
Package ‘nmfgpu4R’
October 17, 2016

Type Package

Title Non-Negative Matrix Factorization (NMF) using CUDA

Version 0.2.5.2

Date 2016-10-17

Author Sven Koitka [aut, cre, cph],
Christoph M. Friedrich [ctb]

Maintainer Sven Koitka <sven.koitka@fh-dortmund.de>

Description Wrapper package for the nmfgpu library, which implements several
Non-negative Matrix Factorization (NMF) algorithms for CUDA platforms.
By using the acceleration of GPGPU computing, the NMF can be used for
real-world problems inside the R environment. All CUDA devices starting with
Kepler architecture are supported by the library.

License GPL-3 | file LICENSE

URL https://github.com/razorx89/nmfgpu4R

BugReports https://github.com/razorx89/nmfgpu4R/issues

Depends R (>= 3.1.0)

Imports Rcpp (>= 0.11.4), Matrix, SparseM, stats, stringr, tools,
utils

Suggests gdata

LinkingTo Rcpp

RoxygenNote 5.0.1

SystemRequirements CUDA >= v7.0, Nvidia GPU (e.g. GeForce or Tesla)
with compute capability >= 3.0 (Kepler)

NeedsCompilation yes

Repository CRAN

Date/Publication 2016-10-17 12:41:21

1

https://github.com/razorx89/nmfgpu4R
https://github.com/razorx89/nmfgpu4R/issues

2 deviceCount

R topics documented:
chooseDevice . 2
deviceCount . 2
deviceMemoryInfo . 3
nmf . 3
nmfgpu4R . 7
nmfgpu4R.init . 8
print.DeviceMemoryInfo . 9

Index 10

chooseDevice Selects the specified device as primary computation device. All further
invocations to nmfgpu will use the specified CUDA device.

Description

Selects the specified device as primary computation device. All further invocations to nmfgpu will
use the specified CUDA device.

Usage

chooseDevice(deviceIndex)

Arguments

deviceIndex Index of the CUDA device, which should be used for computation.

Note

CUDA enumerates devices starting with 0 for the first device.

deviceCount Retrieves the total number of installed CUDA devices.

Description

Retrieves the total number of installed CUDA devices.

Usage

deviceCount()

nmf 3

deviceMemoryInfo Requests the currently available and total amount of device memory.

Description

Requests the currently available and total amount of device memory.

Usage

deviceMemoryInfo(deviceIndex = NA)

Arguments

deviceIndex If specified the memory info retrieval is restricted to the passed device indices.
By default no restriction is active and therefore memory information about all
available CUDA devices are retrieved.

Value

On success a list of lists will be returned, containing the following informations:

index Index of the CUDA device
free.bytes Amount of free memory in bytes.
total.bytes Total amount of memory in bytes.

nmf Non-negative Matrix Factorization (NMF) on GPU

Description

Computes the non-negative matrix factorization of a data matrix X using the factorization parame-
ter r. Multiple algorithms and initialization methods are implemented in the nmfgpu library using
CUDA hardware acceleration. Depending on the available hardware, these algorithms should out-
perform traditional CPU implementations.

Usage

nmf(...)

Default S3 method:
nmf(data, r, algorithm = "mu",
initMethod = "AllRandomValues", seed = floor(runif(1, 0,
.Machine$integer.max)), threshold = 0.1, maxiter = 2000, runs = 1,
parameters = NULL, useSinglePrecision = F, verbose = T, ssnmf = F,
...)

4 nmf

S3 method for class 'formula'
nmf(formula, data, ...)

S3 method for class 'nmfgpu'
fitted(object, ...)

S3 method for class 'nmfgpu'
predict(object, newdata, ...)

Arguments

... Other arguments

data Data matrix of dimension n x m with n attributes and m observations. Please
note that this differs from most other data mining/machine learning algorithms!

r Factorization parameter, which affects the quality of the approximation and run-
time.

algorithm Choosing the right algorithm depends on the data structure. Currently the fol-
lowing algorithms are implemented in the nmfgpu library:

• mu: Multiplicative update rules presented by Lee and Seung [2] use a
purely multiplicative update and are a special form of the gradient descent
algorithm (special step parameter). The implemented update rules make
use of the frobenius norm and therefore are faster than the Kullback-Leibler
ones.

• gdcls: Gradient Descent Constrained Least Squares (GDCLS) presented
by Pauca et al [3,4] is a hybrid algorithm. It uses a least squares solver
for updating matrix H and the multiplicative update rule for W as defined by
Lee and Seung [2]. Additionaly the GDCLS algorithm uses the parameter
lambda from the parameters argument to control the sparsity of the matrix
H. As from the authors presented, the sparsity parameter lambda should be
between 0.1 and 0.0001, but at least positive.

• als: Alternating Least Squares (ALS) originally presented by Paatero and
Tapper [1,4] uses a least squares solver for updating both matrices W and H.

• acls: Alternating Constrained Least Squares (ACLS) presented by Langville
et al [4] enhances the normal ALS algorithm by introducing sparsity pa-
rameters. Both lambdaW and lambdaH must be provided in the parameters
argument and must be in the range of 0 and positive infinity.

• ahcls: Alternating Hoyer Constrained Least Squares (AHCLS) presented
by Langville et al [4] enhances the ACLS algorithm by introducing a second
set of sparsity parameters. Additionaly to lambdaW and lambdaH the spar-
sity parameters alphaH and alphaW must be provided in the parameters
argument. Both should be set in the range of 0.0 and 1.0, representing a
percentage sparsity for each matrix. As recommended by the authors all
four parameters should be set to 0.5 as starting values.)

• nsnmf: Non-smooth Non-negative Matrix Factorization (nsNMF) presented
by Pascual-Montano et al [6] is an enhancement to the multiplicative update

nmf 5

rules [2]. With an extra parameter theta the user has control over the in-
fluence of the model. The value should be in the range of 0.0 and 1.0 to
work like intended.

initMethod All initialization methods depend on the selected algorithm. Using the fact that
a least squares type algorithm computes the matrix H in the first step, does make
an initialization for H unnecessary. Therefore only the initialization method for
matrix W will be executed for any least squares type algorithm.

• CopyExisting: Initializes the factorization matrices W and H with existing
values, which requires W and H to be set in the parameters argument. On
the one hand this enables the user to chain different algorithms, for exam-
ple using a fast converging algorithm for a base approximation and and a
slow algorithm with better convergence properties to finish the optimization
process. On the other hand the user can supply matrix intializations, which
are not supported by this interface. Note: Both W and H must have the same
dimension as they would have from the passed arguments X and r.

• AllRandomValues: Initializes the factorization matrices W and H with uni-
formly distributed values between 0.0 and 1.0, where 0.0 is excluded and
1.0 is included.

• MeanColumns: Initializes the factorization matrix W by computing the
mean of five random data matrix columns. The matrix H will be initialized
as it would when using AllRandomValues.

• k-Means/Random: Initializes the factorization matrix W by computing the
k-Means cluster centers of the data matrix. The matrix H will be initialized
as it would when using AllRandomValues. This method was presented by
Gong et al [5] as initialization strategy H2.

• k-Means/NonNegativeWTV: Initializes the factorization matrix W by com-
puting the k-Means cluster centers of the data matrix. The matrix H will be
initialized with the product t(W) %*% V, but all negative values are clamped
to zero. This method was presented by Gong et al [5] as initialization strat-
egy H4.

• EIn-NMF: Initializes the factorization matrix W by computing the k-Means
cluster centers of the data matrix. The matrix H will be initialized with a
prefix sum equation to build weighted encoding vectors. This method was
presented by Gong et al [5] as initialization strategy H5.

seed The seed is used to initialize the random number generators for initializing the
factorization matrices. Setting this argument to a fixed value ensures the same
initialization of the matrices. This can be handy for benchmarking different
algorithms with the same initialization.

threshold First convergence criterion: The threshold is used to determine if the algo-
rithm has converged to a local minimum by checking the difference between the
last frobenius norm and the current one. If it is below the threshold, then the
algorithm is assumed to be converged.

maxiter Second convergence criterion: If the first convergence criterion is not reached,
but a maximum number of iterations, the execution of the algorithm will be
aborted.

runs Performs the specified amount of runs and stores the best factorization result.

6 nmf

parameters A list of additional parameters, which are required by some algorithm and
initMethod values.

useSinglePrecision

By default R only knows about double precision numerical data types. If this
parameter is set to true, then the algorithm will convert the double precision data
to single precision for computation. The result will be converted back to double
precision data.

verbose By default information about the factorization process and current status will be
written to the console. For silent execution verbose=T may be passed, prevent-
ing any output besides error messages.

ssnmf Internal flag (Don’t use it)

formula Formula object with no intercept and labels for selected attributes. Note that die
labels are selected from the rows instead of the columns, because NMF expects
rows to be attributes.

object Object of class "nmfgpu"

newdata New data matrix compatible to the training data matrix, for computing the cor-
responding mixing matrix.

Value

If the factorization process was successful, then a list of the following values will be returned
otherwise NULL:

W Factorized matrix W with n attributes and r basis features of the data matrix.
H Factorized matrix H with r mixing vectors for m data entries in the data matrix.
Frobenius Contains the frobenius norm of the factorization at the end of algorithm execution.
RMSD Contains the root-mean-square deviation (RMSD) of the factorization at the end of algorithm execution.
ElapsedTime Contains the elapsed time for initialization and algorithm execution.
NumIterations Number of iterations until the algorithm had converged.

References

1. P. Paatero and U. Tapper, "Positive matrix factorization: A non-negative factor model with
optimal utilization of error estimates of data values", Environmetrics, vol. 5, no. 2, pp. 111-
126, 1994.

2. D. D. Lee and H. S. Seung, "Algorithms for non-negative matrix factorization", in Advances
in Neural Information Processing Systems 13 (T. Leen, T. Dietterich, and V. Tresp, eds.), pp.
556-562, MIT Press, 2001.

3. V. P. Pauca, J. Piper, and R. J. Plemmons, "Nonnegative matrix factorization for spectral data
analysis", Linear Algebra and its Applications, vol. 416, no. 1, pp. 29-47, 2006. Special Issue
devoted to the Haifa 2005 conference on matrix theory.

4. A. N. Langville, C. D. Meyer, R. Albright, J. Cox, and D. Duling, "Algorithms, initializations,
and convergence for the nonnegative matrix factorization", CoRR, vol. abs/1407.7299, 2014.

5. L. Gong and A. Nandi, "An enhanced initialization method for non-negative matrix factor-
ization", in 2013 IEEE International Workshop on Machine Learning for Signal Processing
(MLSP), pp. 1-6, Sept 2013.

nmfgpu4R 7

6. A. Pascual-Montano, J. M. Carazo, K. Kochi, D. Lehmann and R. D. Pascual-Marqui "Nons-
mooth nonnegative matrix factorization (nsNMF)", in IEEE Transactions on Pattern Analysis
and Machine Intelligence, vol. 28, pp. 403-415, 2006

Examples

Not run:
Initialize the library
library(nmfgpu4R)
nmfgpu4R.init()

Create dummy data
data <- runif(256*1024)
dim(data) <- c(256, 1024)

Compute several factorization models
result <- nmf(data, 128, algorithm="mu", initMethod="K-Means/Random", maxiter=500)
result <- nmf(data, 128, algorithm="mu", initMethod="CopyExisting",

parameters=list(W=result$W, H=result$H), maxiter=500)
result <- nmf(data, 128, algorithm="gdcls", maxiter=500, parameters=list(lambda=0.1))
result <- nmf(data, 128, algorithm="als", maxiter=500)
result <- nmf(data, 128, algorithm="acls", maxiter=500,

parameters=list(lambdaH=0.1, lambdaW=0.1))
result <- nmf(data, 128, algorithm="ahcls", maxiter=500,

parameters=list(lambdaH=0.1, lambdaW=0.1, alphaH=0.5, alphaW=0.5))
result <- nmf(data, 128, algorithm="nsnmf", maxiter=500, parameters=list(theta=0.25))

Compute encoding matrices for training and test data
set.seed(42)
idx <- sample(1:nrow(iris), 100, replace=F)
data.train <- iris[idx,]
data.test <- iris[-idx,]

model.nmf <- nmf(t(data.train[,-5]), 2)
encoding.train <- t(predict(model.nmf))
encoding.test <- t(predict(model.nmf, t(data.test[,-5])))

plot(encoding.train, col=data.train[,5], pch=1)
points(encoding.test, col=data.test[,5], pch=4)

End(Not run)

nmfgpu4R R binding for computing non-negative matrix factorizations using
CUDA

Description

R binding for the libary nmfgpu which can be used to compute Non-negative Matrix Factorizations
(NMF) using CUDA hardware acceleration.

8 nmfgpu4R.init

Details

The main function to use is nmf which can be configured using various arguments. In addition to it
a few helper functions are provided, but they aren’t necessary for using nmf.

nmfgpu4R.init Initializes the C++ library nmfgpu, which provides the core function-
ality of this package.

Description

Initializes the C++ library nmfgpu, which provides the core functionality of this package.

Usage

nmfgpu4R.init(quiet = F)

Arguments

quiet If true then informative messages about the found CUDA version and nmfgpu
location will be suppressed.

Details

As this package depends on a C++ library, there are some restrictions in terms of usage. First this
package is only compatible with x64 environments, because some CUDA libraries are not available
for x86 environments. Second you need a CUDA capable device starting with Kepler architecture,
CUDA device drivers and the CUDA toolkit with version 7.0 or higher. Lastly you need the nmfgpu
library itself. This package provides a basic service of downloading precompiled versions from
github, if it is available for your operating system and CUDA toolkit version. Otherwise you need
to compile and install the library on your own by following the instructions on https://github.
com/razorx89/nmfgpu.

Even if the package downloads a precompiled version, it must not neccessarily be compatible
with your system. For example on Windows platforms you must have installed the "Microsoft
Visual C++ Redistributable Packages for Visual Studio 2013", which can be found at https:
//www.microsoft.com/en-us/download/details.aspx?id=40784. Furthermore on unix sys-
tems there could be a version mismatch with the libstdc++.so library, because the installed com-
piler and the compiler which was used to build the binary could be different.

If you encounter any problems loading the nmfgpu library, then try to compile it by yourself.

https://github.com/razorx89/nmfgpu
https://github.com/razorx89/nmfgpu
https://www.microsoft.com/en-us/download/details.aspx?id=40784
https://www.microsoft.com/en-us/download/details.aspx?id=40784

print.DeviceMemoryInfo 9

print.DeviceMemoryInfo

Prints the information of a ’DeviceMemoryInfo’ object.

Description

Prints the information of a ’DeviceMemoryInfo’ object.

Usage

S3 method for class 'DeviceMemoryInfo'
print(x, ...)

Arguments

x Object of class ’DeviceMemoryInfo’

... Other arguments

Index

chooseDevice, 2

deviceCount, 2
deviceMemoryInfo, 3

fitted.nmfgpu (nmf), 3

nmf, 3, 8
nmfgpu4R, 7
nmfgpu4R-package (nmfgpu4R), 7
nmfgpu4R.init, 8

predict.nmfgpu (nmf), 3
print.DeviceMemoryInfo, 9

10

	chooseDevice
	deviceCount
	deviceMemoryInfo
	nmf
	nmfgpu4R
	nmfgpu4R.init
	print.DeviceMemoryInfo
	Index

