Package ‘npreg’

July 6, 2020
Type Package

Title Nonparametric Regression via Smoothing Splines
Version 1.0-3

Date 2020-07-06

Author Nathaniel E. Helwig <helwig@umn.edu>

Maintainer Nathaniel E. Helwig <helwig@umn.edu>

Description Multiple and generalized nonparametric regression using smoothing spline ANOVA mod-

els and generalized additive models, as described in Hel-

wig (2020) <doi:10.4135/9781526421036885885>. Includes support for Gaussian and non-

Gaussian responses, smoothers for multiple types of predictors, interactions be-

tween smoothers of mixed types, and eight different methods for smoothing parameter selection.

License GPL (>=2)

NeedsCompilation no

Repository CRAN

Date/Publication 2020-07-06 16:20:02 UTC

R topics documented:

SSTIL L o v o e e e e e e e e e e e e e 2
NegBin o e e 9
nominal L e 11
ordinal L 13
plotci . . . L 15
polynomial e e 17
predict.@sm e e e e e 20
predict.Sm e e e e e 22
Predict.Ss . . .o L e e e 26
PSOLVE . . 28
SINL & v o e e e e e e e e e e 29
spherical L e e 36
] 39
SUMMATY .+« v v v v v e 44
thinplate 47

2 gsm

Index 50

gsm Fit a Generalized Smooth Model

Description

Fits a generalized semi- or nonparametric regression model with the smoothing parameter selected
via one of six methods: GCV, OCV, GACYV, ACV, AIC, or BIC.

Usage

gsm(formula, family = gaussian, data, weights, types = NULL, tprk = TRUE,
knots = NULL, update = TRUE, spar = NULL, lambda = NULL, control = list(),
method = c("GCV", "OCV", "GACV", "ACV", "AIC", "BIC"))

Arguments

formula Object of class "formula" (or one that can be coerced to that class): a symbolic
description of the model to be fitted. Uses the same syntax as 1m and glm.

family Description of the error distribution and link function to be used in the model.
This can be a character string naming a family function, a family function, or
the result of a call to a family function. See the "Family Objects" section for
details.

data Optional data frame, list or environment (or object coercible by as.data. frame
to a data frame) containing the variables in the model. If not found in data,
the variables are taken from environment (formula), typically the environment
from which sm is called.

weights Optional vector of weights to be used in the fitting process. If provided, weighted
(penalized) likelihood estimation is used. Defaults to all 1.

types Named list giving the type of smooth to use for each predictor. If NULL, the type
is inferred from the data. See "Types of Smooths" section for details.

tprk Logical specifying how to parameterize smooth models with multiple predic-
tors. If TRUE (default), a tensor product reproducing kernel function is used to
represent the function. If FALSE, a tensor product of marginal kernel functions
is used to represent the function. See the "Multiple Smooths" section for details.

knots Spline knots for the estimation of the nonparametric effects. For models with
multiple predictors, the knot specification will depend on the tprk input. See
the "Choosing Knots" section for details

update If TRUE, steps 1-2 of Gu and Wahba’s (1991) algorithm 3.2 are used to update the
"extra" smoothing parameters. If FALSE, only step 1 of algorithm 3.2 is used,
so each effect is given equal influence on the penalty. Only applicable when
multiple smooth terms are included.

spar Smoothing parameter. Typically (but not always) in the range (0, 1]. If specified
lambda = 256" (3*(spar-1)).

gsm 3
lambda Computational smoothing parameter. This value is weighted by n to form the
penalty coefficient (see Details). Ignored if spar is provided.
control Optional list with named components controlling the root finding when the
smoothing parameter spar is computed, i.e., missing or NULL, see below.
Note that spar is only searched for in the interval [lower, upper].
lower: lower bound for spar; defaults to 0.
upper: upper bound for spar; defaults to 1.
tol: the absolute precision (tolerance) used by optimize; defaults to le-8.
method Method for selecting the smoothing parameter. Ignored if 1lambda is provided.
GACV and ACV are only available for canonical link functions.
Details
Letting ; = n(x;) with z; = (2,1, ..., Z;p), the function is represented as

n=XB+ 2~y

where the basis functions in X span the null space (i.e., parametric effects), and Z contains the
kernel function(s) of the contrast space (i.e., nonparametric effects) evaluated at all combinations of
observed data points and knots. The vectors [and ~y contain unknown basis function coefficients.

Let u; = E(y;) denote the mean of the i-th response. The unknown function is related to the mean
1 such as

9(pi) = mi
where g() is a known link function. Note that this implies that p; = g~—*(7;) given that the link
function is assumed to be invertible.

The penalized likelihood estimation problem has the form
— > [yi = b(8:)] + nAy Qv
i=1

where 6; is the canonical parameter, b() is a known function that depends on the chosen family, and
(is the penalty matrix. Note that §; = go(p;) where g is the canonical link function. This implies
that #; = n; when the chosen link function is canonical, i.e., when g = gg.

Value

An object of class "gsm" with components:

linear.predictors
the linear fit on link scale. See the Note for obtaining the fitted values on the
response scale.

se.lp the standard errors of the linear predictors.

deviance up to a constant, minus twice the maximized log-likelihood. Where sensible, the
constant is chosen so that a saturated model has deviance zero.

cv.crit the cross-validation criterion.

df the estimated degrees of freedom (Df) for the fit model.

4 gsm

nsdf the degrees of freedom (Df) for the null space.

r.squared the squared correlation between response and fitted values.
dispersion the estimated dispersion parameter.

loglik the log-likelihood.

aic Akaike’s Information Criterion.

bic Bayesian Information Criterion.

spar the value of spar computed or given, i.e., s = 1 + logys4(A)/3
lambda the value of A corresponding to spar, i.e., A = 256*(s=1),
penalty the smoothness penalty v/ Q~.

coefficients the basis function coefficients used for the fit model.

cov.sqrt the square-root of the covariance matrix of coefficients. Note: tcrossprod(cov.sqrt)
reconstructs the covariance matrix.

specs a list with information used for prediction purposes:
knots the spline knots used for each predictor.
thetas the "extra" tuning parameters used to weight the penalties.
xrng the ranges of the predictor variables.
xlev the factor levels of the predictor variables (if applicable).
tprk logical controlling the formation of tensor product smooths.

data the data used to fit the model.

types the type of smooth used for each predictor.

terms the terms included in the fit model.

method the method used for smoothing parameter selection. Will be NULL if 1ambda was
provided.

formula the formula specifying the fit model.

call the matched call.

family the input family evaluated as a function using .

iter the number of iterations of IRPLS used.

residuals the working (IRPLS) residuals from the fitted model.

null.deviance the deviance of the null model (i.e., intercept only).

Family Objects

Supported families and links include:

family link

binomial logit, probit, cauchit, log, cloglog
gaussian identity, log, inverse

Gamma inverse, identity, log
inverse.gaussian 1/mu”2, inverse, identity, log
poisson log, identity, sqrt

NegBin log, identity, sqrt

gsm 5
See NegBin for information about the Negative Binomial family.

Types of Smooths
The following codes specify the spline types:

par Parametric effect (factor, integer, or numeric).
nom Nominal smoothing spline (unordered factor).
ord Ordinal smoothing spline (ordered factor).

lin Linear smoothing spline (integer or numeric).
cub Cubic smoothing spline (integer or numeric).
qui Quintic smoothing spline (integer or numeric).
per Periodic smoothing spline (integer or numeric).
sph Spherical spline (matrix with d = 3 columns).
tps Thin-plate spline (matrix with d > 1 columns).

For finer control of some specialized spline types:

per.lin Linear periodic spline (m = 1).
per.cub Cubic periodic spline (m = 2).
per.qui Quintic periodic spline (m = 3).
sph.lin Linear spherical spline (m = 1).
sph.cub Cubic spherical spline (m = 2).
sph.qui Quintic spherical spline (m = 3).
tps.lin Linear thin-plate spline (m = 1).
tps.cub Cubic thin-plate spline (m = 2).
tps.qui Quintic thin-plate spline (m = 3).

For details on the spline kernel functions, see basis_nom (nominal), basis_ord (ordinal), basis_poly
(polynomial), basis_sph (spherical), and basis_tps (thin-plate).

Choosing Knots

If tprk = TRUE, the four options for the knots input include:

1. ascalar giving the total number of knots to sample

2. avector of integers indexing which rows of data are the knots

a list with named elements giving the marginal knot values for each predictor (to be combined via expand.grid)

4. alist with named elements giving the knot values for each predictor (requires the same number of knots for each predicto

W

If tprk = FALSE, the three options for the knots input include:

1. ascalar giving the common number of knots for each continuous predictor
2. alist with named elements giving the number of marginal knots for each predictor
3. alist with named elements giving the marginal knot values for each predictor

6 gsm

Multiple Smooths

Suppose formula =y ~ x1 + x2 so that the model contains additive effects of two predictor vari-
ables.

The k-th predictor’s marginal effect can be denoted as

fe = XiBr + Zivk
where X, is the n by my null space basis function matrix, and Zj is the n by 7y contrast space
basis function matrix.

If tprk = TRUE, the null space basis function matrix has the form X = [1, X7, X5] and the contrast
space basis function matrix has the form

Z=017Z1+ 0574

where the 6, are the "extra" smoothing parameters. Note that Z is of dimension n by r = r; = rs.

If tprk = FALSE, the null space basis function matrix has the form X = [1, X7, X5, and the contrast
space basis function matrix has the form

Z =101Z1,0225]

where the 6}, are the "extra" smoothing parameters. Note that Z is of dimension n by r = 1 + r3.

Note

The fitted values on the response scale can be obtained using
ginv <-object$family$linkinv

fit <-ginv(object$linear.predictors)

where object is the fit "gsm" object.

For models with multiple predictors, the predict.gsm function may be more useful.

Author(s)

Nathaniel E. Helwig <helwig@umn.edu>

References

Craven, P. and Wahba, G. (1979). Smoothing noisy data with spline functions: Estimating the cor-
rect degree of smoothing by the method of generalized cross-validation. Numerische Mathematik,
31, 377-403. https://doi.org/10.1007/BF01404567

Gu, C. (2013). Smoothing spline ANOVA models, 2nd edition. New York: Springer. https://doi.org/10.1007/978-
1-4614-5369-7

Gu, C. and Wahba, G. (1991). Minimizing GCV/GML scores with multiple smoothing parameters
via the Newton method. SIAM Journal on Scientific and Statistical Computing, 12(2), 383-398.
https://doi.org/10.1137/0912021

Helwig, N. E. (2020). Multiple and Generalized Nonparametric Regression. In P. Atkinson, S. De-
lamont, A. Cernat, J. W. Sakshaug, & R. A. Williams (Eds.), SAGE Research Methods Foundations.
https://doi.org/10.4135/9781526421036885885

gsm

See Also

summary . gsm for summarizing gsm objects.
predict.gsm for predicting from gsm objects.

sm for fitting smooth models to Gaussian data.

Examples

HHHHHAE EXAMPLE 1 HHHHHAE
1 continuous predictor

generate data

n <- 1000

x <- seq(@, 1, length.out = n)

fx <= 3 % x + sin(2 * pi * x) - 1.5

gaussian (default)

set.seed(1)

y <= fx + rnorm(n, sd = 1/sqrt(2))
mod <- gsm(y ~ x, knots = 10)
mean((mod$linear.predictors - fx)*2)

compare to result from sm (they are identical)
mod.sm <- sm(y ~ x, knots = 10)
mean((mod$linear.predictors - mod.sm$fitted.values)*2)

binomial (no weights)

set.seed(1)

y <= rbinom(n = n, size =1, p=1/ (1 + exp(-fx)))
mod <- gsm(y ~ x, family = binomial, knots = 10)
mean((mod$linear.predictors - fx)*2)

binomial (w/ weights)

set.seed(1)

w <- as.integer(rep(c(10,20,30,40,50), length.out = n))

y <= rbinom(n = n, size =w, p =1/ (1 + exp(-fx))) / w

mod <- gsm(y ~ x, family = binomial, weights = w, knots = 10)
mean((mod$linear.predictors - fx)*2)

poisson

set.seed(1)

y <- rpois(n = n, lambda = exp(fx))

mod <- gsm(y ~ x, family = poisson, knots = 10)
mean((mod$linear.predictors - fx)*2)

negative binomial (known theta)

set.seed(1)

y <= rnbinom(n = n, size = 1/2, mu = exp(fx))

mod <- gsm(y ~ x, family = NegBin(theta = 1/2), knots = 10)
mean((mod$linear.predictors - fx)*2)

1 / mod$dispersion # fixed theta

gsm

negative binomial (unknown theta)
set.seed(1)

y <= rnbinom(n = n, size = 1/2, mu = exp(fx))
mod <- gsm(y ~ x, family = NegBin, knots = 10)
mean((mod$linear.predictors - fx)*2)

1 / mod$dispersion # estimated theta

gamma

set.seed(1)

y <- rgamma(n = n, shape = 2, scale = (1 / (2 + fx)) / 2)
mod <- gsm(y ~ x, family = Gamma, knots = 10)
mean((mod$linear.predictors - fx - 2)*2)

inverse.gaussian (not run; requires statmod)

##set.seed(1)

##y <- statmod::rinvgauss(n = n, mean = sqrt(1 / (2 + fx)), shape = 2)
##mod <- gsm(y ~ x, family = inverse.gaussian, knots = 10)
#i#tmean((mod$linear.predictors - fx - 2)*2)

SEEFHEHHHE EXAMPLE 2 SEEFHEHHHE
1 continuous and 1 nominal predictor
additive model

generate data
n <- 1000
x <- seq(@, 1, length.out = n)
z <- factor(sample(letters[1:3], size = n, replace = TRUE))
fun <- function(x, z){
mu <- c(-2, 0, 2)
zi <- as.integer(z)
fx <= mu[zi] + 3 * x + sin(2 * pi * x) - 1.5
3

fx <= fun(x, z)

define marginal knots

probs <- seq(@, 0.9, by = 0.1)

knots <- list(x = quantile(x, probs = probs),
z = letters[1:3])

gaussian (default)

set.seed(1)

y <= fx + rnorm(n, sd = 1/sqrt(2))
mod <- gsm(y ~ x + z, knots = knots)
mean((mod$linear.predictors - fx)*2)

compare to result from sm (they are identical)
mod.sm <- sm(y ~ x + z, knots = knots)
mean((mod$linear.predictors - mod.sm$fitted.values)*2)

binomial (no weights)
set.seed(1)

NegBin 9

y <= rbinom(n = n, size =1, p=1/ (1 + exp(-fx)))
mod <- gsm(y ~ x + z, family = binomial, knots = knots)
mean((mod$linear.predictors - fx)*2)

binomial (w/ weights)

set.seed(1)

w <- as.integer(rep(c(10,20,30,40,50), length.out = n))

y <= rbinom(n = n, size =w, p =1/ (1 + exp(-fx))) / w

mod <- gsm(y ~ x + z, family = binomial, weights = w, knots = knots)
mean((mod$linear.predictors - fx)*2)

poisson

set.seed(1)

y <- rpois(n = n, lambda = exp(fx))

mod <- gsm(y ~ x + z, family = poisson, knots = knots)
mean((mod$linear.predictors - fx)*2)

negative binomial (known theta)

set.seed(1)

y <= rnbinom(n = n, size = 1/2, mu = exp(fx))

mod <- gsm(y ~ x + z, family = NegBin(theta = 1/2), knots = knots)
mean((mod$linear.predictors - fx)*2)

1 / mod$dispersion # fixed theta

negative binomial (unknown theta)

set.seed(1)

y <= rnbinom(n = n, size = 1/2, mu = exp(fx))

mod <- gsm(y ~ x + z, family = NegBin, knots = knots)
mean((mod$linear.predictors - fx)*2)

1 / mod$dispersion # estimated theta

gamma

set.seed(1)

y <= rgamma(n = n, shape = 2, scale = (1 / (4 + fx)) / 2)
mod <- gsm(y ~ x + z, family = Gamma, knots = knots)
mean((mod$linear.predictors - fx - 4)*2)

inverse.gaussian (not run; requires statmod)

##set.seed(1)

#i#y <- statmod::rinvgauss(n = n, mean = sqrt(1 / (4 + fx)), shape = 2)
##mod <- gsm(y ~ x + z, family = inverse.gaussian, knots = knots)
#i#tmean((mod$linear.predictors - fx - 4)*2)

NegBin Family Function for Negative Binomial

Description

Creates the functions needed to fit a Negative Binomial generalized smooth model via gsm with or
without a known theta parameter. Adapted from the negative.binomial function in the MASS

10

package.

Usage

NegBin(theta =

Arguments

theta

link

Details

NegBin

NULL, link = "log")

the size parameter for the Negative Binomial distribution. Default of NULL
indicates that theta should be estimated from the data.

the link function. Must be log, sqrt, identity, or an object of class 1ink-glm
(as generated by make. 1ink).

The Negative Binomial distribution has mean p and variance p + p% /6, where the size parameter
0 is the inverse of the dispersion parameter. See NegBinomial for details.

Value

An object of class "family" with the functions and expressions needed to fit the gsm. In addition to
the standard values (see family), this also produces the following:

loglik
canpar
cumulant
canonical
theta
fixed.theta

Author(s)

function to evaluate the log-likelihood

function to compute the canonical parameter
function to compute the cumulant function
logical specifying if the canonical link was used
the specified theta parameter

logical specifying if theta was provided

Nathaniel E. Helwig <helwig@umn.edu>

References

Venables, W. N. and Ripley, B. D. (1999) Modern Applied Statistics with S-PLUS. Third Edition.

Springer.

https://www.rdocumentation.org/packages/MASS/versions/7.3-51.6/topics/negative.binomial

https://www.rdocumentation.org/packages/stats/versions/3.6.2/topics/NegBinomial

See Also

gsm

nominal

Examples

generate data

n <- 1000

11

x <- seq(@, 1, length.out = n)
fx <= 3 % x + sin(2 * pi * x) - 1.5

negative binomial (size = 1/2, log link)

set.seed(1)

y <= rnbinom(n = n, size = 1/2, mu = exp(fx))

fit model (known theta)

mod <- gsm(y ~ x, family = NegBin(theta = 1/2), knots = 10)
mean((mod$linear.predictors - fx)*2)

1 / mod$dispersion # fixed theta

fit model (unknown theta)

mod <- gsm(y ~ x, family = NegBin, knots = 10)
mean((mod$linear.predictors - fx)*2)

1 / mod$dispersion # estimated theta

nominal

Nominal Smoothing Spline Basis and Penalty

Description

Generate the smoothing spline basis and penalty matrix for a nominal spline. This basis and penalty
are for an unordered factor.

Usage

basis_nom(x, knots, K = NULL, intercept = FALSE)

penalty_nom(x, K = NULL)

Arguments

X

knots
K

intercept

Predictor variable (basis) or spline knots (penalty). Factor or integer vector of
length n.

Spline knots. Factor or integer vector of length 7.
Number of levels of x. If NULL, this argument is defined as K = length(unique(x)).

If TRUE, the first column of the basis will be a column of ones.

12 nominal

Details

Generates a basis function or penalty matrix used to fit nominal smoothing splines.

With an intercept included, the basis function matrix has the form
X = [Xo, X1]

where matrix X_0 is an n by 1 matrix of ones, and X_1 is a matrix of dimension n by 7.

The X_0 matrix contains the "parametric part" of the basis (i.e., the intercept). The matrix X_1
contains the "nonparametric part" of the basis, which consists of the reproducing kernel function

evaluated at all combinations of x and knots. The notation ¢,,, denotes Kronecker’s delta function.

The penalty matrix consists of the reproducing kernel function

p(@,y) = b2y — 1/ K

evaluated at all combinations of x.

Value

Basis: Matrix of dimension c(length(x),df) where df = length(knots) + intercept.

Penalty: Matrix of dimension c(r,r) where r = length(x) is the number of knots.

Note

If the inputs x and knots are factors, they should have the same levels.

If the inputs x and knots are integers, the knots should be a subset of the input x.

Author(s)

Nathaniel E. Helwig <helwig@umn.edu>

References
Gu, C. (2013). Smoothing Spline ANOVA Models. 2nd Ed. New York, NY: Springer-Verlag. doi:
https://doi.org/10.1007/978-1-4614-5369-7

Helwig, N. E. (2017). Regression with ordered predictors via ordinal smoothing splines. Frontiers
in Applied Mathematics and Statistics, 3(15), 1-13. doi: https://doi.org/10.3389/fams.2017.00015

Helwig, N. E. (2020). Multiple and Generalized Nonparametric Regression. In P. Atkinson, S. De-
lamont, A. Cernat, J. W. Sakshaug, & R. A. Williams (Eds.), SAGE Research Methods Foundations.
https://doi.org/10.4135/9781526421036885885

Helwig, N. E., & Ma, P. (2015). Fast and stable multiple smoothing parameter selection in smooth-
ing spline analysis of variance models with large samples. Journal of Computational and Graphical
Statistics, 24(3), 715-732. doi: https://doi.org/10.1080/10618600.2014.926819

See Also

See ordinal for a basis and penalty for ordered factors.

ordinal 13

Examples

generate data

set.seed(0)

n <- 101

x <- factor(sort(rep(LETTERS[1:4], length.out = n)))
knots <- LETTERS[1:3]

eta <- 1:4

y <- eta[x] + rnorm(n, sd = 0.5)

nominal smoothing spline basis
X <- basis_nom(x, knots, intercept = TRUE)

nominal smoothing spline penalty
Q <- penalty_nom(knots, K = 4)

padd Q with zeros (for intercept)
Q <- rbind(@, cbind(@, Q))

define smoothing parameter
lambda <- 1e-5

estimate coefficients
coefs <- solve(crossprod(X) + n * lambda * Q) %*% crossprod(X, y)

estimate eta
yhat <- X %*% coefs

check rmse
sqrt(mean((etalx] - yhat)*2))

ordinal Ordinal Smoothing Spline Basis and Penalty

Description
Generate the smoothing spline basis and penalty matrix for an ordinal spline. This basis and penalty
are for an ordered factor.

Usage

basis_ord(x, knots, K = NULL, intercept = FALSE)

penalty_ord(x, K = NULL, xlev = NULL)

Arguments

X Predictor variable (basis) or spline knots (penalty). Ordered factor or integer
vector of length n.

14 ordinal

knots Spline knots. Ordered factor or integer vector of length 7.
K Number of levels of x. If NULL, this argument is defined as K = length(unique(x)).
xlev Factor levels of x (for penalty). If NULL, the levels are defined as levels(as.ordered(x)).
intercept If TRUE, the first column of the basis will be a column of ones.
Details

Generates a basis function or penalty matrix used to fit ordinal smoothing splines.

With an intercept included, the basis function matrix has the form
X = [Xo, X1]

where matrix X_0 is an n by 1 matrix of ones, and X_1 is a matrix of dimension n by r. The X_0
matrix contains the "parametric part" of the basis (i.e., the intercept). The matrix X_1 contains the
"nonparametric part” of the basis, which consists of the reproducing kernel function

px,y) =1—(zVy)+ (1/2K)x (z(z - 1) +y(y — 1)) +¢c

evaluated at all combinations of x and knots. The notation (z V y) denotes the maximum of « and
y, and the constant is ¢ = (K — 1)(2K — 1)/(6K).

The penalty matrix consists of the reproducing kernel function
ple,y) =1—(zVy)+ (1/2K) * (z(z = 1) +y(y — 1)) + ¢

evaluated at all combinations of x.

Value

Basis: Matrix of dimension c(length(x),df) where df = length(knots) + intercept.

Penalty: Matrix of dimension c(r,r) where r = length(x) is the number of knots.

Note

If the inputs x and knots are factors, they should have the same levels.

If the inputs x and knots are integers, the knots should be a subset of the input x.

Author(s)

Nathaniel E. Helwig <helwig@umn.edu>

References

Gu, C. (2013). Smoothing Spline ANOVA Models. 2nd Ed. New York, NY: Springer-Verlag. doi:
https://doi.org/10.1007/978-1-4614-5369-7

Helwig, N. E. (2017). Regression with ordered predictors via ordinal smoothing splines. Frontiers
in Applied Mathematics and Statistics, 3(15), 1-13. doi: https://doi.org/10.3389/fams.2017.00015

Helwig, N. E. (2020). Multiple and Generalized Nonparametric Regression. In P. Atkinson, S. De-
lamont, A. Cernat, J. W. Sakshaug, & R. A. Williams (Eds.), SAGE Research Methods Foundations.
https://doi.org/10.4135/9781526421036885885

plotci 15

See Also

See nominal for a basis and penalty for unordered factors.

See polynomial for a basis and penalty for numeric variables.

Examples

generate data

set.seed(0)

n <- 101

x <- factor(sort(rep(LETTERS[1:4], length.out = n)))
knots <- LETTERS[1:3]

eta <- 1:4

y <- eta[x] + rnorm(n, sd = 0.5)

ordinal smoothing spline basis
X <- basis_ord(x, knots, intercept = TRUE)

ordinal smoothing spline penalty
Q <- penalty_ord(knots, K = 4)

padd Q with zeros (for intercept)
Q <- rbind(@, cbind(@, Q))

define smoothing parameter
lambda <- 1e-5

estimate coefficients
coefs <- solve(crossprod(X) + n * lambda * Q) %*% crossprod(X, y)

estimate eta
yhat <- X %*% coefs

check rmse
sqgrt(mean((etalx] - yhat)*2))

plotci Generic X-Y Plotting with Confidence Intervals

Description
Modification to the plot function that adds confidence intervals. The CIs can be plotted using
polygons (default) or error bars.

Usage

plotci(x, y, se, level = 0.95, crit.val = NULL,
add = FALSE, col.ci = NULL, alpha = NULL,
bars = NULL, bw = 0.05, linkinv = NULL, ...)

16

Arguments

X

y
se

level

crit.val

add

col.ci
alpha
bars
bw

linkinv

Details

plotci

a vector of ’x’ values (n by 1). If y is missing, the x input can be a list or matrix
containing the x, y, and se arguments.

a vector of "y’ values (n by 1).
a vector of standard error values (n by 1).
confidence level for the intervals (between O and 1).

an optional critical value for the intervals. If provided, the level input is ig-
nored. See Details.

a switch controlling whether a new plot should be created (via a call to plot) or
if the plot should be added to the current plot (via a call to 1ines).

a character specifying the color for plotting the intervals.

a scalar between 0 and 1 controlling the transparency of the intervals.

a switch controlling whether the intervals should be plotted as bars or polygons.
a positive scalar controlling the bar width. Ignored if bars = FALSE.

an inverse link function for the plotting. If provided, the function plots x versus
linkinv(y) and the intervals are similarly transformed.

extra arguments passed to the plot or lines function.

This function plots x versus y with confidence intervals. The CIs have the form
lwr =y -crit.val x se

upr =y +crit.val * se

where crit.val is the critical value.

If crit.val = NULL, the critival value is determined from the level input as
crit.val <-gnorm(1-(1-1level)/2)
where gnorm is the quantile function for the standard normal distribution.

Author(s)

Nathaniel E. Helwig <helwig@umn.edu>

See Also

This function is used by plot.ss to plot smoothing spline fits.

Examples

generate data
set.seed(1)
n <- 100

x <- seq(@, 1, length.out = n)
fx <=2+ 3 * x + sin(2 * pi * x)
y <= fx + rnorm(n, sd = 0.5)

fit smooth model

polynomial

17

smod <- sm(y ~ x, knots = 10)

plot fit with 95% CI polygon
plotci(x, smod$fitted.values, smod$se.fit)

plot fit with 95% CI bars
plotci(x, smod$fitted.values, smod$se.fit, bars = TRUE)

plot fit +/- 1 SE
plotci(x, smod$fitted.values, smod$se.fit, crit.val = 1, bars = TRUE)

polynomial

Polynomial Smoothing Spline Basis and Penalty

Description

Generate the smoothing spline basis and penalty matrix for a polynomial spline. Derivatives of the
smoothing spline basis matrix are supported.

Usage

basis_poly(x, knots, m =2, d = 0,

Xmin

= min(x), xmax = max(x),

periodic = FALSE, rescale = FALSE,
intercept = FALSE)

penalty_poly(x, m = 2, xmin = min(x), xmax = max(x),
periodic = FALSE, rescale = FALSE)

Arguments

X

knots

xmin
Xxmax
periodic

rescale

intercept

Predictor variable (basis) or spline knots (penalty). Numeric or integer vector of
length n.

Spline knots. Numeric or integer vector of length 7.

Penalty order. "m=1" for linear smoothing spline, "m=2" for cubic, and "m=3"
for quintic.

Derivative order. "d=0" for smoothing spline basis, "d=1" for Ist derivative of
basis, and "d=2" for 2nd derivative of basis.

Minimum value of "x".
Maximum value of "x".
If TRUE, the smoothing spline basis is periodic w.r.t. the interval [xmin, xmax].

If TRUE, the nonparametric part of the basis is divided by the average of the
reproducing kernel function evaluated at the knots.

If TRUE, the first column of the basis will be a column of ones.

18 polynomial

Details

Generates a basis function or penalty matrix used to fit linear, cubic, and quintic smoothing splines
(or evaluate their derivatives).

For non-periodic smoothing splines, the basis function matrix has the form
X = [XOa Xl]
where the matrix X_0 is of dimension n by m — 1 (plus 1 if an intercept is included), and X_1 is a

matrix of dimension n by r.

The X_0 matrix contains the "parametric part" of the basis, which includes polynomial functions of
x up to degree m — 1.

The matrix X_1 contains the "nonparametric part" of the basis, which consists of the reproducing
kernel function

p(.’L’, y) = ’im(x)ﬁm(y) + (_1)7”_1'%2771(‘3j - y‘)
evaluated at all combinations of x and knots. The «, functions are scaled Bernoulli polynomials.

For periodic smoothing splines, the X matrix only contains the intercept column and the modified
reproducing kernel function

p(z,y) = (1) ham (|2 —)

is evaluated for all combinations of x and knots.

For non-periodic smoothing splines, the penalty matrix consists of the reproducing kernel function

p(x,y) = o (2)Em (y) + (1) rom (|2 — y))

evaluated at all combinations of x. For periodic smoothing splines, the modified reproducing kernel
function

p(z,y) = (1) hgm(|z — y|)

is evaluated for all combinations of x.

Value

Basis: Matrix of dimension c(length(x),df) where df >= length(knots). If the smoothing
spline basis is not periodic (default), then the number of columns is df = length(knots) + m -!intercept.
For periodic smoothing splines, the basis has m fewer columns.

Penalty: Matrix of dimension c(r,r) where r = length(x) is the number of knots.

Note

Inputs x and knots should be within the interval [xmin, xmax].

Author(s)

Nathaniel E. Helwig <helwig@umn.edu>

polynomial 19

References

Gu, C. (2013). Smoothing Spline ANOVA Models. 2nd Ed. New York, NY: Springer-Verlag. doi:
https://doi.org/10.1007/978-1-4614-5369-7

Helwig, N. E. (2017). Regression with ordered predictors via ordinal smoothing splines. Frontiers
in Applied Mathematics and Statistics, 3(15), 1-13. doi: https://doi.org/10.3389/fams.2017.00015

Helwig, N. E. (2020). Multiple and Generalized Nonparametric Regression. In P. Atkinson, S. De-
lamont, A. Cernat, J. W. Sakshaug, & R. A. Williams (Eds.), SAGE Research Methods Foundations.
https://doi.org/10.4135/9781526421036885885

Helwig, N. E., & Ma, P. (2015). Fast and stable multiple smoothing parameter selection in smooth-
ing spline analysis of variance models with large samples. Journal of Computational and Graphical
Statistics, 24(3), 715-732. doi: https://doi.org/10.1080/10618600.2014.926819

See Also

See thinplate for a thin-plate spline basis and penalty.

See ordinal for a basis and penalty for ordered factors.

Examples

generate data

set.seed(0)

n <- 101

x <- seq(@, 1, length.out = n)
knots <- seq(@, 0.95, by = 0.05)
eta <- 1+ 2 % x + sin(2 * pi * x)
y <- eta + rnorm(n, sd = 0.5)

cubic smoothing spline basis
X <- basis_poly(x, knots, intercept = TRUE)

cubic smoothing spline penalty
Q <- penalty_poly(knots, xmin = min(x), xmax = max(x))

padd Q with zeros (for intercept and linear effect)
Q <- rbind(@, @, cbind(@, 2, Q))

define smoothing parameter
lambda <- 1e-5

estimate coefficients
coefs <- solve(crossprod(X) + n * lambda * Q) %*% crossprod(X, y)

estimate eta
yhat <- X %*% coefs

check rmse
sqrt(mean((eta - yhat)*2))

plot results
plot(x, y)

20

lines(x, yhat)

predict.gsm

predict.gsm

Predict method for Generalized Smooth Model Fits

Description

predict method for class "gsm".

Usage

S3 method for class 'gsm'
predict(object, newdata = NULL, se.fit = FALSE,

type = c("link”, "response”, "terms"),
terms = NULL, na.action = na.pass,
intercept = NULL, combine = TRUE, design = FALSE,
check.newdata = TRUE, ...)
Arguments
object a fit from gsm.
newdata an optional list or data frame in which to look for variables with which to predict.
If omitted, the original data are used.
se.fit a switch indicating if standard errors are required.
type type of prediction (link, response, or model term). Can be abbreviated.
terms which terms to include in the fit. The default of NULL uses all terms. This input
is used regardless of the type of prediction.
na.action function determining what should be done with missing values in newdata. The
default is to predict NA.
intercept a switch indicating if the intercept should be included in the prediction. If NULL
(default), the intercept is included in the fit only when type = "r" and terms
includes all model terms.
combine a switch indicating if the parametric and smooth components of the prediction
should be combined (default) or returned separately.
design a switch indicating if the model (design) matrix for the prediction should be

check.newdata

returned.

a switch indicating if the newdata should be checked for consistency (e.g., class
and range). Ignored if newdata is not provided.

additional arguments affecting the prediction produced (currently ignored).

predict.gsm 21

Details

Inspired by the predict.glm function in R’s stats package.

Produces predicted values, obtained by evaluating the regression function in the frame newdata
(which defaults to model.frame(object)). If the logical se.fit is TRUE, standard errors of the
predictions are calculated.

If newdata is omitted the predictions are based on the data used for the fit. Regardless of the
newdata argument, how cases with missing values are handled is determined by the na.action
argument. If na.action =na.omit omitted cases will not appear in the predictions, whereas if
na.action = na.exclude they will appear (in predictions and standard errors), with value NA.

Similar to the glm function, setting type = "terms” returns a matrix giving the predictions for each
of the requested model terms. Unlike the glm function, this function allows for predictions using
any subset of the model terms. Specifically, the predictions (on both the 1ink and response scale)
will only include the requested terms, which makes it possible to obtain estimates (and standard
errors) for subsets of model terms. In this case, the newdata only needs to contain data for the
subset of variables that are requested in terms.

Value

Default use returns a vector of predictions. Otherwise the form of the output will depend on the
combination of argumments: se.fit, type, combine, and design.

type = "1ink":

When se.fit = FALSE and design = FALSE, the output will be the predictions on the link scale.
When se.fit = TRUE or design = TRUE, the output is a list with components fit, se.fit (if re-
quested), and X (if requested).

type = "response”:

When se.fit = FALSE and design = FALSE, the output will be the predictions on the data scale.
When se.fit = TRUE or design = TRUE, the output is a list with components fit, se.fit (if re-
quested), and X (if requested).

type = "terms":

When se.fit = FALSE and design = FALSE, the output will be the predictions for each term on
the link scale. When se.fit = TRUE or design = TRUE, the output is a list with components fit,
se.fit (if requested), and X (if requested).

Regardless of the type, setting combine = FALSE decomposes the requested result(s) into the parametric
and smooth contributions.

Author(s)

Nathaniel E. Helwig <helwig@umn.edu>

References

https://stat.ethz.ch/R-manual/R-devel/library/stats/html/predict.glm.html

Craven, P. and Wahba, G. (1979). Smoothing noisy data with spline functions: Estimating the cor-
rect degree of smoothing by the method of generalized cross-validation. Numerische Mathematik,
31, 377-403. https://doi.org/10.1007/BF01404567

22 predict.sm

Gu, C. (2013). Smoothing spline ANOVA models, 2nd edition. New York: Springer. https://doi.org/10.1007/978-
1-4614-5369-7

Helwig, N. E. (2020). Multiple and Generalized Nonparametric Regression. In P. Atkinson, S. De-
lamont, A. Cernat, J. W. Sakshaug, & R. A. Williams (Eds.), SAGE Research Methods Foundations.
https://doi.org/10.4135/9781526421036885885

See Also

gsm

Examples

generate data
set.seed(1)
n <- 1000
x <- seq(@, 1, length.out = n)
z <- factor(sample(letters[1:3], size = n, replace = TRUE))
fun <- function(x, z){
mu <- c(-2, 0, 2)
zi <- as.integer(z)
fx <= mufzi] + 3 * x + sin(2 * pi * x + mulziJxpi/4)
3
fx <= fun(x, z)

y <- rbinom(n = n, size 1, p=1/7 (O + exp(-fx)))

define marginal knots

probs <- seq(@, 0.9, by = 0.1)

knots <- list(x = quantile(x, probs = probs),
z = letters[1:3])

fit gsm with specified knots (tprk = TRUE)

gsm.ssa <- gsm(y ~ x * z, family = binomial, knots = knots)

pred <- predict(gsm.ssa)

term <- predict(gsm.ssa, type = "terms")

mean((gsm.ssa$linear.predictors - pred)*2)

mean((gsm.ssa$linear.predictors - rowSums(term) - attr(term, "constant”))"2)

fit gsm with specified knots (tprk = FALSE)

gsm.gam <- gsm(y ~ x * z, family = binomial, knots = knots, tprk = FALSE)
pred <- predict(gsm.gam)

term <- predict(gsm.gam, type = "terms")

mean((gsm.gam$linear.predictors - pred)*2)

mean((gsm.gam$linear.predictors - rowSums(term) - attr(term, "constant”))"2)

predict.sm Predict method for Smooth Model Fits

predict.sm

Description

23

predict method for class "sm".

Usage

S3 method for class 'sm'
predict(object, newdata = NULL, se.fit = FALSE,

interval = c("none”, "confidence"”, "prediction”),
level = 0.95, type = c("response”, "terms"),
terms = NULL, na.action = na.pass,

intercept = NULL, combine = TRUE, design = FALSE,

check.newdata = TRUE, ...)
Arguments

object a fit from sm.

newdata an optional list or data frame in which to look for variables with which to predict.
If omitted, the original data are used.

se.fit a switch indicating if standard errors are required.

interval type of interval calculation. Can be abbreviated.

level tolerance/confidence level.

type type of prediction (response or model term). Can be abbreviated.

terms which terms to include in the fit. The default of NULL uses all terms. This input
is used regardless of the type of prediction.

na.action function determining what should be done with missing values in newdata. The
default is to predict NA.

intercept a switch indicating if the intercept should be included in the prediction. If NULL
(default), the intercept is included in the fit only when type = "r"” and terms
includes all model terms.

combine a switch indicating if the parametric and smooth components of the prediction
should be combined (default) or returned separately.

design a switch indicating if the model (design) matrix for the prediction should be

returned.

check.newdata aswitch indicating if the newdata should be checked for consistency (e.g., class

Details

and range). Ignored if newdata is not provided.

additional arguments affecting the prediction produced (currently ignored).

Inspired by the predict. 1m function in R’s stats package.

Produces predicted values, obtained by evaluating the regression function in the frame newdata
(which defaults to model.frame(object)). If the logical se.fit is TRUE, standard errors of the
predictions are calculated. Setting intervals specifies computation of confidence or prediction
(tolerance) intervals at the specified level, sometimes referred to as narrow vs. wide intervals.

24 predict.sm

If newdata is omitted the predictions are based on the data used for the fit. Regardless of the
newdata argument, how cases with missing values are handled is determined by the na.action
argument. If na.action =na.omit omitted cases will not appear in the predictions, whereas if
na.action = na.exclude they will appear (in predictions, standard errors or interval limits), with
value NA.

Similar to the 1m function, setting type = "terms” returns a matrix giving the predictions for each
of the requested model terms. Unlike the 1m function, this function allows for predictions using any
subset of the model terms. Specifically, when type = "response” the predictions will only include
the requested terms, which makes it possible to obtain estimates (and standard errors and intervals)
for subsets of model terms. In this case, the newdata only needs to contain data for the subset of
variables that are requested in terms.

Value

Default use returns a vector of predictions. Otherwise the form of the output will depend on the
combination of argumments: se.fit, interval, type, combine, and design.

type = "response”:

When se.fit = FALSE and design = FALSE, the output will be the predictions (possibly with 1wr
and upr interval bounds). When se.fit = TRUE or design = TRUE, the output is a list with compo-
nents fit, se.fit (if requested), and X (if requested).

type = "terms":

When se.fit = FALSE and design = FALSE, the output will be the predictions for each term (possi-
bly with 1wr and upr interval bounds). When se. fit = TRUE or design = TRUE, the output is a list
with components fit, se.fit (if requested), and X (if requested).

Regardless of the type, setting combine = FALSE decomposes the requested result(s) into the parametric
and smooth contributions.

Author(s)

Nathaniel E. Helwig <helwig@umn.edu>

References

https://stat.ethz.ch/R-manual/R-devel/library/stats/html/predict.lm.html

Craven, P. and Wahba, G. (1979). Smoothing noisy data with spline functions: Estimating the cor-
rect degree of smoothing by the method of generalized cross-validation. Numerische Mathematik,
31, 377-403. https://doi.org/10.1007/BF01404567

Gu, C. (2013). Smoothing spline ANOVA models, 2nd edition. New York: Springer. https://doi.org/10.1007/978-
1-4614-5369-7

Helwig, N. E. (2020). Multiple and Generalized Nonparametric Regression. In P. Atkinson, S. De-
lamont, A. Cernat, J. W. Sakshaug, & R. A. Williams (Eds.), SAGE Research Methods Foundations.
https://doi.org/10.4135/9781526421036885885

See Also

sm

predict.sm

Examples

generate data
set.seed(1)
n <- 100
x <- seq(@, 1, length.out = n)
z <- factor(sample(letters[1:3], size = n, replace = TRUE))
fun <- function(x, z){
mu <- c(-2, 0, 2)
zi <- as.integer(z)
fx <= mufzi]l + 3 * x + sin(2 * pi * x + mu[zilxpi/4)
3
fx <= fun(x, z)
y <= fx + rnorm(n, sd = 0.5)

define marginal knots

probs <- seq(@, 0.9, by = 0.1)

knots <- list(x = quantile(x, probs = probs),
z = letters[1:3])

fit sm with specified knots
smod <- sm(y ~ x * z, knots = knots)

get model "response” predictions
fit <- predict(smod)
mean((smod$fitted.values - fit)*2)

get model "terms” predictions

trm <- predict(smod, type = "terms")
attr(trm, "constant")
head(trm)

mean((smod$fitted.values - rowSums(trm) - attr(trm, "constant”))*2)

get predictions with "newdata” (= the original data)
fit <- predict(smod, newdata = data.frame(x = x, z = z))
mean((fit - smod$fitted.values)*2)

get predictions and standard errors
fit <- predict(smod, se.fit = TRUE)
mean((fit$fit - smod$fitted.values)*2)
mean((fit$se.fit - smod$se.fit)*2)

get 99% confidence interval
fit <- predict(smod, interval = "c", level = 0.99)
head(fit)

get 99% prediction interval
fit <- predict(smod, interval = "p"”, level = 0.99)
head(fit)

get predictions only for x main effect
fit <- predict(smod, newdata = data.frame(x = x),
se.fit = TRUE, terms = "x")

25

26

plotci(x, fitfit, fitse.fit)

get predictions only for each group

fit.a <- predict(smod, newdata = data.frame(x = x, z = "a"), se.fit
fit.b <- predict(smod, newdata = data.frame(x = x, = "b"), se.fit
fit.c <- predict(smod, newdata = data.frame(x = x, = "c"), se.fit

plot results (truth as dashed line)
plotci(x = x, y = fit.a$fit, se = fit.a$se.fit,
col = "red”, col.ci = "pink”, ylim = c(-6, 6))
lines(x, fun(x, rep(1, n)), lty = 2, col = "red")
plotci(x = x, y = fit.b$fit, se = fit.b$se.fit,
col = "blue”, col.ci = "cyan"”, add = TRUE)
lines(x, fun(x, rep(2, n)), 1ty = 2, col = "blue")
plotci(x = x, y = fit.c$fit, se = fit.c$se.fit,
col = "darkgreen”, col.ci = "lightgreen”, add = TRUE)
lines(x, fun(x, rep(3, n)), lty = 2, col = "darkgreen")

add legends
legend("bottomleft”, legend = c("Truth”, "Estimate"”, "CI"),

1ty = c(2, 1, NA), 1lwd = c(1, 2, NA),

col = c("black”, "black”,"gray80"),

pch = ¢(NA, NA, 15), pt.cex = 2, bty = "n")
legend("bottomright”, legend = letters[1:3],

lwd = 2, col = c("red”, "blue", "darkgreen"), bty = "n")

TRUE)
TRUE)
TRUE)

predict.ss

predict.ss Predict method for Smoothing Spline Fits

Description

predict method for class "ss".

Usage

S3 method for class 'ss'

predict(object, x, deriv = @, se.fit = TRUE, ...)
Arguments

object a fit from ss.

X the new values of x.

deriv integer; the order of the derivative required

se.fit a switch indicating if standard errors are required.

additional arguments affecting the prediction produced (currently ignored).

predict.ss 27

Details

Inspired by the predict.smooth.spline function in R’s stats package.

Value

A list with components

X The input x.

y The fitted values or derivatives at x.

se The standard errors of the fitted values or derivatives (if requested).
Author(s)

Nathaniel E. Helwig <helwig@umn.edu>

References

https://stat.ethz.ch/R-manual/R-devel/library/stats/html/predict.smooth.spline.html

Craven, P. and Wahba, G. (1979). Smoothing noisy data with spline functions: Estimating the cor-
rect degree of smoothing by the method of generalized cross-validation. Numerische Mathematik,
31,377-403. https://doi.org/10.1007/BF01404567

Gu, C. (2013). Smoothing spline ANOVA models, 2nd edition. New York: Springer. https://doi.org/10.1007/978-
1-4614-5369-7

Helwig, N. E. (2020). Multiple and Generalized Nonparametric Regression. In P. Atkinson, S. De-
lamont, A. Cernat, J. W. Sakshaug, & R. A. Williams (Eds.), SAGE Research Methods Foundations.
https://doi.org/10.4135/9781526421036885885

See Also

SS

Examples

generate data

set.seed(1)

n <- 100

x <- seq(@, 1, length.out = n)
fx <=2+ 3 x x + sin(2 * pi * x)
y <= fx + rnorm(n, sd = 0.5)

GCV selection (default)
ss.GCV <- ss(x, y, nknots = 10)

get predictions and SEs (at design points)
fit <- predict(ss.GCV, x = x)
head(fit)

compare to original fit
mean((fit$y - ss.GCV$y)*2)

28 psolve

plot result (with default 95% CI)
plotci(fit)

estimate first derivative

dl <= 3 + 2 * pi * cos(2 * pi * x)

fit <- predict(ss.GCV, x = x, deriv = 1)
head(fit)

plot result (with default 95% CI)
plotci(fit)
lines(x, d1, 1ty = 2) # truth

psolve Pseudo-Solve a System of Equations

Description

This generic function solves the equation a %*% x = b for x, where b can be either a vector or a
matrix. This implementation is similar to solve, but uses a pseudo-inverse if the system is compu-
tationally singular.

Usage

psolve(a, b, tol)

Arguments
a a rectungular numeric matrix containing the coefficients of the linear system.
b a numeric vector or matrix giving the right-hand side(s) of the linear system. If
missing, b is taken to be an identity matrix and solve will return the (pseudo-
)inverse of a.
tol the tolerance for detecting linear dependencies in the columns of a. The default
is .Machine$double.eps.
Details

If a is a symmetric matrix, eigen is used to compute the (pseudo-)inverse. This assumes that a is a
positive semi-definite matrix. Otherwise svd is used to compute the (pseudo-)inverse for rectangular
matrices.

Value

If b is missing, returns the (pseudo-)inverse of a. Otherwise returns psolve(a) %*% b.

sm 29

Note
The pseudo-inverse is calculated by inverting the eigen/singular values that greater than the first
value multiplied by tol * min(dim(a)).

Author(s)

Nathaniel E. Helwig <helwig@umn.edu>

References

Moore, E. H. (1920). On the reciprocal of the general algebraic matrix. Bulletin of the American
Mathematical Society, 26, 394-395.

Penrose, R. (1955). A generalized inverse for matrices. Mathematical Proceedings of the Cam-
bridge Philosophical Society, 51(3), 406-413. https://doi.org/10.1017/S0305004100030401

See Also

solve

Examples

generate X

set.seed(0)

X <= matrix(rnorm(100), 20, 5)
X <- cbind(X, rowSums(X))

pseudo-inverse of X (dim = 5 by 20)
Xinv <- psolve(X)

pseudo-inverse of crossprod(X) (dim =5 by 5)
XtXinv <- psolve(crossprod(X))

sm Fit a Smooth Model

Description

Fits a semi- or nonparametric regression model with the smoothing parameter selected via one of
eight methods: GCV, OCYV, GACYV, ACV, REML, ML, AIC, or BIC.

Usage

sm(formula, data, weights, types = NULL, tprk = TRUE, knots = NULL,
update = TRUE, spar = NULL, lambda = NULL, control = list(),
method C(”GCV”, HOCV“, "GACV“, "ACV", ”REML”, “ML”, ”AIC", ”BIC”))

30 sm

Arguments

formula Object of class "formula" (or one that can be coerced to that class): a symbolic
description of the model to be fitted. Uses the same syntax as 1Im and glm.

data Optional data frame, list or environment (or object coercible by as.data.frame
to a data frame) containing the variables in the model. If not found in data,
the variables are taken from environment (formula), typically the environment
from which smis called.

weights Optional vector of weights to be used in the fitting process. If provided, weighted
least squares is used. Defaults to all 1.

types Named list giving the type of smooth to use for each predictor. If NULL, the type
is inferred from the data. See "Types of Smooths" section for details.

tprk Logical specifying how to parameterize smooth models with multiple predic-
tors. If TRUE (default), a tensor product reproducing kernel function is used to
represent the function. If FALSE, a tensor product of marginal kernel functions
is used to represent the function. See the "Multiple Smooths" section for details.

knots Spline knots for the estimation of the nonparametric effects. For models with

multiple predictors, the knot specification will depend on the tprk input. See
the "Choosing Knots" section for details

update If TRUE, steps 1-2 of Gu and Wahba’s (1991) algorithm 3.2 are used to update the
"extra" smoothing parameters. If FALSE, only step 1 of algorithm 3.2 is used,
so each effect is given equal influence on the penalty. Only applicable when
multiple smooth terms are included.

spar Smoothing parameter. Typically (but not always) in the range (0, 1]. If specified
lambda = 256" (3*(spar-1)).
lambda Computational smoothing parameter. This value is weighted by n to form the

penalty coefficient (see Details). Ignored if spar is provided.
control Optional list with named components controlling the root finding when the
smoothing parameter spar is computed, i.e., missing or NULL, see below.
Note that spar is only searched for in the interval [lower, upper].
lower: lower bound for spar; defaults to 0.
upper: upper bound for spar; defaults to 1.
tol: the absolute precision (tolerance) used by optimize; defaults to le-8.

method Method for selecting the smoothing parameter. Ignored if 1ambda is provided.
Details
Letting f; = f(z;) with z; = (@41, ..., p), the function is represented as
f=XB+ 2y

where the basis functions in X span the null space (i.e., parametric effects), and Z contains the
kernel function(s) of the contrast space (i.e., nonparametric effects) evaluated at all combinations of
observed data points and knots. The vectors 8 and -y contain unknown basis function coefficients.

Letting M = (X, Z) and 8 = (5',~")’, the penalized least squares problem has the form
(y — MO)W (y — MO) +n\y/'Qy

sm 31

where W is a diagonal matrix containg the weights, and () is the penalty matrix. The optimal
coefficients are the solution to

(M'WM +nAP)§ = M'Wy

where P is the penalty matrix) augmented with zeros corresponding to the 3 in 6.

Value
An object of class "sm" with components:

fitted.values the fitted values, i.e., predictions.

se.fit the standard errors of the fitted values.

sse the sum-of-squared errors.

cv.crit the cross-validation criterion.

df the estimated degrees of freedom (Df) for the fit model.
nsdf the degrees of freedom (Df) for the null space.

r.squared the observed coefficient of multiple determination.

sigma the estimate of the error standard deviation.

loglLik the log-likelihood (if method is REML or ML).

aic Akaike’s Information Criterion (if method is AIC).

bic Bayesian Information Criterion (if method is BIC).

spar the value of spar computed or given, i.e., s = 1 + logys4(A)/3
lambda the value of \ corresponding to spar, i.e., A = 2563*(5=1),
penalty the smoothness penalty 7/ Q.

coefficients the basis function coefficients used for the fit model.
cov.sqrt the square-root of the covariance matrix of coefficients. Note: tcrossprod(cov.sqrt)
reconstructs the covariance matrix.
specs a list with information used for prediction purposes:
knots the spline knots used for each predictor.
thetas the "extra" tuning parameters used to weight the penalties.
xrng the ranges of the predictor variables.
xlev the factor levels of the predictor variables (if applicable).
tprk logical controlling the formation of tensor product smooths.

data the data used to fit the model.
types the type of smooth used for each predictor.
terms the terms included in the fit model.
method the method used for smoothing parameter selection. Will be NULL if 1ambda was
provided.
formula the formula specifying the fit model.
call the matched call.
Types of Smooths

The following codes specify the spline types:

32 sm

par Parametric effect (factor, integer, or numeric).
nom Nominal smoothing spline (unordered factor).
ord Ordinal smoothing spline (ordered factor).

lin Linear smoothing spline (integer or numeric).
cub Cubic smoothing spline (integer or numeric).
qui Quintic smoothing spline (integer or numeric).
per Periodic smoothing spline (integer or numeric).
sph Spherical spline (matrix with d = 3 columns).
tps Thin-plate spline (matrix with d > 1 columns).

For finer control of some specialized spline types:

per.lin Linear periodic spline (m = 1).
per.cub Cubic periodic spline (m = 2).
per.qui Quintic periodic spline (m = 3).
sph.lin Linear spherical spline (m = 1).
sph.cub Cubic spherical spline (m = 2).
sph.qui Quintic spherical spline (m = 3).
tps.lin Linear thin-plate spline (m = 1).
tps.cub Cubic thin-plate spline (m = 2).
tps.qui Quintic thin-plate spline (m = 3).

For details on the spline kernel functions, see basis_nom (nominal), basis_ord (ordinal), basis_poly
(polynomial), basis_sph (spherical), and basis_tps (thin-plate).

Choosing Knots

If tprk = TRUE, the four options for the knots input include:

1. ascalar giving the total number of knots to sample

2. avector of integers indexing which rows of data are the knots

a list with named elements giving the marginal knot values for each predictor (to be combined via expand.grid)

4. alist with named elements giving the knot values for each predictor (requires the same number of knots for each predicto

W

If tprk = FALSE, the three options for the knots input include:

1. ascalar giving the common number of knots for each continuous predictor
2. alist with named elements giving the number of marginal knots for each predictor
3. alist with named elements giving the marginal knot values for each predictor

Multiple Smooths

Suppose formula =y ~ x1 + x2 so that the model contains additive effects of two predictor vari-
ables.

The k-th predictor’s marginal effect can be denoted as

fr = XuBr + Zry

sm 33

where X, is the n by my, null space basis function matrix, and Zj is the n by 7 contrast space
basis function matrix.

If tprk = TRUE, the null space basis function matrix has the form X = [1, X;, X5] and the contrast
space basis function matrix has the form

Z = 9121 + 9222

where the 6, are the "extra" smoothing parameters. Note that Z is of dimension n by r = r; = rs.
If tprk = FALSE, the null space basis function matrix has the form X = [1, X;, X5], and the contrast
space basis function matrix has the form

Z = [0h21,0:225]

where the 0, are the "extra" smoothing parameters. Note that Z is of dimension n by r = 1 + rs.

Author(s)

Nathaniel E. Helwig <helwig@umn.edu>

References

Craven, P. and Wahba, G. (1979). Smoothing noisy data with spline functions: Estimating the cor-
rect degree of smoothing by the method of generalized cross-validation. Numerische Mathematik,
31, 377-403. https://doi.org/10.1007/BF01404567

Gu, C. (2013). Smoothing spline ANOVA models, 2nd edition. New York: Springer. https://doi.org/10.1007/978-
1-4614-5369-7

Gu, C. and Wahba, G. (1991). Minimizing GCV/GML scores with multiple smoothing parameters
via the Newton method. SIAM Journal on Scientific and Statistical Computing, 12(2), 383-398.
https://doi.org/10.1137/0912021

Helwig, N. E. (2020). Multiple and Generalized Nonparametric Regression. In P. Atkinson, S. De-
lamont, A. Cernat, J. W. Sakshaug, & R. A. Williams (Eds.), SAGE Research Methods Foundations.
https://doi.org/10.4135/9781526421036885885

See Also

summary . sm for summarizing sm objects.
predict.sm for predicting from sm objects.
ss for fitting a smoothing spline with a single predictor (Gaussian response).

gsm for fitting generalized smooth models with multiple predictors of mixed types (non-Gaussian
response).

Examples

WA EXAMPLE 1 HHHHHAEE
1 continuous predictor

generate data
set.seed(1)

34

sm

n <- 100

x <- seq(@, 1, length.out = n)

fx <=2+ 3 % x + sin(2 * pi * x)
y <= fx + rnorm(n, sd = 0.5)

fit sm with 10 knots (tprk = TRUE)
sm.ssa <- sm(y ~ x, knots = 10)

fit sm with 10 knots (tprk = FALSE)
sm.gam <- sm(y ~ x, knots = 10, tprk = FALSE)

print both results (note: they are identical)
sm.ssa
sm. gam

summarize both results (note: they are identical)
summary (sm.ssa)
summary (sm.gam)

compare true MSE values (note: they are identical)
mean((fx - sm.ssa$fit)*2)
mean((fx - sm.gam$fit)*2)

i EXAMPLE 2 #HHHHEEHH
1 continuous and 1 nominal predictor
additive model

generate data
set.seed(1)
n <- 100
x <- seq(@, 1, length.out = n)
z <- factor(sample(letters[1:3], size = n, replace = TRUE))
fun <- function(x, z){
mu <- c(-2, 0, 2)
zi <- as.integer(z)
fx <= mu[zi] + 3 * x + sin(2 * pi * x)
3
fx <= fun(x, z)
y <= fx + rnorm(n, sd = 0.5)

define marginal knots

probs <- seq(@, 0.9, by = 0.1)

knots <- list(x = quantile(x, probs = probs),
z = letters[1:3])

fit sm with specified knots (tprk = TRUE)
sm.ssa <- sm(y ~ x + z, knots = knots)

fit sm with specified knots (tprk = FALSE)
sm.gam <- sm(y ~ x + z, knots = knots, tprk = FALSE)

sm

35

print both results (note: they are identical)
sm.ssa
sm.gam

summarize both results (note: they are almost identical)
summary (sm.ssa)
summary (sm. gam)

compare true MSE values (note: they are identical)
mean((fx - sm.ssa$fit)*2)
mean((fx - sm.gam$fit)*2)

HHHHHHEE EXAMPLE 3 HHHHHHEE
1 continuous and 1 nominal predictor
interaction model

generate data
set.seed(1)
n <- 100
x <- seq(@, 1, length.out = n)
z <- factor(sample(letters[1:3], size = n, replace = TRUE))
fun <- function(x, z){
mu <- c(-2, 0, 2)
zi <- as.integer(z)
fx <= mu[zi] + 3 x x + sin(2 * pi * x + mu[zil*pi/4)
}
fx <= fun(x, z)
y <= fx + rnorm(n, sd = 0.5)

define marginal knots

probs <- seq(@, 0.9, by = 0.1)

knots <- list(x = quantile(x, probs = probs),
z = letters[1:3])

fit sm with specified knots (tprk = TRUE)
sm.ssa <- sm(y ~ x * z, knots = knots)

fit sm with specified knots (tprk = FALSE)
sm.gam <- sm(y ~ x * z, knots = knots, tprk = FALSE)

print both results (note: they are slightly different)
sm.ssa
sm. gam

summarize both results (note: they are slightly different)
summary(sm.ssa)
summary (sm.gam)

compare true MSE values (note: they are slightly different)
mean((fx - sm.ssa$fit)*2)
mean((fx - sm.gam$fit)*2)

spherical

HHHHEHEEE EXAMPLE 4 A
4 continuous predictors
additive model

generate data
set.seed(1)
n <- 100
fun <- function(x){
sin(pi*x[,1]) + sin(2xpi*x[,2]) + sin(3*pi*x[,3]) + sin(4xpi*x[,4])
}
data <- as.data.frame(replicate(4, runif(n)))
colnames(data) <- c("x1v", " x3v", "x4v")
fx <- fun(data)
y <= fx + rnorm(n)

n n

x2v",

define marginal knots

knots <- list(xlv = quantile(data$xlv, probs = seq(@, 1, length.out = 10)),
x2v = quantile(data$x2v, probs = seq(@, 1, length.out = 10)),
x3v = quantile(data$x3v, probs = seq(@, 1, length.out = 10)),
x4v = quantile(data$x4v, probs = seq(@, 1, length.out = 10)))

define ssa knot indices

knots.indx <- c(bin_sample(data$xlv, nbin = 1@, index.return = TRUE)$ix,
bin_sample(data$x2v, nbin = 10, index.return = TRUE)$ix,
bin_sample(data$x3v, nbin = 10, index.return = TRUE)$ix,
bin_sample(data$x4v, nbin = 10, index.return = TRUE)$ix)

fit sm with specified knots (tprk = TRUE)
sm.ssa <- sm(y ~ x1lv + x2v + x3v + x4v, data = data, knots = knots.indx)

fit sm with specified knots (tprk = FALSE)
sm.gam <- sm(y ~ x1v + x2v + x3v + x4v, data = data, knots = knots, tprk = FALSE)

print both results (note: they are slightly different)
sm.ssa
sm. gam

summarize both results (note: they are slightly different)
summary(sm.ssa)
summary (sm. gam)

compare true MSE values (note: they are slightly different)
mean((fx - sm.ssa$fit)*2)
mean((fx - sm.gam$fit)*2)

spherical Spherical Spline Basis and Penalty

spherical 37

Description

Generate the smoothing spline basis and penalty matrix for a spherical spline. This basis is designed
for a 3D predictor where the values are points on a sphere.

Usage
basis_sph(x, knots, m = 2, rescale = TRUE, intercept = FALSE)

penalty_sph(x, m = 2, rescale = TRUE)

Arguments
X Predictor variables (basis) or spline knots (penalty). Matrix of dimension n by
3.
knots Spline knots. Matrix of dimension r by 3.
m Penalty order. "m=1" for linear spherical spline, "m=2" for cubic, and "m=3"
for quintic.
rescale If TRUE, the nonparametric part of the basis is divided by the average of the
reproducing kernel function evaluated at the knots.
intercept If TRUE, the first column of the basis will be a column of ones.
Details

Generates a basis function or penalty matrix used to fit linear, cubic, and spherical splines.

With an intercept included, the basis function matrix has the form
X = [Xo, X4]

where matrix X_0 is an n by 1 matrix of ones, and X_1 is a matrix of dimension n by 7.
The X_0 matrix contains the "parametric part" of the basis (i.e., the intercept).

The matrix X_1 contains the "nonparametric part" of the basis, which consists of the reproducing
kernel function
p(xvy) =1+ [SQm(w'y) - am}/ﬁm

evaluated at all combinations of x and knots. Note that o, = 1/(2m + 1) and 3,,, = 2m(2m)!
are constants, sa,,(.) is the spherical spline semi-kernel function, and .y denote the inner product
between x and y (see References).

The penalty matrix consists of the reproducing kernel function

p(:v,y) =1+ [SQm(x'y) - am}/ﬁm

evaluated at all combinations of x.

Value

Basis: Matrix of dimension c(length(x),df) where df = nrow(knots) + intercept.

Penalty: Matrix of dimension c(r,r) where r = nrow(x) is the number of knots.

38 spherical

Note

The inputs x and knots must have the same dimension.

Author(s)

Nathaniel E. Helwig <helwig@umn.edu>

References

Gu, C. (2013). Smoothing Spline ANOVA Models. 2nd Ed. New York, NY: Springer-Verlag. doi:
https://doi.org/10.1007/978-1-4614-5369-7

Wahba, G (1981). Spline interpolation and smoothing on the sphere. SIAM Journal on Scientific
Computing, 2, 5-16.

See Also

See thinplate for a thin-plate spline basis and penalty.

Examples

function with three spherical predictors
set.seed(0)
n <- 1000
myfun <- function(x){
sin(pixx[,1]) + cos(2xpi*x[,2]) + cos(pi*x[,3]1)
}
x <= cbind(runif(n), runif(n), runif(n)) - 0.5
x <= t(apply(x, 1, function(x) x / sqgrt(sum(x*2))))
eta <- myfun(x)
y <- eta + rnorm(n, sd = 0.5)
knots <- x[1:100,]

cubic spherical spline basis
X <- basis_sph(x, knots, intercept = TRUE)

cubic spherical spline penalty
Q <- penalty_sph(knots)

padd Q with zeros (for intercept)
Q <- rbind(@, cbind(@, Q))

define smoothing parameter
lambda <- 1e-5

estimate coefficients
coefs <- psolve(crossprod(X) + n * lambda * Q) %*% crossprod(X, y)

estimate eta
yhat <- X %*% coefs

check rmse

ss 39
sqrt(mean((eta - yhat)*2))
Ss Fit a Smoothing Spline
Description
Fits a smoothing spline with the smoothing parameter selected via one of eight methods: GCV,
OCYV, GACYV, ACV, REML, ML, AIC, or BIC.
Usage
ss(x, y = NULL, w = NULL, df, spar = NULL, lambda = NULL,
method = c("GCV", "OCV", "GACV", "ACV", "REML", "ML", "AIC", "BIC"),
m = 2L, periodic = FALSE, all.knots = FALSE, nknots = .nknots.smspl,
knots = NULL, keep.data = TRUE, df.offset = @, penalty =1,
control.spar = list(), tol = 1e-6 x IQR(x))
Arguments
X Predictor vector of length n. Can also input a list or a two-column matrix spec-
ifying x and y.
y Response vector of length n. If y is missing or NULL, the responses are assumed
to be specified by x, with x the index vector.
w Weights vector of length n. Defaults to all 1.
df Equivalent degrees of freedom (trace of the smoother matrix). Must be in (1, nz],
where nx is the number of unique x values, see below.
spar Smoothing parameter. Typically (but not always) in the range (0, 1]. If specified
lambda = 256 (3*(spar-1)).
lambda Computational smoothing parameter. This value is weighted by n to form the
penalty coefficient (see Details). Ignored if spar is provided.
method Method for selecting the smoothing parameter. Ignored if spar or lambda is
provided.
m Penalty order (integer). The penalty functional is the integrated squared m-th
derivative of the function. Defaults to m = 2, which is a cubic smoothing spline.
Setm = 1 for a linear smoothing spline or m = 3 for a quintic smoothing spline.
periodic Logical. If TRUE, the estimated function f(z) is constrained to be periodic, i.e.,
f(a) = f(b) where ¢ = min(z) and b = max(x).
all.knots If TRUE, all distinct points in x are used as knots. If FALSE (default), a sequence
knots is placed at the quantiles of the unique x values; in this case, the input
nknots specifies the number of knots in the sequence. Ignored if the knot values
are input using the knots argument.
nknots Positive integer or function specifying the number of knots. Ignored if either

all.knots = TRUE or the knot values are input using the knots argument.

40

Ss

knots Vector of knot values for the spline. Should be unique and within the range of
the x values (to avoid a warning).

keep.data Logical. If TRUE, the original data as a part of the output object.

df.offset Allows the degrees of freedom to be increased by df . of fset in the GCV crite-
rion.

penalty The coefficient of the penalty for degrees of freedom in the GCV criterion.

control.spar Optional list with named components controlling the root finding when the
smoothing parameter spar is computed, i.e., missing or NULL, see below.

Note that spar is only searched for in the interval [lower, upper].

lower: lower bound for spar; defaults to 0.
upper: upper bound for spar; defaults to 1.
tol: the absolute precision (tolerance) used by optimize; defaults to 1e-8.
tol Tolerance for same-ness or uniqueness of the x values. The values are binned

into bins of size tol and values which fall into the same bin are regarded as the
same. Must be strictly positive (and finite).

Details

Inspired by the smooth.spline function in R’s stats package.
Neither x nor y are allowed to containing missing or infinite values.

The x vector should contain at least 2m distinct values. *Distinct’ here is controlled by tol: values
which are regarded as the same are replaced by the first of their values and the corresponding y and
w are pooled accordingly.

Unless 1ambda has been specified instead of spar, the computational) used (as a function of spar)
is A = 256(3 (spar — 1)).

If spar and lambda are missing or NULL, the value of df is used to determine the degree of smooth-
ing. If df is missing as well, the specified method is used to determine A.

Letting f; = f(x;), the function is represented as
f=XB+ 2y

where the basis functions in X span the null space (i.e., functions with m-th derivative of zero), and
Z contains the reproducing kernel function of the contrast space evaluated at all combinations of
observed data points and knots, i.e., Z[i, j] = p(z;, k;) where p is the kernel function and k; is the
j-th knot. The vectors /3 and ~ contain unknown basis function coefficients. Letting M = (X, Z)
and 6 = (B’,~')’, the penalized least squares problem has the form

(y — MO)'W(y — MO) +n\y'Qy

where W is a diagonal matrix containg the weights, and @ is the penalty matrix. Note that Q[i, j] =
p(k;, k;) contains the reproducing kernel function evaluated at all combinations of knots. The
optimal coefficients are the solution to

(M'WM +nAP)0 = M'Wy

where P is the penalty matrix) augmented with zeros corresponding to the 3 in 6.

SS

Value

41

An object of class "ss" with components:

X

yin
tol
data

lev
cv.crit

pen.crit

crit

df
spar
lambda
fit

call
sigma
loglik
aic
bic

penalty

method

the distinct x values in increasing order; see Note.
the fitted values corresponding to x.

the weights used at the unique values of x.

the y values used at the unique y values.

the tol argument (whose default depends on x).

only if keep.data = TRUE: itself a list with components x, y and w (if applicable).
These are the original (z;,y;, w;),i = 1,...,n, values where data$x may have
repeated values and hence be longer than the above x component; see details.

leverages, the diagonal values of the smoother matrix.
cross-validation score.

the penalized criterion, a non-negative number; simply the (weighted) residual
sum of squares (RSS).

the criterion value minimized in the underlying df21ambda function. When df

is provided, the criterion is [tr(Sy) — df]>.

equivalent degrees of freedom used.

the value of spar computed or given, i.e., s = 1 + logys5(A)/3

the value of \ corresponding to spar, i.e., A = 2563*(s=1),

list for use by predict.ss, with components

n: number of observations.

knot: the knot sequence.

nk: number of coefficients (# knots plus m).

coef: coefficients for the spline basis used.

min, range: numbers giving the corresponding quantities of x

m: spline penalty order (same as input m)

periodic: is spline periodic?

cov.sqrt square root of covariance matrix of coef such that tcrossprod(coef’)
reconstructs the covariance matrix.

weighted were weights w used in fitting?

the matched call.

estimated error standard deviation.

log-likelihood (if method is REML or ML).
Akaike’s Information Criterion (if method is AIC).
Bayesian Information Criterion (if method is BIC).

smoothness penalty v’ (QQ-y, which is the integrated squared m-th derivative of the
estimated function f(x).

smoothing parameter selection method. Will be NULL if df, spar, or 1lambda is
provided.

42 ss

Methods

The smoothing parameter can be selected using one of eight methods:
Generalized Cross-Validation (GCV)

Ordinary Cross-Validation (OCV)

Generalized Approximate Cross-Validation (GACV)

Approximate Cross-Validation (ACV)

Restricted Maximum Likelihood (REML)

Maximum Likelihood (ML)

Akaike’s Information Criterion (AIC)

Bayesian Information Criterion (BIC)

Note

The number of unique x values, nx, are determined by the tol argument, equivalently to
nx <-sum(!duplicated(round((x -mean(x)) / tol)))

In this case where not all unique x values are used as knots, the result is not a smoothing spline in
the strict sense, but very close unless a small smoothing parameter (or large df) is used.

Author(s)

Nathaniel E. Helwig <helwig@umn.edu>

References

https://stat.ethz.ch/R-manual/R-devel/library/stats/html/smooth.spline.html

Craven, P. and Wahba, G. (1979). Smoothing noisy data with spline functions: Estimating the cor-
rect degree of smoothing by the method of generalized cross-validation. Numerische Mathematik,
31,377-403. https://doi.org/10.1007/BF01404567

Gu, C. (2013). Smoothing spline ANOVA models, 2nd edition. New York: Springer. https://doi.org/10.1007/978-
1-4614-5369-7

Helwig, N. E. (2020). Multiple and Generalized Nonparametric Regression. In P. Atkinson, S. De-
lamont, A. Cernat, J. W. Sakshaug, & R. A. Williams (Eds.), SAGE Research Methods Foundations.
https://doi.org/10.4135/9781526421036885885

Wahba, G. (1985). A comparison of GCV and GML for choosing the smoothing parameters in the
generalized spline smoothing problem. The Annals of Statistics, 4, 1378-1402. https://doi.org/10.1214/a0s/1176349743

See Also

summary . ss for summarizing ss objects.
predict.ss for predicting from ss objects.
sm for fitting smooth models with multiple predictors of mixed types (Gaussian response).

gsm for fitting generalized smooth models with multiple predictors of mixed types (non-Gaussian
response).

SS

Examples

generate data

set.seed(1)

n <- 100

x <- seq(@, 1, length.out = n)

fx <=2+ 3 % x + sin(2 * pi * x)
y <= fx + rnorm(n, sd = 0.5)

GCV selection (default)
ss.GCV <- ss(x, y, nknots
ss.GCV

10)

OCV selection
$s.0CV <- ss(x, y, method = "OCV", nknots = 10)
ss.0CV

GACV selection
ss.GACV <- ss(x, y, method = "GACV", nknots = 10)
ss.GACV

ACV selection
ss.ACV <- ss(x, y, method = "ACV", nknots = 10)
Ss.ACV

ML selection
ss.ML <- ss(x, y, method = "ML", nknots = 10)
ss.ML

REML selection
ss.REML <- ss(x, y, method = "REML", nknots = 10)
ss.REML

AIC selection
ss.AIC <- ss(x, y, method = "AIC", nknots = 10)
ss.AIC

BIC selection
ss.BIC <- ss(x, y, method = "BIC", nknots = 10)
ss.BIC

compare results
mean((fx - ss.GCV$y)*2)

mean((fx - ss.0CV$y)*2)
mean((fx - ss.GACV$y)*2)
mean((fx - ss.ACV$y)*2)
mean((fx - ss.ML$y)*2)

mean((fx - ss.REML$y)*2)
mean((fx - ss.AIC$y)"2)
mean((fx - ss.BIC$y)*2)

plot results
plot(x, y)

44 summary

rlist <- list(ss.GCV, ss.0CV, ss.GACV, ss.ACV,
ss.REML, ss.ML, ss.AIC, ss.BIC)
for(j in 1:length(rlist)){
lines(rlist[[j]], lwd = 2, col = j)
3

summary Summary methods for Fit Models

Description
" "

summary methods for object classes "gsm", "sm", and "ss".

Usage

S3 method for class 'gsm'
summary (object, ...)

S3 method for class 'sm'
summary (object, ...)

S3 method for class 'ss'
summary(object, ...)

S3 method for class 'summary.gsm'
print(x, digits = max(3, getOption("digits") - 3),
signif.stars = getOption("show.signif.stars"), ...)

S3 method for class 'summary.sm'
print(x, digits = max(3, getOption("digits”) - 3),
signif.stars = getOption("show.signif.stars"), ...)

S3 method for class 'summary.ss'
print(x, digits = max(3, getOption("digits”) - 3),
signif.stars = getOption("show.signif.stars"), ...)

Arguments

object an object of class "gsm" output by the gsm function, "sm" output by the sm
function, or "ss" output by the ss function

X an object of class "summary.gsm" output by the summary.gsm function, "sum-
mary.sm" output by the summary.sm function, or "summary.ss" output by the
summary.ss function.

digits the minimum number of significant digits to be printed in values.
signif.stars logical. If TRUE, ‘significance stars’ are printed for each coefficient.

additional arguments affecting the summary produced (currently ignored).

summary 45

Details

Summary includes information for assessing the statistical and practical significance of the model
terms.

Statistical inference is conducted via (approximate) frequentist chi-square tests using the Bayesian
interpretation of a smoothing spline (Nychka, 1988; Wahba, 1983).

With multiple smooth terms included in the model, the inferential results may (and likely will) differ
slightly depending on the tprk argument (when using the gsm and sm functions).

If significance testing is of interest, the tprk = FALSE option may be desirable, given that this allows
for unique basis function coefficients for each model term.

In all cases, the inferential results are based on a (pseudo) F or chi-square statistic which fails to
consider the uncertainty of the smoothing parameter estimation.

Value
residuals the deviance residuals.
fstatistic the F statistic for testing all effects (parametric and smooth).
dev.expl the explained deviance.
p.table the coefficient table for (approximate) inference on the parametric terms.
s.table the coefficient table for (approximate) inference on the smooth terms.
dispersion the estimate of the dispersion parameter.
r.squared the observed coefficient of multiple determination.

adj.r.squared the adjusted coefficient of multiple determination.

kappa the collinearity indices. A value of 1 indicates no collinearity, and higher values
indicate more collinearity of a given term with other model terms.
pi the importance indices. Larger values indicate more importance, and the values
satisfy sum(pi) = 1. Note that elements of pi can be negative.
call the original function call.
Author(s)

Nathaniel E. Helwig <helwig@umn.edu>

References

Helwig, N. E. (2020). Multiple and Generalized Nonparametric Regression. In P. Atkinson, S. De-
lamont, A. Cernat, J. W. Sakshaug, & R. A. Williams (Eds.), SAGE Research Methods Foundations.
https://doi.org/10.4135/9781526421036885885

Nychka, D. (1988). Bayesian confience intervals for smoothing splines. Journal of the American
Statistical Association, 83(404), 1134-1143. https://doi.org/10.2307/2290146

Wahba, G. (1983). Bayesian "confidence intervals" for the cross-validated smoothing spline. Jour-
nal of the Royal Statistical Society. Series B, 45(1), 133-150. https://doi.org/10.1111/5.2517-
6161.1983.tb01239.x

46

See Also

gsm, sm, and ss

Examples

#i## Example 1: gsm

generate data
set.seed(1)
n <- 1000
x <- seq(@, 1, length.out = n)
z <- factor(sample(letters[1:3], size = n, replace = TRUE))
fun <- function(x, z){
mu <- c(-2, 0, 2)
zi <- as.integer(z)
fx <= mu[zi] + 3 * x + sin(2 * pi * x + mulzilxpi/4)
3
fx <= fun(x, z)
y <- rbinom(n = n, size

1, p=17 (1 +exp(-fx)))

define marginal knots

probs <- seq(@, 0.9, by = 0.1)

knots <- list(x = quantile(x, probs = probs),
z = letters[1:3])

fit sm with specified knots (tprk = TRUE)
gsm.ssa <- gsm(y ~ x * z, family = binomial, knots = knots)
summary (gsm.ssa)

fit sm with specified knots (tprk = FALSE)

gsm.gam <- gsm(y ~ x * z, family = binomial, knots = knots, tprk = FALSE)

summary (gsm. gam)

Example 2: sm

generate data
set.seed(1)
n <- 100
x <- seq(@, 1, length.out = n)
z <- factor(sample(letters[1:3], size = n, replace = TRUE))
fun <- function(x, z){
mu <- c(-2, 0, 2)
zi <- as.integer(z)
fx <= mufzi] + 3 * x + sin(2 * pi * x + mu[ziJxpi/4)
3
fx <= fun(x, z)
y <= fx + rnorm(n, sd = 0.5)

define marginal knots
probs <- seq(@, 0.9, by = 0.1)
knots <- list(x = quantile(x, probs = probs),

summary

thinplate

z

47

= letters[1:3])

fit sm with specified knots (tprk = TRUE)
sm.ssa <- sm(y ~ x * z, knots = knots)

summary (sm. ssa)

fit sm with specified knots (tprk = FALSE)
sm.gam <- sm(y ~ x * z, knots = knots, tprk = FALSE)

summary (sm.gam)

Example 3: ss

generate data
set.seed(1)
n <- 100

x <- seq(@, 1, length.out = n)
fx <=2+ 3 % x + sin(2 * pi * x)
y <= fx + rnorm(n, sd = 0.5)

regular smoothing spline

ss.reg <- ss(x,
summary(ss.reg)

y, nknots = 10)

thinplate

Thin-Plate Spline Basis and Penalty

Description

Generate the smoothing spline basis and penalty matrix for a thin-plate spline.

Usage

basis_tps(x, knots, m = 2, rk = TRUE, intercept = FALSE)

penalty_tps(x,

Arguments

X

knots

rk

intercept

m = 2, rk = TRUE)

Predictor variables (basis) or spline knots (penalty). Numeric or integer vector
of length n, or matrix of dimension n by p.

Spline knots. Numeric or integer vector of length r, or matrix of dimension r by

p.

Penalty order. "m=1" for linear thin-plate spline, "m=2" for cubic, and "m=3"
for quintic. Must satisfy 2m > p.

If true (default), the reproducing kernel parameterization is used. Otherwise, the
standard thin-plate basis is returned.

If TRUE, the first column of the basis will be a column of ones.

48 thinplate

Details

Generates a basis function or penalty matrix used to fit linear, cubic, and quintic thin-plate splines.

The basis function matrix has the form
X = [Xo, Xi]
where the matrix X_0 is of dimension n by M — 1 (plus 1 if an intercept is included) where M =

(pJ”;?*l) , and X_1 is a matrix of dimension n by r.

The X_0 matrix contains the "parametric part" of the basis, which includes polynomial functions of
the columns of x up to degree m — 1 (and potentially interactions).

The matrix X_1 contains the "nonparametric part" of the basis.

If rk = TRUE, the matrix X_1 consists of the reproducing kernel function

plx,y) = (I — Pr)(I — Py)E(|x —y|)

evaluated at all combinations of x and knots. Note that P, and P, are projection operators,
denotes the Euclidean distance, and the TPS semi-kernel is defined as

E(2) = az*™ Plog(z)

if p is even and
E(Z) _ BZQM_p

otherwise, where « and 3 are positive constants (see References).

If rk = FALSE, the matrix X_1 contains the TPS semi-kernel E(.) evaluated at all combinations of x
and knots. Note: the TPS semi-kernel is not positive (semi-)definite, but the projection is.

If rk = TRUE, the penalty matrix consists of the reproducing kernel function

pla,y) = (I = Po)(I = By)E(|lz —yl)
evaluated at all combinations of x. If rk = FALSE, the penalty matrix contains the TPS semi-kernel
E(.) evaluated at all combinations of x.
Value

Basis: Matrix of dimension c(length(x),df) where df = nrow(as.matrix(knots)) + choose(p
+m-1,p) -lintercept and p = ncol(as.matrix(x)).

Penalty: Matrix of dimension c(r,r) where r = nrow(as.matrix(x)) is the number of knots.

Note

The inputs x and knots must have the same dimension.

Author(s)

Nathaniel E. Helwig <helwig@umn.edu>

thinplate 49

References

Gu, C. (2013). Smoothing Spline ANOVA Models. 2nd Ed. New York, NY: Springer-Verlag. doi:
https://doi.org/10.1007/978-1-4614-5369-7

Helwig, N. E. (2017). Regression with ordered predictors via ordinal smoothing splines. Frontiers
in Applied Mathematics and Statistics, 3(15), 1-13. doi: https://doi.org/10.3389/fams.2017.00015

Helwig, N. E., & Ma, P. (2015). Fast and stable multiple smoothing parameter selection in smooth-
ing spline analysis of variance models with large samples. Journal of Computational and Graphical
Statistics, 24(3), 715-732. doi: https://doi.org/10.1080/10618600.2014.926819

See Also

See polynomial for a basis and penalty for numeric variables.

See spherical for a basis and penalty for spherical variables.

Examples

generate data

set.seed(0)

n <- 101

x <- seq(@, 1, length.out = n)
knots <- seq(@, 0.95, by = 0.05)
eta<- 1+ 2 % x + sin(2 * pi * x)
y <- eta + rnorm(n, sd = 0.5)

cubic thin-plate spline basis
X <- basis_tps(x, knots, intercept = TRUE)

cubic thin-plate spline penalty
Q <- penalty_tps(knots)

padd Q with zeros (for intercept and linear effect)
Q <- rbind(@, 0, cbind(@, 0, Q))

define smoothing parameter
lambda <- 1e-5

estimate coefficients
coefs <- psolve(crossprod(X) + n * lambda * Q) %*% crossprod(X, y)

estimate eta
yhat <- X %*% coefs

check rmse
sqrt(mean((eta - yhat)*2))

plot results

plot(x, y)
lines(x, yhat)

Index

x algebra

psolve, 28

* aplot

plotci, 15

* array

psolve, 28

x distribution

NegBin, 9

+ dplot

plotci, 15

* regression

gsm, 2
NegBin, 9
nominal, 11
ordinal, 13
polynomial, 17
predict.gsm, 20
predict.sm, 22
predict.ss, 26
sm, 29
spherical, 36
ss, 39
summary, 44
thinplate, 47

* smooth

gsm, 2
nominal, 11
ordinal, 13
polynomial, 17
predict.gsm, 20
predict.sm, 22
predict.ss, 26
sm, 29
spherical, 36
ss, 39
summary, 44
thinplate, 47

as.data.frame, 2, 30

50

basis_nom, 5, 32

basis_nom (nominal), 11
basis_ord, 5, 32

basis_ord (ordinal), 13
basis_poly, 5, 32
basis_poly (polynomial), 17
basis_sph, 5, 32

basis_sph (spherical), 36
basis_tps, 5, 32

basis_tps (thinplate), 47

eigen, 28
expand.grid, 5, 32

family, 10

glm, 2, 30
gsm, 2,9, 10, 22, 33,42, 44-46

lines, 16
1m, 2, 30

make.link, /0

NegBin, 5,9
NegBinomial, 10
nominal, 11, 75

optimize, 3, 30, 40
ordinal, /2, 13, 19

penalty_nom (nominal), 11
penalty_ord (ordinal), 13
penalty_poly (polynomial), 17
penalty_sph (spherical), 36
penalty_tps (thinplate), 47
plot, 15, 16

plot.ss, 16

plotci, 15
polynomial, 15, 17, 49
predict.glm, 2/

INDEX

predict.gsm, 6, 7, 20
predict.1m, 23
predict.sm, 22, 33
predict.smooth.spline, 27
predict.ss, 26,41, 42
print.summary.gsm (summary), 44
print.summary.sm (summary), 44
print.summary.ss (summary), 44
psolve, 28

gnorm, 16

sm, 7, 24,29, 42, 44-46
smooth.spline, 40
solve, 28, 29
spherical, 36, 49

ss, 26, 27, 33,39, 44, 46
summary, 44
summary.gsm, 7, 44
summary.sm, 33, 44
summary.ss, 42, 44

thinplate, 19, 38, 47

51

	gsm
	NegBin
	nominal
	ordinal
	plotci
	polynomial
	predict.gsm
	predict.sm
	predict.ss
	psolve
	sm
	spherical
	ss
	summary
	thinplate
	Index

