Tools for data-driven statistical analysis using local polynomial regression and kernel density estimation methods as described in Calonico, Cattaneo and Farrell (2018, <doi:10.1080/01621459.2017.1285776>): lprobust() for local polynomial point estimation and robust bias-corrected inference, lpbwselect() for local polynomial bandwidth selection, kdrobust() for kernel density point estimation and robust bias-corrected inference, kdbwselect() for kernel density bandwidth selection, and nprobust.plot() for plotting results. The main methodological and numerical features of this package are described in Calonico, Cattaneo and Farrell (2019, <doi:10.18637/jss.v091.i08>).
Version: | 0.3.0 |
Depends: | R (≥ 3.1.1) |
Imports: | Rcpp, ggplot2 |
LinkingTo: | Rcpp, RcppArmadillo |
Published: | 2020-04-02 |
Author: | Sebastian Calonico, Matias D. Cattaneo, Max H. Farrell |
Maintainer: | Sebastian Calonico <sebastian.calonico at columbia.edu> |
License: | GPL-2 |
NeedsCompilation: | yes |
Citation: | nprobust citation info |
CRAN checks: | nprobust results |
Reference manual: | nprobust.pdf |
Package source: | nprobust_0.3.0.tar.gz |
Windows binaries: | r-devel: nprobust_0.3.0.zip, r-release: nprobust_0.3.0.zip, r-oldrel: nprobust_0.3.0.zip |
macOS binaries: | r-release: nprobust_0.3.0.tgz, r-oldrel: nprobust_0.3.0.tgz |
Old sources: | nprobust archive |
Please use the canonical form https://CRAN.R-project.org/package=nprobust to link to this page.