
Package ‘nimble’
May 22, 2020

Title MCMC, Particle Filtering, and Programmable Hierarchical Modeling

Description A system for writing hierarchical statistical models largely
compatible with 'BUGS' and 'JAGS', writing nimbleFunctions to operate models and
do basic R-style math, and compiling both models and nimbleFunctions via custom-
generated C++. 'NIMBLE' includes default methods for MCMC, particle filtering,
Monte Carlo Expectation Maximization, and some other tools. The nimbleFunction
system makes it easy to do things like implement new MCMC samplers from R,
customize the assignment of samplers to different parts of a model from R, and
compile the new samplers automatically via C++ alongside the samplers 'NIMBLE'
provides. 'NIMBLE' extends the 'BUGS'/'JAGS' language by making it extensible:
New distributions and functions can be added, including as calls to external
compiled code. Although most people think of MCMC as the main goal of the
'BUGS'/'JAGS' language for writing models, one can use 'NIMBLE' for writing
arbitrary other kinds of model-generic algorithms as well. A full User Manual is
available at <https://r-nimble.org>.

Version 0.9.1

Date 2020-05-19

Maintainer Christopher Paciorek <paciorek@stat.berkeley.edu>

Depends R (>= 3.1.2)

Imports methods,igraph,coda,R6

Suggests testthat

URL https://r-nimble.org, https://github.com/nimble-dev/nimble

SystemRequirements GNU make

License BSD_3_clause + file LICENSE | GPL (>= 2)

Copyright See COPYRIGHTS file.

Note For convenience, the package includes the necessary header files
for the Eigen distribution. (This is all that is needed to use
that functionality.) You can use an alternative installation of
Eigen on your system or the one we provide. The license for the
Eigen code is very permissive and allows us to distribute it
with this package. See <http://eigen.tuxfamily.org/index.php?
title=Main_Page> and also the License section on that page.

1

https://r-nimble.org
https://github.com/nimble-dev/nimble

2

Encoding UTF-8

LazyData false

Collate config.R all_utils.R options.R distributions_inputList.R
distributions_processInputList.R
distributions_implementations.R BUGS_BUGSdecl.R BUGS_contexts.R
BUGS_nimbleGraph.R BUGS_modelDef.R BUGS_model.R
BUGS_graphNodeMaps.R BUGS_readBUGS.R BUGS_macros.R
BUGS_testBUGS.R BUGS_getDependencies.R BUGS_utils.R
BUGS_mathCompatibility.R externalCalls.R genCpp_exprClass.R
genCpp_operatorLists.R genCpp_RparseTree2exprClasses.R
genCpp_initSizes.R genCpp_buildIntermediates.R
genCpp_processSpecificCalls.R genCpp_sizeProcessing.R
genCpp_toEigenize.R genCpp_insertAssertions.R genCpp_maps.R
genCpp_liftMaps.R genCpp_eigenization.R genCpp_addDebugMarks.R
genCpp_generateCpp.R RCfunction_core.R RCfunction_compile.R
nimbleFunction_util.R nimbleFunction_core.R
nimbleFunction_nodeFunction.R nimbleFunction_nodeFunctionNew.R
nimbleFunction_Rexecution.R nimbleFunction_compile.R
nimbleFunction_keywordProcessing.R nimbleList_core.R
types_util.R types_symbolTable.R types_modelValues.R
types_modelValuesAccessor.R types_modelVariableAccessor.R
types_nimbleFunctionList.R types_nodeFxnVector.R
types_numericLists.R cppDefs_utils.R cppDefs_variables.R
cppDefs_core.R cppDefs_namedObjects.R cppDefs_ADtools.R
cppDefs_BUGSmodel.R cppDefs_RCfunction.R
cppDefs_nimbleFunction.R cppDefs_nimbleList.R
cppDefs_modelValues.R cppDefs_cppProject.R
cppDefs_outputCppFromRparseTree.R cppInterfaces_utils.R
cppInterfaces_models.R cppInterfaces_modelValues.R
cppInterfaces_nimbleFunctions.R cppInterfaces_otherTypes.R
nimbleProject.R initializeModel.R CAR.R MCMC_utils.R
MCMC_configuration.R MCMC_build.R MCMC_run.R MCMC_samplers.R
MCMC_conjugacy.R MCMC_autoBlock.R MCMC_RJ.R MCEM_build.R
crossValidation.R filtering_resamplers.R filtering_auxiliary.R
filtering_liuwest.R filtering_IF2.R filtering_enkf.R
filtering_bootstrap.R filtering_utils.R BNP_distributions.R
BNP_samplers.R NF_utils.R miscFunctions.R makevars.R
setNimbleInternalFunctions.R registration.R nimble-package.r
zzz.R

RoxygenNote 5.0.1

NeedsCompilation yes

Author Perry de Valpine [aut],
Christopher Paciorek [aut, cre],
Daniel Turek [aut],
Nick Michaud [aut],
Cliff Anderson-Bergman [aut],
Fritz Obermeyer [aut],

R topics documented: 3

Claudia Wehrhahn Cortes [aut] (Bayesian nonparametrics system),
Abel Rodrìguez [aut] (Bayesian nonparametrics system),
Duncan Temple Lang [aut] (packaging configuration),
Sally Paganin [aut] (reversible jump MCMC),
Jagadish Babu [ctb] (code for the compilation system for an early
version of NIMBLE),
Dao Nguyen [ctb] (contributions to the IF2 code),
Lauren Ponisio [ctb] (contributions to the cross-validation code),
Peter Sujan [ctb] (multivariate t distribution code)

Repository CRAN

Date/Publication 2020-05-22 09:00:02 UTC

R topics documented:
ADNimbleList . 6
any_na . 6
as.carAdjacency . 7
as.carCM . 8
asRow . 9
autoBlock . 9
BUGSdeclClass-class . 11
buildAuxiliaryFilter . 11
buildBootstrapFilter . 13
buildEnsembleKF . 15
buildIteratedFilter2 . 17
buildLiuWestFilter . 19
buildMCEM . 21
buildMCMC . 24
CAR-Normal . 26
CAR-Proper . 28
carBounds . 30
carMaxBound . 31
carMinBound . 32
CAR_calcNumIslands . 33
Categorical . 33
checkInterrupt . 34
ChineseRestaurantProcess . 35
CmodelBaseClass-class . 36
CnimbleFunctionBase-class . 36
codeBlockClass-class . 36
compareMCMCs . 37
compileNimble . 37
configureMCMC . 39
configureRJ . 41
Constraint . 44
decide . 46
decideAndJump . 46

4 R topics documented:

declare . 47
deregisterDistributions . 48
Dirichlet . 49
distributionInfo . 50
Double-Exponential . 52
eigenNimbleList . 53
Exponential . 54
flat . 55
getBound . 56
getBUGSexampleDir . 57
getDefinition . 57
getLoadingNamespace . 58
getNimbleOption . 58
getParam . 59
getSamplesDPmeasure . 59
getsize . 61
identityMatrix . 61
initializeModel . 62
Interval . 63
Inverse-Gamma . 64
Inverse-Wishart . 66
is.nf . 67
is.nl . 67
makeBoundInfo . 68
makeParamInfo . 68
MCMCconf-class . 69
MCMCsuite . 74
modelBaseClass-class . 75
modelDefClass-class . 81
modelValues . 81
modelValuesBaseClass-class . 82
modelValuesConf . 83
model_macro_builder . 84
ModifiedRmmParseKeywords2 . 87
Multinomial . 87
Multivariate-t . 88
MultivariateNormal . 90
nfMethod . 91
nfVar . 92
nimble . 93
nimble-internal . 93
nimble-math . 94
nimble-R-functions . 94
nimbleCode . 95
nimbleExternalCall . 96
nimbleFunction . 98
nimbleFunctionBase-class . 99
nimbleFunctionList-class . 100

R topics documented: 5

nimbleFunctionVirtual . 100
nimbleList . 101
nimbleMCMC . 102
nimbleModel . 105
nimbleOptions . 107
nimbleRcall . 108
nimbleType-class . 109
nimCat . 110
nimCopy . 111
nimDerivs . 112
nimDim . 113
nimEigen . 114
nimMatrix . 115
nimNumeric . 116
nimOptim . 117
nimOptimDefaultControl . 119
nimPrint . 119
nimStop . 120
nimSvd . 120
nodeFunctions . 122
optimControlNimbleList . 123
optimDefaultControl . 124
optimResultNimbleList . 124
printErrors . 125
rankSample . 126
readBUGSmodel . 127
registerDistributions . 129
resize . 132
Rmatrix2mvOneVar . 133
RmodelBaseClass-class . 133
run.time . 134
runCrossValidate . 134
runMCMC . 138
samplerAssignmentRules-class . 141
sampler_BASE . 143
setAndCalculate . 156
setAndCalculateOne . 157
setSize . 158
setupOutputs . 159
simNodes . 160
simNodesMV . 161
singleVarAccessClass-class . 162
StickBreakingFunction . 163
svdNimbleList . 164
t . 164
testBUGSmodel . 166
valueInCompiledNimbleFunction . 167
values . 168

6 any_na

Wishart . 169
withNimbleOptions . 170

Index 171

ADNimbleList EXPERIMENTAL Data type for the return value of nimDerivs

Description

nimbleList definition for the type of nimbleList returned by nimDerivs.

Usage

ADNimbleList

Format

An object of class list of length 1.

Fields

value The value of the function evaluated at the given input arguments.

gradient The gradient of the function evaluated at the given input arguments.

hessian The Hessian of the function evaluated at the given input arguments.

thirdDerivs Currently unused.

See Also

nimDerivs

any_na Determine if any values in a vector are NA or NaN

Description

NIMBLE language functions that can be used in either compiled or uncompiled nimbleFunctions
to detect if there are any NA or NaN values in a vector.

Usage

any_na(x)

any_nan(x)

as.carAdjacency 7

Arguments

x vector of values

Author(s)

NIMBLE Development Team

as.carAdjacency Convert CAR structural parameters to adjacency, weights, num format

Description

This will convert alternate representations of CAR process structure into (adj, weights, num) form
required by dcar_normal.

Usage

as.carAdjacency(...)

Arguments

... Either: a symmetric matrix of unnormalized weights, or two lists specifying
adjacency indices and the corresponding unnormalized weights.

Details

Two alternate representations are handled:

A single matrix argument will be interpreted as a matrix of symmetric unnormalized weights;

Two lists will be interpreted as (the first) a list of numeric vectors specifying the adjacency (neigh-
boring) indices of each CAR process component, and (the second) a list of numeric vectors giving
the unnormalized weights for each of these neighboring relationships.

Author(s)

Daniel Turek

See Also

CAR-Normal

8 as.carCM

as.carCM Convert weights vector to parameters of dcar_proper distributio

Description

Convert weights vector to C and M parameters of dcar_proper distribution

Usage

as.carCM(adj, weights, num)

Arguments

adj vector of indices of the adjacent locations (neighbors) of each spatial location.
This is a sparse representation of the full adjacency matrix.

weights vector of symmetric unnormalized weights associated with each pair of adjacent
locations, of the same length as adj. This is a sparse representation of the full
(unnormalized) weight matrix.

num vector giving the number of neighbors of each spatial location, with length equal
to the total number of locations.

Details

Given a symmetric matrix of unnormalized weights, this function will calculate corresponding val-
ues for the C and M arguments suitable for use in the dcar_proper distribution. This function can
be used to transition between usage of dcar_normal and dcar_proper, since dcar_normal uses
the adj, weights, and num arguments, while dcar_proper requires adj, num, and also the C and M
as returned by this function.

Here, C is a sparse vector representation of the row-normalized adjacency matrix, and M is a vector
containing the conditional variance for each region. The resulting values of C and M are guaranteed
to satisfy the symmetry constraint imposed on C and M , that M−1C is symmetric, where M is a
diagonal matrix and C is the row-normalized adjacency matrix.

Value

A named list with elements C and M. These may be used as the C and M arguments to the dcar_proper
distribution.

Author(s)

Daniel Turek

See Also

CAR-Normal, CAR-Proper

asRow 9

asRow Turn a numeric vector into a single-row or single-column matrix

Description

Turns a numeric vector into a matrix that has 1 row or 1 column. Part of NIMBLE language.

Usage

asRow(x)

asCol(x)

Arguments

x Numeric to be turned into a single row or column matrix

Details

In the NIMBLE language, some automatic determination of how to turn vectors into single-row or
single-column matrices is done. For example, in A %*% x, where A is a matrix and x a vector, x will
be turned into a single-column matrix unless it is known at compile time that A is a single column,
in which case x will be turned into a single-row matrix. However, if it is desired that x be turned
into a single row but A cannot be determined at compile time to be a single column, then one can
use A %*% asRow(x) to force this conversion.

Author(s)

Perry de Valpine

autoBlock Automated parameter blocking procedure for efficient MCMC sam-
pling

Description

Runs NIMBLE’s automated blocking procedure for a given model object, to dynamically determine
a blocking scheme of the continuous-valued model nodes. This blocking scheme is designed to
produce efficient MCMC sampling (defined as number of effective samples generated per second
of algorithm runtime). See Turek, et al (2015) for details of this algorithm. This also (optionally)
compares this blocked MCMC against several static MCMC algorithms, including all univariate
sampling, blocking of all continuous-valued nodes, NIMBLE’s default MCMC configuration, and
custom-specified blockings of parameters.

10 autoBlock

Usage

autoBlock(Rmodel, autoIt = 20000, run = list("all", "default"),
setSeed = TRUE, verbose = FALSE, makePlots = FALSE, round = TRUE)

Arguments

Rmodel A NIMBLE model object, created from nimbleModel.

autoIt The number of MCMC iterations to run intermediate MCMC algorithms, through
the course of the procedure. Default 20,000.

run List of additional MCMC algorithms to compare against the automated blocking
MCMC. These may be specified as: the character string ’all’ to denote blocking
all continuous-valued nodes; the character string ’default’ to denote NIMBLE’s
default MCMC configuration; a named list element consisting of a quoted code
block, which when executed returns an MCMC configuration object for com-
parison; a custom-specificed blocking scheme, specified as a named list element
which itself is a list of character vectors, where each character vector specifies
the nodes in a particular block. Default is c(’all’, ’default’).

setSeed Logical specificying whether to call set.seed(0) prior to beginning the blocking
procedure. Default TRUE.

verbose Logical specifying whether to output considerable details of the automated block
procedure, through the course of execution. Default FALSE.

makePlots Logical specifying whether to plot the hierarchical clustering dendrograms, through
the course of execution. Default FALSE.

round Logical specifying whether to round the final output results to two decimal
places. Default TRUE.

Details

This method allows for fine-tuned usage of the automated blocking procedure. However, the main
entry point to the automatic blocking procedure is intended to be through either buildMCMC(...,
autoBlock = TRUE), or configureMCMC(..., autoBlock = TRUE).

Value

Returns a named list containing elements:

• summary: A data frame containing a numerical summary of the performance of all MCMC
algorithms (including that from automated blocking)

• autoGroups: A list specifying the parameter blockings converged on by the automated block-
ing procedure

• conf: A NIMBLE MCMC configuration object corresponding to the results of the automated
blocking procedure

Author(s)

Daniel Turek

BUGSdeclClass-class 11

References

Turek, D., de Valpine, P., Paciorek, C., and Anderson-Bergman, C. (2015). Automated Parameter
Blocking for Efficient Markov-Chain Monte Carlo Sampling. <arXiv:1503.05621>.

See Also

configureMCMC buildMCMC

BUGSdeclClass-class BUGSdeclClass contains the information extracted from one BUGS
declaration

Description

BUGSdeclClass contains the information extracted from one BUGS declaration

buildAuxiliaryFilter Create an auxiliary particle filter algorithm to estimate log-likelihood.

Description

Create an auxiliary particle filter algorithm for a given NIMBLE state space model.

Usage

buildAuxiliaryFilter(model, nodes, control = list())

Arguments

model A NIMBLE model object, typically representing a state space model or a hidden
Markov model.

nodes A character vector specifying the latent model nodes over which the particle
filter will stochastically integrate to estimate the log-likelihood function. All
provided nodes must be stochastic. Can be one of three forms: a variable name,
in which case all elements in the variable are taken to be latent (e.g., ’x’); an
indexed variable, in which case all indexed elements are taken to be latent (e.g.,
’x[1:100]’ or ’x[1:100, 1:2]’); or a vector of multiple nodes, one per time point,
in increasing time order (e.g., c("x[1:2, 1]", "x[1:2, 2]", "x[1:2, 3]", "x[1:2, 4]")).

control A list specifying different control options for the particle filter. Options are
described in the details section below.

12 buildAuxiliaryFilter

Details

Each of the control() list options are described in detail here:

lookahead The lookahead function used to calculate auxiliary weights. Can choose between 'mean'
and 'simulate'. Defaults to 'simulate'.

resamplingMethod The type of resampling algorithm to be used within the particle filter. Can
choose between 'default' (which uses NIMBLE’s rankSample() function), 'systematic',
'stratified', 'residual', and 'multinomial'. Defaults to 'default'. Resampling
methods other than 'default' are currently experimental.

saveAll Indicates whether to save state samples for all time points (TRUE), or only for the most
recent time point (FALSE)

smoothing Decides whether to save smoothed estimates of latent states, i.e., samples from f(x[1:t]|y[1:t])
if smoothing = TRUE, or instead to save filtered samples from f(x[t]|y[1:t]) if smoothing =
FALSE. smoothing = TRUE only works if saveAll = TRUE.

timeIndex An integer used to manually specify which dimension of the latent state variable indexes
time. This need only be set if the number of time points is less than or equal to the size of the
latent state at each time point.

initModel A logical value indicating whether to initialize the model before running the filtering
algorithm. Defaults to TRUE.

The auxiliary particle filter modifies the bootstrap filter (buildBootstrapFilter) by adding a
lookahead step to the algorithm: before propagating particles from one time point to the next via
the transition equation, the auxiliary filter calculates a weight for each pre-propogated particle by
predicting how well the particle will agree with the next data point. These pre-weights are used to
conduct an initial resampling step before propagation.

The resulting specialized particle filter algorthm will accept a single integer argument (m, default
10,000), which specifies the number of random \’particles\’ to use for estimating the log-likelihood.
The algorithm returns the estimated log-likelihood value, and saves unequally weighted samples
from the posterior distribution of the latent states in the mvWSamples modelValues object, with
corresponding logged weights in mvWSamples['wts',]. An equally weighted sample from the
posterior can be found in the mvEWsamp modelValues object.

The auxiliary particle filter uses a lookahead function to select promising particles before prop-
agation. This function can eithre be the expected value of the latent state at the next time point
(lookahead = 'mean') or a simulation from the distribution of the latent state at the next time point
(lookahead = 'simulate'), conditioned on the current particle.

@section returnESS() Method: Calling the returnESS() method of an auxiliary particle filter
after that filter has been run() for a given model will return a vector of ESS (effective sample size)
values, one value for each time point.

Author(s)

Nicholas Michaud

References

Pitt, M.K., and Shephard, N. (1999). Filtering via simulation: Auxiliary particle filters. Journal of
the American Statistical Association 94(446): 590-599.

buildBootstrapFilter 13

See Also

Other particle filtering methods: buildBootstrapFilter, buildEnsembleKF, buildIteratedFilter2,
buildLiuWestFilter

Examples

Not run:
model <- nimbleModel(code = ...)
my_AuxF <- buildAuxiliaryFilter(model, 'x[1:100]',

control = list(saveAll = TRUE, lookahead = 'mean'))
Cmodel <- compileNimble(model)
Cmy_AuxF <- compileNimble(my_AuxF, project = model)
logLike <- Cmy_AuxF$run(m = 100000)
ESS <- Cmy_AuxF$returnESS(m = 100000)
hist(as.matrix(Cmy_Auxf$mvEWSamples, 'x'))

End(Not run)

buildBootstrapFilter Create a bootstrap particle filter algorithm to estimate log-likelihood.

Description

Create a bootstrap particle filter algorithm for a given NIMBLE state space model.

Usage

buildBootstrapFilter(model, nodes, control = list())

Arguments

model A nimble model object, typically representing a state space model or a hidden
Markov model.

nodes A character vector specifying the latent model nodes over which the particle
filter will stochastically integrate to estimate the log-likelihood function. All
provided nodes must be stochastic. Can be one of three forms: a variable name,
in which case all elements in the variable are taken to be latent (e.g., ’x’); an
indexed variable, in which case all indexed elements are taken to be latent (e.g.,
’x[1:100]’ or ’x[1:100, 1:2]’); or a vector of multiple nodes, one per time point,
in increasing time order (e.g., c("x[1:2, 1]", "x[1:2, 2]", "x[1:2, 3]", "x[1:2, 4]")).

control A list specifying different control options for the particle filter. Options are
described in the details section below.

14 buildBootstrapFilter

Details

Each of the control() list options are described in detail here:

thresh A number between 0 and 1 specifying when to resample: the resampling step will occur
when the effective sample size is less than thresh times the number of particles. Defaults
to 0.8. Note that at the last time step, resampling will always occur so that the mvEWsamples
modelValues contains equally-weighted samples.

resamplingMethod The type of resampling algorithm to be used within the particle filter. Can
choose between 'default' (which uses NIMBLE’s rankSample() function), 'systematic',
'stratified', 'residual', and 'multinomial'. Defaults to 'default'. Resampling
methods other than 'default' are currently experimental.

saveAll Indicates whether to save state samples for all time points (TRUE), or only for the most
recent time point (FALSE)

smoothing Decides whether to save smoothed estimates of latent states, i.e., samples from f(x[1:t]|y[1:t])
if smoothing = TRUE, or instead to save filtered samples from f(x[t]|y[1:t]) if smoothing =
FALSE. smoothing = TRUE only works if saveAll = TRUE.

timeIndex An integer used to manually specify which dimension of the latent state variable indexes
time. Only needs to be set if the number of time points is less than or equal to the size of the
latent state at each time point.

initModel A logical value indicating whether to initialize the model before running the filtering
algorithm. Defaults to TRUE.

The bootstrap filter starts by generating a sample of estimates from the prior distribution of the
latent states of a state space model. At each time point, these particles are propagated forward by
the model’s transition equation. Each particle is then given a weight proportional to the value of the
observation equation given that particle. The weights are used to draw an equally-weighted sample
of the particles at this time point. The algorithm then proceeds to the next time point. Neither the
transition nor the observation equations are required to be normal for the bootstrap filter to work.

The resulting specialized particle filter algorthm will accept a single integer argument (m, default
10,000), which specifies the number of random \’particles\’ to use for estimating the log-likelihood.
The algorithm returns the estimated log-likelihood value, and saves unequally weighted samples
from the posterior distribution of the latent states in the mvWSamples modelValues object, with
corresponding logged weights in mvWSamples['wts',]. An equally weighted sample from the
posterior can be found in the mvEWSamples modelValues object.

Note that if the thresh argument is set to a value less than 1, resampling may not take place at
every time point. At time points for which resampling did not take place, mvEWSamples will not
contain equally weighted samples. To ensure equally weighted samples in the case that thresh < 1,
we recommend resampling from mvWSamples at each time point after the filter has been run, rather
than using mvEWSamples.

returnESS() Method

Calling the returnESS() method of a bootstrap filter after that filter has been run() for a given
model will return a vector of ESS (effective sample size) values, one value for each time point.

Author(s)

Daniel Turek and Nicholas Michaud

buildEnsembleKF 15

References

Gordon, N.J., D.J. Salmond, and A.F.M. Smith. (1993). Novel approach to nonlinear/non-Gaussian
Bayesian state estimation. IEEE Proceedings F (Radar and Signal Processing). Vol. 140. No. 2.
IET Digital Library, 1993.

See Also

Other particle filtering methods: buildAuxiliaryFilter, buildEnsembleKF, buildIteratedFilter2,
buildLiuWestFilter

Examples

Not run:
model <- nimbleModel(code = ...)
my_BootF <- buildBootstrapFilter(model, 'x[1:100]', control = list(thresh = 1))
Cmodel <- compileNimble(model)
Cmy_BootF <- compileNimble(my_BootF, project = model)
logLike <- Cmy_BootF$run(m = 100000)
ESS <- Cmy_BootF$returnESS()
boot_X <- as.matrix(Cmy_BootF$mvEWSamples)

End(Not run)

buildEnsembleKF Create an Ensemble Kalman filter algorithm to sample from latent
states.

Description

Create an Ensemble Kalman filter algorithm for a given NIMBLE state space model.

Usage

buildEnsembleKF(model, nodes, control = list())

Arguments

model A NIMBLE model object, typically representing a state space model or a hidden
Markov model

nodes A character vector specifying the latent model nodes the Ensemble Kalman Fil-
ter will estimate. All provided nodes must be stochastic. Can be one of three
forms: a variable name, in which case all elements in the variable are taken to
be latent (e.g., ’x’); an indexed variable, in which case all indexed elements are
taken to be latent (e.g., ’x[1:100]’ or ’x[1:100, 1:2]’); or a vector of multiple
nodes, one per time point, in increasing time order (e.g., c("x[1:2, 1]", "x[1:2,
2]", "x[1:2, 3]", "x[1:2, 4]")).

control A list specifying different control options for the particle filter. Options are
described in the details section below.

16 buildEnsembleKF

Details

The control() list option is described in detail below:

saveAll Indicates whether to save state samples for all time points (TRUE), or only for the most
recent time point (FALSE)

timeIndex An integer used to manually specify which dimension of the latent state variable indexes
time. Only needs to be set if the number of time points is less than or equal to the size of the
latent state at each time point.

initModel A logical value indicating whether to initialize the model before running the filtering
algorithm. Defaults to TRUE.

Runs an Ensemble Kalman filter to estimate a latent state given observations at each time point.
The ensemble Kalman filter is a Monte Carlo approximation to a Kalman filter that can be used
when the model’s transition euqations do not follow a normal distribution. Latent states (x[t]) and
observations (y[t]) can be scalars or vectors at each time point, and sizes of observations can vary
from time point to time point. In the BUGS model, the observations (y[t]) must be equal to some
(possibly nonlinear) deterministic function of the latent state (x[t]) plus an additive error term.
Currently only normal and multivariate normal error terms are supported. The transition from x[t]
to x[t+1] does not have to be normal or linear. Output from the posterior distribution of the latent
states is stored in mvSamples.

Author(s)

Nicholas Michaud

References

Houtekamer, P.L., and H.L. Mitchell. (1998). Data assimilation using an ensemble Kalman filter
technique. Monthly Weather Review, 126(3), 796-811.

See Also

Other particle filtering methods: buildAuxiliaryFilter, buildBootstrapFilter, buildIteratedFilter2,
buildLiuWestFilter

Examples

Not run:
model <- nimbleModel(code = ...)
my_ENKFF <- buildEnsembleKF(model, 'x')
Cmodel <- compileNimble(model)
Cmy_ENKF <- compileNimble(my_ENKF, project = model)
Cmy_ENKF$run(m = 100000)
ENKF_X <- as.matrix(Cmy_ENKF$mvSamples, 'x')
hist(ENKF_X)

End(Not run)

buildIteratedFilter2 17

buildIteratedFilter2 Create an IF2 algorithm.

Description

Create an IF2 algorithm for a given NIMBLE state space model.

Usage

buildIteratedFilter2(model, nodes, params = NULL, baselineNode = NULL,
control = list())

Arguments

model A NIMBLE model object, typically representing a state space model or a hidden
Markov model.

nodes A character vector specifying the latent model nodes over which the particle
filter will stochastically integrate to estimate the log-likelihood function. All
provided nodes must be stochastic. Can be one of three forms: a variable name,
in which case all elements in the variable are taken to be latent (e.g., ’x’); an
indexed variable, in which case all indexed elements are taken to be latent (e.g.,
’x[1:100]’ or ’x[1:100, 1:2]’); or a vector of multiple nodes, one per time point,
in increasing time order (e.g., c("x[1:2, 1]", "x[1:2, 2]", "x[1:2, 3]", "x[1:2, 4]")).

params A character vector specifying the top-level parameters to obtain maximum likeli-
hood estimates of. If unspecified, parameter nodes are specified as all stochastic
top level nodes which are not in the set of latent nodes specified in nodes.

baselineNode A character vector specifying the node that is the latent node at the "0th" time
step. The first node in nodes should depend on this baseline, but baselineNode
should have no data depending on it. If NULL (the default), any initial state is
taken to be fixed at the values present in the model at the time the algorithm is
run.

control A list specifying different control options for the IF2 algorithm. Options are
described in the ‘details’ section below.

Details

Each of the control list options are described in detail below:

sigma A vector specifying a non-negative perturbation magnitude for each element of the params
argument. Defaults to a vector of ones.

initParamSigma An optional vector specifying a vector of standard deviations to use when sim-
ulating an initial particle swarm centered on the initial value of the parameters. Defaults to
sigma.

inits A vector specifying an initial value for each element of the params argument. Defaults to the
parameter values in the model at the time the model is built.

18 buildIteratedFilter2

timeIndex An integer used to manually specify which dimension of the latent state variable indexes
time. Only needs to be set if the number of time points is less than or equal to the size of the
latent state at each time point.

initModel A logical value indicating whether to initialize the model before running the filtering
algorithm. Defaults to TRUE.

The IF2 agorithm uses iterated filtering to estimate maximum likelihood values for top-level param-
eters for a state space model.

The resulting specialized IF2 algorithm will accept the following arguments:

m A single integer specifying the number of particles to use for each run of the filter.

n A single integer specifying the number of overall filter iterations to run.

alpha A double specifying the cooling factor to use for the IF2 algorithm.

The run fuction will return a vector with the estimated MLE. Additionally, once the specialized
algorithm has been run, it can be continued for additional iterations by calling the continueRun
method.

Reparameterization

The IF2 algorithm perturbs the parameters using a normal distribution, which may not be optimal
for parameters whose support is not the whole real line, such as variance parameters, which are
restricted to be positive. We recommend that users reparameterize the model in advance, e.g.,
writing variances and standard deviations on the log scale and probabilities on the logit scale. This
requires specifying priors directly on the transformed parameters.

Parameter prior distributions

While NIMBLE’s IF2 algorithm requires prior distributions on the parameters, the IF2 algorithm
produces maximum likelihood estimates and does not directly use those prior distributions. We
require the prior distributions to be stated only so that we can automatically determine which model
nodes are the parameters. The IF2 algorithm also makes use of any bounds on the parameters.

Diagnostics and information stored in the algorithm object

The IF2 algorithm stores the estimated MLEs, one from each iteration, in estimates. It also stores
standard deviation of the particles from each iteration, one per parameter, in estSD. Finally it stores
the estimated log-likelihood at the estimated MLE from each iteration in logLik.

Author(s)

Nicholas Michaud, Dao Nguyen, and Christopher Paciorek

References

Ionides, E.L., D. Nguyen, Y. Atchad\’e, S. Stoev, and A.A. King (2015). Inference for dynamic and
latent variable models via iterated, perturbed Bayes maps. Proceedings of the National Academy of
Sciences, 112(3), 719-724.

buildLiuWestFilter 19

See Also

Other particle filtering methods: buildAuxiliaryFilter, buildBootstrapFilter, buildEnsembleKF,
buildLiuWestFilter

Examples

Not run:
model <- nimbleModel(code = ...)
my_IF2 <- buildIteratedFilter2(model, 'x[1:100]', params = 'sigma_x')
Cmodel <- compileNimble(model)
Cmy_IF2 <- compileNimble(my_IF2, project = model)
MLE estimate of a top level parameter named sigma_x:
sigma_x_MLE <- Cmy_IF2$run(m = 10000, n = 10)
Continue running algorithm for more precise estimate:
sigma_x_MLE <- Cmy_IF2$continueRun(n = 10)
visualize progression of the estimated log-likelihood
ts.plot(CmyIF2$logLik)

End(Not run)

buildLiuWestFilter Create a Liu and West particle filter algorithm.

Description

Create a Liu and West particle filter algorithm for a given NIMBLE state space model.

Usage

buildLiuWestFilter(model, nodes, params = NULL, control = list())

Arguments

model A NIMBLE model object, typically representing a state space model or a hidden
Markov model

nodes A character vector specifying the latent model nodes over which the particle
filter will stochastically integrate to estimate the log-likelihood function. All
provided nodes must be stochastic. Can be one of three forms: a variable name,
in which case all elements in the variable are taken to be latent (e.g., ’x’); an
indexed variable, in which case all indexed elements are taken to be latent (e.g.,
’x[1:100]’ or ’x[1:100, 1:2]’); or a vector of multiple nodes, one per time point,
in increasing time order (e.g., c("x[1:2, 1]", "x[1:2, 2]", "x[1:2, 3]", "x[1:2, 4]")).

params A character vector specifying the top-level parameters to estimate the posterior
distribution of. If unspecified, parameter nodes are specified as all stochastic top
level nodes which are not in the set of latent nodes specified in nodes.

control A list specifying different control options for the particle filter. Options are
described in the details section below.

20 buildLiuWestFilter

Details

Each of the control() list options are described in detail below:

d A discount factor for the Liu-West filter. Should be close to, but not above, 1.

saveAll Indicates whether to save state samples for all time points (TRUE), or only for the most
recent time point (FALSE)

timeIndex An integer used to manually specify which dimension of the latent state variable indexes
time. Only needs to be set if the number of time points is less than or equal to the size of the
latent state at each time point.

initModel A logical value indicating whether to initialize the model before running the filtering
algorithm. Defaults to TRUE.

The Liu and West filter samples from the posterior distribution of both the latent states and top-
level parameters for a state space model. Each particle in the Liu and West filter contains values
not only for latent states, but also for top level parameters. Latent states are propogated via an
auxiliary step, as in the auxiliary particle filter (buildAuxiliaryFilter). Top-level parameters are
propagated from one time point to the next through a smoothed kernel density based on previous
particle values.

The resulting specialized particle filter algorthm will accept a single integer argument (m, default
10,000), which specifies the number of random \’particles\’ to use for sampling from the pos-
terior distributions. The algorithm saves unequally weighted samples from the posterior distri-
bution of the latent states and top-level parameters in mvWSamples, with corresponding logged
weights in mvWSamples['wts',]. An equally weighted sample from the posterior can be found
in mvEWSamples.

Note that if saveAll=TRUE, the top-level parameter samples given in the mvWSamples output will
correspond to the weights from the final time point.

Author(s)

Nicholas Michaud

References

Liu, J., and M. West. (2001). Combined parameter and state estimation in simulation-based filter-
ing. Sequential Monte Carlo methods in practice. Springer New York, pages 197-223.

See Also

Other particle filtering methods: buildAuxiliaryFilter, buildBootstrapFilter, buildEnsembleKF,
buildIteratedFilter2

Examples

Not run:
model <- nimbleModel(code = ...)
my_LWF <- buildLiuWestFilter(model, 'x[1:100]', params = 'sigma_x')
Cmodel <- compileNimble(model)
Cmy_LWF <- compileNimble(my_LWF, project = model)

buildMCEM 21

Cmy_LWF$run(100000)
lw_X <- as.matrix(Cmy_LWF$mvEWSamples, 'x')

samples from posterior of a top level parameter named sigma_x:
lw_sigma_x <- as.matrix(Cmy_LWF$mvEWSamples, 'sigma_x')

End(Not run)

buildMCEM Builds an MCEM algorithm from a given NIMBLE model

Description

Takes a NIMBLE model and builds an MCEM algorithm for it. The user must specify which latent
nodes are to be integrated out in the E-Step. All other stochastic non-data nodes will be maximized
over. If the nodes do not have positive density on the entire real line, then box constraints can be
used to enforce this. The M-step is done by a nimble MCMC sampler. The E-step is done by a call
to R’s optim with method = 'L-BFGS-B' if the nodes are constrainted, or method = 'BFGS' if the
nodes are unconstrained.

Usage

buildMCEM(model, latentNodes, burnIn = 500, mcmcControl = list(adaptInterval
= 100), boxConstraints = list(), buffer = 10^-6, alpha = 0.25,
beta = 0.25, gamma = 0.05, C = 0.001, numReps = 300,
forceNoConstraints = FALSE, verbose = TRUE)

Arguments

model a nimble model

latentNodes character vector of the names of the stochastic nodes to integrated out. Names
can be expanded, but don’t need to be. For example, if the model contains
x[1],x[2] and x[3] then one could provide either latentNodes = c('x[1]','x[2]','x[3]')
or latentNodes = 'x'.

burnIn burn-in used for MCMC sampler in E step

mcmcControl list passed to configureMCMC, which builds the MCMC sampler. See help(configureMCMC)
for more details

boxConstraints list of box constraints for the nodes that will be maximized over. Each constraint
is a list in which the first element is a character vector of node names to which
the constraint applies and the second element is a vector giving the lower and
upper limits. Limits of -Inf or Inf are allowed. Any nodes that are not given
constrains will have their constraints automatically determined by NIMBLE

buffer A buffer amount for extending the boxConstraints. Many functions with bound-
ary constraints will produce NaN or -Inf when parameters are on the boundary.
This problem can be prevented by shrinking the boundary a small amount.

22 buildMCEM

alpha probability of a type one error - here, the probability of accepting a parameter
estimate that does not increase the likelihood. Default is 0.25.

beta probability of a type two error - here, the probability of rejecting a parameter
estimate that does increase the likelihood. Default is 0.25.

gamma probability of deciding that the algorithm has converged, that is, that the differ-
ence between two Q functions is less than C, when in fact it has not. Default is
0.05.

C determines when the algorithm has converged - when C falls above a (1-gamma)
confidence interval around the difference in Q functions from time point t-1 to
time point t, we say the algorithm has converged. Default is 0.001.

numReps number of bootstrap samples to use for asymptotic variance calculation.
forceNoConstraints

avoid any constraints even from parameter bounds implicit in the model struc-
ture (e.g., from dunif or dgamma distributions); setting this to TRUE might
allow MCEM to run when the bounds of a parameter being maximized over
depend on another parameter.

verbose logical indicating whether to print additional logging information.

Details

buildMCEM calls the NIMBLE compiler to create the MCMC and objective function as nimbleFunc-
tions. If the given model has already been used in compiling other nimbleFunctions, it is possible
you will need to create a new copy of the model for buildMCEM to use. Uses an ascent-based
MCEM algorithm, which includes rules for automatically increasing the number of MC samples as
iterations increase, and for determining when convergence has been reached. Constraints for param-
eter values can be provided. If contstraints are not provided, they will be automatically determined
by NIMBLE.

Value

an R list with two elements:

• run A function that when called runs the MCEM algorithm. This function takes the arguments
listed in run Arguments below.

• estimateCov An EXPERIMENTAL function that when called estimates the asymptotic co-
variance of the parameters. The covariance is estimated using the method of Louis (1982).
This function takes the arguments listed in estimateCov Arguments below.

run Arguments

• initM starting number of iterations for the algorithm.

estimateCov Arguments

• MLEs named vector of MLE values. Must have a named MLE value for each stochastic, non-
data, non-latent node. If the run() method has alread been called, MLEs do not need to be
provided.

buildMCEM 23

• useExistingSamples logical argument. If TRUE and the run() method has previously been
called, the covariance estimation will use MCMC samples from the last step of the MCEM al-
gorithm. Otherwise, an MCMC algorithm will be run for 10,000 iterations, and those samples
will be used. Defaults to FALSE.

Author(s)

Clifford Anderson-Bergman and Nicholas Michaud

References

Caffo, Brian S., Wolfgang Jank, and Galin L. Jones (2005). Ascent-based Monte Carlo expectation-
maximization. Journal of the Royal Statistical Society: Series B (Statistical Methodology), 67(2),
235-251.

Louis, Thomas A (1982). Finding the Observed Information Matrix When Using the EM Algo-
rithm. Journal of the Royal Statistical Society. Series B (Statistical Methodology), 44(2), 226-233.

Examples

Not run:
pumpCode <- nimbleCode({
for (i in 1:N){

theta[i] ~ dgamma(alpha,beta);
lambda[i] <- theta[i]*t[i];
x[i] ~ dpois(lambda[i])

}
alpha ~ dexp(1.0);
beta ~ dgamma(0.1,1.0);

})

pumpConsts <- list(N = 10,
t = c(94.3, 15.7, 62.9, 126, 5.24,

31.4, 1.05, 1.05, 2.1, 10.5))

pumpData <- list(x = c(5, 1, 5, 14, 3, 19, 1, 1, 4, 22))

pumpInits <- list(alpha = 1, beta = 1,
theta = rep(0.1, pumpConsts$N))

pumpModel <- nimbleModel(code = pumpCode, name = 'pump', constants = pumpConsts,
data = pumpData, inits = pumpInits)

Want to maximize alpha and beta (both which must be positive) and integrate over theta
box = list(list(c('alpha','beta'), c(0, Inf)))

pumpMCEM <- buildMCEM(model = pumpModel, latentNodes = 'theta[1:10]',
boxConstraints = box)

MLEs <- pumpMCEM$run(initM = 1000)
cov <- pumpMCEM$estimateCov()

End(Not run)
Could also use latentNodes = 'theta' and buildMCEM() would figure out this means 'theta[1:10]'

24 buildMCMC

buildMCMC Create an MCMC function from a NIMBLE model, or an MCMC con-
figuration object

Description

First required argument, which may be of class MCMCconf (an MCMC configuration object), or
inherit from class modelBaseClass (a NIMBLE model object). Returns an uncompiled executable
MCMC function. See details.

Usage

buildMCMC(conf, ...)

Arguments

conf An MCMC configuration object of class MCMCconf that specifies the model,
samplers, monitors, and thinning intervals for the resulting MCMC function.
See configureMCMC for details of creating MCMC configuration objects. Alter-
natively, conf may a NIMBLE model object, in which case an MCMC function
corresponding to the default MCMC configuration for this model is returned.

... Additional arguments to be passed to configureMCMC if conf is a NIMBLE
model object

Details

Calling buildMCMC(conf) will produce an uncompiled MCMC function object. The uncompiled
MCMC function will have arguments:

niter: The number of iterations to run the MCMC.

thin: The thinning interval for the monitors that were specified in the MCMC configuration. If
this argument is provided at MCMC runtime, it will take precedence over the thin interval that was
specified in the MCMC configuration. If omitted, the thin interval from the MCMC configuration
will be used.

thin2: The thinning interval for the second set of monitors (monitors2) that were specified in the
MCMC configuration. If this argument is provided at MCMC runtime, it will take precedence over
the thin2 interval that was specified in the MCMC configuration. If omitted, the thin2 interval
from the MCMC configuration will be used.

reset: Boolean specifying whether to reset the internal MCMC sampling algorithms to their initial
state (in terms of self-adapting tuning parameters), and begin recording posterior sample chains
anew. Specifying reset = FALSE allows the MCMC algorithm to continue running from where it
left off, appending additional posterior samples to the already existing sample chains. Generally,
reset = FALSE should only be used when the MCMC has already been run (default = TRUE).

nburnin: Number of initial, pre-thinning, MCMC iterations to discard (default = 0).

buildMCMC 25

time: Boolean specifying whether to record runtimes of the individual internal MCMC samplers.
When time = TRUE, a vector of runtimes (measured in seconds) can be extracted from the MCMC
using the method mcmc$getTimes() (default = FALSE).

progressBar: Boolean specifying whether to display a progress bar during MCMC execution
(default = TRUE). The progress bar can be permanently disabled by setting the system option
nimbleOptions(MCMCprogressBar = FALSE).

Samples corresponding to the monitors and monitors2 from the MCMCconf are stored into the
interval variables mvSamples and mvSamples2, respectively. These may be accessed and converted
into R matrix objects via: as.matrix(mcmc$mvSamples) as.matrix(mcmc$mvSamples2)

The uncompiled MCMC function may be compiled to a compiled MCMC object, taking care to
compile in the same project as the R model object, using: Cmcmc <-compileNimble(Rmcmc,project
= Rmodel)

The compiled function will function identically to the uncompiled object, except acting on the
compiled model object.

Calculating WAIC

After the MCMC has been run, calling the calculateWAIC() method of the MCMC object will
return the WAIC for the model, calculated using the posterior samples from the MCMC run.

calculateWAIC() accepts a single arugment:

nburnin: The number of pre-thinning MCMC samples to remove from the beginning of the pos-
terior samples for WAIC calculation (default = 0). These samples are discarded in addition to any
burn-in specified when running the MCMC.

The calculateWAIC method can only be used if the enableWAIC argument to configureMCMC or to
buildMCMC is set to TRUE, or if the NIMBLE option enableWAIC is set to TRUE. If a user attempts to
call calculateWAIC without having set enableWAIC = TRUE (either in the call to configureMCMC,
or buildMCMC, or as a NIMBLE option), an error will occur.

The calculateWAIC method calculates the WAIC of the model that the MCMC was performed on.
The WAIC (Watanabe, 2010) is calculated from Equations 5, 12, and 13 in Gelman et al. (2014)
(i.e. using pWAIC2). The set of all stochastic nodes monitored by the MCMC object will be treated
as theta for the purposes of Equation 5 from Gelman et al. (2014). All non-monitored nodes down-
stream of the monitored nodes that are necessary to calculate p(y|theta) will be simulated from
the posterior samples of theta. This allows customization of exactly what predictive distribution
p(y|theta) to use for calculations. For more detail on the use of different predictive distributions,
see Section 2.5 from Gelman et al. (2014). Note that by default only top-level stochastic nodes are
monitored, but in many situations one would want to set monitors on all stochastic nodes so that all
stochastic nodes are treated as theta for the WAIC calculation.

Note that there exist sets of monitored parameters that do not lead to valid WAIC calculations.
Specifically, for a valid WAIC calculation, every node that a data node depends on must be either
monitored, or be downstream from monitored nodes. An easy way to ensure this is satisfied is
to monitor all top-level parameters in a model (NIMBLE’s default). Another way to guarantee
correctness is to monitor all nodes directly upstream from a data node. However, other combinations
of monitored nodes are also valid. If enableWAIC = TRUE, NIMBLE checks to see if the set of
monitored nodes is valid, and returns an error if not.

26 CAR-Normal

Author(s)

Daniel Turek

References

Watanabe, S. (2010). Asymptotic equivalence of Bayes cross validation and widely applicable
information criterion in singular learning theory. Journal of Machine Learning Research 11: 3571-
3594.

Gelman, A., Hwang, J. and Vehtari, A. (2014). Understanding predictive information criteria for
Bayesian models. Statistics and Computing 24(6): 997-1016.

See Also

configureMCMC runMCMC nimbleMCMC

Examples

Not run:
code <- nimbleCode({

mu ~ dnorm(0, 1)
x ~ dnorm(mu, 1)
y ~ dnorm(x, 1)

})
Rmodel <- nimbleModel(code, data = list(y = 0))
conf <- configureMCMC(Rmodel)
Rmcmc <- buildMCMC(conf, enableWAIC = TRUE)
Cmodel <- compileNimble(Rmodel)
Cmcmc <- compileNimble(Rmcmc, project=Rmodel)
Cmcmc$run(10000)
samples <- as.matrix(Cmcmc$mvSamples)
head(samples)
WAIC <- Cmcmc$calculateWAIC(nburnin = 1000)

End(Not run)

CAR-Normal The CAR-Normal Distribution

Description

Density function and random generation for the improper (intrinsic) Gaussian conditional autore-
gressive (CAR) distribution.

CAR-Normal 27

Usage

dcar_normal(x, adj, weights = adj/adj, num, tau, c = CAR_calcNumIslands(adj,
num), zero_mean = 0, log = FALSE)

rcar_normal(n = 1, adj, weights = adj/adj, num, tau,
c = CAR_calcNumIslands(adj, num), zero_mean = 0)

Arguments

x vector of values.

adj vector of indices of the adjacent locations (neighbors) of each spatial location.
This is a sparse representation of the full adjacency matrix.

weights vector of symmetric unnormalized weights associated with each pair of adjacent
locations, of the same length as adj. If omitted, all weights are taken to be one.

num vector giving the number of neighboring locations of each spatial location, with
length equal to the total number of locations.

tau scalar precision of the Gaussian CAR prior.

c integer number of constraints to impose on the improper density function. If
omitted, c is calculated as the number of disjoint groups of spatial locations in
the adjacency structure, which implicitly assumes a first-order CAR process for
each group. Note that c should be equal to the number of eigenvalues of the
precision matrix that are zero. For example, if the neighborhood structure is
based on a second-order Markov random field in one dimension then the matrix
has two zero eigenvalues and in two dimensions it has three zero eigenvalues.
See Rue and Held (2005) and the NIMBLE User Manual for more information.

zero_mean integer specifying whether to set the mean of all locations to zero during MCMC
sampling of a node specified with this distribution in BUGS code (default 0).
This argument is used only in BUGS model code when specifying models in
NIMBLE. If 0, the overall process mean is included implicitly in the value of
each location in a BUGS model; if 1, then during MCMC sampling, the mean of
all locations is set to zero at each MCMC iteration, and a separate intercept term
should be included in the BUGS model. Note that centering during MCMC as
implemented in NIMBLE follows the ad hoc approach of WinBUGS and does
not sample under the constraint that the mean is zero as discussed on p. 36 of
Rue and Held (2005). See ‘Details’.

log logical; if TRUE, probability density is returned on the log scale.

n number of observations.

Details

When specifying a CAR distribution in BUGS model code, the zero_mean parameter should be
specified as either 0 or 1 (rather than TRUE or FALSE).

Note that because the distribution is improper, rcar_normal does not generate a sample from the
distribution. However, as discussed in Rue and Held (2005), it is possible to generate a sample from
the distribution under constraints imposed based on the eigenvalues of the precision matrix that are
zero.

28 CAR-Proper

Value

dcar_normal gives the density, while rcar_normal returns the current process values, since this
distribution is improper.

Author(s)

Daniel Turek

References

Banerjee, S., Carlin, B.P., and Gelfand, A.E. (2015). Hierarchical Modeling and Analysis for Spa-
tial Data, 2nd ed. Chapman and Hall/CRC.

Rue, H. and L. Held (2005). Gaussian Markov Random Fields, Chapman and Hall/CRC.

See Also

CAR-Proper, Distributions for other standard distributions

Examples

x <- c(1, 3, 3, 4)
num <- c(1, 2, 2, 1)
adj <- c(2, 1,3, 2,4, 3)
weights <- c(1, 1, 1, 1, 1, 1)
lp <- dcar_normal(x, adj, weights, num, tau = 1)

CAR-Proper The CAR-Proper Distribution

Description

Density function and random generation for the proper Gaussian conditional autoregressive (CAR)
distribution.

Usage

dcar_proper(x, mu, C = CAR_calcC(adj, num), adj, num, M = CAR_calcM(num),
tau, gamma, evs = CAR_calcEVs3(C, adj, num), log = FALSE)

rcar_proper(n = 1, mu, C = CAR_calcC(adj, num), adj, num,
M = CAR_calcM(num), tau, gamma, evs = CAR_calcEVs3(C, adj, num))

CAR-Proper 29

Arguments

x vector of values.

mu vector of the same length as x, specifying the mean for each spatial location.

C vector of the same length as adj, giving the weights associated with each pair
of neighboring locations. See ‘Details’.

adj vector of indices of the adjacent locations (neighbors) of each spatial location.
This is a sparse representation of the full adjacency matrix.

num vector giving the number of neighboring locations of each spatial location, with
length equal to the number of locations.

M vector giving the diagonal elements of the conditional variance matrix, with
length equal to the number of locations. See ‘Details’.

tau scalar precision of the Gaussian CAR prior.

gamma scalar representing the overall degree of spatial dependence. See ‘Details’.

evs vector of eigenvalues of the adjacency matrix implied by C, adj, and num. This
parameter should not be provided; it will always be calculated using the adja-
cency information.

log logical; if TRUE, probability density is returned on the log scale.

n number of observations.

Details

If both C and M are omitted, then all weights are taken as one, and corresponding values of C and M
are generated.

The C and M parameters must jointly satisfy a symmetry constraint: that M^(-1) %*% C is symmetric,
where M is a diagonal matrix and C is the full weight matrix that is sparsely represented by the
parameter vector C.

For a proper CAR model, the value of gamma must lie within the inverse minimum and maximum
eigenvalues of M^(-0.5) %*% C %*% M^(0.5), where M is a diagonal matrix and C is the full weight
matrix. These bounds can be calculated using the deterministic functions carMinBound(C,adj,num,M)
and carMaxBound(C,adj,num,M), or simultaneously using carBounds(C,adj,num,M). In the case
where C and M are omitted (all weights equal to one), the bounds on gamma are necessarily (-1, 1).

Value

dcar_proper gives the density, and rcar_proper generates random deviates.

Author(s)

Daniel Turek

References

Banerjee, S., Carlin, B.P., and Gelfand, A.E. (2015). Hierarchical Modeling and Analysis for Spa-
tial Data, 2nd ed. Chapman and Hall/CRC.

30 carBounds

See Also

CAR-Normal, Distributions for other standard distributions

Examples

x <- c(1, 3, 3, 4)
mu <- rep(3, 4)
adj <- c(2, 1,3, 2,4, 3)
num <- c(1, 2, 2, 1)

omitting C and M uses all weights = 1
dcar_proper(x, mu, adj = adj, num = num, tau = 1, gamma = 0.95)

equivalent to above: specifying all weights = 1,
then using as.carCM to generate C and M arguments
weights <- rep(1, 6)
CM <- as.carCM(adj, weights, num)
C <- CM$C
M <- CM$M
dcar_proper(x, mu, C, adj, num, M, tau = 1, gamma = 0.95)

now using non-unit weights
weights <- c(2, 2, 3, 3, 4, 4)
CM2 <- as.carCM(adj, weights, num)
C2 <- CM2$C
M2 <- CM2$M
dcar_proper(x, mu, C2, adj, num, M2, tau = 1, gamma = 0.95)

carBounds Calculate bounds for the autocorrelation parameter of the
dcar_proper distribution

Description

Calculate the lower and upper bounds for the gamma parameter of the dcar_proper distribution

Usage

carBounds(C, adj, num, M)

Arguments

C vector of the same length as adj, giving the normalized weights associated with
each pair of neighboring locations.

adj vector of indices of the adjacent locations (neighbors) of each spatial location.
This is a sparse representation of the full adjacency matrix.

carMaxBound 31

num vector giving the number of neighboring locations of each spatial location, with
length equal to the number of locations.

M vector giving the diagonal elements of the conditional variance matrix, with
length equal to the number of locations.

Details

Bounds for gamma are the inverse of the minimum and maximum eigenvalues of: M (−0.5)CM (0.5).
The lower and upper bounds are returned in a numeric vector.

Value

A numeric vector containing the bounds (minimum and maximum allowable values) for the gamma
parameter of the dcar_proper distribution.

Author(s)

Daniel Turek

See Also

CAR-Proper, carMinBound, carMaxBound

carMaxBound Calculate the upper bound for the autocorrelation parameter of the
dcar_proper distribution

Description

Calculate the upper bound for the gamma parameter of the dcar_proper distribution

Usage

carMaxBound(C, adj, num, M)

Arguments

C vector of the same length as adj, giving the normalized weights associated with
each pair of neighboring locations.

adj vector of indices of the adjacent locations (neighbors) of each spatial location.
This is a sparse representation of the full adjacency matrix.

num vector giving the number of neighboring locations of each spatial location, with
length equal to the number of locations.

M vector giving the diagonal elements of the conditional variance matrix, with
length equal to the number of locations.

32 carMinBound

Details

Bounds for gamma are the inverse of the minimum and maximum eigenvalues ofM (−0.5)CM (0.5).

Value

The upper bound (maximum allowable value) for the gamma parameter of the dcar_proper distri-
bution.

Author(s)

Daniel Turek

See Also

CAR-Proper, carMinBound, carBounds

carMinBound Calculate the lower bound for the autocorrelation parameter of the
dcar_proper distribution

Description

Calculate the lower bound for the gamma parameter of the dcar_proper distribution

Usage

carMinBound(C, adj, num, M)

Arguments

C vector of the same length as adj, giving the normalized weights associated with
each pair of neighboring locations.

adj vector of indices of the adjacent locations (neighbors) of each spatial location.
This is a sparse representation of the full adjacency matrix.

num vector giving the number of neighboring locations of each spatial location, with
length equal to the number of locations.

M vector giving the diagonal elements of the conditional variance matrix, with
length equal to the number of locations.

Details

Bounds for gamma are the inverse of the minimum and maximum eigenvalues of: M (−0.5)CM (0.5).

Value

The lower bound (minimum allowable value) for the gamma parameter of the dcar_proper distri-
bution.

CAR_calcNumIslands 33

Author(s)

Daniel Turek

See Also

CAR-Proper, carMaxBound, carBounds

CAR_calcNumIslands Calculate number of islands based on a CAR adjacency matrix.

Description

Calculate number of islands (distinct connected groups) based on a CAR adjacency matrix.

Usage

CAR_calcNumIslands(adj, num)

Arguments

adj vector of indices of the adjacent locations (neighbors) of each spatial location.
This is a sparse representation of the full adjacency matrix.

num vector giving the number of neighbors of each spatial location, with length equal
to the total number of locations.

Author(s)

Daniel Turek

See Also

CAR-Normal

Categorical The Categorical Distribution

Description

Density and random generation for the categorical distribution

Usage

dcat(x, prob, log = FALSE)

rcat(n = 1, prob)

34 checkInterrupt

Arguments

x non-negative integer-value numeric value.

prob vector of probabilities, internally normalized to sum to one.

log logical; if TRUE, probability density is returned on the log scale.

n number of observations.

Details

See the BUGS manual for mathematical details.

Value

dcat gives the density and rcat generates random deviates.

Author(s)

Christopher Paciorek

See Also

Distributions for other standard distributions

Examples

probs <- c(1/4, 1/10, 1 - 1/4 - 1/10)
x <- rcat(n = 30, probs)
dcat(x, probs)

checkInterrupt Check for interrupt (e.g. Ctrl-C) during nimbleFunction execution.
Part of the NIMBLE language.

Description

Check for interrupt (e.g. Ctrl-C) during nimbleFunction execution. Part of the NIMBLE language.

Usage

checkInterrupt()

Details

During execution of nimbleFunctions that take a long time, it is nice to occassionally check if
the user has entered an interrupt and bail out of execution if so. This function does that. Dur-
ing uncompiled nimbleFunction execution, it does nothing. During compiled execution, it calls
R_checkUserInterrupt() of the R headers.

ChineseRestaurantProcess 35

Author(s)

Perry de Valpine

ChineseRestaurantProcess

The Chinese Restaurant Process Distribution

Description

Density and random generation for the Chinese Restaurant Process distribution.

Usage

dCRP(x, conc = 1, size, log = 0)

rCRP(n, conc = 1, size)

Arguments

x vector of values.

conc scalar concentration parameter.

size integer-valued length of x (required).

log logical; if TRUE, probability density is returned on the log scale.

n number of observations (only n = 1 is handled currently).

Details

The Chinese restaurant process distribution is a distribution on the space of partitions of the positive
integers. The distribution with concentration parameter = α has probability function

f(xi | x1, . . . , xi−1) =
1

i− 1 + α

i−1∑
j=1

δxj
+

α

i− 1 + α
δxnew ,

where xnew is a new integer not in x1, . . . , xi−1.

If conc is not specified, it assumes the default value of 1. The conc parameter has to be larger than
zero. Otherwise, NaN are returned.

Value

dCRP gives the density, and rCRP gives random generation.

Author(s)

Claudia Wehrhahn

36 codeBlockClass-class

References

Blackwell, D., and MacQueen, J. B. (1973). Ferguson distributions via P\’olya urn schemes. The
Annals of Statistics, 1: 353-355.

Aldous, D. J. (1985). Exchangeability and related topics. In \’Ecole d’\’Et\’e de Probabilit\’es de
Saint-Flour XIII - 1983 (pp. 1-198). Springer, Berlin, Heidelberg.

Pitman, J. (1996). Some developments of the Blackwell-MacQueen urn scheme. IMS Lecture
Notes-Monograph Series, 30: 245-267.

Examples

x <- rCRP(n=1, conc = 1, size=10)
dCRP(x, conc = 1, size=10)

CmodelBaseClass-class Class CmodelBaseClass

Description

Classes used internally in NIMBLE and not expected to be called directly by users.

CnimbleFunctionBase-class

Class CnimbleFunctionBase

Description

Classes used internally in NIMBLE and not expected to be called directly by users.

codeBlockClass-class Class codeBlockClass

Description

Classes used internally in NIMBLE and not expected to be called directly by users.

compareMCMCs 37

compareMCMCs Placeholder for compareMCMCs

Description

This function has been moved to a separate package

Usage

compareMCMCs(...)

Arguments

... arguments

compileNimble compile NIMBLE models and nimbleFunctions

Description

compile a collection of models and nimbleFunctions: generate C++, compile the C++, load the
result, and return an interface object

Usage

compileNimble(..., project, dirName = NULL, projectName = "",
control = list(), resetFunctions = FALSE,
showCompilerOutput = nimbleOptions("showCompilerOutput"))

Arguments

... An arbitrary set of NIMBLE models and nimbleFunctions, or lists of them. If
given as named parameters, those names may be used in the return list.

project Optional NIMBLE model or nimbleFunction already associated with a project,
which the current units for compilation should join. If not provided, a new
project will be created and the current compilation units will be associated with
it.

dirName Optional directory name in which to generate the C++ code. If not provided, a
temporary directory will be generated using R’s tempdir function.

projectName Optional character name for labeling the project if it is new

control A list mostly for internal use. See details.

resetFunctions Logical value stating whether nimbleFunctions associated with an existing project
should all be reset for compilation purposes. See details.

showCompilerOutput

Logical value indicating whether details of C++ compilation should be printed.

38 compileNimble

Details

This is the main function for calling the NIMBLE compiler. A set of compiler calls and output will
be seen. Compiling in NIMBLE does 4 things: 1. It generates C++ code files for all the model
and nimbleFunction components. 2. It calls the system’s C++ compiler. 3. It loads the compiled
object(s) into R using dyn.load. And 4. it generates R objects for using the compiled model and
nimbleFunctions.

When the units for compilation provided in ... include multiple models and/or nimbleFunctions,
models are compiled first, in the order in which they are provided. Groups of nimbleFunctions that
were specialized from the same nimbleFunction generator (the result of a call to nimbleFunction,
which then takes setup arguments and returns a specialized nimbleFunction) are then compiled as a
group, in the order of first appearance.

The behavior of adding new compilation units to an existing project is limited. For example, one
can compile a model in one call to compileNimble and then compile a nimbleFunction that uses
the model (i.e. was given the model as a setup argument) in a second call to compileNimble, with
the model provided as the project argument. Either the uncompiled or compiled model can be
provided. However, compiling a second nimbleFunction and adding it to the same project will only
work in limited circumstances. Basically, the limitations occur because it attempts to re-use already
compiled pieces, but if these do not have all the necessary information for the new compilation,
it gives up. An attempt has been made to give up in a controlled manner and provide somewhat
informative messages.

When compilation is not allowed or doesn’t work, try using resetFunctions = TRUE, which will
force recompilation of all nimbleFunctions in the new call. Previously compiled nimbleFunctions
will be unaffected, and their R interface objects should continue to work. The only cost is additional
compilation time for the current compilation call. If that doesn’t work, try re-creating the model
and/or the nimbleFunctions from their generators. An alternative possible fix is to compile multiple
units in one call, rather than sequentially in multiple calls.

The control list can contain the following named elements, each with TRUE or FALSE: debug, which
sets a debug mode for the compiler for development purposes; debugCpp, which inserts an out-
put message before every line of C++ code for debugging purposes; compileR, which determines
whether the R-only steps of compilation should be executed; writeCpp, which determines whether
the C++ files should be generated; compileCpp, which determines whether the C++ should be com-
piled; loadSO, which determines whether the DLL or shared object should be loaded and interfaced;
and returnAsList, which determines whether calls to the compiled nimbleFunction should return
only the returned value of the call (returnAsList = FALSE) or whether a list including the input
arguments, possibly modified, should be returned in a list with the returned value of the call at the
end (returnAsList = TRUE). The control list is mostly for developer use, although returnAsArgs
may be useful to a user. An example of developer use is that one can have the compiler write the
C++ files but not compile them, then modify them by hand, then have the C++ compiler do the
subsequent steps without over-writing the files.

See NIMBLE User Manual for examples

Value

If there is only one compilation unit (one model or nimbleFunction), an R interface object is re-
turned. This object can be used like the uncompiled model or nimbleFunction, but execution will
call the corresponding compiled objects or functions. If there are multiple compilation units, they
will be returned as a list of interface objects, in the order provided. If names were included in the

configureMCMC 39

arguments, or in a list if any elements of ... are lists, those names will be used for the correspond-
ing element of the returned list. Otherwise an attempt will be made to generate names from the
argument code. For example compileNimble(A = fun1,B = fun2,project = myModel) will return
a list with named elements A and B, while compileNimble(fun1,fun2,project = myModel) will
return a list with named elements fun1 and fun2.

Author(s)

Perry de Valpine

configureMCMC Build the MCMCconf object for construction of an MCMC object

Description

Creates a defaut MCMC configuration for a given model. The resulting object is suitable as an
argument to buildMCMC. The assignment of sampling algorithms may be controlled using the rules
argument, if provided.

Usage

configureMCMC(model, nodes, control = list(), monitors, thin = 1,
monitors2 = character(), thin2 = 1,
useConjugacy = getNimbleOption("MCMCuseConjugacy"), onlyRW = FALSE,
onlySlice = FALSE,
multivariateNodesAsScalars = getNimbleOption("MCMCmultivariateNodesAsScalars"),
enableWAIC = getNimbleOption("MCMCenableWAIC"),
print = getNimbleOption("verbose"), autoBlock = FALSE, oldConf,
rules = getNimbleOption("MCMCdefaultSamplerAssignmentRules"),
warnNoSamplerAssigned = TRUE, ...)

Arguments

model A NIMBLE model object, created from nimbleModel

nodes An optional character vector, specifying the nodes and/or variables for which
samplers should be created. Nodes may be specified in their indexed form,
y[1,3]. Alternatively, nodes specified without indexing will be expanded fully,
e.g., x will be expanded to x[1], x[2], etc. If missing, the default value is all
non-data stochastic nodes. If NULL, then no samplers are added.

control An optional list of control arguments to sampler functions. If a control list
is provided, the elements will be provided to all sampler functions which uti-
lize the named elements given. For example, the standard Metropolis-Hastings
random walk sampler (sampler_RW) utilizes control list elements adaptive,
adaptInterval, and scale. (Internally it also uses targetNode, but this should
not generally be provided as a control list element). The default values for con-
trol list arguments for samplers (if not otherwise provided as an argument to
configureMCMC()) are in the setup code of the sampling algorithms.

40 configureMCMC

monitors A character vector of node names or variable names, to record during MCMC
sampling. This set of monitors will be recorded with thinning interval thin,
and the samples will be stored into the mvSamples object. The default value is
all top-level stochastic nodes of the model – those having no stochastic parent
nodes.

thin The thinning interval for monitors. Default value is one.
monitors2 A character vector of node names or variable names, to record during MCMC

sampling. This set of monitors will be recorded with thinning interval thin2,
and the samples will be stored into the mvSamples2 object. The default value is
an empty character vector, i.e. no values will be recorded.

thin2 The thinning interval for monitors2. Default value is one.
useConjugacy A logical argument, with default value TRUE. If specified as FALSE, then no

conjugate samplers will be used, even when a node is determined to be in a
conjugate relationship.

onlyRW A logical argument, with default value FALSE. If specified as TRUE, then
Metropolis-Hastings random walk samplers (sampler_RW) will be assigned for
all non-terminal continuous-valued nodes nodes. Discrete-valued nodes are as-
signed a slice sampler (sampler_slice), and terminal nodes are assigned a poste-
rior_predictive sampler (sampler_posterior_predictive).

onlySlice A logical argument, with default value FALSE. If specified as TRUE, then a
slice sampler is assigned for all non-terminal nodes. Terminal nodes are still
assigned a posterior_predictive sampler.

multivariateNodesAsScalars

A logical argument, with default value FALSE. If specified as TRUE, then non-
terminal multivariate stochastic nodes will have scalar samplers assigned to each
of the scalar components of the multivariate node. The default value of FALSE
results in a single block sampler assigned to the entire multivariate node. Note,
multivariate nodes appearing in conjugate relationships will be assigned the cor-
responding conjugate sampler (provided useConjugacy == TRUE), regardless of
the value of this argument.

enableWAIC A logical argument, specifying whether to enable WAIC calculations for the re-
sulting MCMC algorithm. Defaults to the value of nimbleOptions('MCMCenableWAIC'),
which in turn defaults to FALSE. Setting nimbleOptions('enableWAIC' = TRUE)
will ensure that WAIC is enabled for all calls to configureMCMC and buildMCMC.

print A logical argument, specifying whether to print the ordered list of default sam-
plers.

autoBlock A logical argument specifying whether to use an automated blocking procedure
to determine blocks of model nodes for joint sampling. If TRUE, an MCMC
configuration object will be created and returned corresponding to the results of
the automated parameter blocking. Default value is FALSE.

oldConf An optional MCMCconf object to modify rather than creating a new MCMC-
conf from scratch

rules An object of class samplerAssignmentRules, which governs the assigment of
MCMC sampling algorithms to stochastic model nodes. The default set of sam-
pler assignment rules is specified by the nimble option \’MCMCdefaultSam-
plerAssignmentRules\’.

configureRJ 41

warnNoSamplerAssigned

A logical argument, with default value TRUE. This specifies whether to issue a
warning when no sampler is assigned to a node, meaning there is no matching
sampler assignment rule.

... Additional named control list elements for default samplers, or additional argu-
ments to be passed to the autoBlock function when autoBlock = TRUE

Details

See MCMCconf for details on how to manipulate the MCMCconf object

Author(s)

Daniel Turek

See Also

samplerAssignmentRules buildMCMC runMCMC nimbleMCMC

configureRJ Configure Reversible Jump for Variable Selection

Description

Modifies an MCMC configuration object to perform a reversible jump MCMC sampling for variable
selection, using a univariate normal proposal distribution. Users can control the mean and scale of
the proposal. This function supports two different types of model specification: with and without
indicator variables.

Usage

configureRJ(conf, targetNodes, indicatorNodes = NULL, priorProb = NULL,
control = list(mean = NULL, scale = NULL, fixedValue = NULL))

Arguments

conf An MCMCconf object.

targetNodes A character vector, specifying the nodes and/or variables for which variable
selection is to be performed. Nodes may be specified in their indexed form,
'y[1,3]'. Alternatively, nodes specified without indexing will be expanded,
e.g., 'x' will be expanded to 'x[1]', 'x[2]', etc.

indicatorNodes An optional character vector, specifying the indicator nodes and/or variables
paired with targetNodes. Nodes may be specified in their indexed form, 'y[1,3]'.
Alternatively, nodes specified without indexing will be expanded, e.g., 'x' will
be expanded to 'x[1]', 'x[2]', etc. Nodes must be provided consistently with
targetNodes. See details.

42 configureRJ

priorProb An optional value or vector of prior probabilities for each node to be in the
model. See details.

control An optional list of control arguments:

• mean. The mean of the normal proposal distribution (default = 0).
• scale. The standard deviation of the normal proposal distribution (default =

1).
• fixedValue. Value for the variable when it is out of the model, which can

be used only when priorProb is provided (default = 0). If specified when
indicatorNodes is passed, a warning is given and fixedValue is ignored.

Details

This function modifies the samplers in MCMC configuration object for each of the nodes provided
in the targetNodes argument. To these elements two samplers are assigned: a reversible jump
sampler to transition the variable in/out of the model, and a modified version of the original sampler,
which performs updates only when the target node is already in the model.

configureRJ can handle two different ways of writing a NIMBLE model, either with or without
indicator variables. When using indicator variables, the indicatorNodes argument must be pro-
vided. Without indicator variables, the priorProb argument must be provided. In the latter case,
the user can provide a non-zero value for fixedValue if desired.

Note that this functionality is intended for variable selection in regression-style models but may be
useful for other situations as well. At the moment, setting a variance component to zero and thereby
removing a set of random effects that are explicitly part of a model will not work because MCMC
sampling in that case would need to propose values for multiple parameters (the random effects),
whereas the current functionality only proposes adding/removing a single model node.

Value

NULL configureRJ modifies the input MCMC configuration object in place.

Author(s)

Sally Paganin, Perry de Valpine, Daniel Turek

References

Peter J. Green. (1995). Reversible jump Markov chain Monte Carlo computation and Bayesian
model determination. Biometrika, 82(4), 711-732.

See Also

samplers configureMCMC

Examples

Not run:

Linear regression with intercept and two covariates, using indicator variables

configureRJ 43

code <- nimbleCode({
beta0 ~ dnorm(0, sd = 100)
beta1 ~ dnorm(0, sd = 100)
beta2 ~ dnorm(0, sd = 100)
sigma ~ dunif(0, 100)
z1 ~ dbern(psi) ## indicator variable associated with beta1
z2 ~ dbern(psi) ## indicator variable associated with beta2
psi ~ dunif(0, 1) ## hyperprior on inclusion probability
for(i in 1:N) {
Ypred[i] <- beta0 + beta1 * z1 * x1[i] + beta2 * z2 * x2[i]
Y[i] ~ dnorm(Ypred[i], sd = sigma)

}
})

simulate some data
set.seed(1)
N <- 100
x1 <- runif(N, -1, 1)
x2 <- runif(N, -1, 1) ## this covariate is not included
Y <- rnorm(N, 1 + 2.5 * x1, sd = 1)

build the model
rIndicatorModel <- nimbleModel(code, constants = list(N = N),

data = list(Y = Y, x1 = x1, x2 = x2),
inits = list(beta0 = 0, beta1 = 0, beta2 = 0, sigma = sd(Y),

z1 = 1, z2 = 1, psi = 0.5))

indicatorModelConf <- configureMCMC(rIndicatorModel)

Add reversible jump
configureRJ(conf = indicatorModelConf, ## model configuration

targetNodes = c("beta1", "beta2"), ## coefficients for selection
indicatorNodes = c("z1", "z2"), ## indicators paired with coefficients
control = list(mean = 0, scale = 2))

indicatorModelConf$addMonitors("beta1", "beta2", "z1", "z2")

rIndicatorMCMC <- buildMCMC(indicatorModelConf)
cIndicatorModel <- compileNimble(rIndicatorModel)
cIndicatorMCMC <- compileNimble(rIndicatorMCMC, project = rIndicatorModel)

set.seed(1)
samples <- runMCMC(cIndicatorMCMC, 10000, nburnin = 6000)

posterior probability to be included in the mode
mean(samples[, "z1"])
mean(samples[, "z2"])

posterior means when in the model
mean(samples[, "beta1"][samples[, "z1"] != 0])
mean(samples[, "beta2"][samples[, "z2"] != 0])

44 Constraint

Linear regression with intercept and two covariates, without indicator variables

code <- nimbleCode({
beta0 ~ dnorm(0, sd = 100)
beta1 ~ dnorm(0, sd = 100)
beta2 ~ dnorm(0, sd = 100)
sigma ~ dunif(0, 100)
for(i in 1:N) {
Ypred[i] <- beta0 + beta1 * x1[i] + beta2 * x2[i]
Y[i] ~ dnorm(Ypred[i], sd = sigma)

}
})

rNoIndicatorModel <- nimbleModel(code, constants = list(N = N),
data = list(Y = Y, x1 = x1, x2 = x2),

inits= list(beta0 = 0, beta1 = 0, beta2 = 0, sigma = sd(Y)))

noIndicatorModelConf <- configureMCMC(rNoIndicatorModel)

Add reversible jump
configureRJ(conf = noIndicatorModelConf, ## model configuration

targetNodes = c("beta1", "beta2"), ## coefficients for selection
priorProb = 0.5, ## prior probability of inclusion
control = list(mean = 0, scale = 2))

add monitors
noIndicatorModelConf$addMonitors("beta1", "beta2")
rNoIndicatorMCMC <- buildMCMC(noIndicatorModelConf)

cNoIndicatorModel <- compileNimble(rNoIndicatorModel)
cNoIndicatorMCMC <- compileNimble(rNoIndicatorMCMC, project = rNoIndicatorModel)

set.seed(1)
samples <- runMCMC(cNoIndicatorMCMC, 10000, nburnin = 6000)

posterior probability to be included in the mode
mean(samples[, "beta1"] != 0)
mean(samples[, "beta2"] != 0)

posterior means when in the model
mean(samples[, "beta1"][samples[, "beta1"] != 0])
mean(samples[, "beta2"][samples[, "beta2"] != 0])

End(Not run)

Constraint Constraint calculations in NIMBLE

Constraint 45

Description

Calculations to handle censoring

Usage

dconstraint(x, cond, log = FALSE)

rconstraint(n = 1, cond)

Arguments

x value indicating whether cond is TRUE or FALSE

cond logical value

log logical; if TRUE, probability density is returned on the log scale.

n number of observations (only n=1 is handled currently).

Details

Used for working with constraints in BUGS code. See the NIMBLE manual for additional details.

Value

dconstraint gives the density and rconstraint generates random deviates, but these are unusual
as the density is 1 if x matches cond and 0 otherwise and the deviates are simply the value of cond

Author(s)

Christopher Paciorek

See Also

Distributions for other standard distributions

Examples

constr <- 3 > 2 && 4 > 0
x <- rconstraint(1, constr)
dconstraint(x, constr)
dconstraint(0, 3 > 4)
dconstraint(1, 3 > 4)
rconstraint(1, 3 > 4)

46 decideAndJump

decide Makes the Metropolis-Hastings acceptance decision, based upon the
input (log) Metropolis-Hastings ratio

Description

This function returns a logical TRUE/FALSE value, indicating whether the proposed transition
should be accepted (TRUE) or rejected (FALSE).

Usage

decide(logMetropolisRatio)

Arguments

logMetropolisRatio

The log of the Metropolis-Hastings ratio, which is calculated from model prob-
abilities and forward/reverse transition probabilities. Calculated as the ratio of
the model probability under the proposal to that under the current values mul-
tiplied by the ratio of the reverse transition probability to the forward transition
probability.

Details

The Metropolis-Hastings accept/reject decisions is made as follows. If logMetropolisRatio is
greater than 0, accept (return TRUE). Otherwise draw a uniform random number between 0 and 1
and accept if it is less that exp(logMetropolisRatio. The proposed transition will be rejected
(return FALSE). If logMetropolisRatio is NA, NaN, or -Inf, a reject (FALSE) decision will be
returned.

Author(s)

Daniel Turek

decideAndJump Creates a nimbleFunction for executing the Metropolis-Hastings
jumping decision, and updating values in the model, or in a carbon
copy modelValues object, accordingly.

Description

This nimbleFunction generator must be specialized to three required arguments: a model, a model-
Values, and a character vector of node names.

Usage

decideAndJump(model, mvSaved, calcNodes)

declare 47

Arguments

model An uncompiled or compiled NIMBLE model object.

mvSaved A modelValues object containing identical variables and logProb variables as
the model. Can be created by modelValues(model).

calcNodes A character vector representing a set of nodes in the model (and hence also the
modelValues) object.

Details

Calling decideAndJump(model, mvSaved, calcNodes) will generate a specialized nimbleFunction
with four required numeric arguments:

modelLP1: The model log-probability associated with the newly proposed value(s)

modelLP0: The model log-probability associated with the original value(s)

propLP1: The log-probability associated with the proposal forward-transition

propLP0: The log-probability associated with the proposal reverse-tranisiton

Executing this function has the following effects: – Calculate the (log) Metropolis-Hastings ratio,
as logMHR = modelLP1 - modelLP0 - propLP1 + propLP0 – Make the proposal acceptance deci-
sion based upon the (log) Metropolis-Hastings ratio – If the proposal is accepted, the values and
associated logProbs of all calcNodes are copied from the model object into the mvSaved object –
If the proposal is rejected, the values and associated logProbs of all calcNodes are copied from the
mvSaved object into the model object – Return a logical value, indicating whether the proposal was
accepted

Author(s)

Daniel Turek

declare Explicitly declare a variable in run-time code of a nimbleFunction

Description

Explicitly declare a variable in run-time code of a nimbleFunction, for cases when its dimensions
cannot be inferred before it is used. Works in R and NIMBLE.

Usage

declare(name, def)

48 deregisterDistributions

Arguments

name Name of a variable to declare, without quotes

def NIMBLE type declaration, of the form TYPE(nDim,sizes), where TYPE is integer,
double, or logical, nDim is the number of dimensions, and sizes is an optional
vector of sizes concatenated with c. If nDim is omitted, it defaults to 0, indicat-
ing a scalar. If sizes are provided, they should not be changed subsequently in
the function, including by assignment. Omitting nDim results in a scalar. For
logical, only scalar is currently supported.

Details

In a run-time function of a nimbleFunction (either the run function or a function provided in
methods when calling nimbleFunction), the dimensionality and numeric type of a variable is
inferred when possible from the statement first assigning into it. E.g. A <-B + C infers that A has
numeric types, dimensions and sizes taken from B + C. However, if the first appearance of A is e.g.
A[i] <-5, A must have been explicitly declared. In this case, declare(A,double(1)) would make
A a 1-dimensional (i.e. vector) double.

When sizes are not set, they can be set by a call to setSize or by assignment to the whole object.
Sizes are not automatically extended if assignment is made to elements beyond the current sizes. In
compiled nimbleFunctions doing so can cause a segfault and crash the R session.

This part of the NIMBLE language is needed for compilation, but it also runs in R. When run in R,
is works by the side effect of creating or modifying name in the calling environment.

Author(s)

NIMBLE development team

Examples

declare(A, logical()) ## scalar logical, the only kind allowed
declare(B, integer(2, c(10, 10))) ## 10 x 10 integer matrix
declare(C, double(3)) ## 3-dimensional double array with no sizes set.

deregisterDistributions

Remove user-supplied distributions from use in NIMBLE BUGS mod-
els

Description

Deregister distributional information originally supplied by the user for use in BUGS model code

Usage

deregisterDistributions(distributionsNames)

Dirichlet 49

Arguments

distributionsNames

a character vector giving the names of the distributions to be dergistered

Author(s)

Christopher Paciorek

Dirichlet The Dirichlet Distribution

Description

Density and random generation for the Dirichlet distribution

Usage

ddirch(x, alpha, log = FALSE)

rdirch(n = 1, alpha)

Arguments

x vector of values.

alpha vector of parameters of same length as x

log logical; if TRUE, probability density is returned on the log scale.

n number of observations (only n=1 is handled currently).

Details

See Gelman et al., Appendix A or the BUGS manual for mathematical details.

Value

ddirch gives the density and rdirch generates random deviates.

Author(s)

Christopher Paciorek

References

Gelman, A., Carlin, J.B., Stern, H.S., and Rubin, D.B. (2004) Bayesian Data Analysis, 2nd ed.
Chapman and Hall/CRC.

See Also

Distributions for other standard distributions

50 distributionInfo

Examples

alpha <- c(1, 10, 30)
x <- rdirch(1, alpha)
ddirch(x, alpha)

distributionInfo Get information about a distribution

Description

Give information about each BUGS distribution

Usage

getDistributionInfo(dist)

isUserDefined(dist)

pqDefined(dist)

getType(dist, params = NULL, valueOnly = is.null(params) && !includeParams,
includeParams = !is.null(params))

getParamNames(dist, includeValue = TRUE)

Arguments

dist a character vector of length one, giving the name of the distribution (as used in
BUGS code), e.g. 'dnorm'

params an optional character vector of names of parameters for which dimensions are
desired (possibly including \’value\’ and alternate parameters)

valueOnly a logical indicating whether to only return the dimension of the value of the node

includeParams a logical indicating whether to return dimensions of parameters. If TRUE and
\’params\’ is NULL then dimensions of all parameters, including the dimension
of the value of the node, are returned

includeValue a logical indicating whether to return the string ’value’, which is the name of the
node value

Details

NIMBLE provides various functions to give information about a BUGS distribution. In some cases,
functions of the same name and similar functionality operate on the node(s) of a model as well (see
help(modelBaseClass)).

getDistributionInfo returns an internal data structure (a reference class object) providing vari-
ous information about the distribution. The output is not very user-friendly, but does contain all of
the information that NIMBLE has about the distribution.

distributionInfo 51

isDiscrete tests if a BUGS distribution is a discrete distribution.

isUserDefined tests if a BUGS distribution is a user-defined distribution.

pqAvail tests if a BUGS distribution provides distribution (’p’) and quantile (’q’) functions.

getDimension provides the dimension of the value and/or parameters of a BUGS distribution. The
return value is a numeric vector with an element for each parameter/value requested.

getType provides the type (numeric, logical, integer) of the value and/or parameters of a BUGS
distribution. The return value is a character vector with an element for each parameter/value re-
quested. At present, all quantities are stored as numeric (double) values, so this function is of little
practical use but could be exploited in the future.

getParamNames provides the value and/or parameter names of a BUGS distribution.

Author(s)

Christopher Paciorek

Examples

distInfo <- getDistributionInfo('dnorm')
distInfo
distInfo$range

isDiscrete('dbin')

isUserDefined('dbin')

pqDefined('dgamma')
pqDefined('dmnorm')

getDimension('dnorm')
getDimension('dnorm', includeParams = TRUE)
getDimension('dnorm', c('var', 'sd'))
getDimension('dcat', includeParams = TRUE)
getDimension('dwish', includeParams = TRUE)

getType('dnorm')
getType('dnorm', includeParams = TRUE)
getType('dnorm', c('var', 'sd'))
getType('dcat', includeParams = TRUE)
getType('dwish', includeParams = TRUE)

getParamNames('dnorm', includeValue = FALSE)
getParamNames('dmnorm')

52 Double-Exponential

Double-Exponential The Double Exponential (Laplace) Distribution

Description

Density, distribution function, quantile function and random generation for the double exponential
distribution, allowing non-zero location, mu, and non-unit scale, sigma, or non-unit rate, tau

Usage

ddexp(x, location = 0, scale = 1, rate = 1/scale, log = FALSE)

rdexp(n, location = 0, scale = 1, rate = 1/scale)

pdexp(q, location = 0, scale = 1, rate = 1/scale, lower.tail = TRUE,
log.p = FALSE)

qdexp(p, location = 0, scale = 1, rate = 1/scale, lower.tail = TRUE,
log.p = FALSE)

Arguments

x vector of values.

location vector of location values.

scale vector of scale values.

rate vector of inverse scale values.

log logical; if TRUE, probability density is returned on the log scale.

n number of observations.

q vector of quantiles.

lower.tail logical; if TRUE (default) probabilities are P [X ≤ x]; otherwise, P [X > x].

log.p logical; if TRUE, probabilities p are given by user as log(p).

p vector of probabilities.

Details

See Gelman et al., Appendix A or the BUGS manual for mathematical details.

Value

ddexp gives the density, pdexp gives the distribution function, qdexp gives the quantile function,
and rdexp generates random deviates.

Author(s)

Christopher Paciorek

eigenNimbleList 53

References

Gelman, A., Carlin, J.B., Stern, H.S., and Rubin, D.B. (2004) Bayesian Data Analysis, 2nd ed.
Chapman and Hall/CRC.

See Also

Distributions for other standard distributions

Examples

x <- rdexp(50, location = 2, scale = 1)
ddexp(x, 2, 1)

eigenNimbleList eigenNimbleList definition

Description

nimbleList definition for the type of nimbleList returned by nimEigen.

Usage

eigenNimbleList

Format

An object of class list of length 1.

Author(s)

NIMBLE development team

See Also

nimEigen

54 Exponential

Exponential The Exponential Distribution

Description

Density, distribution function, quantile function and random generation for the exponential distri-
bution with rate (i.e., mean of 1/rate) or scale parameterizations.

Usage

dexp_nimble(x, rate = 1/scale, scale = 1, log = FALSE)

rexp_nimble(n = 1, rate = 1/scale, scale = 1)

pexp_nimble(q, rate = 1/scale, scale = 1, lower.tail = TRUE,
log.p = FALSE)

qexp_nimble(p, rate = 1/scale, scale = 1, lower.tail = TRUE,
log.p = FALSE)

Arguments

x vector of values.

rate vector of rate values.

scale vector of scale values.

log logical; if TRUE, probability density is returned on the log scale.

n number of observations.

q vector of quantiles.

lower.tail logical; if TRUE (default) probabilities are P [X ≤ x]; otherwise, P [X > x].

log.p logical; if TRUE, probabilities p are given by user as log(p).

p vector of probabilities.

Details

NIMBLE’s exponential distribution functions use Rmath’s functions under the hood, but are param-
eterized to take both rate and scale and to use ’rate’ as the core parameterization in C, unlike Rmath,
which uses ’scale’. See Gelman et al., Appendix A or the BUGS manual for mathematical details.

Value

dexp_nimble gives the density, pexp_nimble gives the distribution function, qexp_nimble gives
the quantile function, and rexp_nimble generates random deviates.

Author(s)

Christopher Paciorek

flat 55

References

Gelman, A., Carlin, J.B., Stern, H.S., and Rubin, D.B. (2004) Bayesian Data Analysis, 2nd ed.
Chapman and Hall/CRC.

See Also

Distributions for other standard distributions

Examples

x <- rexp_nimble(50, scale = 3)
dexp_nimble(x, scale = 3)

flat The Improper Uniform Distribution

Description

Improper flat distribution for use as a prior distribution in BUGS models

Usage

dflat(x, log = FALSE)

rflat(n = 1)

dhalfflat(x, log = FALSE)

rhalfflat(n = 1)

Arguments

x vector of values.

log logical; if TRUE, probability density is returned on the log scale.

n number of observations.

Value

dflat gives the pseudo-density value of 1, while rflat and rhalfflat return NaN, since one cannot
simulate from an improper distribution. Similarly, dhalfflat gives a pseudo-density value of 1
when x is non-negative.

Author(s)

Christopher Paciorek

56 getBound

See Also

Distributions for other standard distributions

Examples

dflat(1)

getBound Get value of bound of a stochastic node in a model

Description

Part of the NIMBLE language

Usage

getBound(model, node, bound, nodeFunctionIndex)

Arguments

model A NIMBLE model object

node The name of a stochastic node in the model

bound Either 'lower' or 'upper' indicating the desired bound for the node

nodeFunctionIndex

For internal NIMBLE use only

Details

For nodes that do not involve truncation of the distribution this will return the lower or upper bound
of the distribution, which may be a constant or for a limited number of distributions a parameter or
functional of a parameter (at the moment in NIMBLE, the only case where a bound is a parameter is
for the uniform distribution. For nodes that are truncated, this will return the desired bound, which
may be a functional of other quantities in the model or may be a constant.

getBUGSexampleDir 57

getBUGSexampleDir Get the directory path to one of the classic BUGS examples installed
with NIMBLE package

Description

NIMBLE comes with some of the classic BUGS examples. getBUGSexampleDir looks up the
location of an example from its name.

Usage

getBUGSexampleDir(example)

Arguments

example The name of the classic BUGS example.

Value

Character string of the fully pathed directory of the BUGS example.

Author(s)

Christopher Paciorek

See Also

readBUGSmodel for usage in creating a model from a classic BUGS example

getDefinition Get nimbleFunction definition

Description

Returns a list containing the nimbleFunction definition components (setup function, run function,
and other member methods) for the supplied nimbleFunction generator or specialized instance.

Usage

getDefinition(nf)

Arguments

nf A nimbleFunction generator, or a compiled or un-compiled specialized nimble-
Function.

58 getNimbleOption

Author(s)

Daniel Turek

getLoadingNamespace return the namespace in which a nimbleFunction is being loaded

Description

nimbleFunction constructs and evals a reference class definition. When nimbleFunction is used
in package source code, this can lead to problems finding things due to namespace issues. Using
where = getLoadingNamespace() in a nimbleFunction in package source code should solve this
problem.

Usage

getLoadingNamespace()

Details

nimbleFunctions defined in the NIMBLE source code use where = getLoadingNamespace().
Please let the NIMBLE developers know if you encounter problems with this.

getNimbleOption Get NIMBLE Option

Description

Allow the user to get the value of a global _option_ that affects the way in which NIMBLE operates

Usage

getNimbleOption(x)

Arguments

x a character string holding an option name

Value

The value of the option.

Author(s)

Christopher Paciorek

Examples

getNimbleOption('verifyConjugatePosteriors')

getParam 59

getParam Get value of a parameter of a stochastic node in a model

Description

Part of the NIMBLE language

Usage

getParam(model, node, param, nodeFunctionIndex)

Arguments

model A NIMBLE model object

node The name of a stochastic node in the model

param The name of a parameter for the node
nodeFunctionIndex

For internal NIMBLE use only

Details

For example, suppose node ’x[1:5]’ follows a multivariate normal distribution (dmnorm) in a model
declared by BUGS code. getParam(model, ’x[1:5]’, ’mean’) would return the current value of the
mean parameter (which may be determined from other nodes). The parameter requested does not
have to be part of the parameterization used to declare the node. Rather, it can be any parameter
known to the distribution. For example, one can request the scale or rate parameter of a gamma
distribution, regardless of which one was used to declare the node.

getSamplesDPmeasure Get posterior samples for a Dirichlet process measure

Description

This function obtains posterior samples from a Dirichlet process distributed random measure of a
model specified using the dCRP distribution.

Usage

getSamplesDPmeasure(MCMC, epsilon = 1e-04)

Arguments

MCMC an MCMC class object, either compiled or uncompiled.

epsilon used for determining the truncation level of the representation of the random
measure.

60 getSamplesDPmeasure

Details

This function provides samples from a random measure having a Dirichlet process prior. Realiza-
tions are almost surely discrete and represented by a (finite) stick-breaking representation (Sethu-
raman, 1994), whose atoms (or point masses) are independent and identically distributed. This
sampler can only be used with models containing a dCRP distribution .

The MCMC argument is an object of class MCMC provided by buildMCMC, or its compiled version.
The MCMC should already have been run, as getSamplesDPmeasure uses the parameter sam-
ples to generates samples for the random measure. Note that the monitors associated with that
MCMC must include the cluster membership variable (which has the dCRP distribution), the clus-
ter parameter variables, all variables directly determining the dCRP concentration parameter, and
any stochastic parent variables of the cluster parameter variables. See help(configureMCMC) or
help(addMonitors) for information on specifying monitors for an MCMC.

The epsilon argument is used to determine the truncation level of the random measure. epsilon
is the tail probability of the random measure, which together with posterior samples of the concen-
tration parameter, determines the truncation level (see Section 3 in Gelfand, A.E. and Kottas, A.
2002). The default value is 1e-4.

The returned list contains a matrix with samples from the random measure (one sample per row)
and the truncation level. The stick-breaking weights are named weights and the atoms, or point
masses, are named based on the cluster variables in the model.

Author(s)

Claudia Wehrhahn and Christopher Paciorek

References

Sethuraman, J. (1994). A constructive definition of Dirichlet priors. Statistica Sinica, 639-650.

Gelfand, A.E. and Kottas, A. (2002). A computational approach for full nonparametric Bayesian in-
ference under Dirichlet process mixture models. ournal of Computational and Graphical Statistics,
11(2), 289-305.

See Also

buildMCMC, configureMCMC,

Examples

Not run:
conf <- configureMCMC(model)
mcmc <- buildMCMC(conf)
cmodel <- compileNimble(model)
cmcmc <- compileNimble(mcmc, project = model)
runMCMC(cmcmc, niter = 1000)
outputG <- getSamplesDPmeasure(cmcmc)
samples <- outputG$samples
truncation <- output$trunc

End(Not run)

getsize 61

getsize Returns number of rows of modelValues

Description

Returns the number of rows of NIMBLE modelValues object. Works in R and NIMBLE.

Usage

getsize(container)

Arguments

container modelValues object

Details

See the User Manual or help(modelValuesBaseClass) for information about modelValues objects

Author(s)

Clifford Anderson-Bergman

Examples

mvConf <- modelValuesConf(vars = 'a', types = 'double', sizes = list(a = 1))
mv <- modelValues(mvConf)
resize(mv, 10)

getsize(mv)

identityMatrix Create an Identity matrix (Deprecated)

Description

Returns a d-by-d identity matrix (square matrix of 0’s, with 1’s on the main diagnol).

Usage

identityMatrix(d)

Arguments

d The size of the identity matrix to return, will return a d-by-d matrix

62 initializeModel

Details

This function can be used in NIMBLE run code. It is deprecated because now one can use diag(d)
instead.

Value

A d-by-d identity matrix

Author(s)

Daniel Turek

Examples

Id <- identityMatrix(d = 3)

initializeModel Performs initialization of nimble model node values and log probabil-
ities

Description

Performs initialization of nimble model node values and log probabilities

Usage

initializeModel(model, silent = FALSE)

Arguments

model A setup argument, which specializes an instance of this nimble function to a
particular model.

silent logical indicating whether to suppress logging information

Details

This nimbleFunction may be used at the beginning of nimble algorithms to perform model initial-
ization. The intended usage is to specialize an instance of this nimbleFunction in the setup function
of an algorithm, then execute that specialied function at the beginning of the algorithm run function.
The specialized function takes no arguments.

Executing this function ensures that all right-hand-side only nodes have been assigned real values,
that all stochastic nodes have a real value, or otherwise have their simulate() method called, that all
deterministic nodes have their simulate() method called, and that all log-probabilities have been cal-
culated with the current model values. An error results if model initialization encounters a problem,
for example a missing right-hand-side only node value.

Interval 63

Author(s)

Daniel Turek

Examples

myNewAlgorithm <- nimbleFunction(
setup = function(model, ...) {

my_initializeModel <- initializeModel(model)
....

},
run = function(...) {

my_initializeModel()
....

}
)

Interval Interval calculations

Description

Calculations to handle censoring

Usage

dinterval(x, t, c, log = FALSE)

rinterval(n = 1, t, c)

Arguments

x vector of interval indices.

t vector of values.

c vector of one or more values delineating the intervals.

log logical; if TRUE, probability density is returned on the log scale.

n number of observations.

Details

Used for working with censoring in BUGS code. Taking c to define the endpoints of two or more
intervals (with implicit endpoints of plus/minus infinity), x (or the return value of rinterval) gives
the non-negative integer valued index of the interval in which t falls. See the NIMBLE manual for
additional details.

64 Inverse-Gamma

Value

dinterval gives the density and rinterval generates random deviates, but these are unusual as
the density is 1 if x indicates the interval in which t falls and 0 otherwise and the deviates are simply
the interval(s) in which t falls.

Author(s)

Christopher Paciorek

See Also

Distributions for other standard distributions

Examples

endpoints <- c(-3, 0, 3)
vals <- c(-4, -1, 1, 5)
x <- rinterval(4, vals, endpoints)
dinterval(x, vals, endpoints)
dinterval(c(1, 5, 2, 3), vals, endpoints)

Inverse-Gamma The Inverse Gamma Distribution

Description

Density, distribution function, quantile function and random generation for the inverse gamma dis-
tribution with rate or scale (mean = scale / (shape - 1)) parameterizations.

Usage

dinvgamma(x, shape, scale = 1, rate = 1/scale, log = FALSE)

rinvgamma(n = 1, shape, scale = 1, rate = 1/scale)

pinvgamma(q, shape, scale = 1, rate = 1/scale, lower.tail = TRUE,
log.p = FALSE)

qinvgamma(p, shape, scale = 1, rate = 1/scale, lower.tail = TRUE,
log.p = FALSE)

Arguments

x vector of values.

shape vector of shape values, must be positive.

scale vector of scale values, must be positive.

rate vector of rate values, must be positive.

Inverse-Gamma 65

log logical; if TRUE, probability density is returned on the log scale.

n number of observations.

q vector of quantiles.

lower.tail logical; if TRUE (default) probabilities are P [X ≤ x]; otherwise, P [X > x].

log.p logical; if TRUE, probabilities p are given by user as log(p).

p vector of probabilities.

Details

The inverse gamma distribution with parameters shape = α and scale = σ has density

f(x) =
sa

Γ(α)
x−(α+1)e−σ/x

for x ≥ 0, α > 0 and σ > 0. (Here Γ(α) is the function implemented by R’s gamma() and defined
in its help.

The mean and variance are E(X) = σ
α − 1 and V ar(X) = σ2

(α−1)2(α−2) , with the mean defined
only for α > 1 and the variance only for α > 2.

See Gelman et al., Appendix A or the BUGS manual for mathematical details.

Value

dinvgamma gives the density, pinvgamma gives the distribution function, qinvgamma gives the quan-
tile function, and rinvgamma generates random deviates.

Author(s)

Christopher Paciorek

References

Gelman, A., Carlin, J.B., Stern, H.S., and Rubin, D.B. (2004) Bayesian Data Analysis, 2nd ed.
Chapman and Hall/CRC.

See Also

Distributions for other standard distributions

Examples

x <- rinvgamma(50, shape = 1, scale = 3)
dinvgamma(x, shape = 1, scale = 3)

66 Inverse-Wishart

Inverse-Wishart The Inverse Wishart Distribution

Description

Density and random generation for the Inverse Wishart distribution, using the Cholesky factor of
either the scale matrix or the rate matrix.

Usage

dinvwish_chol(x, cholesky, df, scale_param = TRUE, log = FALSE)

rinvwish_chol(n = 1, cholesky, df, scale_param = TRUE)

Arguments

x vector of values.

cholesky upper-triangular Cholesky factor of either the scale matrix (when scale_param
is TRUE) or rate matrix (otherwise).

df degrees of freedom.

scale_param logical; if TRUE the Cholesky factor is that of the scale matrix; otherwise, of
the rate matrix.

log logical; if TRUE, probability density is returned on the log scale.

n number of observations (only n=1 is handled currently).

Details

See Gelman et al., Appendix A for mathematical details. The rate matrix as used here is defined as
the inverse of the scale matrix, S−1, given in Gelman et al.

Value

dinvwish_chol gives the density and rinvwish_chol generates random deviates.

Author(s)

Christopher Paciorek

References

Gelman, A., Carlin, J.B., Stern, H.S., and Rubin, D.B. (2004) Bayesian Data Analysis, 2nd ed.
Chapman and Hall/CRC.

See Also

Distributions for other standard distributions

is.nf 67

Examples

df <- 40
ch <- chol(matrix(c(1, .7, .7, 1), 2))
x <- rwish_chol(1, ch, df = df)
dwish_chol(x, ch, df = df)

is.nf check if a nimbleFunction

Description

Checks an object to determine if it is a nimbleFunction (i.e., a function created by nimbleFunction
using setup code).

Usage

is.nf(f, inputIsName = FALSE)

Arguments

f object to be tested
inputIsName logical indicating whether the function is provided as the character name of the

function or the function object itself

See Also

nimbleFunction for how to create a nimbleFunction

is.nl check if a nimbleList

Description

Checks an object to determine if it is a nimbleList (i.e., a list created by nlDef$new()).

Usage

is.nl(l)

Arguments

l object to be tested

See Also

nimbleList for how to create a nimbleList

68 makeParamInfo

makeBoundInfo Make an object of information about a model-bound pairing for get-
Bound. Used internally

Description

Creates a simple getBound_info object, which has a list with a boundID and a type. Unlike
makeParamInfo this is more bare-bones, but keeping it for parallelism with getParam.

Usage

makeBoundInfo(model, nodes, bound)

Arguments

model A model such as returned by nimbleModel.
nodes A character string naming a stochastic nodes, such as 'mu'.
bound A character string naming a bound of the distribution, either 'lower' or 'upper'.

Details

This is used internally by getBound. It is not intended for direct use by a user or even a nimble-
Function programmer.

makeParamInfo Make an object of information about a model-parameter pairing for
getParam. Used internally

Description

Creates a simple getParam_info object, which has a list with a paramID and a type

Usage

makeParamInfo(model, nodes, param)

Arguments

model A model such as returned by nimbleModel.
nodes A character string naming one one or more stochastic nodes, such as "mu",

"c(’mu’, ’beta[2]’)", or "eta[1:3, 2]". getParam only works for one node at a
time, but if it is indexed (nodes[i]), then makeParamInfo sets up the information
for the entire vector nodes. The processing pathway is used by the NIMBLE
compiler.

param A character string naming a parameter of the distribution followed by node, such
as "mean", "rate", "lambda", or whatever parameter names are relevant for the
distribution of the node.

MCMCconf-class 69

Details

This is used internally by getParam. It is not intended for direct use by a user or even a nimble-
Function programmer.

MCMCconf-class Class MCMCconf

Description

Objects of this class configure an MCMC algorithm, specific to a particular model. Objects are
normally created by calling configureMCMC. Given an MCMCconf object, the actual MCMC func-
tion can be built by calling buildMCMC(conf). See documentation below for method initialize() for
details of creating an MCMCconf object.

Methods

addMonitors(..., ind = 1, print = TRUE) Adds variables to the list of monitors.
Arguments:
...: One or more character vectors of indexed nodes, or variables, which are to be monitored.
These are added onto the current monitors list.
print: A logical argument specifying whether to print all current monitors (default TRUE).
Details: See the initialize() function

addMonitors2(..., print = TRUE) Adds variables to the list of monitors2.
Arguments:
...: One or more character vectors of indexed nodes, or variables, which are to be monitored.
These are added onto the current monitors2 list.
print: A logical argument specifying whether to print all current monitors (default TRUE).
Details: See the initialize() function

addSampler(target, type = "RW", control = list(), print = FALSE, name, scalarComponents = FALSE, silent = FALSE, ...)
Adds a sampler to the list of samplers contained in the MCMCconf object.
Arguments:
target: The target node or nodes to be sampled. This may be specified as a character vector of
model node and/or variable names. This argument is required.
type: The type of sampler to add, specified as either a character string or a nimbleFunction
object. If the character argument type=’newSamplerType’, then either newSamplerType or
sampler_newSamplertype must correspond to a nimbleFunction (i.e. a function returned by
nimbleFunction, not a specialized nimbleFunction). Alternatively, the type argument may be
provided as a nimbleFunction itself rather than its name. In that case, the ’name’ argument
may also be supplied to provide a meaningful name for this sampler. The default value is
’RW’ which specifies scalar adaptive Metropolis-Hastings sampling with a normal proposal
distribution. This default will result in an error if ’target’ specifies more than one target node.
control: A list of control arguments specific to the sampler function. These will override those
specified in the control list argument to configureMCMC().

70 MCMCconf-class

print: Logical argument, specifying whether to print the details of the newly added sampler,
as well as its position in the list of MCMC samplers.
name: Optional character string name for the sampler, which is used by the printSamplers
method. If ’name’ is not provided, the ’type’ argument is used to generate the sampler name.
scalarComponents: Logical argument, indicating whether the specified sampler ’type’ should
be assigned independently to each scalar (univariate) component of the specified ’target’ node
or variable. This option should only be specified as TRUE when the sampler ’type’ specifies
a univariate sampler.
silent: Logical argument, specifying whether to print warning messages when assigning sam-
plers.
...: Additional named arguments passed through ... will be used as additional control list
elements.
Details: A single instance of the newly configured sampler is added to the end of the list of
samplers for this MCMCconf object.
Invisibly returns a list of the current sampler configurations, which are samplerConf reference
class objects.

addSamplerOne(thisSamplerName, samplerFunction, targetOne, thisControlList, print)
For internal use only

getMonitors() Returns a character vector of the current monitors
Details: See the initialize() function

getMonitors2() Returns a character vector of the current monitors2
Details: See the initialize() function

getSamplerDefinition(ind, print = FALSE) Returns the nimbleFunction definition of an MCMC
sampler.
Arguments:
ind: A numeric vector or character vector. A numeric vector may be used to specify the index
of the sampler definition to return, or a character vector may be used to indicate a target node
for which the sampler acting on this nodes will be printed. For example, getSamplerDefini-
tion(’x[2]’) will return the definition of the sampler whose target is model node ’x[2]’. If more
than one sampler function is specified, only the first is returned.
Returns a list object, containing the setup function, run function, and additional member meth-
ods for the specified nimbleFunction sampler.

getSamplerExecutionOrder() Returns a numeric vector, specifying the ordering of sampler func-
tion execution.
The indices of execution specified in this numeric vector correspond to the enumeration of
samplers printed by printSamplers(), or returned by getSamplers().

getSamplers(ind) Returns a list of samplerConf objects.
Arguments:
ind: A numeric vector or character vector. A numeric vector may be used to specify the
indices of the samplerConf objects to return, or a character vector may be used to indicate
a set of target nodes and/or variables, for which all samplers acting on these nodes will be
returned. For example, getSamplers(’x’) will return all samplerConf objects whose target is
model node ’x’, or whose targets are contained (entirely or in part) in the model variable ’x’.
If omitted, then all samplerConf objects in this MCMC configuration object are returned.

MCMCconf-class 71

initialize(model, nodes, control = list(), rules, monitors, thin = 1, monitors2 = character(), thin2 = 1, useConjugacy = getNimbleOption("MCMCuseConjugacy"), onlyRW = FALSE, onlySlice = FALSE, multivariateNodesAsScalars = getNimbleOption("MCMCmultivariateNodesAsScalars"), enableWAIC = getNimbleOption("MCMCenableWAIC"), warnNoSamplerAssigned = TRUE, print = TRUE, ...)
Creates a MCMC configuration for a given model. The resulting object is suitable as an argu-
ment to buildMCMC.
Arguments:
model: A NIMBLE model object, created from nimbleModel(...)
nodes: An optional character vector, specifying the nodes for which samplers should be cre-
ated. Nodes may be specified in their indexed form, ’y[1, 3]’, or nodes specified without
indexing will be expanded fully, e.g., ’x’ will be expanded to ’x[1]’, ’x[2]’, etc. If missing,
the default value is all non-data stochastic nodes. If NULL, then no samplers are added.
control: An optional list of control arguments to sampler functions. If a control list is provided,
the elements will be provided to all sampler functions which utilize the named elements given.
For example, the standard Metropolis-Hastings random walk sampler (sampler_RW) utilizes
control list elements ’adaptive’, ’adaptInterval’, ’scale’. The default values for control list
arguments for samplers (if not otherwise provided as an argument to configureMCMC() or
addSampler()) are contained in the setup code of each sampling algorithm.
monitors: A character vector of node names or variable names, to record during MCMC
sampling. This set of monitors will be recorded with thinning interval ’thin’, and the samples
will be stored into the ’mvSamples’ object. The default value is all top-level stochastic nodes
of the model – those having no stochastic parent nodes.
monitors2: A character vector of node names or variable names, to record during MCMC
sampling. This set of monitors will be recorded with thinning interval ’thin2’, and the samples
will be stored into the ’mvSamples2’ object. The default value is an empty character vector,
i.e. no values will be recorded.
thin: The thinning interval for ’monitors’. Default value is one.
thin2: The thinning interval for ’monitors2’. Default value is one.
useConjugacy: A logical argument, with default value TRUE. If specified as FALSE, then
no conjugate samplers will be used, even when a node is determined to be in a conjugate
relationship.
onlyRW: A logical argument, with default value FALSE. If specified as TRUE, then Metropolis-
Hastings random walk samplers will be assigned for all non-terminal continuous-valued nodes
nodes. Discrete-valued nodes are assigned a slice sampler, and terminal nodes are assigned a
posterior_predictive sampler.
onlySlice: A logical argument, with default value FALSE. If specified as TRUE, then a slice
sampler is assigned for all non-terminal nodes. Terminal nodes are still assigned a poste-
rior_predictive sampler.
multivariateNodesAsScalars: A logical argument, with default value FALSE. If specified as
TRUE, then non-terminal multivariate stochastic nodes will have scalar samplers assigned to
each of the scalar components of the multivariate node. The default value of FALSE results
in a single block sampler assigned to the entire multivariate node. Note, multivariate nodes
appearing in conjugate relationships will be assigned the corresponding conjugate sampler
(provided useConjugacy == TRUE), regardless of the value of this argument.
enableWAIC: A logical argument, specifying whether to enable WAIC calculations for the
resulting MCMC algorithm. Defaults to the value of nimbleOptions(’MCMCenableWAIC’),
which in turn defaults to FALSE. Setting nimbleOptions(’MCMCenableWAIC’ = TRUE) will
ensure that WAIC is enabled for all calls to configureMCMC and buildMCMC.
warnNoSamplerAssigned: A logical argument specifying whether to issue a warning when no
sampler is assigned to a node, meaning there is no matching sampler assignment rule. Default

72 MCMCconf-class

is TRUE.
print: A logical argument specifying whether to print the montiors and samplers. Default is
TRUE.
...: Additional named control list elements for default samplers, or additional arguments to be
passed to the autoBlock function when autoBlock = TRUE.

printMonitors() Prints all current monitors and monitors2
Details: See the initialize() function

printSamplers(..., ind, type, displayControlDefaults = FALSE, displayNonScalars = FALSE, displayConjugateDependencies = FALSE, executionOrder = FALSE, byType = FALSE)
Prints details of the MCMC samplers.
Arguments:
...: Character node or variable names, or numeric indices. Numeric indices may be used to
specify the indices of the samplers to print, or character strings may be used to indicate a set
of target nodes and/or variables, for which all samplers acting on these nodes will be printed.
For example, printSamplers(’x’) will print all samplers whose target is model node ’x’, or
whose targets are contained (entirely or in part) in the model variable ’x’. If omitted, then all
samplers are printed.
ind: A numeric vector or character vector. A numeric vector may be used to specify the
indices of the samplers to print, or a character vector may be used to indicate a set of target
nodes and/or variables, for which all samplers acting on these nodes will be printed. For
example, printSamplers(’x’) will print all samplers whose target is model node ’x’, or whose
targets are contained (entirely or in part) in the model variable ’x’. If omitted, then all samplers
are printed.
type: a character vector containing sampler type names. Only samplers with one of these
specified types, as printed by this printSamplers method, will be displayed. Standard regular
expression mathing using is also applied.
displayConjugateDependencies: A logical argument, specifying whether to display the depen-
dency lists of conjugate samplers (default FALSE).
displayNonScalars: A logical argument, specifying whether to display the values of non-scalar
control list elements (default FALSE).
executionOrder: A logical argument, specifying whether to print the sampler functions in the
(possibly modified) order of execution (default FALSE).
byType: A logical argument, specifying whether the nodes being sampled should be printed,
sorted and organized according to the type of sampler (the sampling algorithm) which is acting
on the nodes (default FALSE).

removeSampler(...) Alias for removeSamplers method
removeSamplers(..., ind, print = FALSE) Removes one or more samplers from an MCMC-

conf object.
Arguments:
This function also has the side effect of resetting the sampler execution ordering so as to iterate
over the remaining set of samplers, sequentially, executing each sampler once.
...: Character node names or numeric indices. Character node names specify the node names
for samplers to remove, or numeric indices can provide the indices of samplers to remove.
ind: A numeric vector or character vector specifying the samplers to remove. A numeric vector
may specify the indices of the samplers to be removed. Alternatively, a character vector may
be used to specify a set of model nodes and/or variables, and all samplers whose ’target’ is
among these nodes will be removed. If omitted, then all samplers are removed.

MCMCconf-class 73

print: A logical argument specifying whether to print the current list of samplers once the
removal has been done (default FALSE).

resetMonitors() Resets the current monitors and monitors2 lists to nothing.
Details: See the initialize() function

setEnableWAIC(waic = TRUE) Sets the value of enableWAIC.
Arguments:
waic: A logical argument, indicating whether to enable WAIC calculations in the resulting
MCMC algorithm (default TRUE).

setSampler(...) Alias for setSamplers method

setSamplerExecutionOrder(order, print = FALSE) Sets the ordering in which sampler func-
tions will execute.
This allows some samplers to be "turned off", or others to execute multiple times in a single
MCMC iteration. The ordering in which samplers execute can also be interleaved.
Arguments:
order: A numeric vector, specifying the ordering in which the sampler functions will execute.
The indices of execution specified in this numeric vector correspond to the enumeration of
samplers printed by printSamplers(), or returned by getSamplers(). If this argument is omitted,
the sampler execution ordering is reset so as to sequentially execute each sampler once.
print: A logical argument specifying whether to print the current list of samplers in the modi-
fied order of execution (default FALSE).

setSamplers(..., ind, print = FALSE) Sets the ordering of the list of MCMC samplers.
This function also has the side effect of resetting the sampler execution ordering so as to iterate
over the specified set of samplers, sequentially, executing each sampler once.
Arguments:
...: Chracter strings or numeric indices. Character names may be used to specify the node
names for samplers to retain. A numeric indices may be used to specify the indicies for the
new list of MCMC samplers, in terms of the current ordered list of samplers.
ind: A numeric vector or character vector. A numeric vector may be used to specify the
indicies for the new list of MCMC samplers, in terms of the current ordered list of samplers.
For example, if the MCMCconf object currently has 3 samplers, then the ordering may be
reversed by calling MCMCconf$setSamplers(3:1), or all samplers may be removed by calling
MCMCconf$setSamplers(numeric(0)).
Alternatively, a character vector may be used to specify a set of model nodes and/or variables,
and the sampler list will modified to only those samplers acting on these target nodes.
As another alternative, a list of samplerConf objects may be used as the argument, in which
case this ordered list of samplerConf objects will define the samplers in this MCMC config-
uration object, completely over-writing the current list of samplers. No checking is done to
ensure the validity of the contents of these samplerConf objects; only that all elements of the
list argument are, in fact, samplerConf objects.
print: A logical argument specifying whether to print the new list of samplers (default FALSE).

setThin(thin, print = TRUE) Sets the value of thin.
Arguments:
thin: The new value for the thinning interval ’thin’.
print: A logical argument specifying whether to print all current monitors (default TRUE).
Details: See the initialize() function

74 MCMCsuite

setThin2(thin2, print = TRUE) Sets the value of thin2.
Arguments:
thin2: The new value for the thinning interval ’thin2’.
print: A logical argument specifying whether to print all current monitors (default TRUE).
Details: See the initialize() function

Author(s)

Daniel Turek

See Also

configureMCMC

Examples

code <- nimbleCode({
mu ~ dnorm(0, 1)
x ~ dnorm(mu, 1)

})
Rmodel <- nimbleModel(code)
conf <- configureMCMC(Rmodel)
conf$setSamplers(1)
conf$addSampler(target = 'x', type = 'slice', control = list(adaptInterval = 100))
conf$addMonitors('mu')
conf$addMonitors2('x')
conf$setThin(5)
conf$setThin2(10)
conf$printMonitors()
conf$printSamplers()

MCMCsuite Placeholder for MCMCsuite

Description

This function has been moved to a separate package

Usage

MCMCsuite(...)

Arguments

... arguments

modelBaseClass-class 75

modelBaseClass-class Class modelBaseClass

Description

This class underlies all NIMBLE model objects: both R model objects created from the return
value of nimbleModel(), and compiled model objects. The model object contains a variety of mem-
ber functions, for providing information about the model structure, setting or querying properties of
the model, or accessing various internal components of the model. These member functions of the
modelBaseClass are commonly used in the body of the setup function argument to nimbleFunc-
tion(), to aid in preparation of node vectors, nimbleFunctionLists, and other runtime inputs. See
documentation for nimbleModel for details of creating an R model object.

Methods

check() Checks for errors in model specification and for missing values that prevent use of calcu-
late/simulate on any nodes

checkBasics() Checks for size/dimension mismatches and for presence of NAs in model vari-
ables (the latter is not an error but a note of this is given to the user)

checkConjugacy(nodeVector, restrictLink = NULL) Determines whether or not the input nodes
appear in conjugate relationships
Arguments:
nodeVector: A character vector specifying one or more node or variable names. If omitted, all
stochastic non-data nodes are checked for conjugacy.
Details: The return value is a named list, with an element corresponding to each conjugate
node. The list names are the conjugate node names, and list elements are the control list
arguments required by the corresponding MCMC conjugate sampler functions. If no model
nodes are conjugate, an empty list is returned.

expandNodeNames(nodes, env = parent.frame(), returnScalarComponents = FALSE, returnType = "names", sort = FALSE, unique = TRUE)
Takes a vector of names of nodes or variables and returns the unique and expanded names in
the model, i.e. ’x’ expands to ’x[1]’, ’x[2]’, ...
Arguments:
nodes: a vector of names of nodes (or variables) to be expanded. Alternatively, can be a vector
of integer graph IDs, but this use is intended only for advanced users
returnScalarComponents: should multivariate nodes (i.e. dmnorm or dmulti) be broken up
into scalar components?
returnType: return type. Options are ’names’ (character vector) or ’ids’ (graph IDs)
sort: should names be topologically sorted before being returned?
unique: should names be the unique names or should original ordering of nodes (after expan-
sion of any variable names into node names) be preserved

getCode() Return the code for a model after , processing if-then-else statements,
expanding macros, and replacing some
keywords (e.g. nimStep for step) to
avoid R ambiguity.

76 modelBaseClass-class

getDependencies(nodes, omit = character(), self = TRUE, determOnly = FALSE, stochOnly = FALSE, includeData = TRUE, dataOnly = FALSE, includeRHSonly = FALSE, downstream = FALSE, returnType = "names", returnScalarComponents = FALSE)
Returns a character vector of the nodes dependent upon the input argument nodes, sorted topo-
logically according to the model graph. Aditional input arguments provide flexibility in the
values returned.
Arguments:
nodes: Character vector of node names, with index blocks allowed, and/or variable names, the
dependents of which will be returned.
omit: Character vector of node names, which will be omitted from the nodes returned. In
addition, dependent nodes subsequent to these omitted nodes will not be returned. The omitted
nodes argument serves to stop the downward search within the hierarchical model struture, and
excludes the specified node.
self: Logical argument specifying whether to include the input argument nodes in the return
vector of dependent nodes. Default is TRUE.
determOnly: Logical argument specifying whether to return only deterministic nodes. Default
is FALSE.
stochOnly: Logical argument specifying whether to return only stochastic nodes. Default is
FALSE.
includeData: Logical argument specifying whether to include ’data’ nodes (set via the member
method setData). Default is TRUE.
dataOnly: Logical argument specifying whether to return only ’data’ nodes. Default is FALSE.
includeRHSonly: Logical argument specifying whether to include right-hand-side-only nodes
(model nodes which never appear on the left-hand-side of ~ or <- in the model code). These
nodes are neither stochastic nor deterministic, but instead function as variable inputs to the
model. Default is FALSE.
downstream: Logical argument specifying whether the downward search through the model
hierarchical structure should continue beyond the first and subsequent stochastic nodes en-
countered, hence returning all nodes downstream of the input nodes. Default is FALSE.
returnType: Character argument specific type object returned. Options are ’names’ (returns
character vector) and ’ids’ (returns numeric graph IDs for model)
returnScalar Componenets: Logical argument specifying whether multivariate nodes should
return full node name (i.e. ’x[1:2]’) or should break down into scalar componenets (i.e. ’x[1]’
and ’x[2]’)
Details: The downward search for dependent nodes propagates through deterministic nodes,
but by default will halt at the first level of stochastic nodes encountered.

getDependenciesList(returnNames = TRUE, sort = TRUE) Returns a list of all neighbor rela-
tionships. Each list element gives the one-step dependencies of one vertex, and the element
name is the vertex label (integer ID or character node name)
Arguments:
returnNames: If TRUE (default), list names and element contents are returns as character node
names, e.g. ’x[1]’. If FALSE, everything is returned using graph IDs, which are unique integer
labels for each node.
sort: If TRUE (default), each list element is returned in topologically sorted order. If FALSE,
they are returned in arbitrary order.
Details: This provides a fairly raw representation of the graph (model) structure that may be
useful for inspecting what NIMBLE has created from model code.

modelBaseClass-class 77

getDimension(node, params = NULL, valueOnly = is.null(params) && !includeParams, includeParams = !is.null(params))
Determines the dimension of the value and/or parameters of the node
Arguments:
node: A character vector specifying a single node
params: an optional character vector of names of parameters for which dimensions are desired
(possibly including ’value’ and alternate parameters)
valueOnly: a logical indicating whether to only return the dimension of the value of the node
includeParams: a logical indicating whether to return dimensions of parameters. If TRUE and
’params’ is NULL then dimensions of all parameters, including the dimension of the value of
the node, are returned
Details: The return value is a numeric vector with an element for each parameter/value re-
quested.

getDistribution(nodes) Returns the names of the distributions for the requested node or nodes
Arguments:
nodes: A character vector specifying one or more node or variable names.
Details: The return value is a character vector with an element for each node indicated in the
input. Note that variable names are expanded to their constituent node names, so the length of
the output may be longer than that of the input.

getDownstream(...) Identical to getDependencies(..., downstream = TRUE)
Details: See documentation for member method getDependencies.

getNodeNames(determOnly = FALSE, stochOnly = FALSE, includeData = TRUE, dataOnly = FALSE, includeRHSonly = FALSE, topOnly = FALSE, latentOnly = FALSE, endOnly = FALSE, returnType = "names", returnScalarComponents = FALSE)
Returns a character vector of all node names in the model, in topologically sorted order. A
variety of logical arguments allow for flexible subsetting of all model nodes.
Arguments:
determOnly: Logical argument specifying whether to return only deterministic nodes. Default
is FALSE.
stochOnly: Logical argument specifying whether to return only stochastic nodes. Default is
FALSE.
includeData: Logical argument specifying whether to include ’data’ nodes (set via the member
method setData). Default is TRUE.
dataOnly: Logical argument specifying whether to return only ’data’ nodes. Default is FALSE.
includeRHSonly: Logical argument specifying whether to include right-hand-side-only nodes
(model nodes which never appear on the left-hand-side of ~ or <- in the model code). Default
is FALSE.
topOnly: Logical argument specifying whether to return only top-level nodes from the hierar-
chical model structure.
latentOnly: Logical argument specifying whether to return only latent (mid-level) nodes from
the hierarchical model structure.
endOnly: Logical argument specifying whether to return only end nodes from the hierarchical
model structure.
returnType: Character argument specific type object returned. Options are ’names’ (returns
character vector) and ’ids’ (returns numeric graph IDs for model)
returnScalar Componenets: Logical argument specifying whether multivariate nodes should
return full node name (i.e. ’x[1:2]’) or should break down into scalar componenets (i.e. ’x[1]’
and ’x[2]’)

78 modelBaseClass-class

Details: Multiple logical input arguments may be used simultaneously. For example, model$getNodeNames(endOnly
= TRUE, dataOnly = TRUE) will return all end-level nodes from the model which are desig-
nated as ’data’.

getVarNames(includeLogProb = FALSE, nodes) Returns the names of all variables in a model,
optionally including the logProb variables
Arguments:
logProb: Logical argument specifying whether or not to include the logProb variables. Default
is FALSE.
nodes: An optional character vector supplying a subset of nodes for which to extract the
variable names and return the unique set of variable names

initializeInfo() Provides more detailed information on which model nodes are not initialized.

isBinary(nodes) Determines whether one or more nodes represent binary random variables
Arguments:
nodes: A character vector specifying one or more node or variable names.
Details: The return value is a character vector with an element for each node indicated in the
input. Note that variable names are expanded to their constituent node names, so the length of
the output may be longer than that of the input.

isData(nodes) Returns a vector of logical TRUE / FALSE values, corresponding to the ’data’
flags of the input node names.
Arguments:
nodes: A character vector of node or variable names.
Details: The variable or node names specified is expanded into a vector of model node names.
A logical vector is returned, indicating whether each model node has been flagged as contain-
ing ’data’.

isDeterm(nodes) Determines whether one or more nodes are deterministic
Arguments:
nodes: A character vector specifying one or more node or variable names.
Details: The return value is a character vector with an element for each node indicated in the
input. Note that variable names are expanded to their constituent node names, so the length of
the output may be longer than that of the input.

isDiscrete(nodes) Determines whether one or more nodes represent discrete random variables
Arguments:
nodes: A character vector specifying one or more node or variable names.
Details: The return value is a character vector with an element for each node indicated in the
input. Note that variable names are expanded to their constituent node names, so the length of
the output may be longer than that of the input.

isEndNode(nodes) Determines whether one or more nodes are end nodes (nodes with no stochas-
tic dependences)
Arguments:
nodes: A character vector specifying one or more node or variable names.
Details: The return value is logical vector with an element for each node indicated in the input.
Note that variable names are expanded to their constituent node names, so the length of the
output may be longer than that of the input.

modelBaseClass-class 79

isMultivariate(nodes) Determines whether one or more nodes represent multivariate nodes
Arguments:
nodes: A character vector specifying one or more node or variable names.
Details: The return value is a logical vector with an element for each node indicated in the
input. Note that variable names are expanded to their constituent node names, so the length of
the output may be longer than that of the input.

isStoch(nodes) Determines whether one or more nodes are stochastic
Arguments:
nodes: A character vector specifying one or more node or variable names.
Details: The return value is a character vector with an element for each node indicated in the
input. Note that variable names are expanded to their constituent node names, so the length of
the output may be longer than that of the input.

isTruncated(nodes) Determines whether one or more nodes are truncated
Arguments:
nodes: A character vector specifying one or more node or variable names.
Details: The return value is a character vector with an element for each node indicated in the
input. Note that variable names are expanded to their constituent nodes names, so the length
of the output may be longer than that of the input

isUnivariate(nodes) Determines whether one or more nodes represent univariate random vari-
ables
Arguments:
nodes: A character vector specifying one or more node or variable names.
Details: The return value is a character vector with an element for each node indicated in the
input. Note that variable names are expanded to their constituent nodes names, so the length
of the output may be longer than that of the input

newModel(data = NULL, inits = NULL, modelName = character(), replicate = FALSE, check = getNimbleOption("checkModel"), calculate = TRUE)
Returns a new R model object, with the same model definiton (as defined from the original
model code) as the existing model object.
Arguments:
data: A named list specifying data nodes and values, for use in the newly returned model. If
not provided, the data argument from the creation of the original R model object will be used.
inits: A named list specifying initial values, for use in the newly returned model. If not
provided, the inits argument from the creation of the original R model object will be used.
modelName: An optional character string, used to set the internal name of the model object.
If provided, this name will propagate throughout the generated C++ code, serving to improve
readability.
replicate: Logical specifying whether to replicate all current values and data flags from the
current model in the new model. If TRUE, then the data and inits arguments are not used.
Default value is FALSE.
check: A logical indicating whether to check the model object for missing or invalid val-
ues. Default is given by the NIMBLE option ’checkModel’, see help on ’nimbleOptions’ for
details.
calculate: A logical indicating whether to run ’calculate’ on the model; this will calculate all
deterministic nodes and logProbability values given the current state of all nodes. Default is

80 modelBaseClass-class

TRUE. For large models, one might want to disable this, but note that deterministic nodes,
including nodes introduced into the model by NIMBLE, may be NA.
Details: The newly created model object will be identical to the original model in terms of
structure and functionality, but entirely distinct in terms of the internal values.

resetData() Resets the ’data’ property of ALL model nodes to FALSE. Subsequent to this call,
the model will have no nodes flagged as ’data’.

setData(..., warnAboutMissingNames = TRUE) Sets the ’data’ flag for specified nodes to TRUE,
and also sets the value of these nodes to the value provided. This is the exclusive method for
specifying ’data’ nodes in a model object. When a ’data’ argument is provided to ’nimble-
Model()’, it uses this method to set the data nodes.
Arguments:
...: Arguments may be provided as named elements with numeric values or as character names
of model variables. These may be provided in a single list, a single character vector, or as
multiple arguments. When a named element with a numeric value is provided, the size and
dimension must match the corresponding model variable. This value will be copied to the
model variable and any non-NA elements will be marked as data. When a character name
is provided, the value of that variable in the model is not changed but any currently non-NA
values are marked as data. Examples: setData(’x’, y = 1:10) will mark both x and y as data
and will set the value of y to 1:10. setData(list(’x’, y = 1:10)) is equivalent. setData(c(’x’,’y’))
or setData(’x’,’y’) will mark both x and y as data.
Details: If a provided value (or the current value in the model when only a name is specified)
contains some NA values, then the model nodes corresponding to these NAs will not have their
value set, and will not be designated as ’data’. Only model nodes corresponding to numeric
values in the argument list elements will be designated as data. Designating a deterministic
model node as ’data’ will result in an error. Designating part of a multivariate node as ’data’
and part as non-data (NA) will result in an error; multivariate nodes must be entirely data, or
entirely non-data.

setInits(inits) Sets initial values (or more generally, any named list of value elements) into the
model
Arguments:
inits: A named list. The names of list elements must correspond to model variable names.
The elements of the list must be of class numeric, with size and dimension each matching the
corresponding model variable.

topologicallySortNodes(nodes, returnType = "names") Sorts the input list of node names
according to the topological dependence ordering of the model structure.
Arguments:
nodes: A character vector of node or variable names, which is to be topologically sorted.
Alternatively can be a numeric vector of graphIDs
returnType: character vector indicating return type. Choices are "names" or "ids"
Details: This function merely reorders its input argument. This may be inportany prior to
calls such as simulate(model, nodes) or calculate(model, nodes), to enforce that the operation
is performed in topological order.

Author(s)

Daniel Turek

modelDefClass-class 81

See Also

initializeModel

Examples

code <- nimbleCode({
mu ~ dnorm(0, 1)
x[1] ~ dnorm(mu, 1)
x[2] ~ dnorm(mu, 1)

})
Rmodel <- nimbleModel(code)
modelVars <- Rmodel$getVarNames() ## returns 'mu' and 'x'
modelNodes <- Rmodel$getNodeNames() ## returns 'mu', 'x[1]' and 'x[2]'
Rmodel$resetData()
Rmodel$setData(list(x = c(1.2, NA))) ## flags only 'x[1]' node as data
Rmodel$isData(c('mu', 'x[1]', 'x[2]')) ## returns c(FALSE, TRUE, FALSE)

modelDefClass-class Class for NIMBLE model definition

Description

Class for NIMBLE model definition that is not usually needed directly by a user.

Details

See modelBaseClass for information about creating NIMBLE BUGS models.

modelValues Create a NIMBLE modelValues Object

Description

Builds modelValues object from a model values configuration object, which can include a NIMBLE
model

Usage

modelValues(conf, m = 1)

Arguments

conf An object which includes information for building modelValues. Can either be
a NIMBLE model (see help(modelBaseClass)) or the object returned from
modelValuesConf

m The number of rows to create in the modelValues object. Can later be changed
with resize

82 modelValuesBaseClass-class

Details

See the User Manual or help(modelValuesBaseClass) for information about manipulating NIM-
BLE modelValues object returned by this function

Author(s)

NIMBLE development team

Examples

#From model object:
code <- nimbleCode({
a ~ dnorm(0,1)
for(i in 1:3){

for(j in 1:3)
b[i,j] ~ dnorm(0,1)
}
})
Rmodel <- nimbleModel(code)
Rmodel_mv <- modelValues(Rmodel, m = 2)
#Custom modelValues object:
mvConf <- modelValuesConf(vars = c('x', 'y'),

types = c('double', 'int'),
sizes = list(x = 3, y = c(2,2)))

custom_mv <- modelValues(mvConf, m = 2)
custom_mv['y',]

modelValuesBaseClass-class

Class modelValuesBaseClass

Description

modelValues are NIMBLE containers built to store values from models. They can either be built
directly from a model or be custom built via the modelValuesConf function. They consist of rows,
where each row can be thought of as a set of values from a model. Like most nimble objects, and
unlike most R objects, they are passed by reference instead of by value.

See user manual for more details.

Examples

mvConf <- modelValuesConf(vars = c('a', 'b'),
types = c('double', 'double'),
sizes = list(a = 1, b = c(2,2)))
mv <- modelValues(mvConf)
as.matrix(mv)
resize(mv, 2)
as.matrix(mv)
mv['a',1] <- 1

modelValuesConf 83

mv['a',2] <- 2
mv['b',1] <- matrix(0, nrow = 2, ncol = 2)
mv['b',2] <- matrix(1, nrow = 2, ncol = 2)
mv['a',]
as.matrix(mv)
basicModelCode <- nimbleCode({
a ~ dnorm(0,1)
for(i in 1:4)
b[i] ~ dnorm(0,1)
})
basicModel <- nimbleModel(basicModelCode)
basicMV <- modelValues(basicModel, m = 2) # m sets the number of rows
basicMV['b',]

modelValuesConf Create the confs for a custom NIMBLE modelValues object

Description

Builds an R-based modelValues conf object

Usage

modelValuesConf(symTab, className, vars, types, sizes, modelDef = NA,
where = globalenv())

Arguments

symTab For internal use only

className For internal use only

vars A vector of character strings naming each variable in the modelValues object

types A vector of character strings describing the type of data for the modelValues
object. Options include ‘double’ (for real-valued variables) and ‘int’.

sizes A list in which the named items of the list match the var arguments and each
item is a numeric vector of the dimensions

modelDef For internal use only

where For internal use only

Details

See the User Manual or help(modelValuesBaseClass) and help(modelValues) for information

Author(s)

Clifford Anderson-Bergman

84 model_macro_builder

Examples

#Custom modelValues object:
mvConf <- modelValuesConf(vars = c('x', 'y'),
types = c('double', 'int'),
sizes = list(x = 3, y = c(2,2)))
custom_mv <- modelValues(mvConf, m = 2)
custom_mv['y',]

model_macro_builder EXPERIMENTAL: Turn a function into a model macro builder A
model macro expands one line of code in a nimbleModel into one
or more new lines. This supports compact programming by defin-
ing re-usable modules. model_macro_builder takes as input a
function that constructs new lines of model code from the origi-
nal line of code. It returns a function suitable for internal use by
nimbleModel that arranges arguments for input function. Macros
are an experimental feature and are available only after setting
nimbleOptions(enableModelMacros = TRUE).

Description

EXPERIMENTAL: Turn a function into a model macro builder A model macro expands one line
of code in a nimbleModel into one or more new lines. This supports compact programming by
defining re-usable modules. model_macro_builder takes as input a function that constructs new
lines of model code from the original line of code. It returns a function suitable for internal use by
nimbleModel that arranges arguments for input function. Macros are an experimental feature and
are available only after setting nimbleOptions(enableModelMacros = TRUE).

Usage

model_macro_builder(fun, use3pieces = TRUE, unpackArgs = TRUE)

Arguments

fun A function written to construct new lines of model code.

use3pieces (TRUE or FALSE) Should the arguments from the input line be split into pieces
for the LHS (left-hand side), RHS (right-hand side, possibly further split de-
pending on unpackArgs), and stoch (TRUE if the line uses a ~, FALSE other-
wise)? See details and examples.

unpackArgs (TRUE or FALSE) Should arguments be passed as a list (FALSE) or as separate
arguments (TRUE)? See details and examples.

model_macro_builder 85

Details

The arguments use3pieces and unpackArgs indicate how fun expects to have arguments arranged
from an input line of code (processed by nimbleModel).

Consider the defaults use3pieces = TRUE and unpackArgs = TRUE, for a macro called macro1. In
this case, the line of model code x ~ macro1(arg1 = z[1:10],arg2 = "hello") will be passed to
fun as fun(stoch = TRUE,LHS = x,arg1 = z[1:10],arg2 = "hello").

If use3pieces = TRUE but unpackArgs = FALSE, then the RHS will be passed as is, without unpack-
ing its arguments into separate arguments to fun. In this case, x ~ macro1(arg1 = z[1:10],arg2 =
"hello") will be passed to fun as fun(stoch = TRUE,LHS = x,RHS = macro1(arg1 = z[1:10],arg2
= "hello")).

If use3pieces = FALSE and unpackArgs = FALSE, the entire line of code is passed as a single ob-
ject. In this case, x ~ macro1(arg1 = z[1:10],arg2 = "hello") will be passed to fun as fun(x ~
macro1(arg1 = z[1:10],arg2 = "hello")). It is also possible in this case to pass a macro without
using a ~ or <-. For example, the line macro1(arg1 = z[1:10],arg2 = "hello") will be passed to
fun as fun(macro1(arg1 = z[1:10],arg2 = "hello")).

If use3pieces = FALSE and unpackArgs = TRUE, it won’t make sense to anticipate a declaration
using ~ or <-. Ins#’ tead, arguments from an arbitrary call will be passed as separate arguments.
#’ For example, the line macro1(arg1 = z[1:10],arg2 = "hello") will be pa#’ ssed to fun as
fun(arg1 = z[1:10],arg2 = "hello").

It is extremely useful to be familiar with processing R code as an object to write fun correctly.
Functions such as substitute and as.name (e.g. as.name('~')), quote, parse and deparse are
particularly handy.

Multiple lines of new code should be contained in {} . Extra curly braces are not a problem. See
example 2.

Macro expansion is done recursively: One macro can return code that invokes another macro.

Value

A list with a named element code that contains the replacement code.

Examples

nimbleOptions(enableModelMacros = TRUE)
nimbleOptions(verbose = FALSE)

Example 1: Say one is tired of writing "for" loops.
This macro will generate a "for" loop with dnorm declarations
all_dnorm <- model_macro_builder(

function(stoch, LHS, RHSvar, start, end, sd = 1) {
newCode <- substitute(

for(i in START:END) {
LHS[i] ~ dnorm(RHSvar[i], SD)

},
list(START = start,

END = end,
LHS = LHS,
RHSvar = RHSvar,

86 model_macro_builder

SD = sd))
list(code = newCode)

},
use3pieces = TRUE,
unpackArgs = TRUE

)

model1 <- nimbleModel(
nimbleCode(
{

Create a "for" loop of dnorm declarations by invoking the macro
x ~ all_dnorm(mu, start = 1, end = 10)

}
))

show code from expansion of macro
model1$getCode()
The result should be:
{
for (i in 1:10) {
x[i] ~ dnorm(mu[i], 1)
}
}

Example 2: Say one is tired of writing priors.
This macro will generate a set of priors in one statement
flat_normal_priors <- model_macro_builder(

function(...) {
allVars <- list(...)
priorDeclarations <- lapply(allVars,

function(x)
substitute(VAR ~ dnorm(0, sd = 1000),

list(VAR = x)))
newCode <- quote({})
newCode[2:(length(allVars)+1)] <- priorDeclarations
list(code = newCode)

},
use3pieces = FALSE,
unpackArgs = TRUE

)

model2 <- nimbleModel(
nimbleCode(
{

flat_normal_priors(mu, beta, gamma)
}
))

show code from expansion of macro
model2$getCode()
The result should be:
{
{

ModifiedRmmParseKeywords2 87

mu ~ dnorm(0, sd = 1000)
beta ~ dnorm(0, sd = 1000)
gamma ~ dnorm(0, sd = 1000)
}
}
Extra curly braces do not matter.

ModifiedRmmParseKeywords2

[[’ = ’outputCppArrayIndex2’,

Description

[[’ = ’outputCppArrayIndex2’,

Usage

ModifiedRmmParseKeywords2

Format

An object of class list of length 40.

Multinomial The Multinomial Distribution

Description

Density and random generation for the multinomial distribution

Usage

dmulti(x, size = sum(x), prob, log = FALSE)

rmulti(n = 1, size, prob)

Arguments

x vector of values.

size number of trials.

prob vector of probabilities, internally normalized to sum to one, of same length as x

log logical; if TRUE, probability density is returned on the log scale.

n number of observations (only n=1 is handled currently).

88 Multivariate-t

Details

See Gelman et al., Appendix A or the BUGS manual for mathematical details.

Value

dmulti gives the density and rmulti generates random deviates.

Author(s)

Christopher Paciorek

References

Gelman, A., Carlin, J.B., Stern, H.S., and Rubin, D.B. (2004) Bayesian Data Analysis, 2nd ed.
Chapman and Hall/CRC.

See Also

Distributions for other standard distributions

Examples

size <- 30
probs <- c(1/4, 1/10, 1 - 1/4 - 1/10)
x <- rmulti(1, size, probs)
dmulti(x, size, probs)

Multivariate-t The Multivariate t Distribution

Description

Density and random generation for the multivariate t distribution, using the Cholesky factor of either
the precision matrix (i.e., inverse scale matrix) or the scale matrix.

Usage

dmvt_chol(x, mu, cholesky, df, prec_param = TRUE, log = FALSE)

rmvt_chol(n = 1, mu, cholesky, df, prec_param = TRUE)

Multivariate-t 89

Arguments

x vector of values.

mu vector of values giving the location of the distribution.

cholesky upper-triangular Cholesky factor of either the precision matrix (i.e., inverse scale
matrix) (when prec_param is TRUE) or scale matrix (otherwise).

df degrees of freedom.

prec_param logical; if TRUE the Cholesky factor is that of the precision matrix; otherwise,
of the scale matrix.

log logical; if TRUE, probability density is returned on the log scale.

n number of observations (only n=1 is handled currently).

Details

See Gelman et al., Appendix A or the BUGS manual for mathematical details. The ’precision’
matrix as used here is defined as the inverse of the scale matrix, Σ−1, given in Gelman et al.

Value

dmvt_chol gives the density and rmvt_chol generates random deviates.

Author(s)

Peter Sujan

References

Gelman, A., Carlin, J.B., Stern, H.S., and Rubin, D.B. (2004) Bayesian Data Analysis, 2nd ed.
Chapman and Hall/CRC.

See Also

Distributions for other standard distributions

Examples

mu <- c(-10, 0, 10)
scalemat <- matrix(c(1, .9, .3, .9, 1, -0.1, .3, -0.1, 1), 3)
ch <- chol(scalemat)
x <- rmvt_chol(1, mu, ch, df = 1, prec_param = FALSE)
dmvt_chol(x, mu, ch, df = 1, prec_param = FALSE)

90 MultivariateNormal

MultivariateNormal The Multivariate Normal Distribution

Description

Density and random generation for the multivariate normal distribution, using the Cholesky factor
of either the precision matrix or the covariance matrix.

Usage

dmnorm_chol(x, mean, cholesky, prec_param = TRUE, log = FALSE)

rmnorm_chol(n = 1, mean, cholesky, prec_param = TRUE)

Arguments

x vector of values.

mean vector of values giving the mean of the distribution.

cholesky upper-triangular Cholesky factor of either the precision matrix (when prec_param
is TRUE) or covariance matrix (otherwise).

prec_param logical; if TRUE the Cholesky factor is that of the precision matrix; otherwise,
of the covariance matrix.

log logical; if TRUE, probability density is returned on the log scale.

n number of observations (only n=1 is handled currently).

Details

See Gelman et al., Appendix A or the BUGS manual for mathematical details. The rate matrix as
used here is defined as the inverse of the scale matrix, S−1, given in Gelman et al.

Value

dmnorm_chol gives the density and rmnorm_chol generates random deviates.

Author(s)

Christopher Paciorek

References

Gelman, A., Carlin, J.B., Stern, H.S., and Rubin, D.B. (2004) Bayesian Data Analysis, 2nd ed.
Chapman and Hall/CRC.

See Also

Distributions for other standard distributions

nfMethod 91

Examples

mean <- c(-10, 0, 10)
covmat <- matrix(c(1, .9, .3, .9, 1, -0.1, .3, -0.1, 1), 3)
ch <- chol(covmat)
x <- rmnorm_chol(1, mean, ch, prec_param = FALSE)
dmnorm_chol(x, mean, ch, prec_param = FALSE)

nfMethod access (call) a member function of a nimbleFunction

Description

Internal function for accessing a member function (method) of a nimbleFunction. Normally a user
will write nf$method(x) instead of nfMethod(nf,method)(x).

Usage

nfMethod(nf, methodName)

Arguments

nf a specialized nimbleFunction, i.e. one that has already had setup parameters
processed

methodName a character string giving the name of the member function to call

Details

nimbleFunctions have a default member function called run, and may have other member functions
provided via the methods argument to nimbleFunction. As an internal step, the NIMBLE compiler
turns nf$method(x) into nfMethod(nf,method)(x), but a NIMBLE user or programmer would
not normally need to use nfMethod directly.

Value

a function that can be called.

Author(s)

NIMBLE development team

92 nfVar

nfVar Access or set a member variable of a nimbleFunction

Description

Access or set a member variable of a specialized nimbleFunction, i.e. a variable passed to or created
during the setup function that is used in run code or preserved by setupOutputs. Works in R for
any variable and in NIMBLE for numeric variables.

Usage

nfVar(nf, varName)

nfVar(nf, varName) <- value

Arguments

nf a specialized nimbleFunction, i.e. a function returned by executing a function
returned from nimbleFunction with setup arguments

varName a character string naming a variable in the setup function.

value value to set the variable to.

Details

Internal way to access or set a member variable of a nimbleFunction created during setup. Nor-
mally in NIMBLE code you would use nf$var instead of nfVar(nf,var).

When nimbleFunction is called and a setup function is provided, then nimbleFunction returns
a function. That function is a generator that should be called with arguments to the setup function
and returns another function with run and possibly other member functions. The member functions
can use objects created or passed to setup. During internal processing, the NIMBLE compiler
turns some cases of nf$var into nfVar(nf,var). These provide direct access to setup variables
(member data). nfVar is not typically called by a NIMBLE user or programmer.

For internal access to methods of nf, see nfMethod.

For more information, see ?nimbleFunction and the NIMBLE User Manual.

Value

whatever varName is in the nimbleFunction nf.

Author(s)

NIMBLE development team

nimble 93

Examples

nfGen1 <- nimbleFunction(
setup = function(A) {
B <- matrix(rnorm(4), nrow = 2)
setupOutputs(B) ## preserves B even though it is not used in run-code
},
run = function() {

print('This is A', A, '\n')
})

nfGen2 <- nimbleFunction(
setup = function() {
nf1 <- nfGen1(1000)

},
run = function() {

print('accessing A:', nfVar(nf1, 'A'))
nfVar(nf1, 'B')[2,2] <<- -1000
print('accessing B:', nfVar(nf1, 'B'))

})

nf2 <- nfGen2()
nf2$run()

nimble nimble

Description

nimble

nimble-internal Functions and Classes Internal to NIMBLE

Description

Functions and classes used internally in NIMBLE and not expected to be called directly by users.
Some functions and classes not intended for direct use are documented and/or exported because they
are used within Reference Class methods for classes programmatically generated by NIMBLE.

Author(s)

NIMBLE Development Team

94 nimble-R-functions

nimble-math Mathematical functions for BUGS and nimbleFunction programming

Description

Mathematical functions for use in BUGS code and in nimbleFunction programming (i.e., nimble-
Function run code). See Chapter 5 of the User Manual for more details.

Author(s)

NIMBLE Development Team

nimble-R-functions NIMBLE language functions for R-like vector construction

Description

The functions c, rep, seq, which, diag, length, seq_along, is.na, is.nan, any, and all can be
used in nimbleFunctions and compiled using compileNimble.

Usage

nimC(...)

nimRep(x, ...)

nimSeq(from, to, by, length.out)

Arguments

... values to be concatenated.

x vector of values to be replicated (rep), or logical array or vector (which), or
object whose length is wanted (length), or input value (diag), or vector of
values to be tested/checked (is.na, is.nan, any, all).

from starting value of sequence.

to end value of sequence.

by increment of the sequence.

length.out desired length of the sequence.

nimbleCode 95

Details

For c, rep, seq, these functions are NIMBLE’s version of similar R functions, e.g., nimRep for
rep. In a nimbleFunction, either the R name (e.g., rep) or the NIMBLE name (e.g., nimRep) can
be used. If the R name is used, it will be converted to the NIMBLE name. For which, length,
diag, seq_along, is.na, is.nan, any, all simply use the standard name without "nim". These
functions largely mimic (see exceptions below) the behavior of their R counterparts, but they can
be compiled in a nimbleFunction using compileNimble.

nimC is NIMBLE’s version of c and behaves identically.

nimRep is NIMBLE’s version of rep. It should behave identically to rep. There are no NIMBLE
versions of rep.int or rep_len.

nimSeq is NIMBLE’s version of seq. It behaves like seq with support for from, to, by and
length.out arguments. The along.with argument is not supported. There are no NIMBLE ver-
sions of seq.int, seq_along or seq_len, with the exception that seq_along can take a nimble-
FunctionList as an argument to provide the index range of a for-loop (User Manual Ch. 13).

which behaves like the R version but without support for arr.ind or useNames arguments.

diag behaves like the R version but without support for the nrow and ncol arguments.

length behaves like the R version.

seq_along behaves like the R version.

is.na behaves like the R version but does not correctly handle NA values from R that are type
’logical’, so convert these using as.numeric before passing from R to NIMBLE.

is.nan behaves like the R version, but treats NA of type ’double’ as being NaN and NA of type
’logical’ as not being NaN.

any behaves like the R version but takes only one argument and treats NAs as FALSE.

all behaves like the R version but takes only one argument and treats NAs as FALSE.

nimbleCode Turn BUGS model code into an object for use in nimbleModel or
readBUGSmodel

Description

Simply keeps model code as an R call object, the form needed by nimbleModel and optionally
usable by readBUGSmodel.

Usage

nimbleCode(code)

Arguments

code expression providing the code for the model

96 nimbleExternalCall

Details

It is equivalent to use the R function quote. nimbleCode is simply provided as a more readable
alternative for NIMBLE users not familiar with quote.

Author(s)

Daniel Turek

Examples

code <- nimbleCode({
x ~ dnorm(mu, sd = 1)
mu ~ dnorm(0, sd = prior_sd)

})

nimbleExternalCall Create a nimbleFunction that wraps a call to external compiled code

Description

Given C header information, a function that takes scalars or pointers can be called from a compiled
nimbleFunction. If non-scalar return values are needed, an argument can be selected to behave as
the return value in nimble.

Usage

nimbleExternalCall(prototype, returnType, Cfun, headerFile, oFile,
where = getNimbleFunctionEnvironment())

Arguments

prototype Argument type information. This can be provided as an R function using nimbleFunction
type declarations or as a list of nimbleType objects.

returnType Return object type information. This can be provided similarly to prototype
as either a nimbleFunction type declaration or as a nimbleType object. In the
latter case, the name will be ignored. If there is no return value, this should be
void().

Cfun Name of the external function (character).

headerFile Name (possibly including file path) of the header file where Cfun is declared.

oFile Name (possibly including path) of the .o file where Cfun has been compiled.
Spaces in the path may cause problems.

where An optional where argument passed to setRefClass for where the reference
class definition generated for this nimbleFunction will be stored. This is needed
due to R package namespace issues but should never need to be provided by a
user.

nimbleExternalCall 97

Details

The only argument types allowed in Cfun are double, int, and bool, corresponding to nimbleFunction
types double, integer, and logical, respectively.

If the dimensionality is greater than zero, the arguments in Cfun should be pointers. This means it
will typically be necessary to pass additional integer arguments telling Cfun the size(s) of non-scalar
arguments.

The return argument can only be a scalar or void. Since non-scalar arguments are passed by pointer,
you can use an argument to return results from Cfun. If you wish to have a nimbleFunction that
uses one argument of Cfun as a return object, you can wrap the result of nimbleExternalCall
in another nimbleFunction that allocates the return object. This is useful for using Cfun in a
nimbleModel. See example below.

Note that a nimbleExternalCall can only be executed in a compiled nimbleFunction, not an
uncompiled one.

If you have problems with spaces in file paths (e.g. for oFile), try compiling everything locally by
including dirName = "." as an argument to compileNimble.

Value

A nimbleFunction that takes the indicated input arguments, calls Cfun, and returns the result.

Author(s)

Perry de Valpine

See Also

nimbleRcall for calling arbitrary R code from compiled nimbleFunctions.

Examples

Not run:
sink('add1.h')
cat('
extern "C" {
void my_internal_function(double *p, double*ans, int n);
}
')
sink()
sink('add1.cpp')
cat('
#include <cstdio>
#include "add1.h"
void my_internal_function(double *p, double *ans, int n) {

printf("In my_internal_function\\n");
/* cat reduces the double slash to single slash */

for(int i = 0; i < n; i++)
ans[i] = p[i] + 1.0;

}
')

98 nimbleFunction

sink()
system('g++ add1.cpp -c -o add1.o')
Radd1 <- nimbleExternalCall(function(x = double(1), ans = double(1),
n = integer()){}, Cfun = 'my_internal_function',
headerFile = file.path(getwd(), 'add1.h'), returnType = void(),
oFile = file.path(getwd(), 'add1.o'))
If you need to use a function with non-scalar return object in model code,
you can wrap it in another nimbleFunction like this:
model_add1 <- nimbleFunction(

run = function(x = double(1)) {
ans <- numeric(length(x))
Radd1(x, ans, length(x))
return(ans)
returnType(double(1))

})
demoCode <- nimbleCode({

for(i in 1:4) {x[i] ~ dnorm(0,1)} ## just to get a vector
y[1:4] <- model_add1(x[1:4])

})
demoModel <- nimbleModel(demoCode, inits = list(x = rnorm(4)),
check = FALSE, calculate = FALSE)
CdemoModel <- compileNimble(demoModel, showCompilerOutput = TRUE)

End(Not run)

nimbleFunction create a nimbleFunction

Description

create a nimbleFunction from a setup function, run function, possibly other methods, and possibly
inheritance via contains

Usage

nimbleFunction(setup = NULL, run = function() { }, methods = list(),
globalSetup = NULL, contains = NULL, enableDerivs = list(), name = NA,
check = getNimbleOption("checkNimbleFunction"),
where = getNimbleFunctionEnvironment())

Arguments

setup An optional R function definition for setup processing.

run An optional NIMBLE function definition that executes the primary job of the
nimbleFunction

methods An optional named list of NIMBLE function definitions for other class methods.

globalSetup For internal use only

nimbleFunctionBase-class 99

contains An optional object returned from nimbleFunctionVirtual that defines argu-
ments and returnTypes for run and/or methods, to which the current nimble-
Function must conform

enableDerivs EXPERIMENTAL A list of names of function methods to enable derivatives for.
Currently only for developer use.

name An optional name used internally, for example in generated C++ code. Usually
this is left blank and NIMBLE provides a name.

check Boolean indicating whether to check the run code for function calls that NIM-
BLE cannot compile. Checking can be turned off for all calls to nimbleFunction
using nimbleOptions(checkNimbleFunction = FALSE).

where An optional where argument passed to setRefClass for where the reference
class definition generated for this nimbleFunction will be stored. This is needed
due to R package namespace issues but should never need to be provided by a
user.

Details

This is the main function for defining nimbleFunctions. A lot of information is provided in the
NIMBLE User Manual, so only a brief summary will be given here.

If a setup function is provided, then nimbleFunction returns a generator: a function that when
called with arguments for the setup function will execute that function and return a specialized
nimbleFunction. The run and other methods can be called using $ like in other R classes, e.g.
nf$run(). The methods can use objects that were created in or passed to the setup function.

If no setup function is provided, then nimbleFunction returns a function that executes the run
function. It is not a generator in this case, and no other methods can be provided.

If one wants a generator but does not need any setup arguments or code, setup = TRUE can be used.

See the NIMBLE User Manual for examples.

For more information about the contains argument, see the section on nimbleFunctionLists.

Author(s)

NIMBLE development team

nimbleFunctionBase-class

Class nimbleFunctionBase

Description

Classes used internally in NIMBLE and not expected to be called directly by users.

100 nimbleFunctionVirtual

nimbleFunctionList-class

Create a list of nimbleFunctions

Description

Create an empty list of nimbleFunctions that all will inherit from a base class.

Details

See the User Manual for information about creating and populating a nimbleFunctionList.

Author(s)

NIMBLE development team

nimbleFunctionVirtual create a virtual nimbleFunction, a base class for other nimbleFunc-
tions

Description

define argument types and returnType for the run function and any methods, to be used in the
contains argument of nimbleFunction

Usage

nimbleFunctionVirtual(contains = NULL, run = function() { },
methods = list(), name = NA)

Arguments

contains Not yet functional

run A NIMBLE function that will only be used to inspect its argument types and
returnType.

methods An optional named list of NIMBLE functions that will also only be used for
inspecting argument types and returnTypes.

name An optional name used internally by the NIMBLE compiled. This is usually
omitted and NIMBLE provides one.

Details

See the NIMBLE User Manual section on nimbleFunctionLists for explanation of how to use a
virtual nimbleFunction.

nimbleList 101

Value

An object that can be passed as the contains argument to nimbleFunction or as the argument to
nimbleFunctionList

Author(s)

NIMBLE development team

See Also

nimbleFunction

nimbleList create a nimbleList

Description

create a nimbleList from a nimbleList definition

Usage

nimbleList(..., name = NA, predefined = FALSE,
where = getNimbleFunctionEnvironment())

Arguments

... arbitrary set of names and types for the elements of the list or a single R list of
type nimbleType.

name optional character providing a name used internally, for example in generated
C++ code. Usually this is left blank and NIMBLE provides a name.

predefined logical for internal use only.
where optional argument passed to setRefClass for where the reference class defini-

tion generated for this nimbleFunction will be stored. This is needed due to R
package namespace issues but should never need to be provided by a user.

Details

This function creates a definition for a nimbleList. The types argument defines the names, types,
and dimensions of the elements of the nimbleList. Elements of nimbleLists can be either basic types
(e.g., integer, double) or other nimbleList definitions. The types argument can be either a series
of expressions of the form name = type(dim), or a list of nimbleType objects.

nimbleList returns a definition, which can be used to create instances of this type of nimbleList
via the new() member function.

Definitions can be created in R’s general environment or in nimbleFunction setup code. Instances
can be created using the new() function in R’s global environment, in nimbleFunction setup code,
or in nimbleFunction run code.

Instances of nimbleList definitions can be used as arguments to run code of nimbleFunctions, and
as the return type of nimbleFunctions.

102 nimbleMCMC

Author(s)

NIMBLE development team

Examples

exampleNimListDef <- nimbleList(x = integer(0), Y = double(2))

nimbleListTypes <- list(nimbleType(name = 'x', type = 'integer', dim = 0),
nimbleType(name = 'Y', type = 'double', dim = 2))

this nimbleList definition is identical to the one created above
exampleNimListDef <- nimbleList(nimbleListTypes)

nimbleMCMC Executes one or more chains of NIMBLE’s default MCMC algorithm,
for a model specified using BUGS code

Description

nimbleMCMC is designed as the most straight forward entry point to using NIMBLE’s default MCMC
algorithm. It provides capability for running multiple MCMC chains, specifying the number of
MCMC iterations, thinning, and burn-in, and which model variables should be monitored. It also
provides options to return the posterior samples, to return summary statistics calculated from the
posterior samples, and to return a WAIC value.

Usage

nimbleMCMC(code, constants = list(), data = list(), inits, model, monitors,
thin = 1, niter = 10000, nburnin = 0, nchains = 1, check = TRUE,
setSeed = FALSE, progressBar = getNimbleOption("MCMCprogressBar"),
samples = TRUE, samplesAsCodaMCMC = FALSE, summary = FALSE,
WAIC = FALSE)

Arguments

code The quoted code expression representing the model, such as the return value
from a call to nimbleCode). Not required if model is provided.

constants Named list of constants in the model. Constants cannot be subsequently modi-
fied. For compatibility with JAGS and BUGS, one can include data values with
constants and nimbleModel will automatically distinguish them based on what
appears on the left-hand side of expressions in code.

data Named list of values for the data nodes. Data values can be subsequently mod-
ified. Providing this argument also flags nodes as having data for purposes of
algorithms that inspect model structure. Values that are NA will not be flagged
as data.

inits Argument to specify initial values for the model object, and for each MCMC
chain. See details.

nimbleMCMC 103

model A compiled or uncompiled NIMBLE model object. When provided, this model
will be used to configure the MCMC algorithm to be executed, rather than using
the code, constants, data and inits arguments to create a new model object.
However, if also provided, the inits argument will still be used to initialize this
model prior to running each MCMC chain.

monitors A character vector giving the node names or variable names to monitor. The
samples corresponding to these nodes will returned, and/or will have summary
statistics calculated. Default value is all top-level stochastic nodes of the model.

thin Thinning interval for collecting MCMC samples. Thinning occurs after the ini-
tial nburnin samples are discarded. Default value is 1.

niter Number of MCMC iterations to run. Default value is 10000.

nburnin Number of initial, pre-thinning, MCMC iterations to discard. Default value is 0.

nchains Number of MCMC chains to run. Default value is 1.

check Logical argument, specifying whether to check the model object for missing or
invalid values. Default value is TRUE.

setSeed Logical or numeric argument. If a single numeric value is provided, R’s random
number seed will be set to this value at the onset of each MCMC chain. If a
numeric vector of length nchains is provided, then each element of this vector
is provided as R’s random number seed at the onset of the corresponding MCMC
chain. Otherwise, in the case of a logical value, if TRUE, then R’s random number
seed for the ith chain is set to be i, at the onset of each MCMC chain. Note that
specifying the argument setSeed = 0 does not prevent setting the RNG seed,
but rather sets the random number generation seed to 0 at the beginning of each
MCMC chain. Default value is FALSE.

progressBar Logical argument. If TRUE, an MCMC progress bar is displayed during exe-
cution of each MCMC chain. Default value is defined by the nimble package
option MCMCprogressBar..

samples Logical argument. If TRUE, then posterior samples are returned from each MCMC
chain. These samples are optionally returned as coda mcmc objects, depending
on the samplesAsCodaMCMC argument. Default value is TRUE. See details.

samplesAsCodaMCMC

Logical argument. If TRUE, then a coda mcmc object is returned instead of an R
matrix of samples, or when nchains > 1 a coda mcmc.list object is returned
containing nchains mcmc objects. This argument is only used when samples is
TRUE. Default value is FALSE. See details.

summary Logical argument. When TRUE, summary statistics for the posterior samples of
each parameter are also returned, for each MCMC chain. This may be returned
in addition to the posterior samples themselves. Default value is FALSE. See
details. z

WAIC Logical argument. When TRUE, the WAIC (Watanabe, 2010) of the model is
calculated and returned. If multiple chains are run, then a single WAIC value is
calculated using the posterior samples from all chains. Default value is FALSE.
See details.

104 nimbleMCMC

Details

The entry point for this function is providing the code, constants, data and inits arguments, to
create a new NIMBLE model object, or alternatively providing an exisiting NIMBLE model object
as the model argument.

At least one of samples, summary or WAIC must be TRUE, since otherwise, nothing will be returned.
Any combination of these may be TRUE, including possibly all three, in which case posterior sam-
ples, summary statistics, and WAIC values are returned for each MCMC chain.

When samples = TRUE, the form of the posterior samples is determined by the samplesAsCodaMCMC
argument, as either matrices of posterior samples, or coda mcmc and mcmc.list objects.

Posterior summary statistics are returned individually for each chain, and also as calculated from
all chains combined (when nchains > 1).

The inits argument can be one of three things:

(1) a function to generate initial values, which will be executed once to initialize the model object,
and once to generate initial values at the beginning of each MCMC chain, or (2) a single named list
of initial values which, will be used to initialize the model object and for each MCMC chain, or (3)
a list of length nchains, each element being a named list of initial values. The first element will be
used to initialize the model object, and once element of the list will be used for each MCMC chain.

The inits argument may also be omitted, in which case the model will not be provided with initial
values. This is not recommended.

The niter argument specifies the number of pre-thinning MCMC iterations, and the nburnin ar-
gument specifies the number of pre-thinning MCMC samples to discard. After discarding these
burn-in samples, thinning of the remaining samples will take place. The total number of posterior
samples returned will be floor((niter-nburnin)/thin).

Value

A list is returned with named elements depending on the arguments passed to nimbleMCMC, unless
only one among samples, summary, and WAIC are requested, in which case only that element is
returned. These elements may include samples, summary, and WAIC. When nchains = 1, posterior
samples are returned as a single matrix, and summary statistics as a single matrix. When nchains
> 1, posterior samples are returned as a list of matrices, one matrix for each chain, and summary
statistics are returned as a list containing nchains+1 matrices: one matrix corresponding to each
chain, and the final element providing a summary of all chains, combined. If samplesAsCodaMCMC
is TRUE, then posterior samples are provided as coda mcmc and mcmc.list objects. When WAIC is
TRUE, a single WAIC value is returned.

Author(s)

Daniel Turek

See Also

configureMCMC buildMCMC runMCMC

nimbleModel 105

Examples

Not run:
code <- nimbleCode({

mu ~ dnorm(0, sd = 1000)
sigma ~ dunif(0, 1000)
for(i in 1:10) {

x[i] ~ dnorm(mu, sd = sigma)
}

})
data <- list(x = c(2, 5, 3, 4, 1, 0, 1, 3, 5, 3))
inits <- function() list(mu = rnorm(1,0,1), sigma = runif(1,0,10))
mcmc.output <- nimbleMCMC(code, data = data, inits = inits,

monitors = c("mu", "sigma"), thin = 10,
niter = 20000, nburnin = 1000, nchains = 3,
summary = TRUE, WAIC = TRUE)

End(Not run)

nimbleModel Create a NIMBLE model from BUGS code

Description

processes BUGS model code and optional constants, data, and initial values. Returns a NIMBLE
model (see modelBaseClass) or model definition.

Usage

nimbleModel(code, constants = list(), data = list(), inits = list(),
dimensions = list(), returnDef = FALSE, where = globalenv(),
debug = FALSE, check = getNimbleOption("checkModel"), calculate = TRUE,
name = NULL, userEnv = parent.frame())

Arguments

code code for the model in the form returned by nimbleCode or (equivalently) quote

constants named list of constants in the model. Constants cannot be subsequently modi-
fied. For compatibility with JAGS and BUGS, one can include data values with
constants and nimbleModel will automatically distinguish them based on what
appears on the left-hand side of expressions in code.

data named list of values for the data nodes. Data values can be subsequently mod-
ified. Providing this argument also flags nodes as having data for purposes of
algorithms that inspect model structure. Values that are NA will not be flagged
as data.

inits named list of starting values for model variables. Unlike JAGS, should only be
a single list, not a list of lists.

106 nimbleModel

dimensions named list of dimensions for variables. Only needed for variables used with
empty indices in model code that are not provided in constants or data.

returnDef logical indicating whether the model should be returned (FALSE) or just the
model definition (TRUE).

where argument passed to setRefClass, indicating the environment in which the ref-
erence class definitions generated for the model and its modelValues should be
created. This is needed for managing package namespace issues during package
loading and does not normally need to be provided by a user.

debug logical indicating whether to put the user in a browser for debugging. Intended
for developer use.

check logical indicating whether to check the model object for missing or invalid val-
ues. Default is given by the NIMBLE option ’checkModel’. See nimbleOptions
for details.

calculate logical indicating whether to run calculate on the model after building it; this
will calculate all deterministic nodes and logProbability values given the current
state of all nodes. Default is TRUE. For large models, one might want to disable
this, but note that deterministic nodes, including nodes introduced into the model
by NIMBLE, may be NA.

name optional character vector giving a name of the model for internal use. If omitted,
a name will be provided.

userEnv environment in which if-then-else statements in BUGS code will be evaluated if
needed information not found in constants; intended primarily for internal use
only

Details

See the User Manual or help(modelBaseClass) for information about manipulating NIMBLE
models created by nimbleModel, including methods that operate on models, such as getDependencies.

The user may need to provide dimensions for certain variables as in some cases NIMBLE cannot
automatically determine the dimensions and sizes of variables. See the User Manual for more
information.

As noted above, one may lump together constants and data (as part of the constants argument
(unlike R interfaces to JAGS and BUGS where they are provided as the data argument). One may
not provide lumped constants and data as the data argument.

For variables that are a mixture of data nodes and non-data nodes, any values passed in via inits
for components of the variable that are data will be ignored. All data values should be passed in
through data (or constants as just discussed).

Author(s)

NIMBLE development team

See Also

readBUGSmodel for creating models from BUGS-format model files

nimbleOptions 107

Examples

code <- nimbleCode({
x ~ dnorm(mu, sd = 1)
mu ~ dnorm(0, sd = prior_sd)

})
constants = list(prior_sd = 1)
data = list(x = 4)
Rmodel <- nimbleModel(code, constants = constants, data = data)

nimbleOptions NIMBLE Options Settings

Description

Allow the user to set and examine a variety of global _options_ that affect the way in which NIM-
BLE operates. Call nimbleOptions() with no arguments to see a list of available opions.

Usage

nimbleOptions(...)

Arguments

... any options to be defined as one or more name = value pairs or as a single list
of name=value pairs.

Details

nimbleOptions mimics options. Invoking nimbleOptions() with no arguments returns a list
with the current values of the options. To access the value of a single option, one should use
getNimbleOption().

Value

When invoked with no arguments, returns a list with the current values of all options. When invoked
with one or more arguments, returns a list of the the updated options with their updated values.

Author(s)

Christopher Paciorek

108 nimbleRcall

Examples

Set one option:
nimbleOptions(verifyConjugatePosteriors = FALSE)

Compactly print all options:
str(nimbleOptions(), max.level = 1)

Save-and-restore options:
old <- nimbleOptions() # Saves old options.
nimbleOptions(showCompilerOutput = TRUE,

verboseErrors = TRUE) # Sets temporary options.
...do stuff...
nimbleOptions(old) # Restores old options.

nimbleRcall Make an R function callable from compiled nimbleFunctions (includ-
ing nimbleModels).

Description

Normally compiled nimbleFunctions call other compiled nimbleFunctions. nimbleRcall enables
any R function (with viable argument types and return values) to be called (and evaluated in R)
from compiled nimbleFunctions.

Usage

nimbleRcall(prototype, returnType, Rfun,
where = getNimbleFunctionEnvironment())

Arguments

prototype Argument type information for Rfun. This can be provided as an R function
using nimbleFunction type declarations or as a list of nimbleType objects.

returnType Return object type information. This can be provided similarly to prototype
as either a nimbleFunction type declaration or as a nimbleType object. In the
latter case, the name will be ignored. If there is no return value this should be
void().

Rfun The name of an R function to be called from compiled nimbleFunctions.

where An optional where argument passed to setRefClass for where the reference
class definition generated for this nimbleFunction will be stored. This is needed
due to R package namespace issues but should never need to be provided by a
user.

nimbleType-class 109

Details

The nimbleFunction returned by nimbleRcall can be used in other nimbleFunctions. When
called from a compiled nimbleFunction (including from a model), arguments will be copied ac-
cording to the declared types, the function named by Rfun will be called, and the returned object will
be copied if necessary. The example below shows use of an R function in a compiled nimbleModel.

A nimbleFunction returned by nimbleRcall can only be used in a compiled nimbleFunction.
Rfun itself should work in an uncompiled nimbleFunction.

Value

A nimbleFunction that wraps a call to Rfun with type-declared arguments and return object.

Author(s)

Perry de Valpine

See Also

nimbleExternalCall for calling externally provided C (or other) compiled code.

Examples

Not run:
Say we want an R function that adds 2 to every value in a vector
add2 <- function(x) {

x + 2
}
Radd2 <- nimbleRcall(function(x = double(1)){}, Rfun = 'add2',
returnType = double(1))
demoCode <- nimbleCode({

for(i in 1:4) {x[i] ~ dnorm(0,1)}
z[1:4] <- Radd2(x[1:4])

})
demoModel <- nimbleModel(demoCode, inits = list(x = rnorm(4)),
check = FALSE, calculate = FALSE)
CdemoModel <- compileNimble(demoModel)

End(Not run)

nimbleType-class create a nimbleType object

Description

Create a nimbleType object, with information on the name, type, and dimension of an object to be
placed in a nimbleList.

110 nimCat

Arguments

name The name of the object, given as a character string.

type The type of the object, given as a character string.

dim The dimension of the object, given as an integer. This can be left blank if the
object is a nimbleList.

Details

This function creates nimbleType objects, which can be used to define the elements of a nimbleList.

The type argument can be chosen from among character, double, integer, and logical, or can
be the name of a previously created nimbleList definition.

See the NIMBLE User Manual for additional examples.

Author(s)

NIMBLE development team

Examples

nimbleTypeList <- list()
nimbleTypeList[[1]] <- nimbleType(name = 'x', type = 'integer', dim = 0)
nimbleTypeList[[2]] <- nimbleType(name = 'Y', type = 'double', dim = 2)

nimCat cat function for use in nimbleFunctions

Description

cat function for use in nimbleFunctions

Usage

nimCat(...)

Arguments

... an arbitrary set of arguments that will be printed in sequence.

nimCopy 111

Details

cat in nimbleFunction run-code imitates the R function cat. It prints its arguments in order. No
newline is inserted, so include "\n" if one is desired.

When an uncompiled nimbleFunction is executed, R’s cat is used. In a compiled nimbleFunction,
a C++ output stream is used that will generally format output similarly to R’s cat. Non-scalar
numeric objects can be included, although their output will be formatted slightly different in un-
compiled and compiled nimbleFunctions.

In nimbleFunction run-time code, cat is identical to print except the latter appends a newline at
the end.

nimCat is the same as cat, and the latter is converted to the former when a nimbleFunction is
defined.

See Also

print

Examples

ans <- matrix(1:4, nrow = 2) ## R code, not NIMBLE code
nimCat('Answer is ', ans) ## would work in R or NIMBLE

nimCopy Copying function for NIMBLE

Description

Copies values from a NIMBLE model or modelValues object to another NIMBLE model or mod-
elValues. Work in R and NIMBLE. The NIMBLE keyword copy is identical to nimCopy

Usage

nimCopy(from, to, nodes = NULL, nodesTo = NULL, row = NA, rowTo = NA,
logProb = FALSE)

Arguments

from Either a NIMBLE model or modelValues object

to Either a NIMBLE model or modelValues object

nodes The nodes of object from which will be copied from

nodesTo The nodes of object to which will be copied to. If nodesTo == NA, will automat-
ically be set to nodes

row If from is a modelValues, the row which will be copied from

rowTo If to is a modelValues, the row which will be copied to. If rowTo == NA, will
automatically be set to row

112 nimDerivs

logProb A logical value indicating whether the log probabilities of the given nodes should
also be copied (i.e. if nodes = 'x' and logProb = TRUE, then both 'x' and
'logProb_x' will be copied)

Details

See the User Manual for more details

Author(s)

Clifford Anderson-Bergman

Examples

Building model and modelValues object
simpleModelCode <- nimbleCode({
for(i in 1:100)
x[i] ~ dnorm(0,1)
})
rModel <- nimbleModel(simpleModelCode)
rModelValues <- modelValues(rModel)

#Setting model nodes
rModel$x <- rnorm(100)
#Using nimCopy in R.
nimCopy(from = rModel, to = rModelValues, nodes = 'x', rowTo = 1)

#Use of nimCopy in a simple nimbleFunction
cCopyGen <- nimbleFunction(
setup = function(model, modelValues, nodeNames){},
run = function(){
nimCopy(from = model, to = modelValues, nodes = nodeNames, rowTo = 1)
}
)

rCopy <- cCopyGen(rModel, rModelValues, 'x')
Not run:
cModel <- compileNimble(rModel)
cCopy <- compileNimble(rCopy, project = rModel)
cModel[['x']] <- rnorm(100)

cCopy$run() ## execute the copy with the compiled function

End(Not run)

nimDerivs Nimble Derivatives

nimDim 113

Description

EXPERIMENTAL Computes the value, gradient, and Hessian of a given nimbleFunction method.
The R version is currently unimplemented.

Usage

nimDerivs(nimFxn = NA, order = nimC(0, 1, 2))

Arguments

nimFxn a call to a nimbleFunction method with arguments included.

order an integer vector with values within the set 0, 1, 2, corresponding to whether the
function value, gradient, and Hessian should be returned respectively.

nimDim return sizes of an object whether it is a vector, matrix or array

Description

R’s regular dim function returns NULL for a vector. It is useful to have this function that treats a
vector similarly to a matrix or array. Works in R and NIMBLE. In NIMBLE dim is identical to
nimDim, not to R’s dim

Usage

nimDim(obj)

Arguments

obj objects for which the sizes are requested

Value

a vector of sizes in each dimension

Author(s)

NIMBLE development team

Examples

x <- rnorm(4)
dim(x)
nimDim(x)
y <- matrix(x, nrow = 2)
dim(y)
nimDim(y)

114 nimEigen

nimEigen Spectral Decomposition of a Matrix

Description

Computes eigenvalues and eigenvectors of a numeric matrix.

Usage

nimEigen(x, symmetric = FALSE, only.values = FALSE)

Arguments

x a numeric matrix (double or integer) whose spectral decomposition is to be com-
puted.

symmetric if TRUE, the matrix is guarranteed to be symmetric, and only its lower triangle
(diagonal included) is used. Otherwise, the matrix is checked for symmetry.
Default is FALSE.

only.values if TRUE, only the eigenvalues are computed, otherwise both eigenvalues and
eigenvectors are computed. Setting only.values = TRUE can speed up eigen-
decompositions, especially for large matrices. Default is FALSE.

Details

Computes the spectral decomposition of a numeric matrix using the Eigen C++ template library. In
a nimbleFunction, eigen is identical to nimEigen. If the matrix is symmetric, a faster and more
accurate algorithm will be used to compute the eigendecomposition. Note that non-symmetric ma-
trices can have complex eigenvalues, which are not supported by NIMBLE. If a complex eigenvalue
or a complex element of an eigenvector is detected, a warning will be issued and that element will
be returned as NaN.

Additionally, returnType(eigenNimbleList()) can be used within a link{nimbleFunction} to
specify that the function will return a nimbleList generated by the nimEigen function. eigenNimbleList()
can also be used to define a nested nimbleList element. See the User Manual for usage examples.

Value

The spectral decomposition of x is returned as a nimbleList with elements:

• values vector containing the eigenvalues of x, sorted in decreasing order. Since x is required
to be symmetric, all eigenvalues will be real numbers.

• vectors. matrix with columns containing the eigenvectors of x, or an empty matrix if only.values
is TRUE.

Author(s)

NIMBLE development team

nimMatrix 115

See Also

nimSvd for singular value decompositions in NIMBLE.

Examples

eigenvaluesDemoFunction <- nimbleFunction(
setup = function(){

demoMatrix <- diag(4) + 2
},
run = function(){

eigenvalues <- eigen(demoMatrix, symmetric = TRUE)$values
returnType(double(1))
return(eigenvalues)

})

nimMatrix Creates matrix or array objects for use in nimbleFunctions

Description

In a nimbleFunction, matrix and array are identical to nimMatrix and nimArray, respectively

Usage

nimMatrix(value = 0, nrow = NA, ncol = NA, init = TRUE,
fillZeros = TRUE, recycle = TRUE, type = "double")

nimArray(value = 0, dim = c(1, 1), init = TRUE, fillZeros = TRUE,
recycle = TRUE, nDim, type = "double")

Arguments

value value(s) for initialization (default = 0). This can be a vector, matrix or array, but
it will be used as a vector.

nrow the number of rows in a matrix (default = 1)
ncol the number of columns in a matrix (default = 1)
init logical, whether to initialize values (default = TRUE)
fillZeros logical, whether to initialize any elements not filled by (possibly recycled) value

with 0 (or FALSE for nimLogical) (default = TRUE)
recycle logical, whether value should be recycled to fill the entire contents of the new

object (default = TRUE)
type character representing the data type, i.e. 'double', 'integer', or 'logical'

(default = 'double')
dim vector of dimension sizes in an array (default = c(1,1))
nDim number of dimensions in an array. This is only necessary for compileNimble if

the length of dim cannot be determined during compilation.

116 nimNumeric

Details

These functions are similar to R’s matrix and array functions, but they can be used in a nim-
bleFunction and compiled using compileNimble. Largely for compilation purposes, finer control
is provided over initialization behavior, similarly to nimNumeric, nimInteger, and nimLogical.
If init = FALSE, no initialization will be done, and value, fillZeros and recycle will be ig-
nored. If init=TRUE and recycle=TRUE, then fillZeros will be ignored, and value will be re-
peated (according to R’s recycling rule) as much as necessary to fill the object. If init=TRUE and
recycle=FALSE, then if fillZeros=TRUE, values of 0 (or FALSE for nimLogical) will be filled in
after value. Compiled code will be more efficient if unnecessary initialization is not done, but this
may or may not be noticeable depending on the situation.

When used in a nimbleFunction (in run or other member function), matrix and array are imme-
diately converted to nimMatrix and nimArray, respectively.

The nDim argument is only necessary for a use like dim <-c(2,3,4); A <-nimArray(0,dim = dim,nDim
= 3). It is necessary because the NIMBLE compiler must determine during compilation that A will
be a 3-dimensional numeric array. However, the compiler doesn’t know for sure what the length
of dim will be at run time, only that it is a vector. On the other hand, A <-nimArray(0,dim =
c(2,3,4)) is allowed because the compiler can directly determine that a vector of length three is
constructed inline for the dim argument.

Author(s)

Daniel Turek and Perry de Valpine

See Also

nimNumeric nimInteger nimLogical

nimNumeric Creates numeric, integer or logical vectors for use in nimbleFunctions

Description

In a nimbleFunction, numeric, integer and logical are identical to nimNumeric, nimInteger
and nimLogical, respectively.

Usage

nimNumeric(length = 0, value = 0, init = TRUE, fillZeros = TRUE,
recycle = TRUE)

nimInteger(length = 0, value = 0, init = TRUE, fillZeros = TRUE,
recycle = TRUE)

nimLogical(length = 0, value = 0, init = TRUE, fillZeros = TRUE,
recycle = TRUE)

nimOptim 117

Arguments

length the length of the vector (default = 0)

value value(s) for initializing the vector (default = 0). This may be a vector, matrix or
array but will be used as a vector.

init logical, whether to initialize elements of the vector (default = TRUE)

fillZeros logical, whether to initialize any elements not filled by (possibly recycled) value
with 0 (or FALSE for nimLogical) (default = TRUE)

recycle logical, whether value should be recycled to fill the entire length of the new
vector (default = TRUE)

Details

These functions are similar to R’s numeric, integer, logical functions, but they can be used in a
nimbleFunction and then compiled using compileNimble. Largely for compilation purposes, finer
control is provided over initialization behavior. If init = FALSE, no initialization will be done, and
value, fillZeros and recycle will be ignored. If init=TRUE and recycle=TRUE, then fillZeros
will be ignored, and value will be repeated (according to R’s recycling rule) as much as necessary
to fill a vector of length length. If init=TRUE and recycle=FALSE, then if fillZeros=TRUE,
values of 0 (or FALSE for nimLogical) will be filled in after value up to length length. Compiled
code will be more efficient if unnecessary initialization is not done, but this may or may not be
noticeable depending on the situation.

When used in a nimbleFunction (in run or other member function), numeric, integer and
logical are immediately converted to nimNumeric, nimInteger and nimLogical, respectively.

Author(s)

Daniel Turek, Chris Paciorek, Perry de Valpine

See Also

nimMatrix, nimArray

nimOptim Nimble wrapper around R’s builtin optim.

Description

Nimble wrapper around R’s builtin optim.

Usage

nimOptim(par, fn, gr = "NULL", ..., method = "Nelder-Mead", lower = -Inf,
upper = Inf, control = nimOptimDefaultControl(), hessian = FALSE)

118 nimOptim

Arguments

par Initial values for the parameters to be optimized over.

fn A function to be minimized (or maximized), with first argument the vector of
parameters over which minimization is to take place. It should return a scalar
result.

gr A function to return the gradient for the "BFGS", "CG" and "L-BFGS-B" meth-
ods.

... IGNORED

method The method to be used. See ‘Details‘ section of optim. One of: "Nelder-Mead",
"BFGS", "CG", "L-BFGS-B". Note that the R methods "SANN", "Brent" are
not supported.

lower Vector or scalar of lower bounds for parameters.

upper Vector or scalar of upper bounds for parameters.

control A list of control parameters. See Details section of optim.

hessian Logical. Should a Hessian matrix be returned?

Value

optimResultNimbleList

See Also

optim

Examples

Not run:
objectiveFunction <- nimbleFunction(

run = function(par = double(1)) {
return(sum(par) * exp(-sum(par ^ 2) / 2))
returnType(double(0))

}
)
optimizer <- nimbleFunction(

run = function(method = character(0), fnscale = double(0)) {
control <- optimDefaultControl()
control$fnscale <- fnscale
par <- c(0.1, -0.1)
return(optim(par, objectiveFunction, method = method, control = control))
returnType(optimResultNimbleList())

}
)
cOptimizer <- compileNimble(optimizer)
cOptimizer(method = 'BFGS', fnscale = -1)

End(Not run)

nimOptimDefaultControl 119

nimOptimDefaultControl

Creates a deafult control argument for nimOptim.

Description

Creates a deafult control argument for nimOptim.

Usage

nimOptimDefaultControl()

Value

optimControlNimbleList

See Also

nimOptim, optim

nimPrint print function for use in nimbleFunctions

Description

print function for use in nimbleFunctions

Usage

nimPrint(...)

Arguments

... an abitrary set of arguments that will be printed in sequence.

Details

The keyword print in nimbleFunction run-time code will be automatically turned into nimPrint.
This is a function that prints its arguments in order using cat in R, or using std::cout in C++ code
generated by compiling nimbleFunctions. Non-scalar numeric objects can be included, although
their output will be formatted slightly different in uncompiled and compiled nimbleFunctions.

See Also

cat

120 nimSvd

Examples

ans <- matrix(1:4, nrow = 2) ## R code, not NIMBLE code
nimPrint('Answer is ', ans) ## would work in R or NIMBLE

nimStop Halt execution of a nimbleFunction function method. Part of the NIM-
BLE language

Description

Halt execution of a nimbleFunction function method. Part of the NIMBLE language

Usage

nimStop(msg)

Arguments

msg Character object to be output as an error message

Details

The NIMBLE stop is similar to the native R stop, but it takes only one argument, the error message
to be output. During uncompiled NIMBLE execution, nimStop simply calls R’s stop funtion. Dur-
ing compiled execution it calls the error function from the R headers. stop is an alias for nimStop
in the NIMBLE language

Author(s)

Perry de Valpine

nimSvd Singular Value Decomposition of a Matrix

Description

Computes singular values and, optionally, left and right singular vectors of a numeric matrix.

Usage

nimSvd(x, vectors = "full")

nimSvd 121

Arguments

x a symmetric numeric matrix (double or integer) whose spectral decomposition
is to be computed.

vectors character that determines whether to calculate left and right singular vectors.
Can take values 'none', 'thin' or 'full'. Defaults to 'full'. See ‘Details’.

Details

Computes the singular value decomposition of a numeric matrix using the Eigen C++ template
library.

The vectors character argument determines whether to compute no left and right singular vectors
('none'), thinned left and right singular vectors ('thin'), or full left and right singular vectors
('full'). For a matrix x with dimensions n and p, setting vectors = 'thin' will does the following
(quoted from eigen website): In case of a rectangular n-by-p matrix, letting m be the smaller value
among n and p, there are only m singular vectors; the remaining columns of U and V do not
correspond to actual singular vectors. Asking for thin U or V means asking for only their m first
columns to be formed. So U is then a n-by-m matrix, and V is then a p-by-m matrix. Notice that
thin U and V are all you need for (least squares) solving.

Setting vectors = 'full' will compute full matrices for U and V, so that U will be of size n-by-n,
and V will be of size p-by-p.

In a nimbleFunction, svd is identical to nimSvd.

returnType(svdNimbleList()) can be used within a link{nimbleFunction} to specify that the
function will return a nimbleList generated by the nimSvd function. svdNimbleList() can also
be used to define a nested nimbleList element. See the User Manual for usage examples.

Value

The singular value decomposition of x is returned as a nimbleList with elements:

• d length m vector containing the singular values of x, sorted in decreasing order.

• v matrix with columns containing the left singular vectors of x, or an empty matrix if vectors
= 'none'.

• u matrix with columns containing the right singular vectors of x, or an empty matrix if
vectors = 'none'.

Author(s)

NIMBLE development team

See Also

nimEigen for spectral decompositions.

122 nodeFunctions

Examples

singularValuesDemoFunction <- nimbleFunction(
setup = function(){

demoMatrix <- diag(4) + 2
},
run = function(){

singularValues <- svd(demoMatrix)$d
returnType(double(1))
return(singularValues)

})

nodeFunctions calculate, calculateDiff, simulate, or get the current log probabilities
(densities) a set of nodes in a NIMBLE model

Description

calculate, calculateDiff, simulate, or get the current log probabilities (densities) of one or more
nodes of a NIMBLE model and (for calculate and getLogProb) return the sum of their log probabil-
ities (or densities). Part of R and NIMBLE.

Usage

calculate(model, nodes, nodeFxnVector, nodeFunctionIndex)

calculateDiff(model, nodes, nodeFxnVector, nodeFunctionIndex)

getLogProb(model, nodes, nodeFxnVector, nodeFunctionIndex)

simulate(model, nodes, includeData = FALSE, nodeFxnVector, nodeFunctionIndex)

Arguments

model A NIMBLE model, either the compiled or uncompiled version

nodes A character vector of node names, with index blocks allowed, such as ’x’, ’y[2]’,
or ’z[1:3, 2:4]’

nodeFxnVector An optional vector of nodeFunctions on which to operate, in lieu of model and
nodes

nodeFunctionIndex

For internal NIMBLE use only

includeData A logical argument specifying whether data nodes should be simulated into
(only relevant for simulate)

optimControlNimbleList 123

Details

These functions expands the nodes and then process them in the model in the order provided. Ex-
panding nodes means turning ’y[1:2]’ into c(’y[1]’,’y[2]’) if y is a vector of scalar nodes. Calcu-
lation is defined for a stochastic node as executing the log probability (density) calculation and for
a deterministic node as calculating whatever function was provided on the right-hand side of the
model declaration.

Difference calculation (calculateDiff) executes the operation(s) on the model as calculate, but it
returns the sum of the difference between the new log probabilities and the previous ones.

Simulation is defined for a stochastic node as drawing a random value from its distribution, and for
deterministic node as equivalent to calculate.

getLogProb collects and returns the sum of the log probabilities of nodes, using the log probability
values currently stored in the model (as generated from the most recent call to calculate on each
node)

These functions can be used from R or in NIMBLE run-time functions that will be compiled. When
executed in R (including when an uncompiled nimbleFunction is executed), they can be slow be-
cause the nodes are expanded each time. When compiled in NIMBLE, the nodes are expanded only
once during compilation, so execution will be much faster.

It is common to want the nodes to be provided in topologically sorted order, so that they will be cal-
culated or simulated following the order of the model graph. Functions such as model$getDependencies(nodes,
...) return nodes in topologically sorted order. They can be directly sorted by model$topologicallySortNodes(nodes),
but if so it is a good idea to expand names first by model$topologicallySortNodes(model$expandNodeNames(nodes))

Value

calculate and getLogProb return the sum of the log probabilities (densities) of the calculated nodes,
with a contribution of 0 from any deterministic nodes

calculateDiff returns the sum of the difference between the new and old log probabilities (densities)
of the calculated nodes, with a contribution of 0 from any deterministic nodes.

simulate returns NULL.

Author(s)

NIMBLE development team

optimControlNimbleList

EXPERIMENTAL Data type for the control parameter of nimOptim

Description

nimbleList definition for the type of nimbleList input as the control parameter to nimOptim.
See optim for details.

124 optimResultNimbleList

Usage

optimControlNimbleList

Format

An object of class list of length 1.

See Also

optim, nimOptim

optimDefaultControl Creates a deafult control argument for optim (just an empty list).

Description

Creates a deafult control argument for optim (just an empty list).

Usage

optimDefaultControl()

Value

an empty list.

See Also

nimOptim, optim

optimResultNimbleList EXPERIMENTAL Data type for the return value of nimOptim

Description

nimbleList definition for the type of nimbleList returned by nimOptim.

Usage

optimResultNimbleList

Format

An object of class list of length 1.

printErrors 125

Fields

par The best set of parameters found.

value The value of fn corresponding to par.

counts A two-element integer vector giving the number of calls to fn and gr respectively.

convergence An integer code. 0 indicates successful completion. Possible error codes are 1 indi-
cates that the iteration limit maxit had been reached. 10 indicates degeneracy of the Nelder-
Mead simplex. 51 indicates a warning from the "L-BFGS-B" method; see component message
for further details. 52 indicates an error from the "L-BFGS-B" method; see component mes-
sage for further details.

message A character string giving any additional information returned by the optimizer, or NULL.

hessian Only if argument hessian is true. A symmetric matrix giving an estimate of the Hessian
at the solution found.

See Also

optim, nimOptim

printErrors Print error messages after failed compilation

Description

Retrieves the error file from R’s tempdir and prints to the screen.

Usage

printErrors(excludeWarnings = TRUE)

Arguments

excludeWarnings

logical indicating whether compiler warnings should be printed; generally such
warnings can be ignored.

Author(s)

Christopher Paciorek

126 rankSample

rankSample Generates a weighted sample (with replacement) of ranks

Description

Takes a set of non-negative weights (do not need to sum to 1) and returns a sample with size ele-
ments of the integers 1:length(weights), where the probability of being sampled is proportional
to the value of weights. An important note is that the output vector will be sorted in ascending or-
der. Also, right now it works slightly odd syntax (see example below). Later releases of NIMBLE
will contain more natural syntax.

Usage

rankSample(weights, size, output, silent = FALSE)

Arguments

weights A vector of numeric weights. Does not need to sum to 1, but must be non-
negative

size Size of sample

output An R object into which the values will be placed. See example below for proper
use

silent Logical indicating whether to suppress logging information

Details

If invalid weights provided (i.e. negative weights or weights sum to 1), sets output = rep(1, size)
and prints warning. rankSample can be used inside nimble functions.

rankSample first samples from the joint distribution size uniform(0,1) distributions by condition-
ally sampling from the rank statistics. This leads to a sorted sample of uniform(0,1)’s. Then, a cdf
vector is constructed from weights. Because the sample of uniforms is sorted, rankSample walks
down the cdf in linear time and fills out the sample.

Author(s)

Clifford Anderson-Bergman

Examples

set.seed(1)
sampInts = NA #sampled integers will be placed in sampInts
rankSample(weights = c(1, 1, 2), size = 10, sampInts)
sampInts
[1] 1 1 2 2 2 2 2 3 3 3
rankSample(weights = c(1, 1, 2), size = 10000, sampInts)
table(sampInts)
#sampInts

readBUGSmodel 127

1 2 3
#2434 2492 5074

#Used in a nimbleFunction
sampGen <- nimbleFunction(setup = function(){
x = 1:2
},
run = function(weights = double(1), k = integer()){
rankSample(weights, k, x)
returnType(integer(1))
return(x)
})
rSamp <- sampGen()
rSamp$run(1:4, 5)
#[1] 3 3 4 4 4

readBUGSmodel Create a NIMBLE BUGS model from a variety of input formats, in-
cluding BUGS model files

Description

readBUGSmodel processes inputs providing the model and values for constants, data, initial values
of the model in a variety of forms, returning a NIMBLE BUGS R model

Usage

readBUGSmodel(model, data = NULL, inits = NULL, dir = NULL,
useInits = TRUE, debug = FALSE, returnComponents = FALSE,
check = getNimbleOption("checkModel"), calculate = TRUE)

Arguments

model one of (1) a character string giving the file name containing the BUGS model
code, with relative or absolute path, (2) an R function whose body is the BUGS
model code, or (3) the output of nimbleCode. If a file name, the file can contain
a ’var’ block and ’data’ block in the manner of the JAGS versions of the BUGS
examples but should not contain references to other input data files nor a const
block. The ’.bug’ or ’.txt’ extension can be excluded.

data (optional) (1) character string giving the file name for an R file providing the
input constants and data as R code [assigning individual objects or as a named
list], with relative or absolute path, or (2) a named list providing the input con-
stants and data. If neither is provided, the function will look for a file named
’name_of_model-data’ including extensions .R, .r, or .txt.

inits (optional) (1) character string giving the file name for an R file providing starting
values as R code [assigning individual objects or as a named list], with relative
or absolute path, or (2) a named list providing the starting values. Unlike JAGS,
this should provide a single set of starting values, and therefore if provided as a
list should be a simple list and not a list of lists.

128 readBUGSmodel

dir (optional) character string giving the directory where the (optional) files are lo-
cated

useInits boolean indicating whether to set the initial values, either based on inits or by
finding the ’-inits’ file corresponding to the input model file

debug logical indicating whether to put the user in a browser for debugging when
readBUGSmodel calls nimbleModel. Intended for developer use.

returnComponents

logical indicating whether to return pieces of model object without building the
model. Default is FALSE.

check logical indicating whether to check the model object for missing or invalid val-
ues. Default is given by the NIMBLE option ’checkModel’. See nimbleOptions
for details.

calculate logical indicating whether to run calculate on the model after building it; this
will calculate all deterministic nodes and logProbability values given the current
state of all nodes. Default is TRUE. For large models, one might want to disable
this, but note that deterministic nodes, including nodes introduced into the model
by NIMBLE, may be NA.

Details

Note that readBUGSmodel should handle most common ways of providing information on a model
as used in BUGS and JAGS but does not handle input model files that refer to additional files con-
taining data. Please see the BUGS examples provided with NIMBLE in the classic-bugs directory
of the installed NIMBLE package or JAGS (http://sourceforge.net/projects/mcmc-jags/
files/Examples/) for examples of supported formats. Also, readBUGSmodel takes both constants
and data via the ’data’ argument, unlike nimbleModel, in which these are distinguished. The reason
for allowing both to be given via ’data’ is for backwards compatibility with the BUGS examples, in
which constants and data are not distinguished.

Value

returns a NIMBLE BUGS R model

Author(s)

Christopher Paciorek

See Also

nimbleModel

Examples

Reading a model defined in the R session

code <- nimbleCode({
x ~ dnorm(mu, sd = 1)
mu ~ dnorm(0, sd = prior_sd)

})

http://sourceforge.net/projects/mcmc-jags/files/Examples/
http://sourceforge.net/projects/mcmc-jags/files/Examples/

registerDistributions 129

data = list(prior_sd = 1, x = 4)
model <- readBUGSmodel(code, data = data, inits = list(mu = 0))
model$x
model[['mu']]
model$calculate('x')

Reading a classic BUGS model

pumpModel <- readBUGSmodel('pump.bug', dir = getBUGSexampleDir('pump'))
pumpModel$getVarNames()
pumpModel$x

registerDistributions Add user-supplied distributions for use in NIMBLE BUGS models

Description

Register distributional information so that NIMBLE can process user-supplied distributions in BUGS
model code

Usage

registerDistributions(distributionsInput, userEnv = parent.frame(),
verbose = nimbleOptions("verbose"))

Arguments

distributionsInput

either a list or character vector specifying the user-supplied distributions. If a
list, it should be a named list of lists in the form of that shown in nimble:::distributionsInputList
with each list having required field BUGSdist and optional fields Rdist, altParams,
discrete, pqAvail, types, and with the name of the list the same as that of the
density function. Alternatively, simply a character vector providing the names
of the density functions for the user-supplied distributions.

userEnv environment in which to look for the nimbleFunctions that provide the distribu-
tion; this will generally not need to be set by the user as it will default to the
environment from which this function was called.

verbose logical indicating whether to print additional logging information

Details

When distributionsInput is a list of lists, see below for more information on the structure of the
list. When distributionsInput is a character vector, the distribution is assumed to be of standard
form, with parameters assumed to be the arguments provided in the density nimbleFunction, no
alternative parameterizations, and the distribution assumed to be continuous with range from minus
infinity to infinity. The availability of distribution and quantile functions is inferred from whether
appropriately-named functions exist in the global environment.

130 registerDistributions

Finally, note that one no longer needs to explicitly call registerDistributions as it will be called
automatically when the user-supplied distribution is used for the first time in BUGS code. However,
if one wishes to provide alternative parameterizations, to provide a range, or to indicate a distribu-
tion is discrete, then one still must explicitly register the distribution using registerDistributions
with the argument in the list format.

Format of the component lists when distributionsInput is a list of lists:

• BUGSdist a character string in the form of the density name (starting with ’d’) followed by
the names of the parameters in parentheses. When alternative parameterizations are given
in Rdist, this should be an exhaustive list of the unique parameter names from all possible
parameterizations, with the default parameters specified first.

• Rdist an optional character vector with one or more alternative specifications of the density;
each alternative specification can be an alternative name for the density, a different ordering of
the parameters, different parameter name(s), or an alternative parameterization. In the latter
case, the character string in parentheses should provide a given reparameterization as comma-
separated name = value pairs, one for each default parameter, where name is the name of the
default parameter and value is a mathematical expression relating the default parameter to the
alternative parameters or other default parameters. The default parameters should correspond
to the input arguments of the nimbleFunctions provided as the density and random generation
functions. The mathematical expression can use any of the math functions allowed in NIM-
BLE (see the User Manual) as well as user-supplied nimbleFunctions (which must have no
setup code). The names of your nimbleFunctions for the distribution functions must match
the function name in the Rdist entry (or if missing, the function name in the BUGSdist entry

• discrete a optional logical indicating if the distribution is that of a discrete random variable.
If not supplied, distribution is assumed to be for a continuous random variable.

• pqAvail an optional logical indicating if distribution (CDF) and quantile (inverse CDF) func-
tions are provided as nimbleFunctions. These are required for one to be able to use truncated
versions of the distribution. Only applicable for univariate distributions. If not supplied, as-
sumed to be FALSE.

• altParams a character vector of comma-separated ’name = value’ pairs that provide the math-
ematical expressions relating non-canonical parameters to canonical parameters (canonical
parameters are those passed as arguments to your distribution functions). These inverse func-
tions are used for MCMC conjugacy calculations when a conjugate relationship is expressed
in terms of non-default parameters (such as the precision for normal-normal conjugacy). If
not supplied, the system will still function but with a possible loss of efficiency in certain
algorithms.

• types a character vector of comma-separated ’name = input’ pairs indicating the type and
dimension of the random variable and parameters (including default and alternative parame-
ters). ’input’ should take the form ’double(d)’ or ’integer(d)’, where ’d’ is 0 for scalars, 1 for
vectors, 2 for matrices. Note that since NIMBLE uses doubles for numerical calculations and
the default type is double(0), one should generally use ’double’ and one need only specify
the type for non-scalars. ’name’ should be either ’value’ to indicate the random variable itself
or the parameter name to indicate a given parameter.

• range a vector of two values giving the range of the distribution for possible use in future
algorithms (not used currently). When the lower or upper limit involves a strict inequality
(e.g., $x>0$), you should simply treat it as a non-strict inequality ($x>=0$, and set the lower
value to 0). Also we do not handle ranges that are functions of parameters, so simply use the

registerDistributions 131

smallest/largest possible values given the possible parameter values. If not supplied this is
taken to be (-Inf,Inf).

Author(s)

Christopher Paciorek

Examples

dmyexp <- nimbleFunction(
run = function(x = double(0), rate = double(0), log = integer(0)) {

returnType(double(0))
logProb <- log(rate) - x*rate
if(log) {

return(logProb)
} else {

return(exp(logProb))
}

})
rmyexp <- nimbleFunction(

run = function(n = integer(0), rate = double(0)) {
returnType(double(0))
if(n != 1) nimPrint("rmyexp only allows n = 1; using n = 1.")
dev <- runif(1, 0, 1)
return(-log(1-dev) / rate)

}
)

registerDistributions(list(
dmyexp = list(

BUGSdist = "dmyexp(rate, scale)",
Rdist = "dmyexp(rate = 1/scale)",
altParams = "scale = 1/rate",
pqAvail = FALSE)))

code <- nimbleCode({
y ~ dmyexp(rate = r)
r ~ dunif(0, 100)

})
m <- nimbleModel(code, inits = list(r = 1), data = list(y = 2))
calculate(m, 'y')
m$r <- 2
calculate(m, 'y')
m$resetData()
simulate(m, 'y')
m$y

alternatively, simply specify a character vector with the
name of one or more 'd' functions
deregisterDistributions('dmyexp')
registerDistributions('dmyexp')

or simply use in BUGS code without registration
deregisterDistributions('dmyexp')
m <- nimbleModel(code, inits = list(r = 1), data = list(y = 2))

132 resize

example of Dirichlet-multinomial registration to illustrate
use of 'types' (note that registration is not actually needed
in this case)
ddirchmulti <- nimbleFunction(

run = function(x = double(1), alpha = double(1), size = double(0),
log = integer(0, default = 0)) {

returnType(double(0))
logProb <- lgamma(size) - sum(lgamma(x)) + lgamma(sum(alpha)) -

sum(lgamma(alpha)) + sum(lgamma(alpha + x)) - lgamma(sum(alpha) +
size)

if(log) return(logProb)
else return(exp(logProb))

})

rdirchmulti <- nimbleFunction(
run = function(n = integer(0), alpha = double(1), size = double(0)) {

returnType(double(1))
if(n != 1) print("rdirchmulti only allows n = 1; using n = 1.")
p <- rdirch(1, alpha)
return(rmulti(1, size = size, prob = p))

})

registerDistributions(list(
ddirchmulti = list(

BUGSdist = "ddirchmulti(alpha, size)",
types = c('value = double(1)', 'alpha = double(1)')
)

))

resize Resizes a modelValues object

Description

Adds or removes rows to a modelValues object. If rows are added to a modelValues object, the
default values are NA. Works in both R and NIMBLE.

Usage

resize(container, k)

Arguments

container modelValues object

k number of rows that modelValues is set to

Details

See the User Manual or help(modelValuesBaseClass) for infomation about modelValues objects

Rmatrix2mvOneVar 133

Author(s)

Clifford Anderson-Bergman

Examples

mvConf <- modelValuesConf(vars = c('a', 'b'),
types = c('double', 'double'),
sizes = list(a = 1, b = c(2,2)))

mv <- modelValues(mvConf)
as.matrix(mv)
resize(mv, 3)
as.matrix(mv)

Rmatrix2mvOneVar Set values of one variable of a modelValues object from an R matrix

Description

Normally a modelValues object is accessed one "row" at a time. This function allows all rows for
one variable to set from a matrix with one dimension more than the variable to be set.

Usage

Rmatrix2mvOneVar(mat, mv, varName, k)

Arguments

mat Input matrix

mv modelValues object to be modified.

varName Character string giving the name of the variable on mv to be set

k Number of rows to use

Details

This function may be deprecated in the future when a more natural system for interacting with
modelValues objects is developed.

RmodelBaseClass-class Class RmodelBaseClass

Description

Classes used internally in NIMBLE and not expected to be called directly by users.

134 runCrossValidate

run.time Time execution of NIMBLE code

Description

Time execution of NIMBLE code

Usage

run.time(code)

Arguments

code code to be timed

Details

Function for use in nimbleFunction run code; when nimbleFunctions are run in R, this simply wraps
system.time.

Author(s)

NIMBLE Development Team

runCrossValidate Perform k-fold cross-validation on a NIMBLE model fit by MCMC

Description

Takes a NIMBLE model MCMC configuration and conducts k-fold cross-validation of the MCMC
fit, returning a measure of the model’s predictive performance.

Usage

runCrossValidate(MCMCconfiguration, k, foldFunction = "random",
lossFunction = "MSE", MCMCcontrol = list(), returnSamples = FALSE,
nCores = 1, nBootReps = 200, silent = FALSE)

runCrossValidate 135

Arguments

MCMCconfiguration

a NIMBLE MCMC configuration object, returned by a call to configureMCMC.

k number of folds that should be used for cross-validation.

foldFunction one of (1) an R function taking a single integer argument i, and returning a
character vector with the names of the data nodes to leave out of the model for
fold i, or (2) the character string "random", indicating that data nodes will be
randomly partitioned into k folds. Note that choosing "random" and setting k
equal to the total number of data nodes in the model will perform leave-one-out
cross-validation. Defaults to "random". See ‘Details’.

lossFunction one of (1) an R function taking a set of simulated data and a set of observed
data, and calculating the loss from those, or (2) a character string naming one
of NIMBLE’s built-in loss functions. If a character string, must be one of
"predictive" to use the log predictive density as a loss function or "MSE" to
use the mean squared error as a loss function. Defaults to "MSE". See ‘Details’
for information on creating a user-defined loss function.

MCMCcontrol (optional) an R list with parameters governing the MCMC algorithm, See ‘De-
tails’ for specific parameters.

returnSamples logical indicating whether to return all posterior samples from all MCMC runs.
This can result in a very large returned object (there will be k sets of posterior
samples returned). Defaults to FALSE.

nCores number of cpu cores to use in parallelizing the CV calculation. Only MacOS
and Linux operating systems support multiple cores at this time. Defaults to 1.

nBootReps number of bootstrap samples to use when estimating the Monte Carlo error of
the cross-validation metric. Defaults to 200. If no Monte Carlo error estimate
is desired, nBootReps can be set to NA, which can potentially save significant
computation time.

silent Boolean specifying whether to show output from the algorithm as it’s running
(default = FALSE).

Details

k-fold CV in NIMBLE proceeds by separating the data in a nimbleModel into k folds, as deter-
mined by the foldFunction argument. For each fold, the corresponding data are held out of the
model, and MCMC is run to estimate the posterior distribution and simultaneously impute posterior
predictive values for the held-out data. Then, the posterior predictive values are compared to the
known, held-out data values via the specified lossFunction. The loss values are averaged over the
posterior samples for each fold, and these averaged values for each fold are then averaged over all
folds to produce a single out-of-sample loss estimate. Additionally, estimates of the Monte Carlo
error for each fold are returned.

Value

an R list with four elements:

• CVvalue The CV value, measuring the model’s ability to predict new data. Smaller relative
values indicate better model performance.

136 runCrossValidate

• CVstandardError The standard error of the CV value, giving an indication of the total Monte
Carlo error in the CV estimate.

• foldCVInfo An list of fold CV values and standard errors for each fold.

• samples An R list, only returned when returnSamples = TRUE. The i’th element of this list
will be a matrix of posterior samples from the model with the i’th fold of data left out. There
will be k sets of samples.

The foldFunction Argument

If the default 'random' method is not used, the foldFunction argument must be an R function
that takes a single integer-valued argument i. i is guaranteed to be within the range [1, k]. For each
integer value i, the function should return a character vector of node names corresponding to the
data nodes that will be left out of the model for that fold. The returned node names can be expanded,
but don’t need to be. For example, if fold i is inteded to leave out the model nodes x[1], x[2] and
x[3] then the function could return either c('x[1]','x[2]','x[3]') or 'x[1:3]'.

The lossFunction Argument

If you don’t wish to use NIMBLE’s built-in "MSE" or "predictive" loss functions, you may pro-
vide your own R function as the lossFunction argument to runCrossValidate. A user-supplied
lossFunction must be an R function that takes two arguments: the first, named simulatedDataValues,
will be a vector of simulated data values. The second, named actualDataValues, will be a vector
of observed data values corresponding to the simulated data values in simulatedDataValues. The
loss function should return a single scalar number. See ‘Examples’ for an example of a user-defined
loss function.

The MCMCcontrol Argument

The MCMCcontrol argument is a list with the following elements:

• niter an integer argument determining how many MCMC iterations should be run for each
loss value calculation. Defaults to 10000, but should probably be manually set.

• nburnin the number of samples from the start of the MCMC chain to discard as burn-in for
each loss value calculation. Must be between 0 and niter. Defaults to 10

Author(s)

Nicholas Michaud and Lauren Ponisio

Examples

Not run:

We conduct CV on the classic "dyes" BUGS model.

dyesCode <- nimbleCode({
for (i in 1:BATCHES) {
for (j in 1:SAMPLES) {

y[i,j] ~ dnorm(mu[i], tau.within);
}

runCrossValidate 137

mu[i] ~ dnorm(theta, tau.between);
}

theta ~ dnorm(0.0, 1.0E-10);
tau.within ~ dgamma(0.001, 0.001); sigma2.within <- 1/tau.within;
tau.between ~ dgamma(0.001, 0.001); sigma2.between <- 1/tau.between;

})

dyesData <- list(y = matrix(c(1545, 1540, 1595, 1445, 1595,
1520, 1440, 1555, 1550, 1440,
1630, 1455, 1440, 1490, 1605,
1595, 1515, 1450, 1520, 1560,
1510, 1465, 1635, 1480, 1580,
1495, 1560, 1545, 1625, 1445),
nrow = 6, ncol = 5))

dyesConsts <- list(BATCHES = 6,
SAMPLES = 5)

dyesInits <- list(theta = 1500, tau.within = 1, tau.between = 1)

dyesModel <- nimbleModel(code = dyesCode,
constants = dyesConsts,
data = dyesData,
inits = dyesInits)

Define the fold function.
This function defines the data to leave out for the i'th fold
as the i'th row of the data matrix y. This implies we will have
6 folds.

dyesFoldFunction <- function(i){
foldNodes_i <- paste0('y[', i, ',]') # will return 'y[1,]' for i = 1 e.g.
return(foldNodes_i)

}

We define our own loss function as well.
The function below will compute the root mean squared error.

RMSElossFunction <- function(simulatedDataValues, actualDataValues){
dataLength <- length(simulatedDataValues) # simulatedDataValues is a vector
SSE <- 0
for(i in 1:dataLength){

SSE <- SSE + (simulatedDataValues[i] - actualDataValues[i])^2
}
MSE <- SSE / dataLength
RMSE <- sqrt(MSE)
return(RMSE)

}

dyesMCMCconfiguration <- configureMCMC(dyesModel)

crossValOutput <- runCrossValidate(MCMCconfiguration = dyesMCMCconfiguration,

138 runMCMC

k = 6,
foldFunction = dyesFoldFunction,
lossFunction = RMSElossFunction,
MCMCcontrol = list(niter = 5000,

nburnin = 500))

End(Not run)

runMCMC Run one or more chains of an MCMC algorithm and return samples,
summary and/or WAIC

Description

Takes as input an MCMC algorithm (ideally a compiled one for speed) and runs the MCMC with
one or more chains, any returns any combination of posterior samples, posterior summary statistics,
and a WAIC value.

Usage

runMCMC(mcmc, niter = 10000, nburnin = 0, thin, thin2, nchains = 1, inits,
setSeed = FALSE, progressBar = getNimbleOption("MCMCprogressBar"),
samples = TRUE, samplesAsCodaMCMC = FALSE, summary = FALSE,
WAIC = FALSE)

Arguments

mcmc A NIMBLE MCMC algorithm. See details.

niter Number of iterations to run each MCMC chain. Default value is 10000.

nburnin Number of initial, pre-thinning, MCMC iterations to discard. Default value is 0.

thin Thinning interval for collecting MCMC samples, corresponding to monitors.
Thinning occurs after the initial nburnin samples are discarded. Default value is
1.

thin2 Thinning interval for collecting MCMC samples, corresponding to the second,
optional set of monitors2. Thinning occurs after the initial nburnin samples are
discarded. Default value is 1.

nchains Number of MCMC chains to run. Default value is 1.

inits Optional argument to specify initial values for each chain. See details.

setSeed Logical or numeric argument. If a single numeric value is provided, R’s random
number seed will be set to this value at the onset of each MCMC chain. If a
numeric vector of length nchains is provided, then each element of this vector
is provided as R’s random number seed at the onset of the corresponding MCMC
chain. Otherwise, in the case of a logical value, if TRUE, then R’s random number
seed for the ith chain is set to be i, at the onset of each MCMC chain. Note that
specifying the argument setSeed = 0 does not prevent setting the RNG seed,

runMCMC 139

but rather sets the random number generation seed to 0 at the beginning of each
MCMC chain. Default value is FALSE.

progressBar Logical argument. If TRUE, an MCMC progress bar is displayed during exe-
cution of each MCMC chain. Default value is defined by the nimble package
option MCMCprogressBar.

samples Logical argument. If TRUE, then posterior samples are returned from each MCMC
chain. These samples are optionally returned as coda mcmc objects, depending
on the samplesAsCodaMCMC argument. Default value is TRUE. See details.

samplesAsCodaMCMC

Logical argument. If TRUE, then a coda mcmc object is returned instead of an R
matrix of samples, or when nchains > 1 a coda mcmc.list object is returned
containing nchains mcmc objects. This argument is only used when samples is
TRUE. Default value is FALSE. See details.

summary Logical argument. When TRUE, summary statistics for the posterior samples of
each parameter are also returned, for each MCMC chain. This may be returned
in addition to the posterior samples themselves. Default value is FALSE. See
details.

WAIC Logical argument. When TRUE, the WAIC (Watanabe, 2010) of the model is
calculated and returned. Note that in order for the WAIC to be calculated, the
mcmc object must have also been created with the argument ‘enableWAIC =
TRUE‘. If multiple chains are run, then a single WAIC value is calculated using
the posterior samples from all chains. Default value is FALSE. See details.

Details

At least one of samples, summary or WAIC must be TRUE, since otherwise, nothing will be returned.
Any combination of these may be TRUE, including possibly all three, in which case posterior samples
and summary statistics are returned for each MCMC chain, and an overall WAIC value is calculated
and returned.

When samples = TRUE, the form of the posterior samples is determined by the samplesAsCodaMCMC
argument, as either matrices of posterior samples, or coda mcmc and mcmc.list objects.

Posterior summary statistics are returned individually for each chain, and also as calculated from
all chains combined (when nchains > 1).

If provided, the inits argument can be one of three things:

(1) a function to generate initial values, which will be executed to generate initial values at the
beginning of each MCMC chain, or (2) a single named list of initial values which, will be used for
each chain, or (3) a list of length nchains, each element being a named list of initial values which
be used for one MCMC chain.

The inits argument may also be omitted, in which case the current values in the model object will
be used as the initial values of the first chain, and subsequent chains will begin using starting values
where the previous chain ended.

Other aspects of the MCMC algorithm, such as the specific sampler assignments, must be specified
in advance using the MCMC configuration object (created using configureMCMC), which is then
used to build an MCMC algorithm (using buildMCMC) argument.

The niter argument specifies the number of pre-thinning MCMC iterations, and the nburnin ar-
gument specifies the number of pre-thinning MCMC samples to discard. After discarding these

140 runMCMC

burn-in samples, thinning of the remaining samples will take place. The total number of posterior
samples returned will be floor((niter-nburnin)/thin).

The MCMC option mcmc$run(...,reset = FALSE), used to continue execution of an MCMC
chain, is not available through runMCMC().

Value

A list is returned with named elements depending on the arguments passed to nimbleMCMC, unless
this list contains only a single element, in which case only that element is returned. These elements
may include samples, summary, and WAIC, and when the MCMC is monitoring a second set of
nodes using monitors2, also samples2. When nchains = 1, posterior samples are returned as a
single matrix, and summary statistics as a single matrix. When nchains > 1, posterior samples are
returned as a list of matrices, one matrix for each chain, and summary statistics are returned as a
list containing nchains+1 matrices: one matrix corresponding to each chain, and the final element
providing a summary of all chains, combined. If samplesAsCodaMCMC is TRUE, then posterior sam-
ples are provided as coda mcmc and mcmc.list objects. When WAIC is TRUE, a single WAIC value
is returned.

Author(s)

Daniel Turek

See Also

configureMCMC buildMCMC nimbleMCMC

Examples

Not run:
code <- nimbleCode({

mu ~ dnorm(0, sd = 1000)
sigma ~ dunif(0, 1000)
for(i in 1:10) {

x[i] ~ dnorm(mu, sd = sigma)
}

})
Rmodel <- nimbleModel(code)
Rmodel$setData(list(x = c(2, 5, 3, 4, 1, 0, 1, 3, 5, 3)))
Rmcmc <- buildMCMC(Rmodel)
Cmodel <- compileNimble(Rmodel)
Cmcmc <- compileNimble(Rmcmc, project = Rmodel)
inits <- function() list(mu = rnorm(1,0,1), sigma = runif(1,0,10))
samplesList <- runMCMC(Cmcmc, niter = 10000, nchains = 3, inits = inits)

End(Not run)

samplerAssignmentRules-class 141

samplerAssignmentRules-class

Class samplerAssignmentRules

Description

Objects of this class specify an ordered set of rules for assigning MCMC sampling algorithms to the
stochastic nodes in a BUGS model. This feature can be enabled by setting nimbleOptions(MCMCuseSamplerAssignmentRules
= TRUE). The rules can be modified to alter under what circumstances various samplers are as-
signed, and with what precedence. When assigning samplers to each stochastic node, the set of
rules is traversed beginning with the first, until a matching rule is found. When a matching rule
is found, the sampler specified by that rule is assigned (or general code for sampler assignment is
executed), and the assignment process proceeds to the next stochastic node. That is, a maximum
of one rule can be invoked for each stochastic node. If no matching rule is found, an (optional)
warning is issued and no sampler is assigned. Objects of this class may be passed using the rules
argument to configureMCMC to customize the sampler assignment process. See documentation
below for method initialize() for details of creating a samplerAssignmentRules object, and
methods addRule() and reorder() for adding and modifying the sampler assignment rules. The
default behaviour of configureMCMC can be modified by setting the nimble option \’MCMCsam-
plerAssignmentRules\’ to a customized samplerAssignmentRules object. The default behaviour of
configureMCMC can be restored using nimbleOptions(MCMCdefaultSamplerAssignmentRules =
samplerAssignmentRules()).

Methods

addRule(condition, sampler, position, name, print = FALSE) Add a new rule for assigning
sampler(s) to the samplerAssignmentRules object. A rule consists of two parts: (1) a ’con-
dition’ which determines when the rule is invoked, and (2) a ’sampler’ which governs the
assignment of sampler(s) when the rule is invoked. New rules can be inserted at an arbitrary
position in the ordered set of rules.
Arguments:
condition: The ’condition’ argument must be a quoted R expression object, which will be
evaluated and interpreted as a logical to control whether or not the rule is invoked. The condi-
tion will be evaluated in an environment which contains the BUGS ’model’ object, the ’node’
name to which the rules (and hence the sampler assignment process) are being applied, and
other sampler assignment related arguments of configureMCMC() (e.g., ’useConjugacy’ and
’multivariateNodesAsScalars’). Thus, the condition expression may involve these names, as
well as methods of BUGS model objects. Creating an R expression object will generally
use the function quote(...). For example: addRule(condition = quote(model$isBinary(node)),
...). Model-specific rules for particular nodes could be specified as: addRule(condition =
quote(node == ’x’ || node == ’y’), ...), or addRule(condition = quote(grepl(’^sigma’, node)),
...). Rules for specific distributions can be created as: addRule(condition = quote(model
sampler: The ’sampler’ argument controls the sampler assignment process, once a rule is in-
voked (i.e., the ’condition’ evaluated to TRUE). The ’sampler’ argument must take one of
three different forms: (1) a character string giving the name of an MCMC nimbleFunction
sampler, (2) an unspecialized nimbleFunction object which is a valid MCMC sampler, or (3)

142 samplerAssignmentRules-class

an arbitrary quoted R expression object, which will be executed to perform the sampler as-
signment process, and should generally make use of the method addSampler(). Example (1):
addRule(..., sampler = ’slice’), for assigning a ’slice’ sampler when the rule is invoked. Ex-
ample (2): addRule(..., sampler = my_sampler_nimbleFunction), for assigning the sampling
algorithm defined in the object my_sampler_nimbleFunction. Note the same behaviour will
result from: addRule(..., sampler = ’my_sampler_nimbleFunction’), which will be also more
informative when the list of assignment rules is printed. Example (3): addRule(..., sampler =
quote(

position: Index of the position to add the new rule. By default, new rules are added at the
end of the current ordered set of rules (giving it the lowest priority in the sampler assignment
process). Specifying a position inserts the new rule at that position, and does not over-write
an existing rule.

name: Optional character string name for the sampler to be added, which is used by subsequent
print methods. If ’name’ is not provided, the ’sampler’ argument is used to generate the name.
Note, if the ’sampler’ argument is provided as an R expression making use of the addSampler
method, then the ’name’ argument will not be passed on to the MCMC configuration object,
and instead any call(s) to addSampler can explicitly make use of its own ’name’ argument.

print: Logical argument specifying whether to print the newly-added sampler assignment rule
(default FALSE).

initialize(empty = FALSE, print = FALSE) Creates a new samplerAssignmentRules object, which
is a container for an ordered set of rules for MCMC sampler assignments. Objects of this class
may be passed using the ’rules’ argument to configureMCMC(), to customize the process of
assigning samplers to stochastic model nodes. By default, new samplerAssignmentRules ob-
jects are initialized having an exact copy of the default sampler assignment rules used by
NIMBLE, and can thereafter be modified using the addRule() and reorder() methods.

Arguments:

empty: Logical argument (default = FALSE). If TRUE, then a new samplerAssignmentRules
object is created containing no rules. The default behaviour creates new objects containing an
exact copy of the default sampler assignment rules used by NIMBLE.

print: Logical argument specifying whether to print the ordered list of sampler assignment
rules (default FALSE).

printRules(ind) Prints the ordered set of sampler assignment rules.

Arguments:

ind: A set of indicies, specifying which sampler assignment rules to print. If omitted, all rules
are printed.

reorder(ind, print = FALSE) Reorder the current ordered list of sampler assignment rules. This
method can be used to reorder the existing rules, as well as delete one or more rules.

Arguments:

ind: The indices of the current set of rules to keep. Assuming there are 10 rules, reorder(1:5)
will remove the final five rules, reorder(c(10,1:9)) will move the last (lowest priority) rule to
the first position (highest priority), and reorder(8) deletes all rules except the eighth, making
it the only (and hence first, highest priority) rule.

print: Logical argument specifying whether to print the resulting ordered list of sampler as-
signment rules (default FALSE).

sampler_BASE 143

Author(s)

Daniel Turek

See Also

configureMCMC

Examples

Not run:
enable the use of samplerAssignmentRules:
nimbleOptions(MCMCuseSamplerAssignmentRules = TRUE)

omitting empty=TRUE creates a copy of nimble's default rules
my_rules <- samplerAssignmentRules(empty = TRUE)

my_rules$addRule(quote(model$isEndNode(node)), "posterior_predictive")
my_rules$addRule(quote(model$isDiscrete(node)), "my_new_discrete_sampler")
my_rules$addRule(TRUE, "RW") ## default catch-all sampler assignment

print the ordered set of sampler assignment rules
my_rules$printRules()

assign samplers according to my_rules object
conf <- configureMCMC(Rmodel, rules = my_rules)
conf$printSamplers()

view the current (default) assignment rules used by configureMCMC()
nimbleOptions(MCMCdefaultSamplerAssignmentRules)

change default behaviour of configureMCMC() to use my_rules
nimbleOptions(MCMCdefaultSamplerAssignmentRules = my_rules)

reset configureMCMC() to use default rules
nimbleOptions(MCMCdefaultSamplerAssignmentRules = samplerAssignmentRules())

End(Not run)

sampler_BASE MCMC Sampling Algorithms

Description

Details of the MCMC sampling algorithms provided with the NIMBLE MCMC engine

144 sampler_BASE

Usage

sampler_BASE()

sampler_posterior_predictive(model, mvSaved, target, control)

sampler_binary(model, mvSaved, target, control)

sampler_categorical(model, mvSaved, target, control)

sampler_RW(model, mvSaved, target, control)

sampler_RW_block(model, mvSaved, target, control)

sampler_RW_llFunction(model, mvSaved, target, control)

sampler_slice(model, mvSaved, target, control)

sampler_ess(model, mvSaved, target, control)

sampler_AF_slice(model, mvSaved, target, control)

sampler_crossLevel(model, mvSaved, target, control)

sampler_RW_llFunction_block(model, mvSaved, target, control)

sampler_RW_PF(model, mvSaved, target, control)

sampler_RW_PF_block(model, mvSaved, target, control)

sampler_RW_multinomial(model, mvSaved, target, control)

sampler_RW_dirichlet(model, mvSaved, target, control)

sampler_RW_wishart(model, mvSaved, target, control)

sampler_CAR_normal(model, mvSaved, target, control)

sampler_CAR_proper(model, mvSaved, target, control)

sampler_RJ_fixed_prior(model, mvSaved, target, control)

sampler_RJ_indicator(model, mvSaved, target, control)

sampler_RJ_toggled(model, mvSaved, target, control)

sampler_CRP_concentration(model, mvSaved, target, control)

sampler_CRP(model, mvSaved, target, control)

sampler_BASE 145

sampler_CRP_old(model, mvSaved, target, control)

Arguments

model (uncompiled) model on which the MCMC is to be run

mvSaved modelValues object to be used to store MCMC samples

target node(s) on which the sampler will be used

control named list that controls the precise behavior of the sampler, with elements spe-
cific to samplertype. The default values for control list are specified in the setup
code of each sampling algorithm. Descriptions of each sampling algorithm, and
the possible customizations for each sampler (using the control argument) ap-
pear below.

sampler_base

base class for new samplers

When you write a new sampler for use in a NIMBLE MCMC (see User Manual), you must include
contains = sampler_BASE.

binary sampler

The binary sampler performs Gibbs sampling for binary-valued (discrete 0/1) nodes. This can only
be used for nodes following either a dbern(p) or dbinom(p,size=1) distribution.

The binary sampler accepts no control list arguments.

RW sampler

The RW sampler executes adaptive Metropolis-Hastings sampling with a normal proposal distribu-
tion (Metropolis, 1953), implementing the adaptation routine given in Shaby and Wells, 2011. This
sampler can be applied to any scalar continuous-valued stochastic node, and can optionally sample
on a log scale.

The RW sampler accepts the following control list elements:

• log. A logical argument, specifying whether the sampler should operate on the log scale.
(default = FALSE)

• reflective. A logical argument, specifying whether the normal proposal distribution should
reflect to stay within the range of the target distribution. (default = FALSE)

• adaptive. A logical argument, specifying whether the sampler should adapt the scale (proposal
standard deviation) throughout the course of MCMC execution to achieve a theoretically de-
sirable acceptance rate. (default = TRUE)

• adaptInterval. The interval on which to perform adaptation. Every adaptInterval MCMC
iterations (prior to thinning), the RW sampler will perform its adaptation procedure. This
updates the scale variable, based upon the sampler’s achieved acceptance rate over the past
adaptInterval iterations. (default = 200)

• adaptFactorExponent. Exponent controling the rate of decay of the scale adaptation factor.
See Shaby and Wells, 2011, for details. (default = 0.8)

146 sampler_BASE

• scale. The initial value of the normal proposal standard deviation. If adaptive = FALSE, scale
will never change. (default = 1)

The RW sampler cannot be used with options log=TRUE and reflective=TRUE, i.e. it cannot do
reflective sampling on a log scale.

RW_block sampler

The RW_block sampler performs a simultaneous update of one or more model nodes, using an
adaptive Metropolis-Hastings algorithm with a multivariate normal proposal distribution (Roberts
and Sahu, 1997), implementing the adaptation routine given in Shaby and Wells, 2011. This sam-
pler may be applied to any set of continuous-valued model nodes, to any single continuous-valued
multivariate model node, or to any combination thereof.

The RW_block sampler accepts the following control list elements:

• adaptive. A logical argument, specifying whether the sampler should adapt the scale (a coeffi-
cient for the entire proposal covariance matrix) and propCov (the multivariate normal proposal
covariance matrix) throughout the course of MCMC execution. If only the scale should un-
dergo adaptation, this argument should be specified as TRUE. (default = TRUE)

• adaptScaleOnly. A logical argument, specifying whether adaption should be done only for
scale (TRUE) or also for provCov (FALSE). This argument is only relevant when adaptive
= TRUE. When adaptScaleOnly = FALSE, both scale and propCov undergo adaptation; the
sampler tunes the scaling to achieve a theoretically good acceptance rate, and the proposal
covariance to mimic that of the empirical samples. When adaptScaleOnly = TRUE, only the
proposal scale is adapted. (default = FALSE)

• adaptInterval. The interval on which to perform adaptation. Every adaptInterval MCMC
iterations (prior to thinning), the RW_block sampler will perform its adaptation procedure,
based on the past adaptInterval iterations. (default = 200)

• adaptFactorExponent. Exponent controling the rate of decay of the scale adaptation factor.
See Shaby and Wells, 2011, for details. (default = 0.8)

• scale. The initial value of the scalar multiplier for propCov. If adaptive = FALSE, scale will
never change. (default = 1)

• propCov. The initial covariance matrix for the multivariate normal proposal distribution. This
element may be equal to the character string ’identity’, in which case the identity matrix of
the appropriate dimension will be used for the initial proposal covariance matrix. (default =
’identity’)

RW_llFunction sampler

Sometimes it is useful to control the log likelihood calculations used for an MCMC updater instead
of simply using the model. For example, one could use a sampler with a log likelihood that analyt-
ically (or numerically) integrates over latent model nodes. Or one could use a sampler with a log
likelihood that comes from a stochastic approximation such as a particle filter, allowing composi-
tion of a particle MCMC (PMCMC) algorithm (Andrieu et al., 2010). The RW_llFunction sampler
handles this by using a Metropolis-Hastings algorithm with a normal proposal distribution and a
user-provided log-likelihood function. To allow compiled execution, the log-likelihood function
must be provided as a specialized instance of a nimbleFunction. The log-likelihood function may

sampler_BASE 147

use the same model as the MCMC as a setup argument, but if so the state of the model should be
unchanged during execution of the function (or you must understand the implications otherwise).

The RW_llFunction sampler accepts the following control list elements:

• adaptive. A logical argument, specifying whether the sampler should adapt the scale (proposal
standard deviation) throughout the course of MCMC execution. (default = TRUE)

• adaptInterval. The interval on which to perform adaptation. (default = 200)

• scale. The initial value of the normal proposal standard deviation. (default = 1)

• llFunction. A specialized nimbleFunction that accepts no arguments and returns a scalar dou-
ble number. The return value must be the total log-likelihood of all stochastic dependents of
the target nodes – and, if includesTarget = TRUE, of the target node(s) themselves – or what-
ever surrogate is being used for the total log-likelihood. This is a required element with no
default.

• includesTarget. Logical variable indicating whether the return value of llFunction includes the
log-likelihood associated with target. This is a required element with no default.

slice sampler

The slice sampler performs slice sampling of the scalar node to which it is applied (Neal, 2003).
This sampler can operate on either continuous-valued or discrete-valued scalar nodes. The slice
sampler performs a ’stepping out’ procedure, in which the slice is iteratively expanded to the left or
right by an amount sliceWidth. This sampler is optionally adaptive, governed by a control list ele-
ment, whereby the value of sliceWidth is adapted towards the observed absolute difference between
successive samples.

The slice sampler accepts the following control list elements:

• adaptive. A logical argument, specifying whether the sampler will adapt the value of sliceWidth
throughout the course of MCMC execution. (default = TRUE)

• adaptInterval. The interval on which to perform adaptation. (default = 200)

• sliceWidth. The initial value of the width of each slice, and also the width of the expansion
during the iterative ’stepping out’ procedure. (default = 1)

• sliceMaxSteps. The maximum number of expansions which may occur during the ’stepping
out’ procedure. (default = 100)

• maxContractions. The maximum number of contractions of the interval that may occur during
sampling (this prevents infinite looping in unusual situations). (default = 100)

• maxContractionsWarning. A logical argument specifying whether to warn when the maximum
number of contractions is reached. (default = TRUE)

ess sampler

The ess sampler performs elliptical slice sampling of a single node, which must follow a multivariate
normal distribution (Murray, 2010). The algorithm is an extension of slice sampling (Neal, 2003),
generalized to the multivariate normal context. An auxilliary variable is used to identify points on
an ellipse (which passes through the current node value) as candidate samples, which are accepted
contingent upon a likelihood evaluation at that point. This algorithm requires no tuning parameters
and therefore no period of adaptation, and may result in very efficient sampling from multivariate
Gaussian distributions.

148 sampler_BASE

The ess sampler accepts the following control list arguments.

• maxContractions. The maximum number of contractions of the interval that may occur during
sampling (this prevents infinite looping in unusual situations). (default = 100)

• maxContractionsWarning. A logical argument specifying whether to warn when the maximum
number of contractions is reached. (default = TRUE)

AF_slice sampler

The automated factor slice sampler conducts a slice sampling algorithm on one or more model
nodes. The sampler uses the eigenvectors of the posterior covariance between these nodes as an
orthogonal basis on which to perform its ’stepping Out’ procedure. The sampler is adaptive in
updating both the width of the slices and the values of the eigenvectors. The sampler can be applied
to any set of continuous or discrete-valued model nodes, to any single continuous or discrete-valued
multivariate model node, or to any combination thereof. The automated factor slice sampler accepts
the following control list elements:

• sliceWidths. A numeric vector of initial slice widths. The length of the vector must be equal to
the sum of the lengths of all nodes being used by the automated factor slice sampler. Defaults
to a vector of 1’s.

• sliceAdaptFactorMaxIter. The number of iterations for which the factors (eigenvectors) will
continue to adapt to the posterior correlation. (default = 15000)

• sliceAdaptFactorInterval. The interval on which to perform factor adaptation. (default = 1000)
• sliceAdaptWidthMaxIter. The maximum number of iterations for which to adapt the widths

for a given set of factors. (default = 512)
• sliceAdaptWidthTolerance. The tolerance for when widths no longer need to adapt, between

0 and 0.5. (default = 0.1)
• sliceMaxSteps. The maximum number of expansions which may occur during the ’stepping

out’ procedure. (default = 100)
• maxContractions. The maximum number of contractions of the interval that may occur during

sampling (this prevents infinite looping in unusual situations). (default = 100)
• maxContractionsWarning. A logical argument specifying whether to warn when the maximum

number of contractions is reached. (default = TRUE)

crossLevel sampler

This sampler is constructed to perform simultaneous updates across two levels of stochastic de-
pendence in the model structure. This is possible when all stochastic descendents of node(s) at
one level have conjugate relationships with their own stochastic descendents. In this situation, a
Metropolis-Hastings algorithm may be used, in which a multivariate normal proposal distribution is
used for the higher-level nodes, and the corresponding proposals for the lower-level nodes undergo
Gibbs (conjugate) sampling. The joint proposal is either accepted or rejected for all nodes involved
based upon the Metropolis-Hastings ratio.

The requirement that all stochastic descendents of the target nodes must themselves have only con-
jugate descendents will be checked when the MCMC algorithm is built. This sampler is useful when
there is strong dependence across the levels of a model that causes problems with convergence or
mixing.

The crossLevel sampler accepts the following control list elements:

sampler_BASE 149

• adaptive. Logical argument, specifying whether the multivariate normal proposal distribution
for the target nodes should be adaptived. (default = TRUE)

• adaptInterval. The interval on which to perform adaptation. (default = 200)
• scale. The initial value of the scalar multiplier for propCov. (default = 1)
• propCov. The initial covariance matrix for the multivariate normal proposal distribution. This

element may be equal to the character string ’identity’ or any positive definite matrix of the
appropriate dimensions. (default = ’identity’)

RW_llFunction_block sampler

Sometimes it is useful to control the log likelihood calculations used for an MCMC updater instead
of simply using the model. For example, one could use a sampler with a log likelihood that analyt-
ically (or numerically) integrates over latent model nodes. Or one could use a sampler with a log
likelihood that comes from a stochastic approximation such as a particle filter, allowing composition
of a particle MCMC (PMCMC) algorithm (Andrieu et al., 2010) (but see samplers listed below for
NIMBLE’s direct implementation of PMCMC). The RW_llFunctionBlock sampler handles this
by using a Metropolis-Hastings algorithm with a multivariate normal proposal distribution and a
user-provided log-likelihood function. To allow compiled execution, the log-likelihood function
must be provided as a specialized instance of a nimbleFunction. The log-likelihood function may
use the same model as the MCMC as a setup argument, but if so the state of the model should be
unchanged during execution of the function (or you must understand the implications otherwise).

The RW_llFunctionBlock sampler accepts the following control list elements:

• adaptive. A logical argument, specifying whether the sampler should adapt the proposal co-
variance throughout the course of MCMC execution. (default is TRUE)

• adaptScaleOnly. A logical argument, specifying whether adaption should be done only for
scale (TRUE) or also for provCov (FALSE). This argument is only relevant when adaptive
= TRUE. When adaptScaleOnly = FALSE, both scale and propCov undergo adaptation; the
sampler tunes the scaling to achieve a theoretically good acceptance rate, and the proposal
covariance to mimic that of the empirical samples. When adaptScaleOnly = TRUE, only the
proposal scale is adapted. (default = FALSE)

• adaptInterval. The interval on which to perform adaptation. (default = 200)
• adaptFactorExponent. Exponent controling the rate of decay of the scale adaptation factor.

See Shaby and Wells, 2011, for details. (default = 0.8)
• scale. The initial value of the scalar multiplier for propCov. If adaptive = FALSE, scale will

never change. (default = 1)
• propCov. The initial covariance matrix for the multivariate normal proposal distribution. This

element may be equal to the character string ’identity’, in which case the identity matrix of
the appropriate dimension will be used for the initial proposal covariance matrix. (default =
’identity’)

• llFunction. A specialized nimbleFunction that accepts no arguments and returns a scalar dou-
ble number. The return value must be the total log-likelihood of all stochastic dependents of
the target nodes – and, if includesTarget = TRUE, of the target node(s) themselves – or what-
ever surrogate is being used for the total log-likelihood. This is a required element with no
default.

• includesTarget. Logical variable indicating whether the return value of llFunction includes the
log-likelihood associated with target. This is a required element with no default.

150 sampler_BASE

RW_PF sampler

The particle filter sampler allows the user to perform particle MCMC (PMCMC) (Andrieu et al.,
2010), primarily for state-space or hidden Markov models of time-series data. This method uses
Metropolis-Hastings samplers for top-level parameters but uses the likelihood approximation of
a particle filter (sequential Monte Carlo) to integrate over latent nodes in the time-series. The
RW_PF sampler uses an adaptive Metropolis-Hastings algorithm with a univariate normal proposal
distribution for a scalar parameter. Note that samples of the latent states can be retained as well,
but the top-level parameter being sampled must be a scalar. A bootstrap, auxiliary, or user defined
particle filter can be used to integrate over latent states.

For more information about user-defined samplers within a PMCMC sampler, see the NIMBLE
User Manual.

The RW_PF sampler accepts the following control list elements:

• adaptive. A logical argument, specifying whether the sampler should adapt the scale (proposal
standard deviation) throughout the course of MCMC execution to achieve a theoretically de-
sirable acceptance rate. (default = TRUE)

• adaptInterval. The interval on which to perform adaptation. Every adaptInterval MCMC
iterations (prior to thinning), the RW sampler will perform its adaptation procedure. This
updates the scale variable, based upon the sampler’s achieved acceptance rate over the past
adaptInterval iterations. (default = 200)

• scale. The initial value of the normal proposal standard deviation. If adaptive = FALSE, scale
will never change. (default = 1)

• pfNparticles. The number of particles to use in the approximation to the log likelihood of the
data (default = 1000).

• latents. Character vector specifying the nodes that are latent states over which the particle
filter will operate to approximate the log-likelihood function.

• pfType. Character argument specifying the type of particle filter that should be used for likeli-
hood approximation. Choose from "bootstrap" and "auxiliary". Defaults to "bootstrap".

• pfControl. A control list that is passed to the particle filter function. For details on control lists
for bootstrap or auxiliary particle filters, see buildBootstrapFilter or buildAuxiliaryFilter
respectively. Additionally, this can be used to pass custom arguments into a user-defined par-
ticle filter.

• pfOptimizeNparticles. A logical argument, specifying whether to use an experimental pro-
cedure to automatically determine the optimal number of particles to use, based on Pitt and
Shephard (2011). This will override any value of pfNparticles specified above.

• pf. A user-defined particle filter object, if a bootstrap or auxiliary particle filter is not adequate.

RW_PF_block sampler

The particle filter block sampler allows the user to perform particle MCMC (PMCMC) (Andrieu
et al., 2010) for multiple parameters jointly, primarily for state-space or hidden Markov models of
time-series data. This method uses Metropolis-Hastings block samplers for top-level parameters but
uses the likelihood approximation of a particle filter (sequential Monte Carlo) to integrate over latent
nodes in the time-series. The RW_PF sampler uses an adaptive Metropolis-Hastings algorithm with
a multivariate normal proposal distribution. Note that samples of the latent states can be retained

sampler_BASE 151

as well, but the top-level parameter being sampled must be a scalar. A bootstrap, auxiliary, or user
defined particle filter can be used to integrate over latent states.

For more information about user-defined samplers within a PMCMC sampler, see the NIMBLE
User Manual.

The RW_PF_block sampler accepts the following control list elements:

• adaptive. A logical argument, specifying whether the sampler should adapt the proposal co-
variance throughout the course of MCMC execution. (default = TRUE)

• adaptScaleOnly. A logical argument, specifying whether adaptation should be done only for
scale (TRUE) or also for provCov (FALSE). This argument is only relevant when adaptive
= TRUE. When adaptScaleOnly = FALSE, both scale and propCov undergo adaptation; the
sampler tunes the scaling to achieve a theoretically good acceptance rate, and the proposal
covariance to mimic that of the empirical samples. When adaptScaleOnly = TRUE, only the
proposal scale is adapted. (default = FALSE)

• adaptInterval. The interval on which to perform adaptation. (default = 200)
• scale. The initial value of the scalar multiplier for propCov. If adaptive = FALSE, scale will

never change. (default = 1)
• adaptFactorExponent. Exponent controling the rate of decay of the scale adaptation factor.

See Shaby and Wells, 2011, for details. (default = 0.8)
• propCov. The initial covariance matrix for the multivariate normal proposal distribution. This

element may be equal to the 'identity', in which case the identity matrix of the appropriate
dimension will be used for the initial proposal covariance matrix. (default is 'identity')

• pfNparticles. The number of particles to use in the approximation to the log likelihood of the
data (default = 1000).

• latents. Character vector specifying the nodes that are latent states over which the particle
filter will operate to approximate the log-likelihood function.

• pfType. Character argument specifying the type of particle filter that should be used for likeli-
hood approximation. Choose from "bootstrap" and "auxiliary". Defaults to "bootstrap".

• pfControl. A control list that is passed to the particle filter function. For details on control lists
for bootstrap or auxiliary particle filters, see buildBootstrapFilter or buildAuxiliaryFilter
respectively. Additionally, this can be used to pass custom arguments into a user defined par-
ticle filter.

• pfOptimizeNparticles. A logical argument, specifying whether to automatically determine the
optimal number of particles to use, based on Pitt and Shephard (2011). This will override any
value of pfNparticles specified above.

• pf. A user-defined particle filter object, if a bootstrap or auxiliary particle filter is not adequate.

RW_multinomial sampler

This sampler is designed for sampling multinomial target distributions. The sampler performs a se-
ries of Metropolis-Hastings steps between pairs of groups. Proposals are generated via a draw from
a binomial distribution, whereafter the proposed number density is moved from one group to an-
other group. The acceptance or rejection of these proposals follows a standard Metropolis-Hastings
procedure. Probabilities for the random binomial proposals are adapted to a target acceptance rate
of 0.5.

The RW_multinomial sampler accepts the following control list elements:

152 sampler_BASE

• adaptive. A logical argument, specifying whether the sampler should adapt the binomial pro-
posal probabilities throughout the course of MCMC execution. (default = TRUE)

• adaptInterval. The interval on which to perform adaptation. A minimum value of 100 is
required. (default = 200)

RW_dirichlet sampler

This sampler is designed for sampling non-conjugate Dirichlet distributions. The sampler per-
forms a series of Metropolis-Hastings updates (on the log scale) to each component of a gamma-
reparameterization of the target Dirichlet distribution. The acceptance or rejection of these propos-
als follows a standard Metropolis-Hastings procedure.

The RW_dirichlet sampler accepts the following control list elements:

• adaptive. A logical argument, specifying whether the sampler should independently adapt
the scale (proposal standard deviation, on the log scale) for each componentwise Metropolis-
Hasting update, to achieve a theoretically desirable acceptance rate for each. (default = TRUE)

• adaptInterval. The interval on which to perform adaptation. Every adaptInterval MCMC
iterations (prior to thinning), the sampler will perform its adaptation procedure. (default =
200)

• adaptFactorExponent. Exponent controling the rate of decay of the scale adaptation factor.
See Shaby and Wells, 2011, for details. (default = 0.8)

• scale. The initial value of the proposal standard deviation (on the log scale) for each compo-
nent of the reparameterized Dirichlet distribution. If adaptive = FALSE, the proposal standard
deviations will never change. (default = 1)

RW_wishart sampler

This sampler is designed for sampling non-conjugate Wishart and inverse-Wishart distributions.
More generally, it can update any symmetric positive-definite matrix (for example, scaled covara-
iance or precision matrices). The sampler performs block Metropolis-Hastings updates following a
transformation to an unconstrained scale (Cholesky factorization of the original matrix, then taking
the log of the main diagonal elements.

The RW_wishart sampler accepts the following control list elements:

• adaptive. A logical argument, specifying whether the sampler should adapt the scale and
proposal covariance for the multivariate normal Metropolis-Hasting proposals, to achieve a
theoretically desirable acceptance rate for each. (default = TRUE)

• adaptInterval. The interval on which to perform adaptation. Every adaptInterval MCMC
iterations (prior to thinning), the sampler will perform its adaptation procedure. (default =
200)

• adaptFactorExponent. Exponent controling the rate of decay of the scale adaptation factor.
See Shaby and Wells, 2011, for details. (default = 0.8)

• scale. The initial value of the scalar multiplier for the multivariate normal Metropolis-Hastings
proposal covariance. If adaptive = FALSE, scale will never change. (default = 1)

sampler_BASE 153

CAR_normal sampler

The CAR_normal sampler operates uniquely on improper (intrinsic) Gaussian conditional autore-
gressive (CAR) nodes, those with a dcar_normal prior distribution. It internally assigns one of
three univariate samplers to each dimension of the target node: a posterior predictive, conjugate,
or RW sampler; however these component samplers are specialized to operate on dimensions of a
dcar_normal distribution.

The CAR_normal sampler accepts the following control list elements:

• carUseConjugacy. A logical argument, specifying whether to assign conjugate samplers for
conjugate components of the target node. If FALSE, a RW sampler would be assigned instead.
(default = TRUE)

• adaptive. A logical argument, specifying whether any component RW samplers should adapt
the scale (proposal standard deviation), to achieve a theoretically desirable acceptance rate.
(default = TRUE)

• adaptInterval. The interval on which to perform adaptation for any component RW sam-
plers. Every adaptInterval MCMC iterations (prior to thinning), component RW samplers
will perform an adaptation procedure. This updates the scale variable, based upon the sam-
pler’s achieved acceptance rate over the past adaptInterval iterations. (default = 200)

• scale. The initial value of the normal proposal standard deviation for any component RW
samplers. If adaptive = FALSE, scale will never change. (default = 1)

CAR_proper sampler

The CAR_proper sampler operates uniquely on proper Gaussian conditional autoregressive (CAR)
nodes, those with a dcar_proper prior distribution. It internally assigns one of three univariate
samplers to each dimension of the target node: a posterior predictive, conjugate, or RW sampler,
however these component samplers are specialized to operate on dimensions of a dcar_proper
distribution.

The CAR_proper sampler accepts the following control list elements:

• carUseConjugacy. A logical argument, specifying whether to assign conjugate samplers for
conjugate components of the target node. If FALSE, a RW sampler would be assigned instead.
(default = TRUE)

• adaptive. A logical argument, specifying whether any component RW samplers should adapt
the scale (proposal standard deviation), to achieve a theoretically desirable acceptance rate.
(default = TRUE)

• adaptInterval. The interval on which to perform adaptation for any component RW sam-
plers. Every adaptInterval MCMC iterations (prior to thinning), component RW samplers will
perform an adaptation procedure. This updates the scale variable, based upon the sampler’s
achieved acceptance rate over the past adaptInterval iterations. (default = 200)

• scale. The initial value of the normal proposal standard deviation for any component RW
samplers. If adaptive = FALSE, scale will never change. (default = 1)

CRP sampler

The CRP sampler is designed for fitting models involving Dirichlet process mixtures. It is exclu-
sively assigned by NIMBLE’s default MCMC configuration to nodes having the Chinese Restaurant

154 sampler_BASE

Process distribution, dCRP. It executes sequential sampling of each component of the node (i.e., the
cluster membership of each element being clustered). Internally, either of two samplers can be as-
signed, depending on conjugate or non-conjugate structures within the model. For conjugate and
non-conjugate model structures, updates are based on Algorithm 2 and Algorithm 8 in Neal (2000),
respectively.

CRP_concentration sampler

The CRP_concentration sampler is designed for Bayesian nonparametric mixture modeling. It is
exclusively assigned to the concentration parameter of the Dirichlet process when the model is spec-
ified using theChinese Restaurant Process distribution, dCRP. This sampler is assigned by default
by NIMBLE’s default MCMC configuration and is and can only be used when the prior for the
concentration is a gamma distribution. The assigned sampler is an augmented beta-gamma sampler
as discussed in Section 6 in Escobar and West (1995).

posterior_predictive sampler

The posterior_predictive sampler is only appropriate for use on terminal stochastic nodes. Note that
such nodes play no role in inference but have often been included in BUGS models to accomplish
posterior predictive checks. NIMBLE allows posterior predictive values to be simulated indepen-
dently of running MCMC, for example by writing a nimbleFunction to do so. This means that
in many cases where terminal stochastic nodes have been included in BUGS models, they are not
needed when using NIMBLE.

The posterior_predictive sampler functions by calling the simulate() method of relevant node, then
updating model probabilities and deterministic dependent nodes. The application of a posterior_predictive
sampler to any non-terminal node will result in invalid posterior inferences. The posterior_predictive
sampler will automatically be assigned to all terminal, non-data stochastic nodes in a model by the
default MCMC configuration, so it is uncommon to manually assign this sampler.

The posterior_predictive sampler accepts no control list arguments.

RJ_fixed_prior sampler

This sampler proposes addition/removal for variable of interest in the framework of variable se-
lection using reversible jump MCMC, with a specified prior probability of inclusion. A normal
proposal distribution is used to generate proposals for the addition of the variable. This is a spe-
cialized sampler used by configureRJ function, when the model code is written without using
indicator variables. See help{configureRJ} for details. It is not intended for direct assignment.

RJ_indicator sampler

This sampler proposes transitions of a binary indicator variable, corresponding to a variable of
interest, in the framework of variable selection using reversible jump MCMC. This is a specialized
sampler used by configureRJ function, when the model code is written using indicator variables.
See help{configureRJ} for details. It is not intended for direct assignment.

RJ_toggled sampler

This sampler operates in the framework of variable selection using reversible jump MCMC. Specif-
ically, it conditionally performs updates of the target variable of interest using the originally-

sampler_BASE 155

specified sampling configuration, when variable is "in the model". This is a specialized sampler
used by configureRJ when adding a reversible jump MCMC . See help{configureRJ} for de-
tails. It is not intended for direct assignment.

Author(s)

Daniel Turek

References

Andrieu, C., Doucet, A., and Holenstein, R. (2010). Particle Markov Chain Monte Carlo Methods.
Journal of the Royal Statistical Society: Series B (Statistical Methodology), 72(3), 269-342.

Metropolis, N., Rosenbluth, A. W., Rosenbluth, M. N., Teller, A. H., and Teller, E. (1953). Equation
of State Calculations by Fast Computing Machines. The Journal of Chemical Physics, 21(6), 1087-
1092.

Neal, Radford M. (2003). Slice Sampling. The Annals of Statistics, 31(3), 705-741.

Murray, I., Prescott Adams, R., and MacKay, D. J. C. (2010). Elliptical Slice Sampling. arXiv
e-prints, arXiv:1001.0175.

Pitt, M.K. and Shephard, N. (1999). Filtering via simulation: Auxiliary particle filters. Journal of
the American Statistical Association 94(446), 590-599.

Roberts, G. O. and S. K. Sahu (1997). Updating Schemes, Correlation Structure, Blocking and Pa-
rameterization for the Gibbs Sampler. Journal of the Royal Statistical Society: Series B (Statistical
Methodology), 59(2), 291-317.

Shaby, B. and M. Wells (2011). Exploring an Adaptive Metropolis Algorithm. 2011-14. Department
of Statistics, Duke University.

Tibbits, M. M., Groendyke, C., Haran, M., and Liechty, J. C. (2014). Automated Factor Slice
Sampling. Journal of Computational and Graphical Statistics, 23(2), 543-563.

Escobar, M. D., and West, M. (1995). Bayesian density estimation and inference using mixtures.
Journal of the American Statistical Association, 90(430), 577-588.

Neal, R. M. (2000). Markov chain sampling methods for Dirichlet process mixture models. Journal
of Computational and Graphical Statistics, 9(2), 249-265.

See Also

configureMCMC addSampler buildMCMC runMCMC

Examples

y[1] ~ dbern() or dbinom():
mcmcConf$addSampler(target = 'y[1]', type = 'binary')

mcmcConf$addSampler(target = 'a', type = 'RW',
control = list(log = TRUE, adaptive = FALSE, scale = 3))
mcmcConf$addSampler(target = 'b', type = 'RW',
control = list(adaptive = TRUE, adaptInterval = 200))
mcmcConf$addSampler(target = 'p', type = 'RW',
control = list(reflective = TRUE))

156 setAndCalculate

a, b, and c all continuous-valued:
mcmcConf$addSampler(target = c('a', 'b', 'c'), type = 'RW_block')

mcmcConf$addSampler(target = 'p', type = 'RW_llFunction',
control = list(llFunction = RllFun, includesTarget = FALSE))

mcmcConf$addSampler(target = 'y[1]', type = 'slice',
control = list(adaptive = FALSE, sliceWidth = 3))
mcmcConf$addSampler(target = 'y[2]', type = 'slice',
control = list(adaptive = TRUE, sliceMaxSteps = 1))

mcmcConf$addSampler(target = 'x[1:10]', type = 'ess') ## x[1:10] ~ dmnorm()

mcmcConf$addSampler(target = 'x[1:5]', type = 'RW_multinomial') ## x[1:5] ~ dmulti()

mcmcConf$addSampler(target = 'p[1:5]', type = 'RW_dirichlet') ## p[1:5] ~ ddirch()

y[1] is a posterior predictive node:
mcmcConf$addSampler(target = 'y[1]', type = 'posterior_predictive')

setAndCalculate Creates a nimbleFunction for setting the values of one or more model
nodes, calculating the associated deterministic dependents and log-
Prob values, and returning the total sum log-probability.

Description

This nimbleFunction generator must be specialized to any model object and one or more model
nodes. A specialized instance of this nimbleFunction will set the values of the target nodes in
the specified model, calculate the associated logProbs, calculate the values of any deterministic
dependents, calculate the logProbs of any stochastic dependents, and return the sum log-probability
associated with the target nodes and all stochastic dependent nodes.

Usage

setAndCalculate(model, targetNodes)

setAndCalculateDiff(model, targetNodes)

Arguments

model An uncompiled or compiled NIMBLE model. This argument is required.

targetNodes A character vector containing the names of one or more nodes or variables in
the model. This argument is required.

setAndCalculateOne 157

Details

Calling setAndCalculate(model,targetNodes) or setAndCalculate(model,targetNodes) will
return a nimbleFunction object whose run function takes a single, required argument:

targetValues: A vector of numeric values which will be put into the target nodes in the specified
model object. The length of this numeric vector much exactly match the number of target nodes.

The difference between setAndCalculate and setAndCalculateDiff is the return value of their
run functions. In the former, run returns the sum of the log probabilities of the targetNodes with
the provided targetValues, while the latter returns the difference between that sum with the new
targetValues and the previous values in the model.

Author(s)

Daniel Turek

Examples

code <- nimbleCode({ for(i in 1:3) { x[i] ~ dnorm(0,1); y[i] ~ dnorm(0, 1)}})
Rmodel <- nimbleModel(code)
my_setAndCalc <- setAndCalculate(Rmodel, c('x[1]', 'x[2]', 'y[1]', 'y[2]'))
lp <- my_setAndCalc$run(c(1.2, 1.4, 7.6, 8.9))

setAndCalculateOne Creates a nimbleFunction for setting the value of a scalar model node,
calculating the associated deterministic dependents and logProb val-
ues, and returning the total sum log-probability.

Description

This nimbleFunction generator must be specialized to any model object and any scalar model node.
A specialized instance of this nimbleFunction will set the value of the target node in the specified
model, calculate the associated logProb, calculate the values of any deterministic dependents, cal-
culate the logProbs of any stochastic dependents, and return the sum log-probability associated with
the target node and all stochastic dependent nodes.

Usage

setAndCalculateOne(model, targetNode)

Arguments

model An uncompiled or compiled NIMBLE model. This argument is required.

targetNode The character name of any scalar node in the model object. This argument is
required.

158 setSize

Details

Calling setAndCalculateOne(model, targetNode) will return a function with a single, required ar-
gument:

targetValue: The numeric value which will be put into the target node, in the specified model object.

Author(s)

Daniel Turek

Examples

code <- nimbleCode({ for(i in 1:3) x[i] ~ dnorm(0, 1) })
Rmodel <- nimbleModel(code)
my_setAndCalc <- setAndCalculateOne(Rmodel, 'x[1]')
lp <- my_setAndCalc$run(2)

setSize set the size of a numeric variable in NIMBLE

Description

set the size of a numeric variable in NIMBLE. This works in R and NIMBLE, but in R it usually
has no effect.

Usage

setSize(numObj, ..., copy = TRUE, fillZeros = TRUE)

Arguments

numObj This is the object to be resized

... sizes, provided as scalars, in order, or as a single vector

copy logical indicating whether values should be preserved (in column-major order)

fillZeros logical indicating whether newly allocated space should be initialized with zeros
(in compiled code)

Details

Note that assigning the result of numeric, integer, logical, matrix, or array is often as good
or better than using setSize. For example, ‘x <- matrix(nrow = 5, ncol = 5)‘ is equivalent to
‘setSize(x, 5, 5)‘ but the former allows more control over initialization.

This function is part of the NIMBLE language. Its purpose is to explicitly resize a multivariate
object (vector, matrix or array), currently up to 4 dimensions. Explicit resizing is not needed when
an entire object is assigned to. For example, in Y <-A %*% B, where A and B are matrices, Y will be
resized automatically. Explicit resizing is necessary when assignment will be by indexed elements

setupOutputs 159

or blocks, if the object is not already an appropriate size for the assignment. E.g. prior to Y[5:10]
<-A %*% B, one can use setSize to ensure that Y has a size (length) of at least 10.

This does work in uncompiled (R) and well as compiled execution, but in some cases it is only
necessary for compiled execution. During uncompiled execution, it may not catch bugs due to
resizing because some R objects will be dynamically resized during assignments anyway.

If preserving values in the resized object and/or initializing new values with 0 is not necessary, then
setting these arguments to FALSE will yield slightly more efficient compiled code.

Author(s)

NIMBLE development team

setupOutputs Explicitly declare objects created in setup code to be preserved and
compiled as member data

Description

Normally a nimbleFunction determines what objects from setup code need to be preserved for run
code or other member functions. setupOutputs allows explicit declaration for cases when an object
created in setup code is not used in member functions.

Arguments

... An arbitrary set of names

Details

Normally any object created in setup whose name appears in run or another member function is
included in the saved results of setup code. When the nimbleFunction is compiled, such objects
will become member data of the resulting C++ class. If it is desired to force an object to become
member data even if it does not appear in a member function, declare it using setupOutputs. E.g.,
setupOutputs(a,b) declares that a and b should be preserved.

The setupOutputs line will be removed from the setup code. It is really a marker during nimble-
Function creation of what should be preserved.

160 simNodes

simNodes Basic nimbleFunctions for calculate, simulate, and getLogProb with a
set of nodes

Description

simulate, calculate, or get existing log probabilities for the current values in a NIMBLE model

Usage

simNodes(model, nodes)

calcNodes(model, nodes)

getLogProbNodes(model, nodes)

Arguments

model A NIMBLE model

nodes A set of nodes. If none are provided, default is all model$getNodeNames()

Details

These are basic nimbleFunctions that take a model and set of nodes and return a function that will
call calculate, simulate, or getLogProb on those nodes. Each is equivalent to a direct call from
R, but in nimbleFunction form they can be be compiled and can be put into a nimbleFunction-
List. For example, myCalc <-calcNodes(model,nodes); ans <-myCalc() is equivalent to ans
<-calculate(model,nodes), but one can also do CmyCalc <-compileNimble(myCalc) to get a
faster version.

In nimbleFunctions, for only one set of nodes, it is equivalent or slightly better to simply use
calculate(model,nodes) in the run-time code. The compiler will process the model-nodes com-
bination in the same way as would occur by creating a specialized calcNodes in the setup code.
However, if there are multiple sets of nodes, one can do the following:

Setup code: myCalcs <-nimbleFunctionList(calcNodes); myCalcs[[1]] <-calcNodes(model,nodes[[1]]);
myCalcs[[2]] <-calcNodes[[2]]

Run code: for(i in seq_along(myCalcs)) {ans[i] <-myCalcs[[i]]()}

Author(s)

Perry de Valpine

simNodesMV 161

simNodesMV Basic nimbleFunctions for using a NIMBLE model with sets of stored
values

Description

simulate, calculate, or get the existing log probabilities for values in a modelValues object using a
NIMBLE model

Usage

simNodesMV(model, mv, nodes)

calcNodesMV(model, mv, nodes)

getLogProbNodesMV(model, mv, nodes)

Arguments

model A nimble model.

mv A modelValues object in which multiple sets of model variables and their cor-
responding logProb values are or will be saved. mv must include the nodes pro-
vided

nodes A set of nodes. If none are provided, default is all model$getNodeNames()

Details

simNodesMV simulates values in the given nodes and saves them in mv. calcNodesMV calculates
these nodes for each row of mv and returns a vector of the total log probabilities (densities) for each
row. getLogProbNodesMV is like calcNodesMV without actually doing the calculations.

Each of these will expand variables or index blocks and topologically sort them so that each node’s
parent nodes are processed before itself.

getLogProbMV should be used carefully. It is generally for situations where the logProb values are
guaranteed to have already been calculated, and all that is needed is to query them. The risk is that
a program may have changed the values in the nodes, in which case getLogProbMV would collect
logProb values that are out of date with the node values.

Value

from simNodesMV: NULL. from calcNodesMV and getLogProbMV: a vector of the sum of log prob-
abilities (densities) from any stochastic nodes in nodes.

162 singleVarAccessClass-class

Run time arguments

• m

(simNodesMV only). Number of simulations requested.

• saveLP

(calcNodesMVonly). Whether to save the logProb values in mv. Should be given as TRUE
unless there is a good reason not to.

Author(s)

Clifford Anderson-Bergman

Examples

code <- nimbleCode({
for(i in 1:5)
x[i] ~ dnorm(0,1)
})

myModel <- nimbleModel(code)
myMV <- modelValues(myModel)

Rsim <- simNodesMV(myModel, myMV)
Rcalc <- calcNodesMV(myModel, myMV)
Rglp <- getLogProbNodesMV(myModel, myMV)
Not run:

cModel <- compileNimble(myModel)
Csim <- compileNimble(Rsim, project = myModel)
Ccalc <- compileNimble(Rcalc, project = myModel)
Cglp <- compileNimble(Rglp, project = myModel)
Csim$run(10)
Ccalc$run(saveLP = TRUE)
Cglp$run() #Gives identical answers to Ccalc because logProbs were saved
Csim$run(10)
Ccalc$run(saveLP = FALSE)
Cglp$run() #Gives wrong answers because logProbs were not saved

End(Not run)

singleVarAccessClass-class

Class singleVarAccessClass

Description

Classes used internally in NIMBLE and not expected to be called directly by users.

StickBreakingFunction 163

StickBreakingFunction The Stick Breaking Function

Description

Computes probabilities based on stick breaking construction.

Usage

stick_breaking(z, log = 0)

Arguments

z vector argument.

log logical; if TRUE, weights are returned on the log scale.

Details

The stick breaking function produces a vector of probabilities that add up to one, based on a series
of individual probabilities in z, which define the breaking points relative to the remaining stick
length. The first element of z determines the first probability based on breaking a proportion z[1]
from a stick of length one. The second element of z determines the second probability based on
breaking a proportion z[2] from the remaining stick (of length 1-z[1]), and so forth. Each element
of z should be in (0, 1). The returned vector has length equal to the length of z plus 1. If z[k] is
equal to 1 for any k, then the returned vector has length smaller than z. If one of the components is
smaller than 0 or greater than 1, NaNs are returned.

Author(s)

Claudia Wehrhahn

References

Sethuraman, J. (1994). A constructive definition of Dirichlet priors. Statistica Sinica, 639-650.

Examples

z <- rbeta(5, 1, 1)
stick_breaking(z)

Not run:
cstick_breaking <- compileNimble(stick_breaking)
cstick_breaking(z)

End(Not run)

164 t

svdNimbleList svdNimbleList definition

Description

nimbleList definition for the type of nimbleList returned by nimSvd.

Usage

svdNimbleList

Format

An object of class list of length 1.

Author(s)

NIMBLE development team

See Also

nimSvd

t The t Distribution

Description

Density, distribution function, quantile function and random generation for the t distribution with
df degrees of freedom, allowing non-zero location, mu, and non-unit scale, sigma

Usage

dt_nonstandard(x, df = 1, mu = 0, sigma = 1, log = FALSE)

rt_nonstandard(n, df = 1, mu = 0, sigma = 1)

pt_nonstandard(q, df = 1, mu = 0, sigma = 1, lower.tail = TRUE,
log.p = FALSE)

qt_nonstandard(p, df = 1, mu = 0, sigma = 1, lower.tail = TRUE,
log.p = FALSE)

t 165

Arguments

x vector of values.

df vector of degrees of freedom values.

mu vector of location values.

sigma vector of scale values.

log logical; if TRUE, probability density is returned on the log scale.

n number of observations.

q vector of quantiles.

lower.tail logical; if TRUE (default) probabilities are P [X ≤ x]; otherwise, P [X > x].

log.p logical; if TRUE, probabilities p are given by user as log(p).

p vector of probabilities.

Details

See Gelman et al., Appendix A or the BUGS manual for mathematical details.

Value

dt_nonstandard gives the density, pt_nonstandard gives the distribution function, qt_nonstandard
gives the quantile function, and rt_nonstandard generates random deviates.

Author(s)

Christopher Paciorek

References

Gelman, A., Carlin, J.B., Stern, H.S., and Rubin, D.B. (2004) Bayesian Data Analysis, 2nd ed.
Chapman and Hall/CRC.

See Also

Distributions for other standard distributions

Examples

x <- rt_nonstandard(50, df = 1, mu = 5, sigma = 1)
dt_nonstandard(x, 3, 5, 1)

166 testBUGSmodel

testBUGSmodel Tests BUGS examples in the NIMBLE system

Description

testBUGSmodel builds a BUGS model in the NIMBLE system and simulates from the model, com-
paring the values of the nodes and their log probabilities in the uncompiled and compiled versions
of the model

Usage

testBUGSmodel(example = NULL, dir = NULL, model = NULL, data = NULL,
inits = NULL, useInits = TRUE, debug = FALSE,
verbose = nimbleOptions("verbose"))

Arguments

example (optional) example character vector indicating name of BUGS example to test;
can be null if model is provided

dir (optional) character vector indicating directory in which files are contained, by
default the classic-bugs directory if the installed package is used; to use the
current working directory, set this to ""

model (optional) one of (1) a character string giving the file name containing the BUGS
model code, (2) an R function whose body is the BUGS model code, or (3) the
output of nimbleCode. If a file name, the file can contain a ’var’ block and ’data’
block in the manner of the JAGS versions of the BUGS examples but should not
contain references to other input data files nor a const block. The ’.bug’ or ’.txt’
extension can be excluded.

data (optional) one of (1) character string giving the file name for an R file provid-
ing the input constants and data as R code [assigning individual objects or as a
named list] or (2) a named list providing the input constants and data. If nei-
ther is provided, the function will look for a file named example-data including
extensions .R, .r, or .txt.

inits (optional) (1) character string giving the file name for an R file providing the ini-
tial values for parameters as R code [assigning individual objects or as a named
list] or (2) a named list providing the values. If neither is provided, the function
will look for a file named example-init or example-inits including extensions
.R, .r, or .txt.

useInits boolean indicating whether to test model with initial values provided via inits

debug logical indicating whether to put the user in a browser for debugging when
testBUGSmodel calls readBUGSmodel. Intended for developer use.

verbose logical indicating whether to print additional logging information

valueInCompiledNimbleFunction 167

Details

Note that testing without initial values may cause warnings when parameters are sampled from
improper or fat-tailed distributions

Author(s)

Christopher Paciorek

Examples

Not run:
testBUGSmodel('pump')

End(Not run)

valueInCompiledNimbleFunction

get or set value of member data from a compiled nimbleFunction using
a multi-interface

Description

Most nimbleFunctions written for direct user interaction allow standard R-object-like access to
member data using $ or `[[`. However, sometimes compiled nimbleFunctions contained within
other compiled nimbleFunctions are interfaced with a light-weight system called a multi-interface.
valueInCompiledNimbleFunction provides a way to get or set values in such cases.

Usage

valueInCompiledNimbleFunction(cnf, name, value)

Arguments

cnf Compiled nimbleFunction object

name Name of the member data

value If provided, the value to assign to the member data. If omitted, the value of the
member data is returned.

Details

The member data of a nimbleFunction are the objects created in setup code that are used in run
code or other member functions.

Whether multi-interfaces are used for nested nimbleFunctions is controlled by the buildInterfacesForCompiledNestedNimbleFunctions
option in nimbleOptions.

To see an example of a multi-interface, see samplerFunctions in a compiled MCMC interface
object.

168 values

Author(s)

Perry de Valpine

values Access or set values for a set of nodes in a model

Description

Get or set values for a set of nodes in a model

Usage

values(model, nodes, accessorIndex)

values(model, nodes, accessorIndex) <- value

Arguments

model a NIMBLE model object, either compiled or uncompiled

nodes a vector of node names, allowing index blocks that will be expanded

accessorIndex For internal NIMBLE use only

value value to set the node(s) to

Details

Access or set values for a set of nodes in a NIMBLE model.

Calling values(model,nodes) returns a vector of the concatenation of values from the nodes re-
quested P <-values(model,nodes) is a newer syntax for getValues(P,model,values), which
still works and modifies P in the calling environment.

Calling values(model,nodes) <-P sets the value of the nodes in the model, in sequential order
from the vector P.

In both uses, when requested nodes are from matrices or arrays, the values will be handled following
column-wise order.

The older function getValues(P,model,nodes) is equivalent to P <-values(model,nodes), and
the older function setValues(P,model,nodes) is equivalent to values(model,nodes) <-P

These functions work in R and in NIMBLE run-time code that can be compiled.

Value

A vector of values concatenated from the provided nodes in the model

Author(s)

NIMBLE development team

Wishart 169

Wishart The Wishart Distribution

Description

Density and random generation for the Wishart distribution, using the Cholesky factor of either the
scale matrix or the rate matrix.

Usage

dwish_chol(x, cholesky, df, scale_param = TRUE, log = FALSE)

rwish_chol(n = 1, cholesky, df, scale_param = TRUE)

Arguments

x vector of values.

cholesky upper-triangular Cholesky factor of either the scale matrix (when scale_param
is TRUE) or rate matrix (otherwise).

df degrees of freedom.

scale_param logical; if TRUE the Cholesky factor is that of the scale matrix; otherwise, of
the rate matrix.

log logical; if TRUE, probability density is returned on the log scale.

n number of observations (only n=1 is handled currently).

Details

See Gelman et al., Appendix A or the BUGS manual for mathematical details. The rate matrix as
used here is defined as the inverse of the scale matrix, S−1, given in Gelman et al.

Value

dwish_chol gives the density and rwish_chol generates random deviates.

Author(s)

Christopher Paciorek

References

Gelman, A., Carlin, J.B., Stern, H.S., and Rubin, D.B. (2004) Bayesian Data Analysis, 2nd ed.
Chapman and Hall/CRC.

See Also

Distributions for other standard distributions

170 withNimbleOptions

Examples

df <- 40
ch <- chol(matrix(c(1, .7, .7, 1), 2))
x <- rwish_chol(1, ch, df = df)
dwish_chol(x, ch, df = df)

withNimbleOptions Temporarily set some NIMBLE options.

Description

Temporarily set some NIMBLE options.

Usage

withNimbleOptions(options, expr)

Arguments

options a list of options suitable for nimbleOptions.

expr an expression or statement to evaluate.

Value

expr as evaluated with given options.

Examples

Not run:
if (!(getNimbleOption('showCompilerOutput') == FALSE)) stop()
nf <- nimbleFunction(run = function(){ return(0); returnType(double()) })
cnf <- withNimbleOptions(list(showCompilerOutput = TRUE), {

if (!(getNimbleOption('showCompilerOutput') == TRUE)) stop()
compileNimble(nf)

})
if (!(getNimbleOption('showCompilerOutput') == FALSE)) stop()

End(Not run)

Index

∗Topic datasets
ADNimbleList, 6
eigenNimbleList, 53
ModifiedRmmParseKeywords2, 87
optimControlNimbleList, 123
optimResultNimbleList, 124
svdNimbleList, 164

-Class (nimble-internal), 93
[,CmodelValues-method

(modelValuesBaseClass-class),
82

[,CmodelValues-method,ANY,ANY
(modelValuesBaseClass-class),
82

[,CmodelValues-method,character,missing
(modelValuesBaseClass-class),
82

[,CmodelValues-method,character,missing,ANY-method
(modelValuesBaseClass-class),
82

[,distributionsClass-method
(nimble-internal), 93

[,modelValuesBaseClass-method
(modelValuesBaseClass-class),
82

[,numberedModelValuesAccessors-method
(nimble-internal), 93

[,numberedObjects-method
(nimble-internal), 93

[<-,CmodelValues-method
(modelValuesBaseClass-class),
82

[<-,modelValuesBaseClass-method
(modelValuesBaseClass-class),
82

[<-,numberedModelValuesAccessors-method
(nimble-internal), 93

[<-,numberedObjects-method
(nimble-internal), 93

[[,CNumericList-method
(nimble-internal), 93

[[,CmodelValues-method
(modelValuesBaseClass-class),
82

[[,RNumericList-method
(nimble-internal), 93

[[,conjugacyRelationshipsClass-method
(nimble-internal), 93

[[,distributionsClass-method
(nimble-internal), 93

[[,modelBaseClass-method
(modelBaseClass-class), 75

[[,nimPointerList-method
(nimble-internal), 93

[[<-,CNumericList-method
(nimble-internal), 93

[[<-,CmodelValues-method
(modelValuesBaseClass-class),
82

[[<-,RNumericList-method
(nimble-internal), 93

[[<-,modelBaseClass-method
(modelBaseClass-class), 75

[[<-,nimPointerList-method
(nimble-internal), 93

[[<-,nimbleFunctionList-method
(nimble-internal), 93

addMonitors (MCMCconf-class), 69
addMonitors2 (MCMCconf-class), 69
addRule (samplerAssignmentRules-class),

141
addSampler, 155
addSampler (MCMCconf-class), 69
ADNimbleList, 6
AF_slice (sampler_BASE), 143
all (nimble-R-functions), 94
any (nimble-R-functions), 94
any_na, 6

171

172 INDEX

any_nan (any_na), 6
array, 116
array (nimMatrix), 115
as.carAdjacency, 7
as.carCM, 8
as.name, 85
asCol (asRow), 9
asRow, 9
autoBlock, 9, 41

besselK (nimble-math), 94
BUGSdeclClass (BUGSdeclClass-class), 11
BUGSdeclClass-class, 11
buildAuxiliaryFilter, 11, 15, 16, 19, 20,

150, 151
buildBootstrapFilter, 12, 13, 13, 16, 19,

20, 150, 151
buildEnsembleKF, 13, 15, 15, 19, 20
buildIteratedFilter2, 13, 15, 16, 17, 20
buildLiuWestFilter, 13, 15, 16, 19, 19
buildMCEM, 21
buildMCMC, 24, 39–41, 60, 69, 104, 140, 155

c (nimble-R-functions), 94
calc_dcatConjugacyContributions

(nimble-internal), 93
calc_dmnormAltParams (nimble-internal),

93
calc_dmnormConjugacyContributions

(nimble-internal), 93
calc_dwishAltParams (nimble-internal),

93
calcNodes (simNodes), 160
calcNodesMV (simNodesMV), 161
calculate, 106, 128
calculate (nodeFunctions), 122
calculateDiff (nodeFunctions), 122
CAR-Normal, 26, 30
CAR-Proper, 28, 28
CAR_calcC (nimble-internal), 93
CAR_calcCmatrix (nimble-internal), 93
CAR_calcEVs2 (nimble-internal), 93
CAR_calcEVs3 (nimble-internal), 93
CAR_calcM (nimble-internal), 93
CAR_calcNumIslands, 33
carBounds, 30, 32, 33
carMaxBound, 31, 31, 33
carMinBound, 31, 32, 32
cat, 111, 119

cat (nimCat), 110
Categorical, 33
cc_getNodesInExpr (nimble-internal), 93
checkConjugacy (modelBaseClass-class),

75
checkInterrupt, 34
ChineseRestaurantProcess, 35
cloglog (nimble-math), 94
CmodelBaseClass

(CmodelBaseClass-class), 36
CmodelBaseClass-class, 36
CnimbleFunctionBase

(CnimbleFunctionBase-class), 36
CnimbleFunctionBase-class, 36
codeBlockClass (codeBlockClass-class),

36
codeBlockClass-class, 36
compareMCMCs, 37
compileNimble, 37
configureMCMC, 26, 39, 40, 42, 60, 69, 74,

104, 140, 141, 143, 155
configureRJ, 41
Constraint, 44
copy (nimCopy), 111
crossLevel (sampler_BASE), 143
CRP (sampler_BASE), 143
CRP_concentration (sampler_BASE), 143
cube (nimble-math), 94

dcar_normal (CAR-Normal), 26
dcar_proper (CAR-Proper), 28
dcat (Categorical), 33
dconstraint (Constraint), 44
dCRP (ChineseRestaurantProcess), 35
ddexp (Double-Exponential), 52
ddirch (Dirichlet), 49
decide, 46
decideAndJump, 46
declare, 47
deparse, 85
deregisterDistributions, 48
dexp_nimble (Exponential), 54
dflat (flat), 55
dhalfflat (flat), 55
diag (nimble-R-functions), 94
dim (nimDim), 113
dinterval (Interval), 63
dinvgamma (Inverse-Gamma), 64
dinvwish_chol (Inverse-Wishart), 66

INDEX 173

Dirichlet, 49
dirichlet (Dirichlet), 49
distributionInfo, 50
Distributions, 28, 30, 34, 45, 49, 53, 55, 56,

64–66, 88–90, 165, 169
dmnorm_chol (MultivariateNormal), 90
dmulti (Multinomial), 87
dmvt_chol (Multivariate-t), 88
Double-Exponential, 52
DPmeasure (sampler_BASE), 143
dsqrtinvgamma (nimble-internal), 93
dt_nonstandard (t), 164
dwish_chol (Wishart), 169

eigen (nimEigen), 114
eigenNimbleList, 53
expandNodeNames (modelBaseClass-class),

75
expit (nimble-math), 94
Exponential, 54

flat, 55

gamma, 65
getBound, 56, 68
getBUGSexampleDir, 57
getCode (modelBaseClass-class), 75
getDefinition, 57
getDependencies, 106
getDependencies (modelBaseClass-class),

75
getDependenciesList

(modelBaseClass-class), 75
getDimension (modelBaseClass-class), 75
getDistribution (modelBaseClass-class),

75
getDistributionInfo (distributionInfo),

50
getDownstream (modelBaseClass-class), 75
getLoadingNamespace, 58
getLogProb (nodeFunctions), 122
getLogProbNodes (simNodes), 160
getLogProbNodesMV (simNodesMV), 161
getMonitors (MCMCconf-class), 69
getMonitors2 (MCMCconf-class), 69
getNimbleOption, 58
getNimbleProject (nimble-internal), 93
getNodeFunctionIndexedInfo

(nimble-internal), 93

getNodeNames (modelBaseClass-class), 75
getParam, 59, 69
getParamNames (distributionInfo), 50
getSamplerExecutionOrder

(MCMCconf-class), 69
getSamplers (MCMCconf-class), 69
getSamplesDPmeasure, 59
getsize, 61
getType (distributionInfo), 50
getVarNames (modelBaseClass-class), 75

halfflat (flat), 55

icloglog (nimble-math), 94
identityMatrix, 61
ilogit (nimble-math), 94
initializeInfo (modelBaseClass-class),

75
initializeModel, 62, 81
inprod (nimble-math), 94
integer, 117
integer (nimNumeric), 116
Interval, 63
inverse (nimble-math), 94
Inverse-Gamma, 64
Inverse-Wishart, 66
inverse-wishart (Inverse-Wishart), 66
iprobit (nimble-math), 94
is.Cmodel (nimble-internal), 93
is.Cnf (nimble-internal), 93
is.model (nimble-internal), 93
is.na (nimble-R-functions), 94
is.nan (nimble-R-functions), 94
is.nf, 67
is.nl, 67
is.Rmodel (nimble-internal), 93
isBinary (modelBaseClass-class), 75
isData (modelBaseClass-class), 75
isDeterm (modelBaseClass-class), 75
isDiscrete (modelBaseClass-class), 75
isEndNode (modelBaseClass-class), 75
isMultivariate (modelBaseClass-class),

75
isStoch (modelBaseClass-class), 75
isTruncated (modelBaseClass-class), 75
isUnivariate (modelBaseClass-class), 75
isUserDefined (distributionInfo), 50

length (nimble-R-functions), 94

174 INDEX

logdet (nimble-math), 94
logfact (nimble-math), 94
loggam (nimble-math), 94
logical, 117
logical (nimNumeric), 116
logit (nimble-math), 94

makeBoundInfo, 68
makeParamInfo, 68
matrix, 116
matrix (nimMatrix), 115
MCMCconf, 41
MCMCconf (MCMCconf-class), 69
MCMCconf-class, 69
MCMCsuite, 74
model_macro_builder, 84
modelBaseClass, 81, 105, 106
modelBaseClass (modelBaseClass-class),

75
modelBaseClass-class, 75
modelDefClass (modelDefClass-class), 81
modelDefClass-class, 81
modelValues, 81
modelValuesBaseClass

(modelValuesBaseClass-class),
82

modelValuesBaseClass-class, 82
modelValuesConf, 83
ModifiedRmmParseKeywords2, 87
Multinomial, 87
multinomial (Multinomial), 87
Multivariate-t, 88
multivariate-t (Multivariate-t), 88
MultivariateNormal, 90
mvt (Multivariate-t), 88

newModel (modelBaseClass-class), 75
nfMethod, 91, 92
nfVar, 92
nfVar<- (nfVar), 92
nimArray, 117
nimArray (nimMatrix), 115
nimble, 93
nimble-internal, 93
nimble-math, 94
nimble-package (nimble), 93
nimble-R-functions, 94
nimbleCode, 95, 105, 127
nimbleExternalCall, 96, 109

nimbleFunction, 67, 98, 101
nimbleFunctionBase

(nimbleFunctionBase-class), 99
nimbleFunctionBase-class, 99
nimbleFunctionList

(nimbleFunctionList-class), 100
nimbleFunctionList-class, 100
nimbleFunctionVirtual, 99, 100
nimbleInternalFunctions

(nimble-internal), 93
nimbleList, 6, 67, 101, 109, 110, 114, 121,

123, 124
nimbleMCMC, 26, 41, 102, 140
nimbleModel, 10, 39, 68, 75, 95, 105, 105,

106, 128
nimbleOptions, 106, 107, 128, 167
nimbleRcall, 97, 108
nimbleType, 101
nimbleType (nimbleType-class), 109
nimbleType-class, 109
nimbleUserNamespace (nimble-internal),

93
nimC (nimble-R-functions), 94
nimCat, 110
nimCopy, 111
nimDerivs, 6, 112
nimDim, 113
nimEigen, 53, 114, 121
nimEquals (nimble-math), 94
nimInteger, 116
nimInteger (nimNumeric), 116
nimLogical, 116
nimLogical (nimNumeric), 116
nimMatrix, 115, 117
nimNumeric, 116, 116
nimOptim, 117, 119, 123–125
nimOptimDefaultControl, 119
nimPrint, 119
nimRep (nimble-R-functions), 94
nimRound (nimble-math), 94
nimSeq (nimble-R-functions), 94
nimStep (nimble-math), 94
nimStop, 120
nimSvd, 115, 120, 164
nimSwitch (nimble-math), 94
nodeFunctions, 122
numeric, 117
numeric (nimNumeric), 116

INDEX 175

optim, 117–119, 123–125
optimControlNimbleList, 119, 123
optimDefaultControl, 124
optimResultNimbleList, 118, 124

parse, 85
pdexp (Double-Exponential), 52
pexp_nimble (Exponential), 54
phi (nimble-math), 94
pinvgamma (Inverse-Gamma), 64
posterior_predictive (sampler_BASE), 143
pow (nimble-math), 94
pqDefined (distributionInfo), 50
print, 111
print (nimPrint), 119
printErrors, 125
printMonitors (MCMCconf-class), 69
printRules

(samplerAssignmentRules-class),
141

printSamplers (MCMCconf-class), 69
probit (nimble-math), 94
pt_nonstandard (t), 164

qdexp (Double-Exponential), 52
qexp_nimble (Exponential), 54
qinvgamma (Inverse-Gamma), 64
qt_nonstandard (t), 164
quote, 85, 96, 105

rankSample, 126
rcar_normal (CAR-Normal), 26
rcar_proper (CAR-Proper), 28
rcat (Categorical), 33
rconstraint (Constraint), 44
rCRP (ChineseRestaurantProcess), 35
rdexp (Double-Exponential), 52
rdirch (Dirichlet), 49
readBUGSmodel, 57, 95, 106, 127, 128
registerDistributions, 129
removeSamplers (MCMCconf-class), 69
reorder (samplerAssignmentRules-class),

141
rep (nimble-R-functions), 94
resetData (modelBaseClass-class), 75
resetMonitors (MCMCconf-class), 69
resize, 132
rexp_nimble (Exponential), 54
rflat (flat), 55

rhalfflat (flat), 55
rinterval (Interval), 63
rinvgamma (Inverse-Gamma), 64
rinvwish_chol (Inverse-Wishart), 66
RJ_fixed_prior (sampler_BASE), 143
RJ_indicator (sampler_BASE), 143
RJ_toggled (sampler_BASE), 143
Rmatrix2mvOneVar, 133
rmnorm_chol (MultivariateNormal), 90
RmodelBaseClass

(RmodelBaseClass-class), 133
RmodelBaseClass-class, 133
rmulti (Multinomial), 87
rmvt_chol (Multivariate-t), 88
rsqrtinvgamma (nimble-internal), 93
rt_nonstandard (t), 164
run.time, 134
runCrossValidate, 134
runMCMC, 26, 41, 104, 138, 155
RW (sampler_BASE), 143
RW_block (sampler_BASE), 143
RW_dirichlet (sampler_BASE), 143
RW_llFunction (sampler_BASE), 143
RW_llFunction_block (sampler_BASE), 143
RW_multinomial (sampler_BASE), 143
RW_PF (sampler_BASE), 143
RW_PF_block (sampler_BASE), 143
RW_wishart (sampler_BASE), 143
rwish_chol (Wishart), 169

sampler (sampler_BASE), 143
sampler_AF_slice (sampler_BASE), 143
sampler_BASE, 143
sampler_binary (sampler_BASE), 143
sampler_CAR_normal (sampler_BASE), 143
sampler_CAR_proper (sampler_BASE), 143
sampler_categorical (sampler_BASE), 143
sampler_crossLevel (sampler_BASE), 143
sampler_CRP (sampler_BASE), 143
sampler_CRP_concentration

(sampler_BASE), 143
sampler_CRP_old (sampler_BASE), 143
sampler_ess (sampler_BASE), 143
sampler_posterior_predictive, 40
sampler_posterior_predictive

(sampler_BASE), 143
sampler_RJ_fixed_prior (sampler_BASE),

143
sampler_RJ_indicator (sampler_BASE), 143

176 INDEX

sampler_RJ_toggled (sampler_BASE), 143
sampler_RW, 39, 40
sampler_RW (sampler_BASE), 143
sampler_RW_block (sampler_BASE), 143
sampler_RW_dirichlet (sampler_BASE), 143
sampler_RW_llFunction (sampler_BASE),

143
sampler_RW_llFunction_block

(sampler_BASE), 143
sampler_RW_multinomial (sampler_BASE),

143
sampler_RW_PF (sampler_BASE), 143
sampler_RW_PF_block (sampler_BASE), 143
sampler_RW_wishart (sampler_BASE), 143
sampler_slice, 40
sampler_slice (sampler_BASE), 143
samplerAssignmentRules, 41
samplerAssignmentRules

(samplerAssignmentRules-class),
141

samplerAssignmentRules-class, 141
samplers, 42
samplers (sampler_BASE), 143
samplesSummary (nimble-internal), 93
seq (nimble-R-functions), 94
seq_along (nimble-R-functions), 94
setAndCalculate, 156
setAndCalculateDiff (setAndCalculate),

156
setAndCalculateOne, 157
setData (modelBaseClass-class), 75
setInits (modelBaseClass-class), 75
setRefClass, 106
setSamplerExecutionOrder

(MCMCconf-class), 69
setSamplers (MCMCconf-class), 69
setSize, 158
setThin (MCMCconf-class), 69
setThin2 (MCMCconf-class), 69
setupOutputs, 159
simNodes, 160
simNodesMV, 161
simulate, 122
simulate (nodeFunctions), 122
singleModelValuesAccess

(nimble-internal), 93
singleVarAccessClass

(singleVarAccessClass-class),

162
singleVarAccessClass-class, 162
slice (sampler_BASE), 143
stick_breaking (StickBreakingFunction),

163
stickbreaking (StickBreakingFunction),

163
StickBreakingFunction, 163
stop (nimStop), 120
substitute, 85
svd (nimSvd), 120
svdNimbleList, 164

t, 164
testBUGSmodel, 166
topologicallySortNodes

(modelBaseClass-class), 75

valueInCompiledNimbleFunction, 167
values, 168
values<- (values), 168

which (nimble-R-functions), 94
Wishart, 169
wishart (Wishart), 169
withNimbleOptions, 170

	ADNimbleList
	any_na
	as.carAdjacency
	as.carCM
	asRow
	autoBlock
	BUGSdeclClass-class
	buildAuxiliaryFilter
	buildBootstrapFilter
	buildEnsembleKF
	buildIteratedFilter2
	buildLiuWestFilter
	buildMCEM
	buildMCMC
	CAR-Normal
	CAR-Proper
	carBounds
	carMaxBound
	carMinBound
	CAR_calcNumIslands
	Categorical
	checkInterrupt
	ChineseRestaurantProcess
	CmodelBaseClass-class
	CnimbleFunctionBase-class
	codeBlockClass-class
	compareMCMCs
	compileNimble
	configureMCMC
	configureRJ
	Constraint
	decide
	decideAndJump
	declare
	deregisterDistributions
	Dirichlet
	distributionInfo
	Double-Exponential
	eigenNimbleList
	Exponential
	flat
	getBound
	getBUGSexampleDir
	getDefinition
	getLoadingNamespace
	getNimbleOption
	getParam
	getSamplesDPmeasure
	getsize
	identityMatrix
	initializeModel
	Interval
	Inverse-Gamma
	Inverse-Wishart
	is.nf
	is.nl
	makeBoundInfo
	makeParamInfo
	MCMCconf-class
	MCMCsuite
	modelBaseClass-class
	modelDefClass-class
	modelValues
	modelValuesBaseClass-class
	modelValuesConf
	model_macro_builder
	ModifiedRmmParseKeywords2
	Multinomial
	Multivariate-t
	MultivariateNormal
	nfMethod
	nfVar
	nimble
	nimble-internal
	nimble-math
	nimble-R-functions
	nimbleCode
	nimbleExternalCall
	nimbleFunction
	nimbleFunctionBase-class
	nimbleFunctionList-class
	nimbleFunctionVirtual
	nimbleList
	nimbleMCMC
	nimbleModel
	nimbleOptions
	nimbleRcall
	nimbleType-class
	nimCat
	nimCopy
	nimDerivs
	nimDim
	nimEigen
	nimMatrix
	nimNumeric
	nimOptim
	nimOptimDefaultControl
	nimPrint
	nimStop
	nimSvd
	nodeFunctions
	optimControlNimbleList
	optimDefaultControl
	optimResultNimbleList
	printErrors
	rankSample
	readBUGSmodel
	registerDistributions
	resize
	Rmatrix2mvOneVar
	RmodelBaseClass-class
	run.time
	runCrossValidate
	runMCMC
	samplerAssignmentRules-class
	sampler_BASE
	setAndCalculate
	setAndCalculateOne
	setSize
	setupOutputs
	simNodes
	simNodesMV
	singleVarAccessClass-class
	StickBreakingFunction
	svdNimbleList
	t
	testBUGSmodel
	valueInCompiledNimbleFunction
	values
	Wishart
	withNimbleOptions
	Index

