Introduction to package nngeo

Michael Dorman

2020-06-10

Contents

Introduction
Package purpose e e
Installation L e
Sample data L e

— =

Usage examples
The st_nn function e e e e
The st_connect function e e
Dense matrix representation Lo
k-Nearest neighbors where k>0 e
Distance matrix oL e e
Search radius e
Spatial join oL e e
Another example L. e

SO UL U W W W

J

Polygons

Introduction

Package purpose

This document introduces the nngeo package. The nngeo package includes functions for spatial join of layers
based on k-nearest neighbor relation between features. The functions work with spatial layer object defined
in package sf, namely classes sfc and sf.

Installation

GitHub version:

install.packages("devtools")
devtools: :install_github("michaeldorman/nngeo")

Sample data

The nngeo package comes with three sample datasets:

e cities
e towns

e water

The cities layer is a point layer representing the location of the three largest cities in Israel.
cities

#> Simple feature collection with 3 features and 1 field

#> geometry type: POINT

#> dimension: XY

#> bbox: xzmin: 34.78177 ymin: 31.76832 xzmaxz: 35.21371 ymax: 32.79405
#> geographic CRS: WGS 84

#> name geometry

#> 1 Jerusalem POINT (35.21371 31.76832)
#> 2 Tel-Aviv POINT (34.78177 32.0853)
#> 3 Haifa POINT (34.98957 32.79405)

The towns layer is another point layer, with the location of all large towns in Israel, compiled from a different
data source:

towns

#> Simple feature collection with 193 features and 4 fields

#> geometry type: POINT

#> dimension: XY

#> bbox: zmin: 34.27 ymin: 29.56 Tmax: 35.6 ymaxr: 33.21
#> geographic CRS: WGS 84

#> First 10 features:

#> name country.etc pop capital geometry
#> 12 'Afula Israel 39151 0 POINT (35.29 32.62)
#> 17 'Akko Israel 45606 0 POINT (35.08 32.94)
#> 40 'Ar'ara Israel 15841 0 POINT (35.1 32.49)
#> 41 'Arad Israel 22757 0 POINT (35.22 31.26)
#> 43 'Arrabe Israel 20316 0 POINT (35.33 32.85)
#> 52 "Atlit Israel 4686 0 POINT (34.93 32.68)
#> 103 'Eilabun Israel 4296 0 POINT (35.4 32.83)
#> 104 'Ein Mahel Israel 11014 0 POINT (35.35 32.72)
#> 105 'Ein Qiniyye Israel 2101 0 POINT (35.15 31.93)
#> 112 'Tlut Israel 6536 0 POINT (35.25 32.72)

The water layer is an example of a polygonal layer. This layer contains four polygons of water bodies in
Israel.

water

#> Simple feature collection with 4 features and 1 field

#> geometry type: POLYGON

#> dimension: XY

#> bbox: Tzmin: 34.1388 ymin: 29.45338 xzmax: 35.64979 ymaxr: 33.1164
#> geographic CRS: WGS 84

#> name geometry

#> 1 Red Sea POLYGON ((34.96428 29.54775. .

#> 2 Mediterranean Sea POLYGON ((35.10533 33.07661...

#> 3 Dead Sea POLYGON ((35.54743 31.37881...

#> 4 Sea of Galilee POLYGON ((35.6014 32.89248, ...

Figure 1 shows the spatial configuration of the cities, towns and water layers.

plot(st_geometry(water), col = "lightblue")
plot(st_geometry(towns), col = "grey", pch = 1, add
plot(st_geometry(cities), col = "red", pch = 1, add

TRUE)
TRUE)

7

Figure 1: Visualization of the water, towns and cities layers

Usage examples

The st_nn function

The main function in the nngeo package is st_nn.

The st_nn function accepts two layers, x and y, and returns a list with the same number of elements as x
features. Each list element i is an integer vector with all indices j for which x[i] and y[j] are nearest
neighbors.

For example, the following expression finds which feature in towns[1:5,] is the nearest neighbor to each
feature in cities:

nn = st_nn(cities, towns[1:5,], progress = FALSE)
#> lon-lat points
nn

[[1]]

#> [1] 4

#>

#> [[2]]

#> [1] 3

#>

[[3]]

#> [1] 2

This output tells us that towns[4,] is the nearest among the five features of towns[1:5,] to cities[1,
1, etc.

The st_connect function

The resulting nearest neighbor matches can be visualized using the st_connect function. This function
builds a line layer connecting features from two layers x and y based on the relations defined in a list such

the one returned by st_nn:

1 = st_connect(cities, towns[1:5,], ids = nn)
#> Calculating nearest IDs

#> Calculating lines

1

#> Geometry set for 3 features

#> geometry type: LINESTRING

#> dimension: XY

#> bbox: xzmin: 34.78177 ymin: 31.26 zmax: 35.22 ymax: 32.94
#> geographic CRS: WGS 84

#> LINESTRING (35.21371 31.76832, 35.22 31.26)
#> LINESTRING (34.78177 32.0853, 35.1 32.49)
#> LINESTRING (34.98957 32.79405, 35.08 32.94)

Plotting the line layer 1 gives a visual demonstration of the nearest neighbors match, as shown in Figure 2.

plot(st_geometry(towns[1:5,]), col = "darkgrey")

plot(st_geometry(l), add = TRUE)

plot(st_geometry(cities), col = "red", add = TRUE)

text (st_coordinates(cities) [, 1], st_coordinates(cities)[, 2], 1:3, col = "red", pos = 4)
text(st_coordinates(towns[1:5, 1) [, 1], st_coordinates(towns[1:5, 1)[, 2], 1:5, pos = 4)

2
VERRE

4

Figure 2: Nearest neighbor match between cities (in red) and towns[1:5,] (in grey)

Dense matrix representation

The st_nn can also return the complete logical matrix indicating whether each feature in x is a neighbor of
y. To get the dense matrix, instead of a list, use sparse=FALSE.

nn = st_nn(cities, towns[1:5,], sparse = FALSE, progress = FALSE)
#> lon-lat points

nn

#> [,1] [,2] [,3] [,41 [,5]

#> [1,] FALSE FALSE FALSE TRUE FALSE

#> [2,] FALSE FALSE TRUE FALSE FALSE
#> [3,] FALSE TRUE FALSE FALSE FALSE

k-Nearest neighbors where k>0

It is also possible to return any k-nearest neighbors, rather than just one. For example, setting k=2 returns

both the 15" and 2" nearest neighbors:

st_nn(cities, towns[1:5, 1, k = 2,
lon-lat points

nn =
#>
nn
#>
#>
#>
#>
#>
#>
#>
#>

[[1]]
[1] 4 3

[[2]]
[1] 3 1

[[3]]
[1] 2 5

nn =
#>
nn
#>
#>
#>
#>

st_nn(cities, towns[1:5,], sparse
lon-lat points
[,17 [,2] [,3] [,4]1 [,5]
[1,] FALSE FALSE TRUE TRUE FALSE
[2,] TRUE FALSE TRUE FALSE FALSE
[3,] FALSE TRUE FALSE FALSE TRUE

Distance matrix

Using returnDist=TRUE the distances list is also returned, in addition the the neighbor matches, with both

components now comprising a 1ist:

nn =
#>
nn
#>
#>
#>
#>
#>
#>
#>
#>
#>
#>
#>
#>
#>
#>
#>
#>
#>

lon-lat points

$nn
$nn[[1]]
[1] 4 3

$nn[[2]]
[1] 3 1

$nn[[3]]
[1] 2 5

$dist
$dist[[1]]
[1] 56364.74 80742.62

$dist[[2]]
[1] 53968.63 76186.87

progress = FALSE)

= FALSE, k = 2, progress = FALSE)

st_nn(cities, towns[1:5,], k = 2, returnDist = TRUE, progress = FALSE)

#>
#> $dist[[3]]
#> [1] 18265.72 32476.24

Search radius

Finally, the search for nearest neighbors can be limited to a search radius using maxdist. In the following
example, the search radius is set to 50,000 meters (50 kilometers). Note that no neighbors are found within
the search radius for cities[2,]:

nn = st_nn(cities, towns[1:5,], k = 2, maxdist = 50000, progress = FALSE)
#> lon-lat points
nn

#> [[1]]

#> integer(0)

#>

#> [[2]]

#> integer(0)

#>

#> [[3]]

#> [1] 2 5

Spatial join

The st_nn function can also be used as a geometry predicate function when performing spatial join with
sf::st_join. For example, the following expression spatially joins the two nearest towns[1:5,] features
to each cities features, using a search radius of 50 km:

citiesl = st_join(cities, towns[1:5,], join = st_nn, k = 2, maxdist = 50000)
#> lon-lat points

Here is the resulting layer:

citiesl

#> Simple feature collection with 4 features and 5 fields
#> geometry type: POINT

#> dimension: XY

#> bbox: zmin: 34.78177 ymin: 31.76832 zmax: 35.21371 ymaz: 32.79405
#> geographic CRS: WGS 84

#> name.x mname.y country.etc pop capital geometry
#> 1 Jerusalem <NA> <NA> NA NA POINT (35.21371 31.76832)
#> 2 Tel-Aviv <NA> <NA> NA NA POINT (34.78177 32.0853)
#> 3 Haifa 'Akko Israel 45606 0 POINT (34.98957 32.79405)
#> 3.1 Haifa 'Arrabe Israel 20316 0 POINT (34.98957 32.79405)

Another example

Here is another example, finding the 10-nearest neighbor towns features for each cities feature:

x = st_nn(cities, towns, k = 10)
#> lon-lat points
1 = st_connect(cities, towns, ids = x)

The result is visualized in Figure 3.

plot(st_geometry (1))
plot(st_geometry(cities), col = "red", add = TRUE)
plot(st_geometry(towns), col = "darkgrey", add = TRUE)

=)

A
il

7

:ﬁi e

7

Figure 3: Nearest 10 towns features from each cities feature

Polygons

Nearest neighbor search also works for non-point layers. The following code section finds the 20-nearest
towns features for each water body in water[-1,].

nn = st_nn(water[-1,], towns, k = 20, progress = FALSE)
#> lines or polygons

Again, we can calculate the respective lines for the above result using st_connect. Since one of the inputs is
line/polygon, we need to specify a sampling distance dist, which sets the resolution of connecting points on
the shape exterior boundary.

1 = st_connect(water[-1,], towns, ids = nn, dist = 100)
#> Calculating nearest IDs
#> Calculating lines

The result is visualized in Figure 4.

plot(st_geometry(water[-1, 1), col = "lightblue", border = "grey")
plot(st_geometry(towns), col = "darkgrey", add = TRUE)
plot(st_geometry(l), col = "red", add = TRUE)

Figure 4: Nearest 20 towns features from each water polygon

	Introduction
	Package purpose
	Installation
	Sample data

	Usage examples
	The st_nn function
	The st_connect function
	Dense matrix representation
	k-Nearest neighbors where k>0
	Distance matrix
	Search radius
	Spatial join
	Another example

	Polygons

