catchment_attributes_rast . 12
calc_catchment_attributes_rast_rec . 13
calc_catchment_attributes_vect . 14
calc_edges . 14
calc_prediction_sites . 16
calc_sites . 17
check_compl_confluences . 20
check_projection . 21
check_ssn . 22
correct_compl_confluences . 23
delete_lakes . 25
derive_streams . 27
export_ssn . 29
import_data . 31
import_vector_data . 34
merge_sites_measurements . 35
openSTARS . 36
prepare_sites . 39
restrict_network . 40
setup_grass_environment . 42

Index 44

calc_attributes_edges Calculate attributes of the edges.

Description

For each edge (i.e. stream segment) additional attributes (potential predictor variables) are derived
based on given raster or vector maps.

Usage

calc_attributes_edges(
input_raster = NULL,
stat_rast = NULL,
attr_name_rast = NULL,
input_vector = NULL,
stat_vect = NULL,
attr_name_vect = NULL,
round_dig = 2

)

calc_attributes_edges 3

Arguments

input_raster name(s) of raster map(s) to calculate attributes from.

stat_rast name(s) giving the statistics to be calculated, from the raster maps, must be one
of: "min", "max", "mean", "sum", "percent", "area" for each input_raster.

attr_name_rast of new column name(s) for the attribute(s) to be calculated. Attribute names
must not be longer than 8 characters as ESRI shapefiles cannot have colum
names with more than 10 characters. See notes.

input_vector name(s) of vector map(s) to calculate attributes from.

stat_vect name(s) giving the statistics to be calculated from the vector maps, must be
one of: "count" (for point data), "percent" or "area" (for polygon data) for each
input_vector.

attr_name_vect name(s) of attribute column(s), case sensitive. For polygon data, this is the
column to calculate the statistics from; the results column names are created by
the content of this column. For point data, a column will be created with this
name to hold the counts. See notes.

round_dig integer; number of digits to round results to. Can be a vector of different values
or just one value for all attributes. #@param clean logical; should intermediate
files be deleted

Details

First, the reach contributing areas (= subcatchments) for all edges are calculated. Then these are in-
tersected with the given raster and/or vector maps and the desired statistics are computed. This func-
tion must be run before computing approximate attribute values for sites calc_attributes_sites_approx.

For stat_rast = "percent" or "area" the input_raster can be either coded as 1 and 0 (e.g., cells
occupied by the land use under consideration and not) or as different classes. The percentage or
area of each class in the catchment is calculated. If the input_raster consists of percentages per
cell (e.g., proportional land use of a certain type per cell) stat_rast = "mean" gives the overall
proportion of this land use in the catchment.

For stat_vect = "percent" or "area" input_vector must contain polygons of e.g. different land
use types. The column attr_name_vect would then give the code for the different land uses. Then,
the percentage for each land use type in the catchment of the edge is calculated and given in separate
columns with column names resampling the different categories given in column attr_name_vect

For stat_vect = "count" input_vector must contain points of e.g. waste water treatment plants.
The column attr_name_vect gives the name of the column to hold the count value, e.g. nWWTP.

Both raster and vector maps to be used must be read in to the GRASS session, either in import_data
or using the GRASS function r.in.rast or v.in.ogr (see examples).

Value

Nothing. The function appends new columns to the ’edges’ attribute table with column names given
in attr_name_rast and derived from the attribute classes for vector data. For each attribute, two
columns are appended: one giving the attribute for the rca of the edge ("attribute_name_e") and one
for the attribute of the total catchment of the edge ("attribute_name_c").

4 calc_attributes_edges

Note

Column names for the results are created as follows: Raster data - the column names given in
attr_name_rast are used. The user should take care to use unique, clear names. For stat_rast
= ’percentage’ or ’area’, the output column name will be concatenated ’p’ or ’a’, repectively. For
vector data, column names are constructed from the entries in in the column attr_name_vect.
For counts of points, the new column name containing the counts is just the given name. For
polygon data (’percentage’ or ’area’), the names are constructed using the unique entries of the
column with a concatenated ’p’ or ’a’, repectively. If, for instance, for a landuse vector containing
the classes ’urban’ and ’arable’ percentages would be calculated, edges would contain two new
columns ’urbanp’ and ’arablep’.

setup_grass_environment, import_data, derive_streams and calc_edges must be run before.

Author(s)

Mira Kattwinkel, <mira.kattwinkel@gmx.net>

Examples

if(.Platform$OS.type == "windows"){
gisbase = "c:/Program Files/GRASS GIS 7.6"
} else {
gisbase = "/usr/lib/grass74/"
}

initGRASS(gisBase = gisbase,
home = tempdir(),
override = TRUE)

Load files into GRASS
dem_path <- system.file("extdata", "nc", "elev_ned_30m.tif", package = "openSTARS")
sites_path <- system.file("extdata", "nc", "sites_nc.shp", package = "openSTARS")
streams_path <- system.file("extdata", "nc", "streams.shp", package = "openSTARS")
preds_v_path <- system.file("extdata", "nc", "pointsources.shp", package = "openSTARS")
preds_r_path <- system.file("extdata", "nc", "landuse_r.tif", package = "openSTARS")

setup_grass_environment(dem = dem_path)
import_data(dem = dem_path, sites = sites_path, streams = streams_path,

predictor_vector = preds_v_path, predictor_raster = preds_r_path)
gmeta()

Derive streams from DEM
burn in 'streams' 10 meters
derive_streams(burn = 10, accum_threshold = 700, condition = TRUE, clean = TRUE)

Check and correct complex confluences (there are no complex confluences in this
example date set; set accum_threshold in derive_streams to a smaller value
to create complex confluences)
cj <- check_compl_confluences()
if(cj){

correct_compl_confluences()

calc_attributes_sites_approx 5

}

calculate slope as potential predictor
execGRASS("r.slope.aspect", flags = c("overwrite","quiet"),
parameters = list(

elevation = "dem",
slope = "slope"
))

Prepare edges
calc_edges()
calc_attributes_edges(input_raster = c("slope", "landuse_r"),

stat_rast = c("max", "percent"),
attr_name_rast = c("maxSlo", "luse"),
input_vector = "pointsources", stat_vect = "count",
attr_name_vect = "psource")

Plot eges with percentage of forest in the catchment (lusep_5) as line width
edges <- readVECT('edges', ignore.stderr = TRUE)
head(edges@data)
lu <- readRAST("landuse_r", ignore.stderr = TRUE)

plot landuse data
library(raster)
op <- par()
par(xpd = FALSE)
plot(raster(lu), legend = FALSE, xaxt = "n", yaxt = "n", bty = "n",
col = adjustcolor(c("red", "goldenrod", "green", "forestgreen",
"darkgreen", "blue", "lightblue"), alpha.f = 0.7))
par(xpd = TRUE)
legend("bottom", cex = 0.75,
legend = c("developed", "agriculture", "herbaceous", "shrubland", "forest", "water", "sediment"),
fill = c("red", "goldenrod", "green", "forestgreen","darkgreen", "blue", "lightblue"),
horiz = TRUE, inset = -0.175)

plot(edges, lwd = edges$lusep_5_c * 10, add = TRUE)
par <- op

calc_attributes_sites_approx

Calculate attributes of the sites.

Description

For each site (observations or predictions) attributes (potential predictor variables) are derived based
on the values calculated for the edge the site lies on. This function calculates approximate values
for site catchments as described in Peterson & Ver Hoef, 2014: STARS: An ArcGIS Toolset Used to
Calculate the Spatial Information Needed to Fit Spatial Statistical Models to Stream Network Data.
J. Stat. Softw., 56 (2).

6 calc_attributes_sites_approx

Usage

calc_attributes_sites_approx(
sites_map = "sites",
input_attr_name = NULL,
output_attr_name = NULL,
stat = NULL,
round_dig = 2,
calc_basin_area = TRUE

)

Arguments

sites_map character; name of the sites (observation or prediction) attributes shall be calcu-
lated for. "sites" (default) refers to the observation sites.

input_attr_name

character vector; input column name(s) in the attribute table of the vector map
"edges".

output_attr_name

character vector (optional); output column name(s) appended to the site attribute
data table. If not provided it is set to input_attr_name. Attribute names must
not be longer than 10 characters.

stat name or character vector giving the statistics to be calculated. See details below.
round_dig integer; number of digits to round results to.
calc_basin_area

boolean; shall the catchment area be calculated? (Useful to set to FALSE if the
function has been called before.)

Details

The approximate total catchment area (H2OAreaA) is always calculated if calc_basin_area is
TRUE. If stat is one of "min", "max", "mean" or "percent" the function assigns the value of the
edge the site lies on. Otherwise, the value is calculated as the sum of all edges upstream of the
previous confluence and the proportional value of the edge the site lies on (based on the distance
ratio ’ratio’); this is useful e.g. for counts of dams or waste water treatment plants or total catchment
area.

input_attr_name must give the column names of the edges attribute table for that the statistics
should be calculated.

Value

Nothing. The function appends new columns to the sites_map attribute table

• ’H2OAreaA’: Total watershed area of the watershed upstream of each site.
• attr_name: Additional optional attributes calculated based on input_attr_name.

Note

import_data, derive_streams, calc_edges, calc_sites or calc_prediction_sites and calc_attributes_edges
must be run before.

calc_attributes_sites_approx 7

Author(s)

Mira Kattwinkel, <mira.kattwinkel@gmx.net>

Examples

Initiate GRASS session
if(.Platform$OS.type == "windows"){

gisbase = "c:/Program Files/GRASS GIS 7.6"
} else {
gisbase = "/usr/lib/grass74/"
}

initGRASS(gisBase = gisbase,
home = tempdir(),
override = TRUE)

Load files into GRASS
dem_path <- system.file("extdata", "nc", "elev_ned_30m.tif", package = "openSTARS")
sites_path <- system.file("extdata", "nc", "sites_nc.shp", package = "openSTARS")
pred_path <- system.file("extdata", "nc", "geology.shp", package = "openSTARS")
setup_grass_environment(dem = dem_path)
import_data(dem = dem_path, sites = sites_path,
predictor_vector = pred_path)

gmeta()

Derive streams from DEM
derive_streams(burn = 0, accum_threshold = 700, condition = TRUE, clean = TRUE)

Check and correct complex confluences (there are no complex confluences in this
example date set; set accum_threshold in derive_streams to a smaller value
to create complex confluences)
cj <- check_compl_confluences()
if(cj){

correct_compl_confluences()
}

Prepare edges
calc_edges()

Derive slope from the DEM as an example raster map to calculate attributes from
execGRASS("r.slope.aspect", flags = c("overwrite","quiet"),
parameters = list(

elevation = "dem",
slope = "slope"
))

calc_attributes_edges(input_raster = "slope", stat_rast = "max", attr_name_rast = "maxSlo",
input_vector = "geology", stat_vect = "percent", attr_name_vect = "GEO_NAME")

calc_sites()

approximate potential predictor variables for each site based on edge values
calc_attributes_sites_approx(

8 calc_attributes_sites_exact

input_attr_name = c('maxSlo', 'CZamp', 'CZbgp', 'CZfgp', 'CZgp', 'CZigp', 'CZlgp', 'CZvep', 'Kmp'),
stat = c("max", rep("percent", 8)))

plot share of a certain geology in the sampling point's catchment as
point size
library(sp)
edges <- readVECT('edges', ignore.stderr = TRUE)
sites <- readVECT('sites', ignore.stderr = TRUE)
geo <- readVECT("geology", ignore.stderr = TRUE)
plot(geo, col = adjustcolor(1:8, alpha.f = 0.5)[as.factor(geo$GEO_NAME)])
plot(edges, col = "blue", add = TRUE)
plot(sites, col = 1, add = TRUE, pch = 19, cex = (sites$CZbgp + 0.15) * 2)
legend("left", col = adjustcolor(1:8, alpha.f = 0.5), bty = "n",
legend = unique(geo$GEO_NAME), pch = 15, title = "geology")
legend("right", col = 1, pch = 19, legend = seq(0, 1, 0.2), bty = "n",
title = "share CZbg\nin catchment", pt.cex = (seq(0, 1, 0.2) + 0.15) * 2)

calc_attributes_sites_exact

Calculate attributes of the sites.

Description

For each site (observation or prediction) the total catchment area is calculated (’H2OArea’). Addi-
tionally, other attributes (predictor variables) can be derived based on given raster or vector maps.
This function calculates exact values for catchments derived with r.stream.basins and can take con-
siderable time if there are many sites. Catchment raster maps can optionally be stored as "site-
name_catchm_X" (X = locID).

Usage

calc_attributes_sites_exact(
sites_map = "sites",
input_raster = NULL,
stat_rast = NULL,
attr_name_rast = NULL,
input_vector = NULL,
stat_vect = NULL,
attr_name_vect = NULL,
round_dig = 2,
calc_basin_area = TRUE,
keep_basins = FALSE

)

Arguments

sites_map character; name of the sites (observation or prediction) attributes shall be calcu-
lated for. "sites" (default) refers to the observation sites.

https://grass.osgeo.org/grass74/manuals/addons/r.stream.basins.html

calc_attributes_sites_exact 9

input_raster character vector (optional); name of additional raster maps to calculate attributes
from.

stat_rast character vector (optional); statistics to be calculated, one of: "min", "max",
"mean", "stddev", "variance", "sum", "median", "percent", "area" or "percentile_X"
(where X gives the desired percentile e.g. 25 for the first). Must be provided if
input_raster are given.

attr_name_rast character vector (optional); column name for the attributes to be calculated.
Attribute names must not be longer than 10 characters. Must be provided if
input_raster are given.

input_vector character string vector (optional); name of additional vector maps to calculate
attributes from.

stat_vect character string vector (optional); statistics to be calculated, one of: "percent",
"area" or "count." Must be provided if input_vector is given.

attr_name_vect character string vector (optional); column name(s) in the vector file provided to
calculate the attributes from (if input_vector is a polygon map and stat_vect is
"percent") or giving the new name attributes to calculate (if input_vector is a
point map and stat_vect is "count". Must be provided if input_vector is given.

round_dig integer; number of digits to round results to. Can be a vector of different values
or just one value for all attributes.

calc_basin_area

boolean; shall the catchment area be calculated? (Useful to set to FALSE if the
function has been called before with keep_basins = TRUE.)

keep_basins boolean; shall raster and vector maps of all the watersheds be kept? Defaults to
FALSE.

Value

Nothing. The function appends new columns to the sites_map attribute table

• ’H2OArea’: Total watershed area of the watershed upstream of each site.

• attr_name_rast: Additional optional attributes calculated based on input_raster maps.

• attributes form vector maps:Additional optional attributes calculated based on input_vector
maps. The column names are based on the unique entries of the column(s) given in attr_name_vect.

Please note that for sampling points that lie in the same DEM raster cell along a stream identical
values are calculated because identical watersheds are derived.

Note

import_data, derive_streams, calc_edges and calc_sites or calc_prediction_sites must
be run before.

If calc_basin_area = F but there are no raster maps called ’sitename_catchm_x’ with x = locID
of all sites the catchments (and their area) are derived.

Author(s)

Mira Kattwinkel, <mira.kattwinkel@gmx.net>, Eduard Szoecs, <eduardszoecs@gmail.com>

10 calc_attributes_sites_exact

Examples

Initiate GRASS session
if(.Platform$OS.type == "windows"){

gisbase = "c:/Program Files/GRASS GIS 7.6"
} else {

gisbase = "/usr/lib/grass74/"
}
initGRASS(gisBase = gisbase,

home = tempdir(),
override = TRUE)

Load files into GRASS
dem_path <- system.file("extdata", "nc", "elev_ned_30m.tif", package = "openSTARS")
sites_path <- system.file("extdata", "nc", "sites_nc.shp", package = "openSTARS")
setup_grass_environment(dem = dem_path)
import_data(dem = dem_path, sites = sites_path)
gmeta()

Derive streams from DEM
derive_streams(burn = 0, accum_threshold = 700, condition = TRUE, clean = TRUE)

Prepare edges
calc_edges()
execGRASS("r.slope.aspect", flags = c("overwrite","quiet"),

parameters = list(
elevation = "dem",
slope = "slope"

))
calc_attributes_edges(input_raster = "slope", stat_rast = "max", attr_name_rast = "maxSlo")

Prepare sites
calc_sites()
calc_attributes_sites_approx(input_attr_name = "maxSlo", output_attr_name = "maxSloA", stat = "max")
calc_attributes_sites_exact(input_raster = "slope", attr_name_rast = "maxSloE", stat_rast = "max")

Plot data
library(sp)
dem <- readRAST('dem', ignore.stderr = TRUE)
edges <- readVECT('edges', ignore.stderr = TRUE)
sites <- readVECT('sites', ignore.stderr = TRUE)
plot(dem, col = gray(seq(0,1,length.out=20)))
mm <- range(c(edges$maxSlo_e, sites$maxSloA, sites$maxSloE))
b <- seq(from = mm[1], to = mm[2] + diff(mm) * 0.01, length.out = 10)
c_ramp <- colorRampPalette(c("white", "blue", "orange", "red"))
cols <- c_ramp(length(b))[as.numeric(cut(edges$maxSlo_e, breaks = b, right = FALSE))]
plot stream edges, color depending on maxSlope of the edge
plot(edges,col = cols, lwd = 2, add = TRUE)
cols <- c_ramp(length(b))[as.numeric(cut(sites$maxSloA,breaks = b,right = FALSE))]
plot sites as points with color corresponding to maxSlop approximate
plot(sites, pch = 19, col = cols, cex = 2, add = TRUE)
cols <- c_ramp(length(b))[as.numeric(cut(sites$maxSloE,breaks = b,right = FALSE))]

calc_binary 11

#' # plot sites as ring around points with color corresponding to maxSlop exact
plot(sites, pch = 21, bg = cols, cex = 1.1, add = TRUE)
Some points in the lower centre of the map indicate a difference in max slope between
approximate and exact calculation (different colors for inner and outer points). However,
for most points the values are similar

calc_binary Calculate binary IDs for each stream network.

Description

Calculate binary IDs for each stream network built up by ’0’ and ’1’. This function is called by
export_ssn and there is no need for it be called by the users.

Calculate binary IDs for each stream network built up by ’0’ and ’1’. This function is called by
export_ssn and there is no need for it be called by the users.

Usage

calc_binary()

calc_binary()

Value

A list with one slot for each network id containing a data frame with ’rid’ and ’binaryID’ for each
segment belonging to this network.

A list with one slot for each network id containing a data frame with ’rid’ and ’binaryID’ for each
segment belonging to this network.

Note

import_data, derive_streams, calc_edges and calc_sites must be run before.

import_data, derive_streams, calc_edges and calc_sites must be run before.

Author(s)

Eduard Szoecs, <eduardszoecs@gmail.com>; Mira Kattwinkel, <mira.kattwinkel@gmx.net>

Eduard Szoecs, <eduardszoecs@gmail.com>; Mira Kattwinkel, <mira.kattwinkel@gmx.net>

@export

12 calc_catchment_attributes_rast

Examples

Initiate GRASS session
if(.Platform$OS.type == "windows"){

gisbase = "c:/Program Files/GRASS GIS 7.6"
} else {
gisbase = "/usr/lib/grass74/"
}

initGRASS(gisBase = gisbase,
home = tempdir(),
override = TRUE)

Load files into GRASS
dem_path <- system.file("extdata", "nc", "elev_ned_30m.tif", package = "openSTARS")
sites_path <- system.file("extdata", "nc", "sites_nc.shp", package = "openSTARS")
setup_grass_environment(dem = dem_path)
import_data(dem = dem_path, sites = sites_path)
gmeta()

Derive streams from DEM
derive_streams(burn = 0, accum_threshold = 700, condition = TRUE, clean = TRUE)

Check and correct complex confluences (there are no complex confluences in this
example date set; set accum_threshold in derive_streams to a smaller value
to create complex confluences)
cj <- check_compl_confluences()
if(cj){

correct_compl_confluences()
}

Prepare edges
calc_edges()

Prepare site
calc_sites()

binaries <- calc_binary()
head(binaries[[1]])

calc_catchment_attributes_rast

calc_catchment_attributes_rast Aggregate attributes for the total
catchment of each stream segment.

Description

This function aggregates the attributes of each segment for the total catchment of each stream seg-
ment. It is called within calc_attributes_edges and should not be called by the user.

calc_catchment_attributes_rast_rec 13

Usage

calc_catchment_attributes_rast(dt, stat_rast, attr_name_rast, round_dig)

Arguments

dt data.table of stream topology and attributes per segment.
stat_rast name or character vector giving the statistics to be calculated, must be one of:

min, max, mean, percent, sum.
attr_name_rast name or character vector of column names for the attribute(s) to be calculated.
round_dig integer; number of digits to round results to. Can be a vector of different values

or just one value for all attributes.

Value

Nothing. The function changes the values of the columns attr_name_rast in dt.

calc_catchment_attributes_rast_rec

calc_catchment_attributes_rast_rec Aggregate attributes for the total
catchment of each stream segment.

Description

Recursive function to calculate the catchment attributes of each stream segment. It is called by
calc_catchment_attributes_rast for each outlet and should not be called by the user.

Usage

calc_catchment_attributes_rast_rec(dt, id, stat, attr_name)

Arguments

dt data.table of stream topology and attributes per segment.
id integer; ’stream’ of outlet segment to start the calculation from.
stat name or character vector giving the statistics to be calculated, must be one of:

min, max, mean, percent.
attr_name name or character vector of column names for the attribute(s) to be calculated.

Value

One row data.table with the cumulative number of cells of the total catchment of each segment and
the values for each attribute and changes the values in dt.

Note

The values for stats "mean" and "percent" need to be divided by the cumulative number of cells of
the total catchment in a subsequent step.

14 calc_edges

calc_catchment_attributes_vect

calc_catchment_attributes_vect Aggregate attributes for the total
catchment of each stream segment.

Description

This function aggregates the attributes of each segment for the total catchment of each stream seg-
ment. It is called within calc_attributes_edges and should not be called by the user.

Usage

calc_catchment_attributes_vect(dt, stat_vect, attr_name_vect, round_dig)

Arguments

dt data.table of stream topology and attributes per segment.

stat_vect name or character vector giving the statistics to be calculated, must be one of:
percent, sum.

attr_name_vect name or character vector of column names for the attribute(s) to be calculated.

round_dig integer; number of digits to round results to. Can be a vector of different values
or just one value for all attributes.

Value

Nothing. The function changes the values of the columns attr_name_vect in dt.

calc_edges Calculate edges for SSN object.

Description

A vector (lines) map ’edges’ is derived from ’streams_v’ and several attributes are assigned.

Usage

calc_edges()

calc_edges 15

Details

Steps include:

• Assign unique ’rid’ to each stream segment

• Find different stream networks in the region and assign ’netID’

• Calculate segments upstream distance, ’upDist’ = flow length from the upstream node of the
stream segment to the outlet of the network

• Calculate reach contributing areas (RCA) per segment, ’rcaArea’ = subcatchment area of each
segment in square km

• Calculate catchment areas, ’H2OArea’ = total catchment area of each segment in square km

All lengths are rounded to 2 and all areas to 6 decimal places, respectively.

Value

Nothing. The function produces the following map:

• ’edges’: derived stream segments with computed attributes needed for ’SSN’ (vector)

Note

setup_grass_environment, import_data and derive_streams must be run before.

Author(s)

Mira Kattwinkel, <mira.kattwinkel@gmx.net>, Eduard Szoecs, <eduardszoecs@gmail.com>

Examples

Initiate GRASS session
if(.Platform$OS.type == "windows"){

gisbase = "c:/Program Files/GRASS GIS 7.6"
} else {
gisbase = "/usr/lib/grass74/"
}

initGRASS(gisBase = gisbase,
home = tempdir(),
override = TRUE)

Load files into GRASS
dem_path <- system.file("extdata", "nc", "elev_ned_30m.tif", package = "openSTARS")
sites_path <- system.file("extdata", "nc", "sites_nc.shp", package = "openSTARS")
setup_grass_environment(dem = dem_path)
import_data(dem = dem_path, sites = sites_path)
gmeta()

Derive streams from DEM
derive_streams(burn = 0, accum_threshold = 700, condition = TRUE, clean = TRUE)

16 calc_prediction_sites

check_compl_confluences()

Prepare edges
calc_edges()

Plot data
library(sp)
dem <- readRAST('dem', ignore.stderr = TRUE)
edges <- readVECT('edges', ignore.stderr = TRUE)
plot(dem, col = terrain.colors(20))
lines(edges, col = 'blue')

calc_prediction_sites Calculate prediction sites for ’SSN’ object.

Description

A vector (points) map of prediction sites is created and several attributes are assigned.

Usage

calc_prediction_sites(predictions, dist = NULL, nsites = 10, netIDs = NULL)

Arguments

predictions string giving the name for the prediction sites map.
dist number giving the distance between the points to create in map units.
nsites integer giving the approximate number of sites to create
netIDs integer (optional): create prediction sites only on streams with these netID(s).

Details

Either dist or nsites must be provided. If dist is NULL, it is estimated by dividing the total
stream length in the map by nsites; the number of sites actually derived might therefore be a bit
smaller than nsites.

Steps include:

• Place points on edges with given distance from each other
• Save the point coordinates in NEAR_X and NEAR_Y.
• Assign unique identifiers (needed by the ’SSN’ package) ’pid’ and ’locID’.
• Get ’rid’ and ’netID’ of the stream segment the site intersects with (from map ’edges’).
• Calculate upstream distance for each point (’upDist’).
• Calculate distance ratio (’distRatio’) between position of the site on the edge (= distance trav-

eled from lower end of the edge to the site) and the total length of the edge.

’pid’ and ’locID’ are identical, unique numbers. ’upDist’ is calculated using r.stream.distance.
Points are created using v.segment.

https://grass.osgeo.org/grass72/manuals/addons/r.stream.distance.html
https://grass.osgeo.org/grass72/manuals/v.segment.html

calc_sites 17

Note

import_data, derive_streams and calc_edges must be run before.

Author(s)

Mira Kattwinkel <mira.kattwinkel@gmx.net>

Examples

Initiate GRASS session
if(.Platform$OS.type == "windows"){

gisbase = "c:/Program Files/GRASS GIS 7.6"
} else {
gisbase = "/usr/lib/grass74/"
}

initGRASS(gisBase = gisbase,
home = tempdir(),
override = TRUE)

Load files into GRASS
dem_path <- system.file("extdata", "nc", "elev_ned_30m.tif", package = "openSTARS")
sites_path <- system.file("extdata", "nc", "sites_nc.shp", package = "openSTARS")
setup_grass_environment(dem = dem_path)
import_data(dem = dem_path, sites = sites_path)
gmeta()

Derive streams from DEM
derive_streams(burn = 0, accum_threshold = 700, condition = TRUE, clean = TRUE)

check_compl_confluences()
calc_edges()
calc_sites()
calc_prediction_sites(predictions = "preds", dist = 2500)

library(sp)
dem <- readRAST('dem', ignore.stderr = TRUE)
sites <- readVECT('sites', ignore.stderr = TRUE)
preds <- readVECT('preds', ignore.stderr = TRUE)
edges <- readVECT('edges', ignore.stderr = TRUE)
plot(dem, col = terrain.colors(20))
lines(edges, col = 'blue', lwd = 2)
points(sites, pch = 4)
points(preds, pch = 19, col = "steelblue")

calc_sites Calculate sites for SSN object.

18 calc_sites

Description

A vector (points) map ’sites’ is derived and several attributes are assigned.

Usage

calc_sites(locid_col = NULL, pid_col = NULL, pred_sites = NULL, maxdist = NULL)

Arguments

locid_col character (optional); column name in the sites attribute table giving a unique site
identifier. If not provided, it is created automatically (based on the ’cat’ field;
default).

pid_col character (optional); column name in the sites attribute table that distinguishes
between repeated measurements at a sampling site, e.g. by date. If not provided,
it is created automatically.

pred_sites character vector (optional); names for prediction sites (loaded with import_data).

maxdist integer (optional); maximum snapping distance in map units (see details). Sites
farther away from edges will be deleted.

Details

Steps include:

• Snap points to derived network (edges). ’dist’ gives the distance of the original position to the
closest streams segment. If this is a too large value consider running derive_streams again
with smaller value for accum_threshold and/or min_stream_length.

• Save the new point coordinates in NEAR_X and NEAR_Y.

• Assign unique ’pid’ and ’locID’ (needed by the ’SSN’ package).

• Get ’rid’ and ’netID’ of the stream segment the site intersects with (from map "edges").

• Calculate upstream distance for each point (’upDist’).

• Calculate distance ratio (’ratio’) between position of site on edge (distance traveled from lower
end of the edge to the site) and the total length of the edge.

Often, survey sites do not lay exactly on the stream network (due to GPS imprecision, stream
representation as lines, derivation of streams from dem, etc.). To assign an exact position of the
sites on the network they are moved to the closest stream segment (snapped) using the GRASS
function v.distance.

If locid_col and pid_col are not provided, ’pid’ and ’locID’ are identical, unique numbers. If
they are provided, they are created based on these columns (as numbers, not as text). Note that
measurements can be joined to the sites at a later step (including multiple parameters and multiple
measurements) using merge_sites_measurements. Then, ’pid’ is updated accordingly.

’upDist’ is calculated using v.distance with upload = "to_along" which gives the distance along
the stream segment to the next upstream node (’distalong’). ’upDist’ is the difference between the
’upDist’ of the edge the point lies on and ’distalong’.

The unit for distances (= map units) can be found out using execGRASS("g.proj", flags = "p").

https://grass.osgeo.org/grass74/manuals/v.distance.html
https://grass.osgeo.org/grass74/manuals/v.distance.html

calc_sites 19

If prediction sites have been created outside of this package they can be processed here as well.
They must have been imported with import_data before. Alternatively, prediction sites can be
created using calc_prediction_sites.

Note

import_data, derive_streams and calc_edges must be run before.

Author(s)

Mira Kattwinkel <mira.kattwinkel@gmx.net>, Eduard Szoecs, <eduardszoecs@gmail.com>,

Examples

Initiate GRASS session
if(.Platform$OS.type == "windows"){

gisbase = "c:/Program Files/GRASS GIS 7.6"
} else {
gisbase = "/usr/lib/grass74/"
}

initGRASS(gisBase = gisbase,
home = tempdir(),
override = TRUE)

Load files into GRASS
dem_path <- system.file("extdata", "nc", "elev_ned_30m.tif", package = "openSTARS")
sites_path <- system.file("extdata", "nc", "sites_nc.shp", package = "openSTARS")
setup_grass_environment(dem = dem_path)
import_data(dem = dem_path, sites = sites_path)
gmeta()

Derive streams from DEM
derive_streams(burn = 0, accum_threshold = 700, condition = TRUE, clean = TRUE)

Check and correct complex confluences (there are no complex confluences in this
example date set; set accum_threshold in derive_streams to a smaller value
to create complex confluences)
cj <- check_compl_confluences()
if(cj){

correct_compl_confluences()
}

Prepare edges
calc_edges()

Prepare site
calc_sites()

Plot data
library(sp)
dem <- readRAST('dem', ignore.stderr = TRUE)

20 check_compl_confluences

edges <- readVECT('edges', ignore.stderr = TRUE)
sites <- readVECT('sites', ignore.stderr = TRUE)
sites_o <- readVECT('sites_o', ignore.stderr = TRUE)
plot(dem, col = terrain.colors(20),axes = TRUE)
lines(edges, col = 'blue')
points(sites, pch = 4)
points(sites_o, pch = 1)
legend("topright", pch = c(1, 4), legend = c("original", "corrected"))

check_compl_confluences

Check if there are more than two inflows to an outflow.

Description

It is checked, if more than two line segments flow into a node, i.e. if there are more than two inflows
to an outflow.

Usage

check_compl_confluences()

Details

It is checked, if there are columns named ’prev_str03’, ’prev_str04’ and ’prev_str05’ in the attribute
table of streams_v derived with derive_streams (i.e. based on the GRASS function r.stream.order).

Value

TRUE if there are complex confluences.

Note

setup_grass_environment, import_data and derive_streams must be run before.

Author(s)

Mira Kattwinkel <mira.kattwinkel@gmx.net>

Examples

Initiate GRASS session
if(.Platform$OS.type == "windows"){

gisbase = "c:/Program Files/GRASS GIS 7.6"
} else {
gisbase = "/usr/lib/grass74/"
}

https://grass.osgeo.org/grass74/manuals/addons/r.stream.order.html

check_projection 21

initGRASS(gisBase = gisbase,
home = tempdir(),
override = TRUE)

Load files into GRASS
dem_path <- system.file("extdata", "nc", "elev_ned_30m.tif", package = "openSTARS")
sites_path <- system.file("extdata", "nc", "sites_nc.shp", package = "openSTARS")
setup_grass_environment(dem = dem_path)
import_data(dem = dem_path, sites = sites_path)
gmeta()

Derive streams from DEM
derive_streams(burn = 0, accum_threshold = 700, condition = TRUE, clean = TRUE)

check_compl_confluences()

check_projection Compare projection raster data to the one of the current GRASS loca-
tion.

Description

Check if the procection of raster files matches the one of the current region

Usage

check_projection(path)

Arguments

path character string vector; path raster data file(s)

Details

Prints out a table of the PROJ.4 elements of the projection information of the current GRASS loca-
tion and of the raster file(s) as well as one columns for each comparison indicating the differences.
Based on this information it can be decided if the data can be read into GRASS (import_data)
without prior processing, i.e. if all raster data are of the same projection.

Value

Nothing.

22 check_ssn

check_ssn Checking ’SSN’ object.

Description

This function roughly checks the ’SSN’ object. It returns FALSE if some essential columns are
missing or values have illegal values.

Usage

check_ssn(path, predictions = NULL)

Arguments

path character; path to .ssn object.

predictions name(s) of prediction map(s) (optional).

Value

TRUE or FALSE depending if checks pass.

Author(s)

Mira Kattwinkel, <mira.kattwinkel@gmx.net>, Eduard Szoecs, <eduardszoecs@gmail.com>

Examples

Initiate GRASS session
if(.Platform$OS.type == "windows"){

gisbase = "c:/Program Files/GRASS GIS 7.6"
} else {
gisbase = "/usr/lib/grass74/"
}

initGRASS(gisBase = gisbase,
home = tempdir(),
override = TRUE)

Load files into GRASS
dem_path <- system.file("extdata", "nc", "elev_ned_30m.tif", package = "openSTARS")
sites_path <- system.file("extdata", "nc", "sites_nc.shp", package = "openSTARS")
setup_grass_environment(dem = dem_path)
import_data(dem = dem_path, sites = sites_path)
gmeta()

Derive streams from DEM
derive_streams(burn = 0, accum_threshold = 700, condition = TRUE, clean = TRUE)

Check and correct complex confluences (there are no complex confluences in this

correct_compl_confluences 23

example date set; set accum_threshold in derive_streams to a smaller value
to create complex confluences)
cj <- check_compl_confluences()
if(cj){

correct_compl_confluences()
}

Prepare edges
calc_edges()

Prepare site
calc_sites()
Calculate H2OArea
calc_attributes_sites_exact()

Plot data
library(sp)
dem <- readRAST('dem', ignore.stderr = TRUE)
sites <- readVECT('sites', ignore.stderr = TRUE)
sites_orig <- readVECT('sites_o', ignore.stderr = TRUE)
edges <- readVECT('edges', ignore.stderr = TRUE)
plot(dem, col = terrain.colors(20))
lines(edges, col = 'blue')
points(sites_orig, pch = 4)
cols <- colorRampPalette(c("blue", 'red'))(length(sites$H2OArea))[rank(sites$H2OArea)]
points(sites, pch = 16, col = cols)

Write data to SSN Folder
ssn_dir <- file.path(tempdir(), 'nc.ssn')
export_ssn(ssn_dir, delete_directory = TRUE)

Check if all files are ok
library(SSN)
check_ssn(ssn_dir)

correct_compl_confluences

Correct confluences with three or more inflows.

Description

At complex confluences (when more than two line segments flow into a node, i.e. more than two
inflows to an outflow), the end of one of the inflows is moved a tiny bit upstream to one of the other
inflows to create a new confluence of two streams (see details below).

Usage

correct_compl_confluences(clean = TRUE)

24 correct_compl_confluences

Arguments

clean logical; should intermediate files be removed from ’GRASS’ session?

Details

At complex confluences (when more than two line segments flow into a node, i.e. more than two
inflows to an outflow), new confluences of only two streams are created: 1. complex confluences
are found based on the fact that the outflow has more than two previous streams 2. the inflow with
the shortest cummulative length from its source is found; the end of this segment will be moved 3.
the inflow with the smallest angle to this inflow is found; this segment will be cut into tow segments
close to the juntion using the GRASS function v.edit(tool = break) creating a new confluence 4. the
shortest inflow found in 2 is moved to the newly created confluence using v.edit(tool = vertexmove)
5. all lengths are updated (segment length, cumulative length, i.e. length of the stream from the
source, distance to the outlet). The distance the shortest confluence is moved depends on the number
of inflows. For three inflows, it is moved 1/12 time the DEM cellsize upstream, for seven (the
extremly rare maximum) 5/12 * cellsize.

Value

Nothing. The function changes features in ’streams_v’. Changed features are marked in the new
column ’changed’.

Note

setup_grass_environment, import_data and derive_streams must be run before.

Author(s)

Mira Kattwinkel <mira.kattwinkel@gmx.net>

Examples

Initiate GRASS session
if(.Platform$OS.type == "windows"){

gisbase = "c:/Program Files/GRASS GIS 7.6"
} else {
gisbase = "/usr/lib/grass74/"
}

initGRASS(gisBase = gisbase,
home = tempdir(),
override = TRUE)

Load files into GRASS
dem_path <- system.file("extdata", "nc", "elev_ned_30m.tif", package = "openSTARS")
sites_path <- system.file("extdata", "nc", "sites_nc.shp", package = "openSTARS")
streams_path <- system.file("extdata", "nc", "streams.shp", package = "openSTARS")
setup_grass_environment(dem = dem_path)
import_data(dem = dem_path, sites = sites_path, streams = streams_path)
gmeta()

https://grass.osgeo.org/grass74/manuals/v.edit.html
https://grass.osgeo.org/grass74/manuals/v.edit.html

delete_lakes 25

Derive streams from DEM
derive_streams(burn = 10, accum_threshold = 100, condition = TRUE, clean = TRUE)

Check and correct complex confluences (there are complex confluences in the
example date set if the accumulation threshold is low)
cj <- check_compl_confluences()
if(cj){

correct_compl_confluences()
}

plot
library(sp)
dem <- readRAST('dem', ignore.stderr = TRUE)
streams <- readVECT('streams_v', ignore.stderr = TRUE)
streams_orig <- readVECT('streams_v_o3', ignore.stderr = TRUE)
zoom to a relevant part of the dem
plot(dem, col = terrain.colors(20), axes = TRUE,

xlim = c(640100,640150), ylim = c(219735,219785))
lines(streams_orig, col = 'red', lwd = 4)
lines(streams, col = 'blue', lty = 2, lwd = 2)
legend("bottomright", col = c("red", "blue"), lty = c(1,2), lwd = c(4,2),

legend = c("original", "corrected"))

plot(streams, col = c("blue", "red")[streams@data$changed+1], lty = 1, lwd = 2)

delete_lakes Delete lakes from stream network

Description

When the stream network is derived from a dem, the streams will just cross lakes or ponds. How-
ever, the flow is disconnected here and the relationship between sampling points upstream and
downstream of a lake is not clear. For instance, chemicals could be retained and temperature altered
in a lake. This function intersects the stream network with a given vector map of lakes; it deletes the
stream segments in the lake, breaks those that cross its borders and assigns a new, updated topology.

Usage

delete_lakes(lakes, keep = TRUE)

Arguments

lakes character string or object; path to lake vector file (ESRI shape), name of vector
map in the GRASS data base or sp or sf data object.

keep boolean; should the original ’streams_v’ be saved? Default is TRUE.

26 delete_lakes

Value

Nothing. The function updates ’streams_v’ and (if keep = TRUE) saves the original file to streams_v_prev_lakes.
If lakes is a file path, the lakes are imported into GRASS as ’lakes’.

Note

The column ’out_dist’ (flow length from the upstream node of the segment to the outlet of the
network) is updated based on the new segment length. In contrast, ’cum_length’ is not updated as
it is no longer needed and will be deleted in calc_edges.

#’

Author(s)

Mira Kattwinkel <mira.kattwinkel@gmx.net>

Examples

Initiate GRASS session
if(.Platform$OS.type == "windows"){

gisbase = "c:/Program Files/GRASS GIS 7.6"
} else {
gisbase = "/usr/lib/grass74/"
}

initGRASS(gisBase = gisbase,
home = tempdir(),
override = TRUE)

Load files into GRASS
dem_path <- system.file("extdata", "nc", "elev_ned_30m.tif", package = "openSTARS")
sites_path <- system.file("extdata", "nc", "sites_nc.shp", package = "openSTARS")
lakes_path <- system.file("extdata", "nc", "lakes.shp", package = "openSTARS")
setup_grass_environment(dem = dem_path)
import_data(dem = dem_path, sites = sites_path)
gmeta()

Derive streams from DEM
derive_streams(burn = 0, accum_threshold = 100, condition = TRUE, clean = TRUE)

Check and correct complex confluences (there are no complex confluences in this
example date set; set accum_threshold in derive_streams to a smaller value
to create complex confluences)
cj <- check_compl_confluences()
if(cj){

correct_compl_confluences()
}

delete_lakes(lakes = lakes_path)

plot
library(sp)

derive_streams 27

dem <- readRAST('dem', ignore.stderr = TRUE)
streams <- readVECT('streams_v', ignore.stderr = TRUE)
streams_with_lakes <- readVECT('streams_v_prev_lakes', ignore.stderr = TRUE)
lakes <- readVECT('lakes', ignore.stderr = TRUE)
plot(dem, col = terrain.colors(20), axes = TRUE)
lines(streams_with_lakes, col = 'red', lty = 2, lwd = 2)
lines(streams, col = 'blue', lty = 4, lwd = 2)
legend("topright", col = c("red", "blue"), lty = c(1,4), lwd = c(2,2),

legend = c("through lakes", "lakes cut out"))

derive_streams Derive stream network from DEM.

Description

Streams are derived from a digital elevation model (DEM) using the GRASS function r.stream.extract.
If a stream network is available (see import_data) and burn > 0 it will be first burnt into DEM.
Stream topology is derived using the GRASS function r.stream.order.

Usage

derive_streams(
burn = 0,
accum_threshold = 700,
condition = TRUE,
min_stream_length = 0,
dem_name = NULL,
clean = TRUE,
mem = FALSE

)

Arguments

burn numeric; how many meters should the streams be burned into the DEM? Only
applicable if a mapped stream network is provided in import_data. Defaults to
0.

accum_threshold

integer; accumulation threshold to use (i.e. minimum flow accumulation value
in cells that will initiate a new stream). A small value results in many small
streams. Defaults to 700 but a reasonable value strongly depends on the raster
resolution. See details below.

condition logical; should the DEM be conditioned using the GRASS function r.hydrodem;
default: TRUE.

min_stream_length

integer: minimum stream length in number of DEM raster cells; shorter first
order stream segments are deleted. Defaults to 0 but a reasonable value strongly
depends on the raster resolution. See details below.

https://grass.osgeo.org/grass74/manuals/r.stream.extract.html
https://grass.osgeo.org/grass74/manuals/addons/r.stream.order.html
https://grass.osgeo.org/grass74/manuals/addons/r.hydrodem.html

28 derive_streams

dem_name character vector, optional; default: ’dem’; useful if conditioned and / or burnt in
DEM raster from previous runs shall be used.

clean logical; should intermediate raster layer of imported streams (’streams_or’) be
removed from the GRASS session? Defaults to TRUE.

mem logical; should -m flag in the GRASS function r.watershed be used (for data
preparation)? Defaults to FALSE; if set to TRUE the calculation uses disk swap
mode, i.e. it is not carried out in the RAM but also using disk space. Useful for
large data sets but also slower.

Details

For details on accum_threshold and min_stream_length see the parameters ’threshold’ and
’stream_length’ at r.stream.extract. It might be useful to not burn in the whole available stream
network but only parts of it (e.g., larger streams with higher Strahler stream order only). For
this, the stream network needs to be pre-processed (parts could be deleted) before loading it with
import_data.

Value

Nothing. The function produces the following maps:

• ’streams_v’ derived streams with topology (vector)

• ’dirs’ flow directions (raster)

• ’accums’ accumulation values (raster)

• ’dem_cond’ conditioned dem (raster) if condition is TRUE

• ’dem_[cond]_burn[X]’ burnt in DEM (raster) if burn is > 0

The original GRASS map ’dem’ is not modified if condition is TRUE and / or burn > 0.

Note

setup_grass_environment and import_data must be run before.

Author(s)

Mira Kattwinkel <mira.kattwinkel@gmx.net>, Eduard Szoecs, <eduardszoecs@gmail.com>

Examples

Initiate GRASS session
if(.Platform$OS.type == "windows"){

gisbase = "c:/Program Files/GRASS GIS 7.6"
} else {
gisbase = "/usr/lib/grass74/"
}

initGRASS(gisBase = gisbase,
home = tempdir(),
override = TRUE)

https://grass.osgeo.org/grass74/manuals/r.watershed.html
https://grass.osgeo.org/grass74/manuals/r.stream.extract

export_ssn 29

Load files into GRASS
dem_path <- system.file("extdata", "nc", "elev_ned_30m.tif", package = "openSTARS")
sites_path <- system.file("extdata", "nc", "sites_nc.shp", package = "openSTARS")
streams_path <- system.file("extdata", "nc", "streams.shp", package = "openSTARS")
setup_grass_environment(dem = dem_path)
import_data(dem = dem_path, sites = sites_path, streams = streams_path)
gmeta()

Derive streams from DEM
derive_streams(burn = 10, accum_threshold = 700, condition = TRUE, clean = TRUE)

Plot
library(sp)
dem <- readRAST('dem', ignore.stderr = TRUE)
sites <- readVECT('sites_o', ignore.stderr = TRUE)
streams_o <- readVECT('streams_o', ignore.stderr = TRUE)
streams <- readVECT('streams_v', ignore.stderr = TRUE)
plot(dem, col = terrain.colors(20))
lines(streams, col = 'blue', lwd = 2)
lines(streams_o, col = 'lightblue', lwd = 1)
points(sites, pch = 4)

export_ssn Export ’SSN’ object

Description

This function exports the calculated sites, edges and binary IDs to a folder which then can be read
using the ’SSN’ package.

Usage

export_ssn(path, predictions = NULL, delete_directory = FALSE)

Arguments

path character; path to write .ssn object to.

predictions name(s) of prediction map(s) (optional).

delete_directory

boolean; shall the ssn directory and all files be deleted before export in case it
already exists? See details.

30 export_ssn

Details

First it is checked if one of the column names is longer than 10 characters (which cannot be exported
to ESRI shape files as required by ’SSN’).

delete_directory = TRUE is useful if the same directory name has been used before and the exist-
ing data shall be overwritten.

Value

Nothing. Files are written to the specified folder

Author(s)

Mira Kattwinkel,<mira.kattwinkel@gmx.net>, Eduard Szoecs, <eduardszoecs@gmail.com>

Examples

Initiate GRASS session
if(.Platform$OS.type == "windows"){

gisbase = "c:/Program Files/GRASS GIS 7.6"
} else {
gisbase = "/usr/lib/grass74/"
}

initGRASS(gisBase = gisbase,
home = tempdir(),
override = TRUE)

Load files into GRASS
dem_path <- system.file("extdata", "nc", "elev_ned_30m.tif", package = "openSTARS")
sites_path <- system.file("extdata", "nc", "sites_nc.shp", package = "openSTARS")
setup_grass_environment(dem = dem_path)
import_data(dem = dem_path, sites = sites_path)
gmeta()

Derive streams from DEM
derive_streams(burn = 0, accum_threshold = 700, condition = TRUE, clean = TRUE)

Check and correct complex confluences (there are no complex confluences in this
example date set; set accum_threshold in derive_streams to a smaller value
to create complex confluences)
cj <- check_compl_confluences()
if(cj){

correct_compl_confluences()
}

Prepare edges
calc_edges()

Prepare site
calc_sites()

import_data 31

Write data to SSN Folder
ssn_dir <- file.path(tempdir(), 'nc.ssn')
export_ssn(ssn_dir, delete_directory = TRUE)
list.files(ssn_dir)

import_data Import data into ’GRASS.’

Description

This function loads a DEM (digital elevation model) and sites data (both required) into the ’GRASS’
session. Optionally, prediction sites and streams data can be loaded and the streams may be cor-
rected by snapping to prevent lose ends. Likewise, potential predictor maps (raster or vector format)
can be loaded.

Usage

import_data(
dem,
band = 1,
sites,
streams = NULL,
snap_streams = FALSE,
pred_sites = NULL,
predictor_raster = NULL,
predictor_r_names = NULL,
predictor_vector = NULL,
predictor_v_names = NULL

)

Arguments

dem character; path to DEM (digital elevation model) raster file.

band integer (optional); defines which band of the dem to use

sites character string or object; path to sites vector file (ESRI shape) or sp or sf data
object.

streams character string or object (optional); path to network vector file (ESRI shape) or
sp or sf data object. If available this can be burnt into the DEM in derive_streams

snap_streams boolean (optional); snap line ends. If TRUE line ends of the streams are snapped
to the next feature if they are unconnected with threshold of 10 m using ’GRASS’
function v.clean.

pred_sites character string vector or object(s) (optional); path(s) to prediction sites vector
files (ESRI shape) or sp or sf data object. Different formats (i.e. path and ob-
jects) must not be mixed; more than one sf or sp object must be provided as a
list, not concatenated with c.

32 import_data

predictor_raster

character vector (optional); paths to raster data to import as predictors.

predictor_r_names

character string vector (optional); names for potential predictor variables in
raster format; if not provided perdictor_raster is used.

predictor_vector

character string vector of object(s) (optional); path(s) to vector data (ESRI shape)
or sp or sf object names to import as predictors. Different formats (i.e. path and
objects) must not be mixed; more than one sf or sp object must be provided as a
list, not concatenated with c.

predictor_v_names

character vector (optional); names for potential predictor variables in vector for-
mat ; if not provided perdictor_vector is used.

Details

All vector data (sites, streams and potential predictors) is imported into the current location using
v.import. Hence, if the projections does not match to the one of the DEM (which was used to specify
the location in setup_grass_environment) the maps are projected and imported on the fly. All
raster data are not transformed but it is assumed that they have the same projection as the current
location. Hence, it is important to make sure that they all have indeed the same projection (and
same cell size) and that the correct one is set in setup_grass_environment. If this condition is not
met, the raster data should be propocessed before importing. Use check_projection to compare
the projection of a raster data set and the one of the current location.

Value

Nothing, the data is loaded into the ’GRASS’ session (mapset PERMANENT). The DEM is stored
as raster ’dem’, sites as vector ’sites_o’, prediction sites as vector using the original file names
with an appended ’_o’ (without extension), streams as vector ’streams_o’ in the ’GRASS’ location.
Additionally, predictor raster map(s) can be read in and are stored in ’GRASS’ using either the
original file names (without extension) or using the names provides in predictor_r_names. The
latter option may be useful if ArcGIS grid data (typically stored as ’grid_name/w001001.adf’) are
used. Likewise, predictor vector maps can be read in from Esri Shape file (given as the full file
path) or as sf or sp objects. Potential predictor data can also be read in later, e.g. using GRASS
commands v.import or r.in.gdal (see examples below).

Note

A GRASS session must be initiated before, see initGRASS.

If sites, pred_sites and / or streams are sp objects it is important that they have a datum defined
otherwise the import will not work. Hence, it is e.g. better to use proj4string = CRS("+proj=tmerc
+lat_0=0 +lon_0=9 +k=1 +x_0=3500000 +y_0=0 +datum=potsdam +units=m +no_defs") instead
of proj4string = CRS("+proj=tmerc +lat_0=0 +lon_0=9 +k=1 +x_0=3500000 +y_0=0 +ellps=bessel
+towgs84=598.1,73.7,418.2,0.202,0.045,-2.455,6.7 +units=m +no_defs")) when defining sp ob-
jects.

https://grass.osgeo.org/grass74/manuals/v.import.html
https://grass.osgeo.org/grass74/manuals/v.import.html
https://grass.osgeo.org/grass74/manuals/r.in.gdal.html

import_data 33

Author(s)

Eduard Szoecs, <eduardszoecs@gmial.com>, Mira Kattwinkel <mira.kattwinkel@gmx.net>

Examples

if(.Platform$OS.type == "windows"){
gisbase = "c:/Program Files/GRASS GIS 7.6"
} else {
gisbase = "/usr/lib/grass74/"
}

initGRASS(gisBase = gisbase,
home = tempdir(),
override = TRUE)

Load files into GRASS
dem_path <- system.file("extdata", "nc", "elev_ned_30m.tif", package = "openSTARS")
sites_path <- system.file("extdata", "nc", "sites_nc.shp", package = "openSTARS")
streams_path <- system.file("extdata", "nc", "streams.shp", package = "openSTARS")
preds_v_path <- system.file("extdata", "nc", "pointsources.shp", package = "openSTARS")
preds_r_path <- system.file("extdata", "nc", "landuse_r.tif", package = "openSTARS")

setup_grass_environment(dem = dem_path)
import_data(dem = dem_path, sites = sites_path, streams = streams_path,

predictor_vector = preds_v_path, predictor_raster = preds_r_path)
gmeta()

Plot data
library(sp)
dem <- readRAST("dem", ignore.stderr = TRUE)
sites_orig <- readVECT("sites_o", ignore.stderr = TRUE)
lu <- readRAST("landuse_r", ignore.stderr = TRUE)
import additional vector data
fp <- system.file("extdata", "nc", "pointsources.shp", package = "openSTARS")
execGRASS("v.import", flags = c("overwrite", "quiet"),
parameters = list(

input = fp,
output = "psources",
extent = "region"), # to import into current regien
intern = TRUE, ignore.stderr = TRUE)

#plot(dem, col = terrain.colors(20))
plot(dem, col = grey.colors(20))
points(sites_orig, pch = 4)
ps <- readVECT("psources")
points(ps, bg = "red", pch = 21, col = "grey", cex = 1.5)

plot landuse data
library(raster)
op <- par()
par(xpd = FALSE)
plot(raster(lu), legend = FALSE, xaxt = "n", yaxt = "n", bty = "n",

34 import_vector_data

col = c("red", "goldenrod", "green", "forestgreen","darkgreen", "blue", "lightblue"))
par(xpd = TRUE)
legend("bottom", cex = 0.75,
legend = c("developed", "agriculture", "herbaceous", "shrubland", "forest", "water", "sediment"),
fill = c("red", "goldenrod", "green", "forestgreen","darkgreen", "blue", "lightblue"),
horiz = TRUE, inset = -0.175)

par <- op

import_vector_data Import vector data into GRASS.

Description

Generic function to import vector data of various formats into the GRASS environment.

Usage

import_vector_data(data, name, layer = NULL, proj_ref_obj = NULL, snap = -1)

Arguments

data character string or object; path to data vector file (shape), postgis data source
name (dsn; see details), or sp or sf data object.

name string giving the base name of the vector data within the GRASS envrionment
(i.e. output)

layer character string; default 1, particularly needed if data is a dsn for importing
postgis data (see details)

proj_ref_obj character; path to a georeferenced data file to be used as reference; only used
if data is an sf of sp object, then, the two projections are compared to find the
correct way for importing; typically the dem raster file used in this project.

snap float; snapping threshold in map units. If != -1 (default) vertices are snapped to
other vertices in this snapping distance during import. If used, the features are
automatically cleaned afterwards (see GRASS tools v.import and v.clean)

Details

For importing data from Postgis, all data base credentials must be supplied in data and the correct
layer and, if the table containing the polygons are in a specific schema also that one (see example)

Value

Nothing.

Author(s)

Mira Kattwinkel, <mira.kattwinkel@gmx.net>

https://grass.osgeo.org/grass74/manuals/v.import.html
https://grass.osgeo.org/grass74/manuals/v.clean.html

merge_sites_measurements 35

Examples

import data from Postgis
Not run:
import_vector_data(data = "PG: 'pgname=postgit_DB', 'host=123.45.67.890',
'port='1234', 'user=username', 'password=password'",
name = "forest", layer = "landuse_schema.forest")

End(Not run)

merge_sites_measurements

Merge a table with measurements to the sites.

Description

After all processing steps are done and before exporting as an SSN object measurements can be
added to the site map. They can contain multiple parameters and repeated measurements at the
same site.

Usage

merge_sites_measurements(measurements, site_id, all_sites = FALSE, ...)

Arguments

measurements character string, data.table or data.frame object; path to table data containing the
data or a data.table or data.frame object

site_id character string; columns name that gives the unique name of the site. Must be
identical in both the sites vector object and the table of measurements

all_sites locical; should sites without measurments be preserved (default FALSE)

... additional agruments to read.table in case measuremtes is a file path to table
data; see read.table for details.

Details

Measurements are merged to the sites objects based on site_id. If there are repeated measure-
ments, point features are dublicated and the ’pid’ of the sites is updated accoringly to be unique.

Author(s)

Mira Kattwinkel <mira.kattwinkel@gmx.net>

36 openSTARS

Examples

Initiate GRASS session
if(.Platform$OS.type == "windows"){

gisbase = "c:/Program Files/GRASS GIS 7.6"
} else {
gisbase = "/usr/lib/grass74/"
}

initGRASS(gisBase = gisbase,
home = tempdir(),
override = TRUE)

Load files into GRASS
dem_path <- system.file("extdata", "nc", "elev_ned_30m.tif", package = "openSTARS")
sites_path <- system.file("extdata", "nc", "sites_nc.shp", package = "openSTARS")
setup_grass_environment(dem = dem_path)
import_data(dem = dem_path, sites = sites_path)
gmeta()

Derive streams from DEM
derive_streams(burn = 0, accum_threshold = 700, condition = TRUE, clean = TRUE)

Check and correct complex junctions (there are no complex confluences in this
example date set)
cj <- check_compl_confluences()
if(cj){

correct_compl_confluences()
}

Prepare edges
calc_edges()

Prepare site
calc_sites()

Plot data
library(sp)
dem <- readRAST('dem', ignore.stderr = TRUE)
edges <- readVECT('edges', ignore.stderr = TRUE)
sites <- readVECT('sites', ignore.stderr = TRUE)
sites_o <- readVECT('sites_o', ignore.stderr = TRUE)
plot(dem, col = terrain.colors(20),axes = TRUE)
lines(edges, col = 'blue')
points(sites, pch = 4)
points(sites_o, pch = 1)
legend("topright", pch = c(1, 4), legend = c("original", "corrected"))

openSTARS openSTARS: An Open Source Implementation of the ’ArcGIS’ Toolbox
’STARS’.

openSTARS 37

Description

openSTARS provides functions to prepare data so that it can be imported by the SSN package
for spatial modelling on stream networks. ’GRASS GIS 7.0’ (or greater) with installed addons
r.stream.basins, r.stream.distance, r.stream.order, and r.hydrodem is needed.

obs_data.csv

Artificial observation data with arbitrary measurements.

elev_ned30m.tif

South-West Wake county National Elevation Data 30m.

sites_nc.shp

Arbitrary sites along rivers in North Carolina.

streams.shp

Rivers in North Carolina.

geology.shp

Geological data.

landuse_r.tif

Land use date in North Carolina.

lakes.shp

Artificial lakes (not at topologically correct locations)

pointsources.shp

Artificial point sources.

Examples

if(.Platform$OS.type == "windows"){
gisbase = "c:/Program Files/GRASS GIS 7.6"
} else {

gisbase = "/usr/lib/grass74/"
}
initGRASS(gisBase = gisbase,

home = tempdir(),
override = TRUE)

Load files into GRASS
dem_path <- system.file("extdata", "nc", "elev_ned_30m.tif", package = "openSTARS")

38 openSTARS

sites_path <- system.file("extdata", "nc", "sites_nc.shp", package = "openSTARS")
streams_path <- system.file("extdata", "nc", "streams.shp", package = "openSTARS")
preds_v_path <- system.file("extdata", "nc", "pointsources.shp", package = "openSTARS")
preds_r_path <- system.file("extdata", "nc", "landuse_r.tif", package = "openSTARS")

setup_grass_environment(dem = dem_path)
import_data(dem = dem_path, sites = sites_path, streams = streams_path,

predictor_vector = preds_v_path, predictor_raster = preds_r_path)
gmeta()

Derive streams from DEM
burn in 'streams' 10 meters
derive_streams(burn = 10, accum_threshold = 700, condition = TRUE, clean = TRUE)

Check and correct complex confluences (there are no complex confluences in this
example date set; set accum_threshold in derive_streams to a smaller value
to create complex confluences)
cj <- check_compl_confluences()
if(cj){

correct_compl_confluences()
}

calculate slope as potential predictor
execGRASS("r.slope.aspect", flags = c("overwrite","quiet"),

parameters = list(
elevation = "dem",
slope = "slope"

))

Prepare edges
calc_edges()
calc_attributes_edges(input_raster = c("slope", "landuse_r"),

stat_rast = c("max", "percent"),
attr_name_rast = c("maxSlo", "luse"),
input_vector = "pointsources", stat_vect = "count",
attr_name_vect = "psource")

Prepare site
calc_sites()

Usually, only one of the following methods is needed. The exact one takes
much longer to run
approximate potential predictor variables for each site based on edge values
calc_attributes_sites_approx(input_attr_name = c("maxSlo", "lusep_1", "lusep_2",

"lusep_3", "lusep_4", "lusep_5",
"lusep_6", "lusep_7"),

output_attr_name = c("maxSloA","luse1A", "luse2A",
"luse_3A", "luse4A", "luse5A",
"luse6A", "luse7A"),

stat = c("max", rep("percent", 7)))

exact potential predictor variables for each site based on catchments

prepare_sites 39

calc_attributes_sites_exact(input_raster = c("slope", "landuse_r"),
attr_name_rast = c("maxSloEx", "luseE"),
stat_rast = c("max", "percent"))

Plot data
library(sp)
dem <- readRAST("dem", ignore.stderr = TRUE)
sites <- readVECT("sites", ignore.stderr = TRUE)
sites_orig <- readVECT("sites_o", ignore.stderr = TRUE)
edges <- readVECT("edges", ignore.stderr = TRUE)
plot(dem, col = terrain.colors(20))
lines(edges, col = "blue")
points(sites_orig, pch = 4)
cols <- colorRampPalette(c("blue", "red"))(length(sites$H2OArea))[rank(sites$H2OArea)]
points(sites, pch = 16, col = cols)

Write data to SSN Folder
ssn_dir <- file.path(tempdir(), "nc.ssn")
export_ssn(ssn_dir, delete_directory = TRUE)

Check if all files are ok
library(SSN)
check_ssn(ssn_dir)

Load into SSN-package
ssn_obj <- importSSN(ssn_dir, o.write = TRUE)
print(ssn_obj)

#Datasets shipped with openSTARS

prepare_sites Snap sites to streams and calculate attributes

Description

Snap sites to streams and calculate attributes

Usage

prepare_sites(sites_map, locid_c = NULL, pid_c = NULL, maxdist = NULL)

Arguments

sites_map character; name of sites map (observation or prediction sites) as created by
import_data.

locid_c character (optional); column name in the sites attribute table giving a unique site
identifier.

40 restrict_network

pid_c character (optional); column name in the sites attribute table that distinguishes
between repeated measurements at a sampling site.

maxdist integer (optional); maximum snapping distance. Sites farther away from edges
will be deleted.

Details

This function is called by calc_sites and should not be called directly. Sites are snapped to the
streams and upstream distance is calculated.

restrict_network Restrict edges to certain stream networks

Description

When the stream network is derived from a DEM, the network will cover the whole extent of
the DEM input. However, the obervation sites might be restricted to a certain area, i.e. to cer-
tain networks. This functin deletes edges that belong to networks (based on their netID) without
sites (observation or prediction). This can help to save computation time before calculating edge
attributes.

Usage

restrict_network(
sites = NULL,
keep_netIDs = NULL,
delete_netIDs = NULL,
keep = TRUE,
filename = "edges_o"

)

Arguments

sites name(s) of sites.

keep_netIDs numeric (optional); vector of netIDs to keep

delete_netIDs numeric (optional); vector of netIDs to delete

keep boolean; should the original ’edges’ be saved? Default is TRUE.

filename character string; file name to save the original edges vector file; defaults to
’edges_o’.

Value

Nothing. The function updates ’edges’ and (if keep = TRUE) saves the original file to the file name
provided.

restrict_network 41

Author(s)

Mira Kattwinkel <mira.kattwinkel@gmx.net>

Examples

Initiate GRASS session
if(.Platform$OS.type == "windows"){

gisbase <- "c:/Program Files/GRASS GIS 7.6"
} else {

gisbase <- "/usr/lib/grass74/"
}
initGRASS(gisBase = gisbase,

home = tempdir(),
override = TRUE)

Load files into GRASS
dem_path <- system.file("extdata", "nc", "elev_ned_30m.tif", package = "openSTARS")
sites_path <- system.file("extdata", "nc", "sites_nc.shp", package = "openSTARS")
lakes_path <- system.file("extdata", "nc", "lakes.shp", package = "openSTARS")
setup_grass_environment(dem = dem_path)
import_data(dem = dem_path, sites = sites_path)
gmeta()

Derive streams from DEM
derive_streams(burn = 0, accum_threshold = 100, condition = TRUE, clean = TRUE)

Check and correct complex confluences (there are no complex confluences in this
example date set; set accum_threshold in derive_streams to a smaller value
to create complex confluences)
cj <- check_compl_confluences()
if(cj){

correct_compl_confluences()
}

calc_edges()
calc_sites()
restrict_network(sites = "sites", keep = TRUE, filename = "edges_o")

plot
library(sp)
edges <- readVECT('edges', ignore.stderr = TRUE)
edges_o <- readVECT('edges_o', ignore.stderr = TRUE)
sites <- readVECT('sites', ignore.stderr = TRUE)
plot(edges_o, col = "lightblue", lwd = 2)
lines(edges, col = "blue4")
points(sites, pch = 16, col = "red")
legend("topright", col = c("red", "lightblue", "blue4"), lty = c(NA, 1,1),
lwd = c(NA,2,1), pch = c(16,NA,NA),
legend = c("sites", "edges original", "edges restricted"))

42 setup_grass_environment

setup_grass_environment

Setup ’GRASS’ environment.

Description

This function sets the ’GRASS’ mapset to PERMANENT and sets its projection and extension.

Usage

setup_grass_environment(dem, epsg = NULL, sites = NULL)

Arguments

dem character; path to DEM.

epsg integer (optional); EPSG code for the projection to use. If not given (default)
the information is taken from the dem. This should ONLY be used if the dem
does not contain projection information and MUST be the correct one for the
dem used.

sites (deprecated); not used any more. Only included for compatibility with previous
version.

Value

Nothing, the ’GRASS’ mapset is set to PERMANENT, the extent of the current location is set to
the one of the dem, and the projection is set to the one of the dem or to the one provided in epsg .

Note

A ’GRASS’ session must be initiated before, see initGRASS. This function uses use_sp() from
the rgrass7 package to support raster data.

Author(s)

Mira Kattwinkel, <mira.kattwinkel@gmx.net>

Examples

Initiate GRASS session
if(.Platform$OS.type == "windows"){

gisbase = "c:/Program Files/GRASS GIS 7.6"
} else {
gisbase = "/usr/lib/grass74/"
}

initGRASS(gisBase = gisbase,
home = tempdir(),
override = TRUE)

setup_grass_environment 43

Load files into GRASS
dem_path <- system.file("extdata", "nc", "elev_ned_30m.tif", package = "openSTARS")
setup_grass_environment(dem = dem_path)
gmeta()

Index

calc_attributes_edges, 2, 6, 12, 14
calc_attributes_sites_approx, 3, 5
calc_attributes_sites_exact, 8
calc_binary, 11
calc_catchment_attributes_rast, 12, 13
calc_catchment_attributes_rast_rec, 13
calc_catchment_attributes_vect, 14
calc_edges, 4, 6, 9, 11, 14, 17, 19
calc_prediction_sites, 6, 9, 16, 19
calc_sites, 6, 9, 11, 17
check_compl_confluences, 20
check_projection, 21, 32
check_ssn, 22
correct_compl_confluences, 23

delete_lakes, 25
derive_streams, 4, 6, 9, 11, 15, 17–20, 24,

27, 31

export_ssn, 11, 29

import_data, 3, 4, 6, 9, 11, 15, 17, 19–21, 24,
27, 28, 31

import_vector_data, 34
initGRASS, 32, 42

merge_sites_measurements, 18, 35

openSTARS, 36

prepare_sites, 39

read.table, 35
restrict_network, 40

setup_grass_environment, 4, 15, 20, 24, 28,
32, 42

SSN, 37

44

	calc_attributes_edges
	calc_attributes_sites_approx
	calc_attributes_sites_exact
	calc_binary
	calc_catchment_attributes_rast
	calc_catchment_attributes_rast_rec
	calc_catchment_attributes_vect
	calc_edges
	calc_prediction_sites
	calc_sites
	check_compl_confluences
	check_projection
	check_ssn
	correct_compl_confluences
	delete_lakes
	derive_streams
	export_ssn
	import_data
	import_vector_data
	merge_sites_measurements
	openSTARS
	prepare_sites
	restrict_network
	setup_grass_environment
	Index

