Package ‘odin’

July 2, 2019
Title ODE Generation and Integration
Version 1.0.1

Description Generate systems of ordinary differential equations
(ODE) and integrate them, using a domain specific language
(DSL). The DSL uses R's syntax, but compiles to C in order to
efficiently solve the system. A solver is not provided, but
instead interfaces to the packages 'deSolve' and 'dde' are
generated. With these, while solving the differential equations,
no allocations are done and the calculations remain entirely in
compiled code. Alternatively, a model can be transpiled to R for
use in contexts where a C compiler is not present. After
compilation, models can be inspected to return information about
parameters and outputs, or intermediate values after calculations.
'odin’ is not targeted at any particular domain and is suitable
for any system that can be expressed primarily as mathematical
expressions. Additional support is provided for working with
delays (delay differential equations, DDE), using interpolated
functions during interpolation, and for integrating quantities
that represent arrays.

License MIT + file LICENSE
LazyData true

URL https://github.com/mrc-ide/odin

BugReports https://github.com/mrc-ide/odin/issues

Imports R6, cinterpolate (>= 1.0.0), crayon, deSolve, digest,
jsonlite, ring

Suggests dde (>= 1.0.0), jsonvalidate (>= 1.1.0), knitr, rmarkdown,
testthat

VignetteBuilder knitr
RoxygenNote 6.1.1
Encoding UTF-8
Language en-GB

NeedsCompilation no

https://github.com/mrc-ide/odin
https://github.com/mrc-ide/odin/issues

2 can_compile

Author Rich FitzJohn [aut, cre],
Thibaut Jombart [ctb],
Imperial College of Science, Technology and Medicine [cph]

Maintainer Rich FitzJohn <rich.fitzjohn@gmail.com>
Repository CRAN
Date/Publication 2019-07-02 09:00:03 UTC

R topics documented:

can_compile 2
odin e e e 3
odin_build e 5
OdIN_IT o o e e e e 6
odin_ir_deserialise e e 7
odin_OptionS e e e e e e e e 8
odin_package 9
OdIN_PAarse o v o e 10
odin_validate e 11

Index 14

can_compile Test if compilation is possible
Description

Test if compilation appears possible. This is used in some examples, and tries compiling a trivial
C program with R CMD SHLIB. Results are cached between runs within a session so this should be
fast to rely on.

Usage

can_compile(verbose = FALSE, refresh = FALSE)

Arguments

verbose Be verbose when running commands?

refresh Try again to compile, skipping the cached value?
Details

If this function believes you can’t compile, and if gcc can’t be found on the path, a diagnostic
message will be printed. This will of course not be very interesting if you use a different compiler
to gcc! But the most likely people affected here are Windows users; if you get this ensure that you
have rtools installed. If you have devtools installed, devtools: :find_rtools() may be helpful
for diagnosing compiler issues.

odin 3

Value

A logical scalar

Examples

can_compile() # will take ~@.1s the first time
can_compile() # should be basically instantaneous

odin Create an odin model

Description

Create an odin model from a file, text string(s) or expression. The odin_ version is a "standard
evaluation" escape hatch.

Usage

odin(x, verbose = NULL, target = NULL, workdir = NULL,
validate = NULL, pretty = NULL, skip_cache = NULL,
compiler_warnings = NULL, no_check_unused_equations = NULL,
no_check_naked_index = NULL)

odin_(x, verbose = NULL, target = NULL, workdir = NULL,
validate = NULL, pretty = NULL, skip_cache = NULL,
compiler_warnings = NULL, no_check_unused_equations = NULL,
no_check_naked_index = NULL)

Arguments

X Either the name of a file to read, a text string (if length is greater than 1 elements
will be joined with newlines) or an expression.

verbose Logical scalar indicating if the compilation should be verbose. Defaults to the
value of the option odin.verbose or FALSE otherwise.

target Compilation target. Options are "c" and "r", defaulting to the option odin. target
or "c" otherwise.

workdir Directory to use for any generated files. This is only relevant for the "c" target.
Defaults to the value of the option odin.workdir or tempdir() otherwise.

validate Validate the model’s intermediate representation against the included schema.
Normally this is not needed and is intended primarily for development use. De-
faults to the value of the option odin.validate or FALSE otherwise.

pretty Pretty-print the model’s intermediate representation. Normally this is not needed

and is intended primarily for development use. Defaults to the value of the
option odin.pretty or FALSE otherwise.

4 odin

skip_cache Skip odin’s cache. This might be useful if the model appears not to compile
when you would expect it to. Hopefully this will not be needed often. Defaults
to the option odin. skip_cache or FALSE otherwise.

compiler_warnings
Logical scalar indicating if compiler warnings should be converted to R warn-
ings. If this is TRUE, then if any compiler warnings are generated, the compiler
output will be displayed (regardless of the value of verbose) within an R warn-
ing (suppressible via suppressWarnings and catchable via tryCatch). The de-
fault is to default to FALSE unless the global option odin.compiler_warnings
is set to TRUE (set with options(odin.compiler_warnings = TRUE)). The
default may change to TRUE in future. Warnings are currently a mix of ambigu-
ous syntax in your model (worth fixing) and limitations in the code that odin
generates (which you can’t fix but I will get on to over time). What is flagged
will depend strongly on your platform and what is in your Makevars. I develop
odin with -Wall -Wextra -pedantic and still see warnings with both gcc and
clang. The compiler output is very simple and may not work on all platforms.
Defaults to the option odin.compiler_warnings or FALSE otherwise.

no_check_unused_equations
If TRUE, then don’t print messages about unused variables. Defaults to the option
odin.no_check_unused_equations or FALSE otherwise.

no_check_naked_index
If TRUE, then if an index variable (i, j, ...) is used outside of an array subset (e.g.,
x[] <- i) then a notice is printed. The behaviour of this functionality changed
in odin version @. 2.0 and this flag is intended to notify users about the change.
See https://github.com/mrc-ide/odin/issues/136 for more information.
Defaults to the option odin.no_check_naked_index or FALSE otherwise.

Details

Do not use odin: :o0din in a package; you almost certainly want to use odin_package instead; see
the odin_package vignette for more information.

A generated model can return information about itself; odin_ir

Value

A function that can generate the model

User parameters

If the model accepts user parameters, then the parameter to the constructor or the set_user method
can be used to control the behaviour when unknown user actions are passed into the model.Possible
values are the strings stop (throw an error), warning (issue a warning but keep going), message
(print a message and keep going) or ignore (do nothing). Defaults to the option odin.unused_user_action,
or warning otherwise. The default behaviour prior to odin version 0.2.0 was equivalent to ignore.

Delay equations with dde

When generating a model one must chose between using the dde package to solve the system or the
default deSolve. Future versions may allow this to switch when using run, but for now this requires

https://github.com/mrc-ide/odin/issues/136

odin_build 5

tweaking the generated code to a point where one must decide at generation. dde implements only
the Dormand-Prince 5th order dense output solver, with a delay equation solver that may perform
better than the solvers in deSolve. For non-delay equations, deSolve is very likely to outperform
the simple solver implemented.

Author(s)

Rich FitzJohn

Examples

Compile the model; exp_decay here is an R6ClassGenerator and will
generate instances of a model of exponential decay:
exp_decay <- odin::odin({
deriv(y) <- -0.5 x y
initial(y) <- 1
}, target = "r")

Generate an instance; there are no parameters here so all instances
are the same and this looks a bit pointless. But this step is

required because in general you don't want to have to compile the
model every time it is used (so the generator will go in a

package).

mod <- exp_decay()

Run the model for a series of times from @ to 10:
t <- seq(@, 10, length.out = 101)
y <- mod$run(t)

plot(y, xlab = "Time"”, ylab = "y", main = "", las = 1)
odin_build Build an odin model generator from its IR
Description

Build an odin model generator from its intermediate representation, as generated by odin_parse.
This function is for advanced use.
Usage

odin_build(x, options = NULL)

Arguments

X An odin ir (json) object or output from odin_validate.

options Options to pass to the build stage (see odin_options

6 odin_ir

Details

In applications that want to inspect the intermediate representation rather before compiling, rather
than directly using odin, use either odin_parse or odin_validate and then pass the result to
odin_build.

The return value of this function includes information about how long the compilation took, if it
was successful, etc, in the same style as odin_validate:

success Logical, indicating if compilation was successful
elapsed Time taken to compile the model, as a proc_time object, as returned by proc. time.

output Any output produced when compiling the model (only present if compiling to C, and if the
cache was not hit.

model The model itself, as an odin_generator object, as returned by odin.

ir The intermediate representation.
errorAny error thrown during compilation

See Also

odin_parse, which creates intermediate representations used by this function.

Examples

##' # Parse a model of exponential decay
ir <- odin::odin_parse({

deriv(y) <- -0.5 * y

initial(y) <- 1
»

Compile the model:
options <- odin::odin_options(target = "r")
res <- odin::odin_build(ir, options)

All results:
res

The model:
mod <- res$model()
mod$run(0:10)

odin_ir Return detailed information about an odin model

Description

Return detailed information about an odin model. This is the mechanism through which coef works
with odin.

odin_ir_deserialise 7

Usage

odin_ir(x, parsed = FALSE)

Arguments
X An odin_generator function, as created by odin
parsed Logical, indicating if the representation should be parsed and converted into an
R object. If FALSE we return a json string.
Warning

The returned data is subject to change for a few versions while I work out how we’ll use it.

Examples

exp_decay <- odin::odin({
deriv(y) <- -0.5 x y
initial(y) <- 1

}, target = "r")

odin::odin_ir(exp_decay)

coef (exp_decay)

odin_ir_deserialise Deserialise odin’s IR

Description
Deserialise odin’s intermediate model representation from a json string into an R object. Unlike
the json, there is no schema for this representation. This function provides access to the same
deserialisation that odin uses internally so may be useful in applications.

Usage

odin_ir_deserialise(x)

Arguments

X An intermediate representation as a json string

Value

A named list

See Also

odin_parse

8 odin_options

Examples

Parse a model of exponential decay
ir <- odin::odin_parse({
deriv(y) <- -0.5 x y
initial(y) <- 1
»
Convert the representation to an R object
odin::odin_ir_deserialise(ir)

odin_options Odin options

Description

For lower-level odin functions odin_parse, odin_validate we accept a list of options rather than
individually named options.

Usage

odin_options(verbose = NULL, target = NULL, workdir = NULL,
validate = NULL, pretty = NULL, skip_cache = NULL,
compiler_warnings = NULL, no_check_unused_equations = NULL,
no_check_naked_index = NULL, options = NULL)

Arguments

verbose Logical scalar indicating if the compilation should be verbose. Defaults to the
value of the option odin.verbose or FALSE otherwise.

target Compilation target. Options are "c" and "r", defaulting to the option odin. target
or "c" otherwise.

workdir Directory to use for any generated files. This is only relevant for the "c" target.
Defaults to the value of the option odin.workdir or tempdir () otherwise.

validate Validate the model’s intermediate representation against the included schema.
Normally this is not needed and is intended primarily for development use. De-
faults to the value of the option odin.validate or FALSE otherwise.

pretty Pretty-print the model’s intermediate representation. Normally this is not needed
and is intended primarily for development use. Defaults to the value of the
option odin.pretty or FALSE otherwise.

skip_cache Skip odin’s cache. This might be useful if the model appears not to compile

when you would expect it to. Hopefully this will not be needed often. Defaults
to the option odin. skip_cache or FALSE otherwise.

compiler_warnings
Logical scalar indicating if compiler warnings should be converted to R warn-
ings. If this is TRUE, then if any compiler warnings are generated, the compiler

odin_package

output will be displayed (regardless of the value of verbose) within an R warn-
ing (suppressible via suppressWarnings and catchable via tryCatch). The de-
fault is to default to FALSE unless the global option odin.compiler_warnings
is set to TRUE (set with options(odin.compiler_warnings = TRUE)). The
default may change to TRUE in future. Warnings are currently a mix of ambigu-
ous syntax in your model (worth fixing) and limitations in the code that odin
generates (which you can’t fix but I will get on to over time). What is flagged
will depend strongly on your platform and what is in your Makevars. I develop
odin with -Wall -Wextra -pedantic and still see warnings with both gcc and
clang. The compiler output is very simple and may not work on all platforms.
Defaults to the option odin.compiler_warnings or FALSE otherwise.

no_check_unused_equations

If TRUE, then don’t print messages about unused variables. Defaults to the option
odin.no_check_unused_equations or FALSE otherwise.

no_check_naked_index

options

Examples

odin_options()

If TRUE, then if an index variable (i, j, ...) is used outside of an array subset (e.g.,
x[] <- i) then a notice is printed. The behaviour of this functionality changed
in odin version @. 2.0 and this flag is intended to notify users about the change.
See https://github.com/mrc-ide/odin/issues/136 for more information.
Defaults to the option odin.no_check_naked_index or FALSE otherwise.

Named list of options. If provided, then all other options are ignored.

odin_package

Create odin model in a package

Description

Create an odin model within an existing package.

Usage

odin_package (path_package)

Arguments

path_package

Details

Path to the package root (the directory that contains DESCRIPTION)

I am resisting the urge to actually create the package here. There are better options than I can
come up with; for example devtools: :create, pkgkitten: :kitten, mason: :mason, or creating
DESCRIPTION files using desc. What is required here is that your package:

https://github.com/mrc-ide/odin/issues/136

10 odin_parse

e Lists odin in Imports:

¢ Includes useDynLib{<your package name>} in NAMESPACE (possibly via a roxygen comment
@QuseDynLib <your package name>

* To avoid a NOTE in R CMD check, import something from odin in your namespace (e.g.,
importFrom("odin”, "odin") or roxygen @importFrom(odin, odin)

Point this function at the package root (the directory containing DESCRIPTION and it will write
out files src/odin.c and odin.R. These files will be overwritten without warning by running this
again.

There are a few unresolved issues with this approach, notably activating "native symbol registra-
tion", and the interaction with packages such as Rcpp that automatically collate a list of symbols.
The mechanism may change in a future version, though the interface (with source files in inst/odin
will remain the same.

Examples

path <- tempfile()
dir.create(path)

src <- system.file("examples/package”, package = "odin", mustWork = TRUE)
file.copy(src, path, recursive = TRUE)
pkg <- file.path(path, "package")

The package is minimal:
dir(pkg)

But contains odin files in inst/odin
dir(file.path(pkg, "inst/odin"))

Compile the odin code in the package
odin: :odin_package (pkg)

Which creates the rest of the package structure
dir(pkg)

dir(file.path(pkg, "R"))

dir(file.path(pkg, "src"))

odin_parse Parse an odin model

Description

Parse an odin model, returning an intermediate representation. The odin_parse_ version is a "stan-
dard evaluation" escape hatch.

Usage
odin_parse(x, type = NULL, options = NULL)

odin_parse_(x, options = NULL, type = NULL)

odin_validate

Arguments
X

type

options

Details

11

An expression, character vector or filename with the odin code

An optional string indicating the the type of input - must be one of expression,
file or text if provided. This skips the type detection code used by odin and
makes validating user input easier.

odin options; see odin_options. The primary options that affect the parse stage
are validate and pretty.

A schema for the intermediate representation is available in the package as schema.json. It is
subject to change at this point.

See Also

odin_validate, which wraps this function where parsing might fail, and odin_build for building
odin models from an intermediate representation.

Examples

Parse a model of exponential decay

ir <- odin::odin_

deriv(y) <- -0.
initial(y) <- 1
»

This is odin's
ir

parse({
5%y

intermediate representation of the model

If parsing odin models programmatically, it is better to use
odin_parse_; construct the model as a string, from a file, or as a
quoted expression:

code <- quote({
deriv(y) <- -0.
initial(y) <- 1
»

odin::odin_parse_

5%y

(code)

odin_validate

Validate an odin model

Description

Validate an odin model. This function is closer to odin_parse_ than odin_parse because it does
not do any quoting of the code. It is primarily intended for use within other applications.

12 odin_validate

Usage

odin_validate(x, type = NULL, options = NULL)

Arguments
X An expression, character vector or filename with the odin code
type An optional string indicating the the type of input - must be one of expression,
file or text if provided. This skips the type detection code used by odin and
makes validating user input easier.
options odin options; see odin_options. The primary options that affect the parse stage
are validate and pretty.
Details

odin_validate will always return a list with the same elements:

success A boolean, TRUE if validation was successful

result The intermediate representation, as returned by odin_parse_, if the validation was success-
ful, otherwise NULL

error An error object if the validation was unsuccessful, otherwise NULL. This may be a classed
odin error, in which case it will contain source location information - see the examples for
details.

messages A list of messages, if the validation returned any. At present this is only non-fatal infor-
mation about unused variables.

Author(s)
Rich FitzJohn

Examples

A successful validation:
odin::odin_validate(c("deriv(x) <- 1", "initial(x) <- 1"))

A complete failure:
odin::odin_validate("")

A more interesting failure

code <- c("deriv(x) <- a", "initial(x) <- 1")
res <- odin::odin_validate(code)
res

The object 'res$error' is an 'odin_error' object:
res$error

It contains information that might be used to display to a
user information about the error:
unclass(res$error)

odin_validate

Notes are raised in a similar way:

code <- c("deriv(x) <- 1", "initial(x) <- 1", "a <= 1")
res <- odin::odin_validate(code)

res$messages[[1]]

13

Index

can_compile, 2
coef, 6

odin, 3,6, 7

odin_ (odin), 3
odin_build, 5, 11

odin_ir, 4,6
odin_ir_deserialise, 7
odin_options, 5,8, 11, 12
odin_package, 4, 9
odin_parse, 5-8, 10, 11
odin_parse_, 11, 12
odin_parse_ (odin_parse), 10
odin_validate, 5,6, 8, 11, 11

proc.time, 6

14

	can_compile
	odin
	odin_build
	odin_ir
	odin_ir_deserialise
	odin_options
	odin_package
	odin_parse
	odin_validate
	Index

