The oem package provides estimation for various penalized linear models using the Orthogonalizing EM algorithm. Documentation for the package can be found here: oem site.
Install using the devtools package (RcppEigen must be installed first as well):
or by cloning and building using R CMD INSTALL
To cite oem please use:
Xiong, S., Dai, B., Huling, J., Qian, P. Z. G. (2016) Orthogonalizing EM: A design-based least squares algorithm, Technometrics, Volume 58, Pages 285-293,
http://dx.doi.org/10.1080/00401706.2015.1054436.
Huling, J.D. and Chien, P. (2018), Fast Penalized Regression and Cross Validation for Tall Data with the OEM Package, Journal of Statistical Software, to appear, URL: https://arxiv.org/abs/1801.09661.
library(microbenchmark)
library(glmnet)
library(oem)
# compute the full solution path, n > p
set.seed(123)
n <- 1000000
p <- 100
m <- 25
b <- matrix(c(runif(m), rep(0, p - m)))
x <- matrix(rnorm(n * p, sd = 3), n, p)
y <- drop(x %*% b) + rnorm(n)
lambdas = oem(x, y, intercept = TRUE, standardize = FALSE, penalty = "elastic.net")$lambda[[1]]
microbenchmark(
    "glmnet[lasso]" = {res1 <- glmnet(x, y, thresh = 1e-10, 
                                      standardize = FALSE,
                                      intercept = TRUE,
                                      lambda = lambdas)}, 
    "oem[lasso]"    = {res2 <- oem(x, y,
                                   penalty = "elastic.net",
                                   intercept = TRUE, 
                                   standardize = FALSE,
                                   lambda = lambdas,
                                   tol = 1e-10)},
    times = 5
)## Unit: seconds
##           expr      min       lq     mean   median       uq      max neval
##  glmnet[lasso] 7.610364 7.622585 7.879448 7.667767 7.945518 8.551005     5
##     oem[lasso] 1.969916 2.027118 2.133341 2.089135 2.126875 2.453660     5
## [1] 1.048072e-07
res1 <- glmnet(x, y, thresh = 1e-12, 
               standardize = FALSE,
               intercept = TRUE,
               lambda = lambdas)
# answers are now more close once we require more precise glmnet solutions
max(abs(coef(res1) - res2$beta[[1]]))## [1] 3.763397e-09
library(sparsenet)
library(ncvreg)
library(plus)
# compute the full solution path, n > p
set.seed(123)
n <- 5000
p <- 200
m <- 25
b <- matrix(c(runif(m, -0.5, 0.5), rep(0, p - m)))
x <- matrix(rnorm(n * p, sd = 3), n, p)
y <- drop(x %*% b) + rnorm(n)
mcp.lam <- oem(x, y, penalty = "mcp",
               gamma = 2, intercept = TRUE, 
               standardize = TRUE,
               nlambda = 200, tol = 1e-10)$lambda[[1]]
scad.lam <- oem(x, y, penalty = "scad",
               gamma = 4, intercept = TRUE, 
               standardize = TRUE,
               nlambda = 200, tol = 1e-10)$lambda[[1]]
microbenchmark(
    "sparsenet[mcp]" = {res1 <- sparsenet(x, y, thresh = 1e-10, 
                                          gamma = c(2,3), #sparsenet throws an error 
                                                          #if you only fit 1 value of gamma
                                          nlambda = 200)},
    "oem[mcp]"    = {res2 <- oem(x, y,  
                                 penalty = "mcp",
                                 gamma = 2,
                                 intercept = TRUE, 
                                 standardize = TRUE,
                                 nlambda = 200,
                                 tol = 1e-10)},
    "ncvreg[mcp]"    = {res3 <- ncvreg(x, y,  
                                   penalty = "MCP",
                                   gamma = 2,
                                   lambda = mcp.lam,
                                   eps = 1e-7)}, 
    "plus[mcp]"    = {res4 <- plus(x, y,  
                                   method = "mc+",
                                   gamma = 2,
                                   lam = mcp.lam)},
    "oem[scad]"    = {res5 <- oem(x, y,  
                                 penalty = "scad",
                                 gamma = 4,
                                 intercept = TRUE, 
                                 standardize = TRUE,
                                 nlambda = 200,
                                 tol = 1e-10)},
    "ncvreg[scad]"    = {res6 <- ncvreg(x, y,  
                                   penalty = "SCAD",
                                   gamma = 4,
                                   lambda = scad.lam,
                                   eps = 1e-7)}, 
    "plus[scad]"    = {res7 <- plus(x, y,  
                                   method = "scad",
                                   gamma = 4,
                                   lam = scad.lam)}, 
    times = 5
)## Unit: milliseconds
##            expr       min        lq      mean    median        uq      max
##  sparsenet[mcp] 1762.3026 1779.0533 1907.9942 1871.4751 1954.0494 2173.091
##        oem[mcp]  159.3148  159.6247  194.6605  160.0044  238.3018  256.057
##     ncvreg[mcp] 7566.5792 7636.3529 7900.8602 7681.1292 7907.0934 8713.146
##       plus[mcp] 1625.3785 1692.9125 1703.2951 1694.1239 1711.7150 1792.346
##       oem[scad]  136.1331  136.3932  138.6294  137.1140  138.2907  145.216
##    ncvreg[scad] 7485.8139 8060.6739 8534.4502 8388.1125 8779.2423 9958.408
##      plus[scad] 1765.2935 1873.8984 2009.8369 1878.5176 2097.5155 2433.959
diffs <- array(NA, dim = c(4, 1))
colnames(diffs) <- "abs diff"
rownames(diffs) <- c("MCP:  oem and ncvreg", "SCAD: oem and ncvreg",
                     "MCP:  oem and plus", "SCAD: oem and plus")
diffs[,1] <- c(max(abs(res2$beta[[1]] - res3$beta)), max(abs(res5$beta[[1]] - res6$beta)),
               max(abs(res2$beta[[1]][-1,1:nrow(res4$beta)] - t(res4$beta))),
               max(abs(res5$beta[[1]][-1,1:nrow(res7$beta)] - t(res7$beta))))
diffs##                          abs diff
## MCP:  oem and ncvreg 1.725859e-07
## SCAD: oem and ncvreg 5.094648e-08
## MCP:  oem and plus   2.684136e-11
## SCAD: oem and plus   1.732409e-11
In addition to the group lasso, the oem package offers computation for the group MCP, group SCAD, and group sparse lasso penalties. All aforementioned penalties can also be augmented with a ridge penalty.
library(gglasso)
library(grpreg)
library(grplasso)
# compute the full solution path, n > p
set.seed(123)
n <- 10000
p <- 200
m <- 25
b <- matrix(c(runif(m, -0.5, 0.5), rep(0, p - m)))
x <- matrix(rnorm(n * p, sd = 3), n, p)
y <- drop(x %*% b) + rnorm(n)
groups <- rep(1:floor(p/10), each = 10)
grp.lam <- oem(x, y, penalty = "grp.lasso",
               groups = groups,
               nlambda = 100, tol = 1e-10)$lambda[[1]]
microbenchmark(
    "gglasso[grp.lasso]" = {res1 <- gglasso(x, y, group = groups, 
                                            lambda = grp.lam, 
                                            intercept = FALSE,
                                            eps = 1e-8)},
    "oem[grp.lasso]"    = {res2 <- oem(x, y,  
                                       groups = groups,
                                       intercept = FALSE,
                                       standardize = FALSE,
                                       penalty = "grp.lasso",
                                       lambda = grp.lam,
                                       tol = 1e-10)},
    "grplasso[grp.lasso]"    = {res3 <- grplasso(x=x, y=y, 
                                                 index = groups,
                                                 standardize = FALSE, 
                                                 center = FALSE, model = LinReg(), 
                                                 lambda = grp.lam * n * 2, 
                                                 control = grpl.control(trace = 0, tol = 1e-10))}, 
    "grpreg[grp.lasso]"    = {res4 <- grpreg(x, y, group = groups, 
                                             eps = 1e-10, lambda = grp.lam)},
    times = 5
)## Unit: milliseconds
##                 expr        min       lq      mean    median        uq
##   gglasso[grp.lasso] 3483.62353 3529.320 3601.1492 3600.3122 3675.7521
##       oem[grp.lasso]   99.62382  100.823  107.9303  106.6158  114.8208
##  grplasso[grp.lasso] 7105.62106 7409.959 7835.5972 7836.2535 7977.5347
##    grpreg[grp.lasso] 1972.84562 2013.477 2132.7026 2015.0525 2149.0820
##        max neval
##  3716.7380     5
##   117.7679     5
##  8848.6178     5
##  2513.0563     5
diffs <- array(NA, dim = c(2, 1))
colnames(diffs) <- "abs diff"
rownames(diffs) <- c("oem and gglasso", "oem and grplasso")
diffs[,1] <- c(  max(abs(res2$beta[[1]][-1,] - res1$beta)), max(abs(res2$beta[[1]][-1,] - res3$coefficients))  )
diffs##                      abs diff
## oem and gglasso  1.303906e-06
## oem and grplasso 1.645871e-08
set.seed(123)
n <- 500000
p <- 200
m <- 25
b <- matrix(c(runif(m, -0.5, 0.5), rep(0, p - m)))
x <- matrix(rnorm(n * p, sd = 3), n, p)
y <- drop(x %*% b) + rnorm(n)
groups <- rep(1:floor(p/10), each = 10)
# fit all group penalties at once
grp.penalties <- c("grp.lasso", "grp.mcp", "grp.scad", 
                   "grp.mcp.net", "grp.scad.net",
                   "sparse.group.lasso")
system.time(res <- oem(x, y, 
                       penalty = grp.penalties,
                       groups  = groups,
                       alpha   = 0.25, # mixing param for l2 penalties
                       tau     = 0.5)) # mixing param for sparse grp lasso ##    user  system elapsed 
##    3.23    0.17    3.46
The oem algorithm is quite efficient at fitting multiple penalties simultaneously when p is not too big.
set.seed(123)
n <- 100000
p <- 100
m <- 15
b <- matrix(c(runif(m, -0.25, 0.25), rep(0, p - m)))
x <- matrix(rnorm(n * p, sd = 3), n, p)
y <- drop(x %*% b) + rnorm(n)
microbenchmark(
    "oem[lasso]"    = {res1 <- oem(x, y,
                                   penalty = "elastic.net",
                                   intercept = TRUE, 
                                   standardize = TRUE,
                                   tol = 1e-10)},
    "oem[lasso/mcp/scad/ols]"    = {res2 <- oem(x, y,
                                   penalty = c("elastic.net", "mcp", 
                                               "scad", "grp.lasso", 
                                               "grp.mcp", "sparse.grp.lasso",
                                               "grp.mcp.net", "mcp.net"),
                                   gamma = 4,
                                   tau = 0.5,
                                   alpha = 0.25,
                                   groups = rep(1:10, each = 10),
                                   intercept = TRUE, 
                                   standardize = TRUE,
                                   tol = 1e-10)},
    times = 5
)## Unit: milliseconds
##                     expr      min       lq     mean   median       uq
##               oem[lasso] 214.3171 218.2459 225.8759 219.6271 226.8682
##  oem[lasso/mcp/scad/ols] 253.8738 255.8601 279.3674 272.4458 276.6489
##       max neval
##  250.3211     5
##  338.0085     5
#png("../mcp_path.png", width = 3000, height = 3000, res = 400);par(mar=c(5.1,5.1,4.1,2.1));plot(res2, which.model = 2, main = "mcp",lwd = 3,cex.axis=2.0, cex.lab=2.0, cex.main=2.0, cex.sub=2.0);dev.off()
#
layout(matrix(1:4, ncol=2, byrow = TRUE))
plot(res2, which.model = 1, lwd = 2,
     xvar = "lambda")
plot(res2, which.model = 2, lwd = 2,
     xvar = "lambda")
plot(res2, which.model = 4, lwd = 2,
     xvar = "lambda")
plot(res2, which.model = 7, lwd = 2,
     xvar = "lambda")