Package 'nnTensor'

June 4, 2020
Type Package
Title Non-Negative Tensor Decomposition
Version 1.0.5
Author Koki Tsuyuzaki, Manabu Ishii, Itoshi Nikaido
Maintainer Koki Tsuyuzaki k.t.the-answer@hotmail.co.jp
Suggests testhat
Depends R (>= 3.4.0)
Imports methods, fields, rTensor, plot3D, tagcloud, ggplot2
Description Some functions for performing non-negative matrix factorization, non-negative CANDE-COMP/PARAFAC (CP) decomposition, non-negative Tucker decomposition, and generat-ing toy model data. See Andrzej Ci-
chock et al (2009) doi:10.1002/9780470747278 and the reference sec-
tion of GitHub README.md https://github.com/rikenbit/nnTensor, for details of the methods
License Artistic-2.0
URL https://github.com/rikenbit/nnTensor
NeedsCompilation no
Repository CRAN
Date/Publication 2020-06-04 11:50:10 UTC
R topics documented:
nnTensor-package 2
jNMF 4
NMF 5
NTD 7
NTF 9
plot.NMF 11
plotTensor3D 12
recTensor 13
siNMF 14
toyModel 15
Index 17

```
nnTensor-package Non-Negative Tensor Decomposition
```


Description

Some functions for performing non-negative matrix factorization, non-negative CANDECOMP/PARAFAC (CP) decomposition, non-negative Tucker decomposition, and generating toy model data. See Andrzej Cichock et al (2009) doi:10.1002/9780470747278 and the reference section of GitHub README.md https://github.com/rikenbit/nnTensor, for details of the methods.

Details

The DESCRIPTION file:

```
Package: nnTensor
Type: Package
Title: Non-Negative Tensor Decomposition
Version: 1.0.5
Author: Koki Tsuyuzaki, Manabu Ishii, Itoshi Nikaido
Maintainer: Koki Tsuyuzaki <k.t.the-answer@hotmail.co.jp>
Suggests: testthat
Depends: R (>= 3.4.0)
Imports: methods, fields, rTensor, plot3D, tagcloud, ggplot2
Description: Some functions for performing non-negative matrix factorization, non-negative CANDECOMP/PARAFAC (C)
License: Artistic-2.0
URL: https://github.com/rikenbit/nnTensor
```

Index of help topics:

```
NMF Non-negative Matrix Factorization Algorithms
    (NMF)
NTD Non-negative Tucker Decomposition Algorithms
    (NTD)
NTF Non-negative CP Decomposition Algorithms (NTF)
jNMF Joint Non-negative Matrix Factorization
Algorithms (jNMF)
nnTensor-package Non-Negative Tensor Decomposition
plot.NMF Plot function of the result of NMF function
plotTensor3D Plot function for visualization of tensor data
    structure
recTensor Tensor Reconstruction from core tensor (S) and
    factor matrices (A)
    Simultaneous Non-negative Matrix Factorization
    Algorithms (siNMF)
toyModel Toy model data for using NMF, NTF, and NTD
```


Author(s)

Koki Tsuyuzaki, Manabu Ishii, Itoshi Nikaido
Maintainer: Koki Tsuyuzaki k.t.the-answer@hotmail.co.jp

References

Andrzej CICHOCK, et. al., (2009). Nonnegative Matrix and Tensor Factorizations. John Wiley \& Sons, Ltd

Keigo Kimura, (2017). A Study on Efficient Algorithms for Nonnegative Matrix/Tensor Factorization. Hokkaido University Collection of Scholarly and Academic Papers
Andrzej CICHOCKI et. al., (2007). Non-negative Tensor Factorization using Alpha and Beta Divergence. IEEE ICASSP 2007
Anh Huy PHAN et. al., (2008). Multi-way Nonnegative Tensor Factorization Using Fast Hierarchical Alternating Least Squares Algorithm (HALS). NOLTA2008
Andrzej CICHOCKI et. al., (2008). Fast Local Algorithms for Large Scale Nonnegative Matrix and Tensor Factorizations. IEICE Transactions on Fundamentals of Electronics, Communications and Computer Sciences

Yong-Deok Kim et. al., (2007). Nonnegative Tucker Decomposition. IEEE Conference on Computer Vision and Pattern Recognition
Yong-Deok Kim et. al., (2008). Nonneegative Tucker Decomposition With Alpha-Divergence. IEEE International Conference on Acoustics, Speech and Signal Processing
Anh Huy Phan, (2008). Fast and efficient algorithms for nonnegative Tucker decomposition. Advances in Neural Networks - ISNN2008

Anh Hyu Phan et. al. (2011). Extended HALS algorithm for nonnegative Tucker decomposition and its applications for multiway analysis and classification. Neurocomputing
Jean-Philippe Brunet. et. al., (2004). Metagenes and molecular pattern discovery using matrix factorization. PNAS

Xiaoxu Han. (2007). CANCER MOLECULAR PATTERN DISCOVERY BY SUBSPACE CONSENSUS KERNEL CLASSIFICATION

Attila Frigyesi. et. al., (2008). Non-Negative Matrix Factorization for the Analysis of Complex Gene Expression Data: Identification of Clinically Relevant Tumor Subtypes. Cancer Informatics
Haesun Park. et. al., (2019). Lecture 3: Nonnegative Matrix Factorization: Algorithms and Applications. SIAM Gene Golub Summer School, Aussois France, June 18, 2019
Chunxuan Shao. et. al., (2017). Robust classification of single-cell transcriptome data by nonnegative matrix factorization. Bioinformatics
Paul Fogel (2013). Permuted NMF: A Simple Algorithm Intended to Minimize the Volume of the Score Matrix

Philip M. Kim. et. al., (2003). Subsystem Identification Through Dimensionality Reduction of Large-Scale Gene Expression Data. Genome Research
Lucie N. Hutchins. et. al., (2008). Position-dependent motif characterization using non-negative matrix factorization. Bioinformatics

Patrik O. Hoyer (2004). Non-negative Matrix Factorization with Sparseness Constraints. Journal of Machine Learning 5

See Also

toyModel,NMF,NTF,NTD,recTensor,plotTensor3D

Examples

ls("package:nnTensor")
jNMF Joint Non-negative Matrix Factorization Algorithms (jNMF)

Description

The input data objects are assumed to be non-negative matrices. jNMF decompose the matrices to two low-dimensional factor matices simultaneously.

Usage

jNMF (X, M=NULL, initW=NULL, initV=NULL, initH=NULL, fixW=FALSE, fixV=FALSE, fixH=FALSE, J = 3, w=NULL, algorithm = c("Frobenius", "KL", "IS", "PLTF"), $\mathrm{p}=1$, thr $=1 \mathrm{e}-10$, num.iter $=100$, viz $=$ FALSE, figdir $=$ NULL, verbose $=$ FALSE)

Arguments

X
M
initW The initial values of factor matrix W, which has N-rows and J-columns (Default: NULL).
initV A list containing the initial values of multiple factor matrices ($\mathrm{V} _\mathrm{k},\left\langle\mathrm{N}^{*} \mathrm{~J}\right\rangle$, $\mathrm{k}=1$..K, Default: NULL).
inith A list containing the initial values of multiple factor matrices ($\left.\mathrm{H} _\mathrm{k},<\mathrm{Mk} * \mathrm{~J}\right\rangle$, k=1..K, Default: NULL).
fixW Whether the factor matrix W is updated in each iteration step (Default: FALSE).
fixV Whether the factor matrices Vk are updated in each iteration step (Default: FALSE).
fixH Whether the factor matrices Hk are updated in each iteration step (Default: FALSE).
$\mathrm{J} \quad$ Number of low-dimension $(\mathrm{J}<\mathrm{N}, \mathrm{Mk})$.
w Weight vector (Default: NULL)
algorithm Divergence between X and X_bar. "Frobenius", "KL", and "IS" are available (Default: "KL").
p The parameter of Probabilistic Latent Tensor Factorization ($\mathrm{p}=0$: Frobenius, $\mathrm{p}=1: \mathrm{KL}, \mathrm{p}=2$: IS)

thr	When error change rate is lower than thr, the iteration is terminated (Default:
num.iter	TE-10).
viz	If viz == TRUE
figdir internal reconstructed matrix can be visualized.	
verbose	the directory for saving the figure, when viz == TRUE.
	If verbose == TRUE, Error change rate is generated in console windos.

Value

W : A matrix which has N-rows and J-columns ($\mathrm{J}<\mathrm{N}, \mathrm{Mk}$). V : A list which has multiple elements containing N -rows and J -columns $(\mathrm{J}<\mathrm{N}, \mathrm{Mk}) . \mathrm{H}$: A list which has multiple elements containing Mk-rows and J-columns matrix ($\mathrm{J}<\mathrm{N}, \mathrm{Mk}$). RecError : The reconstruction error between data matrix and reconstructed matrix from W and H. TrainRecError : The reconstruction error calculated by training set (observed values specified by M). TestRecError : The reconstruction error calculated by test set (missing values specified by M). RelChange : The relative change of the error.

Author(s)

Koki Tsuyuzaki

References

Liviu Badea, (2008) Extracting Gene Expression Profiles Common to Colon and Pancreatic Adenocarcinoma using Simultaneous nonnegative matrix factorization. Pacific Symposium on Biocomputing 13:279-290
Shihua Zhang, et al. (2012) Discovery of multi-dimensional modules by integrative analysis of cancer genomic data. Nucleic Acids Research 40(19), 9379-9391

Zi Yang, et al. (2016) A non-negative matrix factorization method for detecting modules in heterogeneous omics multi-modal data, Bioinformatics 32(1), 1-8
Y. Kenan Yilmaz et al., (2010) Probabilistic Latent Tensor Factorization, International Conference on Latent Variable Analysis and Signal Separation 346-353

Examples

matdata <- toyModel(model = "siNMF_Hard")
out <- jNMF (matdata, J=2, num.iter=2)

Description

The input data is assumed to be non-negative matrix. NMF decompose the matrix to two lowdimensional factor matices. This function is also used as initialization step of tensor decomposition (see also NTF and NTD).

Usage

```
NMF(X, M=NULL, initU=NULL, initV=NULL, fixU=FALSE, fixV=FALSE, J = 3,
    rank.method=c("all", "ccc", "dispersion", "rss", "evar", "residuals",
            "sparseness.basis", "sparseness.coef", "sparseness2.basis",
            "sparseness2.coef", "norm.info.gain.basis", "norm.info.gain.coef",
            "singular", "volume", "condition"), runtime=30,
    algorithm = c("Frobenius", "KL", "IS", "Pearson", "Hellinger", "Neyman",
            "Alpha", "Beta", "PGD", "HALS", "GCD"), Alpha = 1, Beta = 2,
        eta = 1e-04, thr1 = 1e-10, thr2 = 1e-10, tol = 1e-04,
    num.iter = 100, viz = FALSE, figdir = NULL, verbose = FALSE)
```


Arguments

X
M
initU
initV The initial values of factor matrix V, which has M-rows and J-columns (Default: NULL).
fixU Whether the factor matrix U is updated in each iteration step (Default: FALSE).
fixV Whether the factor matrix V is updated in each iteration step (Default: FALSE).
J
rank.method The rank estimation method (Default: "all"). Only if the J option is specified as a numerical vector longer than two, this option will be active.
runtime The number of trials to estimate rank (Default: 10).
algorithm NMF algorithms. "Frobenius", "KL", "IS", "Pearson", "Hellinger", "Neyman", "HALS", "PGD", "Alpha", "Beta", and "GCD" are available (Default: "KL").

Alpha The parameter of Alpha-divergence.
Beta
eta
thr1 When error change rate is lower than thr1, the iteration is terminated (Default: $1 \mathrm{E}-10$).
thr2 If the minus-value is generated, replaced as thr2 (Default: 1E-10). This value is used within the internal function .positive().
tol The tolerance parameter used in GCD algorithm.
num.iter The number of interation step (Default: 100).
viz If viz == TRUE, internal reconstructed matrix can be visualized.
figdir The directory for saving the figure, when viz == TRUE.
verbose If verbose $==$ TRUE, Error change rate is generated in console window.

Value

U : A matrix which has N-rows and J-columns ($\mathrm{J}<\mathrm{N}, \mathrm{M}$). V : A matrix which has M-rows and J-columns ($\mathrm{J}<\mathrm{N}, \mathrm{M}$). J : The number of dimension $(\mathrm{J}<\mathrm{N}, \mathrm{M})$. RecError : The reconstruction error between data tensor and reconstructed tensor from U and V. TrainRecError : The reconstruction error calculated by training set (observed values specified by M). TestRecError : The reconstruction error calculated by test set (missing values specified by M). RelChange : The relative change of the error. Trial : All the results of the trials to estimate the rank. Runtime : The number of the trials to estimate the rank. RankMethod : The rank estimation method.

Author(s)

Koki Tsuyuzaki

References

Andrzej CICHOCK, et. al., (2009). Nonnegative Matrix and Tensor Factorizations. John Wiley \& Sons, Ltd

Keigo Kimura, (2017). A Study on Efficient Algorithms for Nonnegative Matrix/ Tensor Factorization. Hokkaido University Collection of Scholarly and Academic Papers

Examples

```
if(interactive()){
    # Test data
    matdata <- toyModel(model = "NMF")
    # Simple usage
    out <- NMF(matdata, J=5)
    # Rank estimation mode (single method)
    out2 <- NMF(matdata, J=2:10, rank.method="ccc", runtime=3)
    plot(out2)
    # Rank estimation mode (all method)
    out3 <- NMF(matdata, J=2:10, rank.method="all", runtime=10)
    plot(out3)
}
```


Description

The input data is assumed to be non-negative tensor. NTD decompose the tensor to the dense core tensor (S) and low-dimensional factor matices (A).

Usage

NTD(X, M=NULL, initS=NULL, initA=NULL, fixS=FALSE, fixA=FALSE, rank $=c(3,3,3)$, modes $=1: 3$, algorithm = c("Frobenius", "KL", "IS", "Pearson", "Hellinger",
"Neyman", "HALS", "Alpha", "Beta"), init = c("NMF", "ALS", "Random"), Alpha = 1, Beta $=2$, thr $=1 \mathrm{e}-10$, num.iter $=100$, viz $=$ FALSE, figdir = NULL, verbose = FALSE)

Arguments

X	The input tensor which has I1, I2, and I3 dimensions.
M	The mask tensor which has I1, I2, and I3 dimensions. If the mask tensor has missing values, specify the element as 0 (otherwise 1).
initS	The initial values of core tensor which has J1, J2, and J3 dimensions (Default: NULL).
initA	A list containing the initial values of multiple factor matrices $\left(\mathrm{A} _\mathrm{k},\langle\mathrm{Ik} * \mathrm{Jk}\rangle\right.$, $\mathrm{k}=1$..K, Default: NULL).
fixs	Whether the core tensor S is updated in each iteration step (Default: FALSE).
fixA	Whether the factor matrices Ak are updated in each iteration step (Default: FALSE).
rank	The number of low-dimension in each mode (J1, J2, J3, J1<I1, J2<I2, J3 < I3) (Default: $c(3,3,3)$).
modes	The vector of the modes on whih to perform the decomposition (Default: 1:3 <all modes>).
algorithm	NTD algorithms. "Frobenius", "KL", "IS", "Pearson", "Hellinger", "Neyman", "HALS", "Alpha", and "Beta" are available (Default: "Frobenius").
init	The initialization algorithms. "NMF", "ALS", and "Random" are available (Default: "NMF").
Alpha	The parameter of Alpha-divergence.
Beta	The parameter of Beta-divergence.
thr	When error change rate is lower than thr1, the iteration is terminated (Default: 1E-10).
num.iter	The number of interation step (Default: 100).
viz	If viz $==$ TRUE, internal reconstructed tensor can be visualized.
figdir	the directory for saving the figure, when viz == TRUE (Default: NULL).
verbose	If verbose $==$ TRUE, Error change rate is generated in console windos.

Value

S : Tensor object, which is defined as S4 class of rTensor package. A : A list containing three factor matrices. RecError : The reconstruction error between data tensor and reconstructed tensor from S and A. TrainRecError : The reconstruction error calculated by training set (observed values specified by M). TestRecError : The reconstruction error calculated by test set (missing values specified by M). RelChange : The relative change of the error.

Author(s)

Koki Tsuyuzaki

References

Yong-Deok Kim et. al., (2007). Nonnegative Tucker Decomposition. IEEE Conference on Computer Vision and Pattern Recognition

Yong-Deok Kim et. al., (2008). Nonneegative Tucker Decomposition With Alpha-Divergence. IEEE International Conference on Acoustics, Speech and Signal Processing

Anh Huy Phan, (2008). Fast and efficient algorithms for nonnegative Tucker decomposition. Advances in Neural Networks - ISNN2008

Anh Hyu Phan et. al. (2011). Extended HALS algorithm for nonnegative Tucker decomposition and its applications for multiway analysis and classification. Neurocomputing

See Also

plotTensor3D

Examples

```
tensordata <- toyModel(model = "Tucker")
out <- NTD(tensordata, rank=c(2,2,2), algorithm="Frobenius",
    init="Random", num.iter=2)
```


NTF

Non-negative CP Decomposition Algorithms (NTF)

Description

The input data is assumed to be non-negative tensor. NTF decompose the tensor to the diagonal core tensor (S) and low-dimensional factor matices (A).

Usage

NTF (X, M=NULL, initA=NULL, fixA=FALSE, rank = 3, algorithm = c("Frobenius", "KL", "IS", "Pearson", "Hellinger", "Neyman",
"HALS", "Alpha-HALS", "Beta-HALS", "Alpha", "Beta"),
init = c("NMF", "ALS", "Random"), Alpha = 1,
Beta $=2$, thr $=1 \mathrm{e}-10$, num.iter $=100$, viz = FALSE,
figdir $=$ NULL, verbose $=$ FALSE)

Arguments

X	The input tensor which has I1, I2, and I3 dimensions.
M	The mask tensor which has I1, I2, and I3 dimensions. If the mask tensor has missing values, specify the element as 0 (otherwise 1).
initA	A list containing the initial values of multiple factor matrices (A_k, < Ik*Jk>, k=1..K, Default: NULL).
fixA	Whether the factor matrices Ak are updated in each iteration step (Default: FALSE).
rank	The number of low-dimension in each mode ($\mathrm{J} 1=\mathrm{J} 2=\mathrm{J} 3, \mathrm{~J} 1<\mathrm{I} 1, \mathrm{~J} 2<\mathrm{I} 2, \mathrm{~J} 3<\mathrm{I} 3$) (Default: 3).
algorithm	NTF algorithms. "Frobenius", "KL", "IS", "Pearson", "Hellinger", "Neyman", "HALS", "Alpha-HALS", "Beta-HALS", "Alpha", and "Beta" are available (Default: "Frobenius").
init	The initialization algorithms. "NMF", "ALS", and "Random" are available (Default: "NMF").
Alpha	The parameter of Alpha-divergence.
Beta	The parameter of Beta-divergence.
thr	When error change rate is lower than thr1, the iteration is terminated (Default: 1E-10).
num.iter	The number of interation step (Default: 100).
viz	If viz $==$ TRUE, internal reconstructed tensor can be visualized.
figdir	the directory for saving the figure, when viz == TRUE (Default: NULL).
verbose	If verbose $==$ TRUE, Error change rate is generated in console windos.

Value

S : Tensor object, which is defined as S4 class of rTensor package. A : A list containing three factor matrices. RecError : The reconstruction error between data tensor and reconstructed tensor from S and A. TrainRecError : The reconstruction error calculated by training set (observed values specified by M). TestRecError : The reconstruction error calculated by test set (missing values specified by M). RelChange : The relative change of the error.

Author(s)

Koki Tsuyuzaki

References

Andrzej CICHOCKI et. al., (2007). Non-negative Tensor Factorization using Alpha and Beta Divergence. IEEE ICASSP 2007
Anh Huy PHAN et. al., (2008). Multi-way Nonnegative Tensor Factorization Using Fast Hierarchical Alternating Least Squares Algorithm (HALS). NOLTA2008

Andrzej CICHOCKI et. al., (2008). Fast Local Algorithms for Large Scale Nonnegative Matrix and Tensor Factorizations. IEICE Transactions on Fundamentals of Electronics, Communications and Computer Sciences

See Also

plotTensor3D

Examples

```
tensordata <- toyModel(model = "CP")
out <- NTF(tensordata, rank=3, algorithm="Beta-HALS", num.iter=2)
```

plot.NMF Plot function of the result of NMF function

Description

Only if \mathbf{J} is specified as a vector longer than 1 , this function will be active.

Usage

plot(x, ...)

Arguments

x
The result of NMF function (NMF class).
... Optional parameter for plot.

Value

A ggplot will be gerarated.

Author(s)

Koki Tsuyuzaki

References

Jean-Philippe Brunet. et. al., (2004). Metagenes and molecular pattern discovery using matrix factorization. PNAS

Xiaoxu Han. (2007). CANCER MOLECULAR PATTERN DISCOVERY BY SUBSPACE CONSENSUS KERNEL CLASSIFICATION
Attila Frigyesi. et. al., (2008). Non-Negative Matrix Factorization for the Analysis of Complex Gene Expression Data: Identification of Clinically Relevant Tumor Subtypes. Cancer Informatics
Haesun Park. et. al., (2019). Lecture 3: Nonnegative Matrix Factorization: Algorithms and Applications. SIAM Gene Golub Summer School, Aussois France, June 18, 2019
Chunxuan Shao. et. al., (2017). Robust classification of single-cell transcriptome data by nonnegative matrix factorization. Bioinformatics
Paul Fogel (2013). Permuted NMF: A Simple Algorithm Intended to Minimize the Volume of the Score Matrix

Philip M. Kim. et. al., (2003). Subsystem Identification Through Dimensionality Reduction of Large-Scale Gene Expression Data. Genome Research

Lucie N. Hutchins. et. al., (2008). Position-dependent motif characterization using non-negative matrix factorization. Bioinformatics
Patrik O. Hoyer (2004). Non-negative Matrix Factorization with Sparseness Constraints. Journal of Machine Learning 5

Examples

plot.NMF
plotTensor3D Plot function for visualization of tensor data structure

Description

Combined with recTensor function and the result of NTF or NTD, the reconstructed tesor structure can be visullized.

Usage
 plotTensor3D(X = NULL)

Arguments

X Tensor object, which is defined as S4 class of rTensor package.

Author(s)

Koki Tsuyuzaki

Examples

```
tensordata <- toyModel(model = "CP")
out <- NTF(tensordata, rank=3, algorithm="Beta-HALS", num.iter=2)
tmp <- tempdir()
png(filename=paste0(tmp, "/NTF.png"))
plotTensor3D(recTensor(out$S, out$A))
dev.off()
```


Description

Combined with plotTensor3D function and the result of NTF or NTD, the reconstructed tesor structure can be visullized.

Usage

$\operatorname{recTensor}(S=$ NULL, $A=$ NULL, $i d x=1: 3$, reverse $=$ FALSE $)$

Arguments

S Tensor object, which is defined as S4 class of rTensor package.
A A list containing three factor matrices.
idx The direction of mode-n muliplication (Default: 1:3). For example idx=1 is defined. $\mathrm{S} x _1 \mathrm{~A}$ is calculated ($\mathrm{x} _1$: mode-1 multiplication).
reverse If reverse $=$ TRUE, $\mathrm{t}(\mathrm{A}[[\mathrm{n}]])$ is multiplicated to $\mathrm{S}($ Default: FALSE $)$.

Value

Tensor object, which is defined as S 4 class of rTensor package.

Author(s)

Koki Tsuyuzaki

See Also

Tensor-class, NTF, NTD

Examples

```
tensordata <- toyModel(model = "CP")
out <- NTF(tensordata, rank=3, algorithm="Beta-HALS", num.iter=2)
rec <- recTensor(out$S, out$A)
```


Description

The input data objects are assumed to be non-negative matrices. siNMF decompose the matrices to two low-dimensional factor matices simultaneously.

Usage

siNMF (X, M=NULL, initW=NULL, initH=NULL, fixW=FALSE, fixH=FALSE, J = 3, w=NULL, algorithm = c("Frobenius", "KL", "IS", "PLTF"), p=1, thr $=1 \mathrm{e}-10$, num.iter $=100$, viz = FALSE, figdir = NULL, verbose = FALSE)

Arguments

X
M A list containing the mask matrices ($\mathrm{X} _\mathrm{k},<\mathrm{N}^{*} \mathrm{Mk}>, \mathrm{k}=1 . . \mathrm{K}$). If the input matrix has missing values, specify the element as 0 (otherwise 1).
initW The initial values of factor matrix W, which has N-rows and J-columns (Default: NULL).
inith A list containing the initial values of multiple factor matrices ($\left.\mathrm{H}_{-} \mathrm{k},<\mathrm{Mk}^{*} \mathrm{~J}\right\rangle$, $\mathrm{k}=1 . . \mathrm{K}$, Default: NULL).
fixW Whether the factor matrix W is updated in each iteration step (Default: FALSE).
fixH Whether the factor matrices Hk are updated in each iteration step (Default: FALSE).
J Number of low-dimension ($\mathrm{J}<\mathrm{N}, \mathrm{Mk}$).
w Weight vector (Default: NULL)
algorithm Divergence between X and X_bar. "Frobenius", "KL", and "IS" are available (Default: "KL").
p The parameter of Probabilistic Latent Tensor Factorization ($\mathrm{p}=0$: Frobenius, $\mathrm{p}=1$: KL, $\mathrm{p}=2$: IS)
thr When error change rate is lower than thr, the iteration is terminated (Default: 1E-10).
num.iter \quad The number of interation step (Default: 100).
viz
figdir the directory for saving the figure, when viz == TRUE.
verbose If verbose $==$ TRUE, Error change rate is generated in console windos.

Value

W : A matrix which has N -rows and J-columns ($\mathrm{J}<\mathrm{N}, \mathrm{Mk}$). H : A list which has multiple elements containing Mk-rows and J-columns matrix ($\mathrm{J}<\mathrm{N}, \mathrm{Mk}$). RecError : The reconstruction error between data matrix and reconstructed matrix from W and H . TrainRecError : The reconstruction error calculated by training set (observed values specified by M). TestRecError : The reconstruction error calculated by test set (missing values specified by M). RelChange : The relative change of the error.

Author(s)

Koki Tsuyuzaki

References

Liviu Badea, (2008) Extracting Gene Expression Profiles Common to Colon and Pancreatic Adenocarcinoma using Simultaneous nonnegative matrix factorization. Pacific Symposium on Biocomputing 13:279-290
Shihua Zhang, et al. (2012) Discovery of multi-dimensional modules by integrative analysis of cancer genomic data. Nucleic Acids Research 40(19), 9379-9391
Zi Yang, et al. (2016) A non-negative matrix factorization method for detecting modules in heterogeneous omics multi-modal data, Bioinformatics 32(1), 1-8
Y. Kenan Yilmaz et al., (2010) Probabilistic Latent Tensor Factorization, International Conference on Latent Variable Analysis and Signal Separation 346-353

Examples

matdata <- toyModel(model = "siNMF_Easy")
out <- siNMF(matdata, J=2, num.iter=2)
toyModel
Toy model data for using NMF, NTF, and NTD

Description

The data is used for confirming the algorithm are properly working.

Usage

toyModel(model = "CP", seeds=123)

Arguments

model Single character string is specified. "NMF", "CP", and "Tucker" are available (Default: "CP").
seeds Random number for setting set.seeds in the function (Default: 123).

Value

If model is specified as "NMF", a matrix is generated. Otherwise, a tensor is generated.

Author(s)

Koki Tsuyuzaki

See Also
NMF, NTF, NTD

Examples

```
matdata <- toyModel(model = "NMF", seeds=123)
tensordata1 <- toyModel(model = "CP", seeds=123)
tensordata2 <- toyModel(model = "Tucker", seeds=123)
```


Index

*Topic methods

jNMF, 4
NMF, 5
NTD, 7
NTF, 9
plot. NMF, 11
plotTensor3D, 12
recTensor, 13
siNMF, 14
toyModel, 15
$*$ Topic package
nnTensor-package, 2
jNMF, 4
NMF, 4, 5, 16
nnTensor (nnTensor-package), 2
nnTensor-package, 2
NTD, 4, 7, 13, 16
NTF, 4, 9, 13, 16
plot (plot.NMF), 11
plot.NMF, 11
plotTensor3D, 4, 9, 11, 12
recTensor, 4, 13
siNMF, 14
toyModel, 4, 15

