Package 'nvctr'

March 7, 2019

Type Package

Title The n-vector Approach to Geographical Position Calculations using an Ellipsoidal Model of Earth

Version 0.1.1

Maintainer Enrico Spinielli <enrico.spinielli@eurocontrol.int>

Description The n-vector framework uses the normal vector to the Earth ellipsoid (called n-vector) as a non-singular position representation that turns out to be very convenient for practical position calculations. The n-vector is simple to use and gives exact answers for all global positions, and all distances, for both ellipsoidal and spherical Earth models. This package is a translation of the 'Matlab' library from FFI, the Norwegian Defence Research Establishment, as described in Gade (2010) <doi:10.1017/S0373463309990415>.

URL https://github.com/euctrl-pru/nvctr

BugReports https://github.com/euctrl-pru/nvctr/issues

License MIT + file LICENSE

Encoding UTF-8

LazyData true

Suggests testthat, knitr, rmarkdown, geosphere, png, knitcitations, covr, spelling

Imports pracma, magrittr

RoxygenNote 6.1.1

VignetteBuilder knitr

Language en-US

NeedsCompilation no

Author Enrico Spinielli [aut, cre] (<https://orcid.org/0000-0001-8584-9131>), EUROCONTROL [cph, fnd]

Repository CRAN

Date/Publication 2019-03-07 17:30:03 UTC

R topics documented:

deg	2
lat_lon2n_E	3
nvctr	3
n_E2lat_lon	4
n_E2R_EN	5
n_EA_E_and_n_EB_E2p_AB_E	5
n_EA_E_and_p_AB_E2n_EB_E	7
n_EB_E2p_EB_E	8
n_E_and_wa2R_EL	9
p_EB_E2n_EB_E	0
R2xyz	1
R2zyx	
rad	
R_Ee 1	13
R_EL2n_E 1	14
R_EN2n_E 1	15
unit	6
xyz2R 1	17
zyx2R 1	8
1	19

Index

deg

Convert angle in radians to degrees

Description

Convert angle in radians to degrees

Usage

deg(radians)

Arguments

radians angle in radians.

Value

angle in degrees.

See Also

rad.

Examples

deg(pi/2)

lat_lon2n_E

Description

Convert (geodetic) latitude and longitude to n-vector

Usage

```
lat_lon2n_E(latitude, longitude)
```

Arguments

latitude	Geodetic latitude (rad)
longitude	Geodetic longitude (rad)

Value

n-vector decomposed in E (3x1 vector) (no unit)

References

Kenneth Gade A Nonsingular Horizontal Position Representation. *The Journal of Navigation*, Volume 63, Issue 03, pp 395-417, July 2010.

See Also

n_E2lat_lon.

Examples

```
lat_lon2n_E(rad(1), rad(2))
```

nvctr

nvctr: non-singular geographical position calculations

Description

nvctr provides functions to calculate geographical positions for both the ellipsoidal and spherical Earth models.

Author(s)

Maintainer: Enrico Spinielli <enrico.spinielli@eurocontrol.int>(0000-0001-8584-9131) Other contributors:

• EUROCONTROL [copyright holder, funder]

References

Kenneth Gade A Nonsingular Horizontal Position Representation. *The Journal of Navigation*, Volume 63, Issue 03, pp 395-417, July 2010.

See Also

Useful links:

- https://github.com/euctrl-pru/nvctr
- Report bugs at https://github.com/euctrl-pru/nvctr/issues

n_E2lat_lon Convert n-vector to latitude and longitude

Description

Convert n-vector to latitude and longitude

Usage

n_E2lat_lon(n_E)

Arguments

n_E n-vector decomposed in E (3x1 vector) (no unit)

Value

A vector of geodetic latitude and longitude (rad)

References

Kenneth Gade A Nonsingular Horizontal Position Representation. *The Journal of Navigation*, Volume 63, Issue 03, pp 395-417, July 2010.

See Also

lat_lon2n_E.

Examples

n_E2lat_lon(c(1, 0, 0))

n_E2R_EN

Description

Find the rotation matrix R_EN from n-vector

Usage

n_E2R_EN(n_E)

Arguments

n_E

n-vector decomposed in E (3x1 vector) (no unit)

Value

The resulting rotation matrix (direction cosine matrix) (no unit)

References

Kenneth Gade A Nonsingular Horizontal Position Representation. *The Journal of Navigation*, Volume 63, Issue 03, pp 395-417, July 2010.

See Also

R_EN2n_E, n_E_and_wa2R_EL and R_EL2n_E.

Examples

n_E2R_EN(c(1, 0, 0))

n_EA_E_and_n_EB_E2p_AB_E

Find the delta position from two positions A and B

Description

Given the n-vectors for positions A (n_EA_E) and B (n_EB_E) , the output is the delta vector from A to B (p_AB_E) .

Usage

```
n_EA_E_and_n_EB_E2p_AB_E(n_EA_E, n_EB_E, z_EA = 0, z_EB = 0,
a = 6378137, f = 1/298.257223563)
```

Arguments

n_EA_E	n-vector of position A, decomposed in E (3x1 vector) (no unit)
n_EB_E	n-vector of position B, decomposed in E (3x1 vector) (no unit)
z_EA	Depth of system A, relative to the ellipsoid ($z_EA = -height$) (m, default 0)
z_EB	Depth of system B, relative to the ellipsoid ($z_EB = -height$) (m, default 0)
а	Semi-major axis of the Earth ellipsoid (m, default [WGS-84] 6378137)
f	Flattening of the Earth ellipsoid (no unit, default [WGS-84] 1/298.257223563)

Details

The calculation is exact, taking the ellipticity of the Earth into account. It is also nonsingular as both n-vector and p-vector are nonsingular (except for the center of the Earth). The default ellipsoid model used is WGS-84, but other ellipsoids (or spheres) might be specified via the optional parameters a and f.

Value

Position vector from A to B, decomposed in E (3x1 vector)

References

Kenneth Gade A Nonsingular Horizontal Position Representation. *The Journal of Navigation*, Volume 63, Issue 03, pp 395-417, July 2010.

See Also

n_EA_E_and_p_AB_E2n_EB_E, p_EB_E2n_EB_E and n_EB_E2p_EB_E

Examples

```
lat_EA <- rad(1); lon_EA <- rad(2); z_EA <- 3
lat_EB <- rad(4); lon_EB <- rad(5); z_EB <- 6
n_EA_E <- lat_lon2n_E(lat_EA, lon_EA)
n_EB_E <- lat_lon2n_E(lat_EB, lon_EB)</pre>
```

 $n_EA_E_and_n_EB_E2p_AB_E(n_EA_E, n_EB_E, z_EA, z_EB)$

n_EA_E_and_p_AB_E2n_EB_E

Find position B from position A and delta

Description

Given the n-vector for position A (n_EA_E) and the position-vector from position A to position B (p_AB_E) , the output is the n-vector of position B (n_EB_E) and depth of B (z_EB) .

Usage

```
n_EA_E_and_p_AB_E2n_EB_E(n_EA_E, p_AB_E, z_EA = 0, a = 6378137,
f = 1/298.257223563)
```

Arguments

n_EA_E	n-vector of position A, decomposed in E (3x1 vector) (no unit)
p_AB_E	Position vector from A to B, decomposed in E (3x1 vector) (m)
z_EA	Depth of system A, relative to the ellipsoid ($z_EA = -height$) (m, default 0)
а	Semi-major axis of the Earth ellipsoid (m, default [WGS-84] 6378137)
f	Flattening of the Earth ellipsoid (no unit, default [WGS-84] 1/298.257223563)

Details

The calculation is exact, taking the ellipticity of the Earth into account.

It is also nonsingular as both n-vector and p-vector are nonsingular (except for the center of the Earth). The default ellipsoid model used is WGS-84, but other ellipsoids (or spheres) might be specified.

Value

a list with n-vector of position B, decomposed in E (3x1 vector) (no unit) and the depth of system B, relative to the ellipsoid (z_EB = -height)

References

Kenneth Gade A Nonsingular Horizontal Position Representation. *The Journal of Navigation*, Volume 63, Issue 03, pp 395-417, July 2010.

See Also

n_EA_E_and_n_EB_E2p_AB_E, p_EB_E2n_EB_E and n_EB_E2p_EB_E

Examples

```
p_BC_B <- c(3000, 2000, 100)
# Position and orientation of B is given:
n_EB_E <- unit(c(1,2,3)) # unit to get unit length of vector
z_EB <- -400
R_NB <- zyx2R(rad(10), rad(20), rad(30)) # yaw, pitch, and roll
R_EN <- n_E2R_EN(n_EB_E)
R_EB <- R_EN %*% R_NB
# Decompose the delta vector in E:
p_BC_E <- (R_EB %*% p_BC_B) %>% as.vector() # no transpose of R_EB, since the vector is in B
# Find the position of C, using the functions that goes from one
# position and a delta, to a new position:
(n_EB_E <- n_EA_E_and_p_AB_E2n_EB_E(n_EB_E, p_BC_E, z_EB))</pre>
```

n_EB_E2p_EB_E Convert n-vector to cartesian position vector in meters

Description

The function converts the position of B (typically body) relative to E (typically Earth), the n-vector n_EB_E to cartesian position vector ("ECEF-vector"), p_EB_E, in meters.

Usage

n_EB_E2p_EB_E(n_EB_E, z_EB = 0, a = 6378137, f = 1/298.257223563)

Arguments

n_EB_E	n-vector of position B, decomposed in E (3x1 vector) (no unit)
z_EB	Depth of system B, relative to the ellipsoid ($z_EB = -height$) (m, default 0)
а	Semi-major axis of the Earth ellipsoid (m, default [WGS-84] 6378137)
f	Flattening of the Earth ellipsoid (no unit, default [WGS-84] 1/298.257223563)

Details

The calculation is exact, taking the ellipticity of the Earth into account.

It is also nonsingular as both n-vector and p-vector are nonsingular (except for the center of the Earth). The default ellipsoid model used is WGS-84, but other ellipsoids (or spheres) might be specified via the optional parameters a and f.

Value

Cartesian position vector from E to B, decomposed in E (3x1 vector) (m)

8

n_E_and_wa2R_EL

References

Kenneth Gade A Nonsingular Horizontal Position Representation. The Journal of Navigation, Volume 63, Issue 03, pp 395-417, July 2010.

See Also

p_EB_E2n_EB_E, n_EA_E_and_p_AB_E2n_EB_E and n_EA_E_and_n_EB_E2p_AB_E.

Examples

```
n_EB_E <- lat_lon2n_E(rad(1), rad(2))</pre>
n_EB_E2p_EB_E(n_EB_E)
```

Find R_EL from n-vector and wander azimuth angle n_E_and_wa2R_EL

Description

Calculate the rotation matrix (direction cosine matrix) R_EL using n-vector (n_E) and the wander azimuth angle. When wander_azimuth = 0, we have that N = L (See Table 2 in Gade (2010) for details)

Usage

n_E_and_wa2R_EL(n_E, wander_azimuth)

Arguments

n_E

n-vector decomposed in E (3x1 vector) (no unit)

wander_azimuth The angle between L's x-axis and north, positive about L's z-axis (rad)

Value

The resulting rotation matrix (3x3) (no unit)

References

Kenneth Gade A Nonsingular Horizontal Position Representation. The Journal of Navigation, Volume 63, Issue 03, pp 395-417, July 2010.

See Also

R_EL2n_E, R_EN2n_E and n_E2R_EN.

Examples

```
# Calculates the rotation matrix (direction cosine matrix) R_EL
# using n-vector (n_E) and the wander azimuth angle.
n_E <- c(1, 0, 0)
(R_EL <- n_E_and_wa2R_EL(n_E, wander_azimuth = pi / 2))</pre>
```

p_EB_E2n_EB_E Convert cartesian position vector in meters to n-vector

Description

The position of B (typically body) relative to E (typically Earth) is given as cartesian position vector p_EB_E, in meters ("ECEF-vector").

Usage

p_EB_E2n_EB_E(p_EB_E, a = 6378137, f = 1/298.257223563)

Arguments

p_EB_E	Cartesian position vector from E to B, decomposed in E (3x1 vector) (m)
a	Semi-major axis of the Earth ellipsoid (m, default [WGS-84] 6378137)
f	Flattening of the Earth ellipsoid (no unit, default [WGS-84] 1/298.257223563)

Details

The function converts to n-vector, n_EB_E and its depth, z_EB.

The calculation is exact, taking the ellipticity of the Earth into account. It is also nonsingular as both n-vector and p-vector are nonsingular (except for the center of the Earth). The default ellipsoid model used is WGS-84, but other ellipsoids (or spheres) might be specified.

Value

n-vector representation of position B, decomposed in E (3x1 vector) (no unit) and depth of system B relative to the ellipsoid (z_EB = -height)

References

Kenneth Gade A Nonsingular Horizontal Position Representation. *The Journal of Navigation*, Volume 63, Issue 03, pp 395-417, July 2010.

See Also

n_EB_E2p_EB_E, n_EA_E_and_p_AB_E2n_EB_E and n_EA_E_and_n_EB_E2p_AB_E

10

R2xyz

Examples

p_EB_E <- 6371e3 * c(0.9, -1, 1.1)
(n_EB_E <- p_EB_E2n_EB_E(p_EB_E))</pre>

R2xyz

Find the three rotation angles about new axes in the xyz order from a rotation matrix

Description

The angles (called Euler angles or Tait–Bryan angles) are defined by the following procedure of successive rotations: Given two arbitrary coordinate frames A and B, consider a temporary frame T that initially coincides with A. In order to make T align with B, we first rotate T an angle x about its x-axis (common axis for both A and T). Secondly, T is rotated an angle y about the NEW y-axis of T. Finally, T is rotated an angle z about its NEWEST z-axis. The final orientation of T now coincides with the orientation of B. The signs of the angles are given by the directions of the axes and the right hand rule.

Usage

R2xyz(R_AB)

Arguments

R_AB

a 3x3 rotation matrix (direction cosine matrix) such that the relation between a vector v decomposed in A and B is given by: $v_A = R_AB * v_B$

Value

x,y,z Angles of rotation about new axes (rad)

References

Kenneth Gade A Nonsingular Horizontal Position Representation. *The Journal of Navigation*, Volume 63, Issue 03, pp 395-417, July 2010.

See Also

xyz2R, R2zyx and zyx2R.

Examples

```
R_AB <- matrix(
    c(0.9980212, 0.05230407, -0.0348995,
        -0.05293623, 0.99844556, -0.01744177,
        0.03393297, 0.01925471, 0.99923861),
        nrow = 3, ncol = 3, byrow = TRUE)
R2xyz(R_AB)
```

R2zyx

Description

The 3 angles z, y, x about new axes (intrinsic) in the order z-y-x are found from the rotation matrix R_AB. The angles (called Euler angles or Tait–Bryan angles) are defined by the following procedure of successive rotations:

- 1. Given two arbitrary coordinate frames A and B, consider a temporary frame T that initially coincides with A. In order to make T align with B, we first rotate T an angle z about its z-axis (common axis for both A and T).
- 2. Secondly, T is rotated an angle y about the NEW y-axis of T. Finally, T is rotated an angle x about its NEWEST x-axis.
- 3. The final orientation of T now coincides with the orientation of B.

The signs of the angles are given by the directions of the axes and the right hand rule.

Usage

R2zyx(R_AB)

Arguments

R_AB a 3x3 rotation matrix (direction cosine matrix) such that the relation between a vector v decomposed in A and B is given by: $v_A = R_AB * v_B$

Details

Note that if A is a north-east-down frame and B is a body frame, we have that z=yaw, y=pitch and x=roll.

Value

z,y,x angles of rotation about new axes (rad)

References

Kenneth Gade A Nonsingular Horizontal Position Representation. *The Journal of Navigation*, Volume 63, Issue 03, pp 395-417, July 2010.

See Also

zyx2R, xyz2R and R2xyz.

Examples

zyx2R(rad(1), rad(-2), rad(-3))

rad

Description

Convert angle in degrees to radians.

Usage

rad(degrees)

Arguments

degrees angle in degrees.

Value

angle in radians

See Also

deg.

Examples

rad(30)

R_Ee

Select the axes of the coordinate frame E

Description

This function returns the axes of the coordinate frame E (Earth-Centered, Earth-Fixed, ECEF).

Usage

R_Ee(axes = "e")

Arguments

axes

Either 'e' or 'E'

- 'e': z-axis points to the North Pole along the Earth's rotation axis, x-axis points towards the point where latitude = longitude = 0. This choice is very common in many fields.
- 'E': x-axis points to the North Pole along the Earth's rotation axis, y-axis points towards longitude +90deg (east) and latitude = 0. (the yz-plane coincides with the equatorial plane). This choice of axis ensures that at zero latitude and longitude, frame N (North-East-Down) has the same orientation as frame E. If roll/pitch/yaw are zero, also frame B (forward-starboarddown) has this orientation. In this manner, the axes of frame E is chosen to correspond with the axes of frame N and B. The functions in this library originally used this option.

Details

There are two choices of E-axes that are described in Table 2 in Gade (2010):

- e: z-axis points to the North Pole and x-axis points to the point where latitude = longitude = 0. This choice is very common in many fields.
- E: x-axis points to the North Pole, y-axis points towards longitude +90deg (east) and latitude = 0. This choice of axis directions ensures that at zero latitude and longitude, N (North-East-Down) has the same orientation as E. If roll/pitch/yaw are zero, also B (Body, forward, starboard, down) has this orientation. In this manner, the axes of E is chosen to correspond with the axes of N and B.

Value

rotation matrix defining the axes of the coordinate frame E as described in Table 2 in Gade (2010)

References

Kenneth Gade (2010) A Nonsingular Horizontal Position Representation. *The Journal of Navigation*, Volume 63, Issue 03, pp 395-417, July 2010.

Examples

R_Ee()

R_EL2n_E

Find n-vector from the rotation matrix (direction cosine matrix) R_EL

Description

Find n-vector from the rotation matrix (direction cosine matrix) R_EL

 R_EN2n_E

Usage

R_EL2n_E(R_EL)

Arguments

R_EL Rotation matrix (direction cosine matrix) (no unit)

Value

n-vector decomposed in E (3x1 vector) (no unit)

References

Kenneth Gade A Nonsingular Horizontal Position Representation. *The Journal of Navigation*, Volume 63, Issue 03, pp 395-417, July 2010.

See Also

n_E2R_EN, R_EL2n_E and n_E_and_wa2R_EL.

Examples

```
R_EL <- matrix(
    c(-1, 0, 0,
    0, 1, 0,
    0, 0, -1),
    nrow = 3, ncol = 3, byrow = TRUE)
R_EL2n_E(R_EL)
```

R_EN2n_E

Find n-vector from R_E

Description

Find n-vector from R_E

Usage

R_EN2n_E(R_EN)

Arguments R_EN

Rotation matrix (direction cosine matrix) (no unit)

Value

n-vector decomposed in E (3x1 vector) (no unit)

References

Kenneth Gade A Nonsingular Horizontal Position Representation. *The Journal of Navigation*, Volume 63, Issue 03, pp 395-417, July 2010.

See Also

n_E2R_EN, R_EL2n_E and n_E_and_wa2R_EL.

Examples

```
R_EN <- matrix(
    c(-1, 0, 0,
    0, 1, 0,
    0, 0, -1),
    nrow = 3, ncol = 3, byrow = TRUE)
R_EL2n_E(R_EN)
```

unit

Make input vector unit length, i.e. norm == 1

Description

Make input vector unit length, i.e. norm == 1

Usage

unit(vector)

Arguments

vector a vector

Value

a unit length vector

Examples

unit(c(1,2,3))

xyz2R

Description

The rotation matrix R_AB is created based on 3 angles x, y and z about new axes (intrinsic) in the order x-y-z. The angles (called Euler angles or Tait-Bryan angles) are defined by the following procedure of successive rotations:

- 1. Given two arbitrary coordinate frames A and B, consider a temporary frame T that initially coincides with A. In order to make T align with B, we first rotate T an angle x about its x-axis (common axis for both A and T).
- 2. Secondly, T is rotated an angle y about the NEW y-axis of T.
- 3. Finally, codeT is rotated an angle z about its NEWEST z-axis. The final orientation of T now coincides with the orientation of B.

The signs of the angles are given by the directions of the axes and the right hand rule.

Usage

xyz2R(x, y, z)

Arguments

х	Angle of rotation about new x axis (rad)
У	Angle of rotation about new y axis (rad)
Z	Angle of rotation about new z axis (rad)

Value

3x3 rotation matrix (direction cosine matrix) such that the relation between a vector v decomposed in A and B is given by: $v_A = R_AB * v_B$

References

Kenneth Gade A Nonsingular Horizontal Position Representation. *The Journal of Navigation*, Volume 63, Issue 03, pp 395-417, July 2010.

See Also

R2xyz, zyx2R and R2zyx.

Examples

xyz2R(rad(10), rad(20), rad(30))

zyx2R

Description

The rotation matrix R_AB is created based on 3 angles z, y and x about new axes (intrinsic) in the order z-y-x. The angles (called Euler angles or Tait–Bryan angles) are defined by the following procedure of successive rotations:

- 1. Given two arbitrary coordinate frames A and B, consider a temporary frame T that initially coincides with A. In order to make T align with B, we first rotate T an angle z about its z-axis (common axis for both A and T).
- 2. Secondly, T is rotated an angle y about the NEW y-axis of T.
- 3. Finally, T is rotated an angle x about its NEWEST x-axis. The final orientation of T now coincides with the orientation of B.

The signs of the angles are given by the directions of the axes and the right hand rule. Note that if A is a north-east-down frame and B is a body frame, we have that z=yaw, y=pitch and x=roll.

Usage

zyx2R(z, y, x)

Arguments

Z	Angle of rotation about new z axis
У	Angle of rotation about new y axis
x	Angle of rotation about new x axis

Value

3x3 rotation matrix R_AB (direction cosine matrix) such that the relation between a vector v decomposed in A and B is given by: $v_A = R_AB * v_B$

References

Kenneth Gade A Nonsingular Horizontal Position Representation. *The Journal of Navigation*, Volume 63, Issue 03, pp 395-417, July 2010.

See Also

R2zyx, xyz2R and R2xyz.

Examples

zyx2R(rad(30), rad(20), rad(10))

Index

deg, 2, 13

lat_lon2n_E, 3, 4 n_E2lat_lon, 3, 4 n_E2R_EN, 5, 9, 15, 16 n_E_and_wa2R_EL, 5, 9, 15, 16 n_EA_E_and_n_EB_E2p_AB_E, 5, 7, 9, 10 n_EA_E_and_p_AB_E2n_EB_E, 6, 7, 9, 10 n_EB_E2p_EB_E, *6*, *7*, 8, *10* nvctr, 3 nvctr-package (nvctr), 3 p_EB_E2n_EB_E, 6, 7, 9, 10 R2xyz, 11, *12*, *17*, *18* R2zyx, *11*, 12, *17*, *18* R_Ee, 13 R_EL2n_E, 5, 9, 14, 15, 16 R_EN2n_E, *5*, *9*, 15 rad, 2, 13unit, 16xyz2R, 11, 12, 17, 18

zyx2R, 11, 12, 17, 18

19