Package 'networkTomography'

August 29, 2016

Type Package

Title Tools for network tomography

Version 0.3

Author Alexander W Blocker, Paul Koullick, Edoardo Airoldi

Maintainer Alexander W Blocker <ablocker@gmail.com>

Description networkTomography implements the methods developed and evaluated in Blocker and Airoldi (2011) and Airoldi and Blocker (2012). These include the authors' own dynamic multilevel model with calibration based upon a Gaussian state-space model in addition to implementations of the methods of Tebaldi & West (1998; Poisson-Gamma model with MCMC sampling), Zhang et al. (2002; tomogravity), Cao et al. (2000; Gaussian model with mean-variance relation), and Vardi (1996; method of moments). Data from the 1router network of Cao et al. (2000), the Abilene network of Fang et al. (2007), and the CMU network of Blocker and Airoldi (2011) are included for testing and reproducibility.

License LGPL-2

LazyLoad yes

URL <https://github.com/awblocker/networkTomography>

Depends R $(>= 2.10.0)$,

Imports coda ($>= 0.11-3$), igraph ($>= 0.5$), KFAS ($>= 1.0$), limSolve ($>=$ 1.4), plyr, Rglpk $(>= 0.3)$,

NeedsCompilation yes

Repository CRAN

Date/Publication 2014-01-10 07:28:23

R topics documented:

Index

abilene

Abilene data from Fang et al. (2007)

Description

Data from the 12 node Abilene network from Fang et al. (2007). Both the OD flows and the topology correspond to the actual network. This is the X1 dataset from the given paper.

Usage

abilene

Objects

The list abilene, which contains several objects:

- A, the routing matrix for this network (truncated for full row rank)
- X, a matrix of origin-destination flows formatted for analysis
- Y, a matrix of link loads formatted for analysis
- A.full, the routing matrix for this network without truncatation for full row rank)
- Y.full, a matrix of link loads corresponding to codeA.full

In this data, we have A %*% t(X) == t(Y) and A.full %*% t(X) == t(Y.full)

Variables

The list abilene contains the following:

- The routing matrix A. The columns of this matrix correspond to individual OD flows (the columns of X), and its rows correspond to individual link loads (the columns of Y).
- The OD matrix X. Columns correspond to individual OD flows, and the rows correspond to observations.
- The link load matrix Y. Columns of the Y matrix correspond to individual link loads, and the rows correspond to observations.
- The routing matrix A.full. This is the complete routing matrix before reduction for full row-rank.
- The link load matrix Y.full, corresponding to A.full.

References

J. Fang, Y. Vardi, and C.-H. Zhang. An iterative tomogravity algorithm for the estimation of network traffic. In R. Liu, W. Strawderman, and C.-H. Zhang, editors, Complex Datasets and Inverse Problems: Tomography, Networks and Beyond, volume 54 of Lecture Notes-Monograph Series. IMS, 2007.

agg *Function to aggregate results from matrix to matrix*

Description

Defaults to mean, SD, limits, and given quantiles. Used to limit memory consumption from MCMC runs.

Usage

agg(mat, q = c(0.05, 0.16, 0.5, 0.84, 0.95))

Arguments

Value

matrix with each row corresponding to a summary measure and each column corresponding to a column of mat

Examples

mat <- matrix(rnorm(5e3), ncol=5) agg(mat)

bayesianDynamicFilter *Function for inference with multilevel state-space model*

Description

Particle filtering with sample-resample-move algorithm for multilevel state-space model of Blocker & Airoldi (2011). This has log-normal autoregressive dynamics on OD intensities, log-normal emission distributions, and truncated normal observation densities. This can return full (all particles) output, but it is typically better to aggregate results as you go to reduce memory consumption. It can also run forward or backward filtering for smoothing. These results are combined via a separate function for smoothing; however, this procedure typically performs poorly due to differences between the distributions of particles from forward and reverse filtering.

Usage

```
bayesianDynamicFilter(Y, A, prior, lambda0, sigma0, phi0, rho = 0.1,
  tau = 2, m = 1000, verbose = FALSE, Xdraws = 5 * m, Xburnin = m,
 Movedraws = 10, nThresh = 10, aggregate = FALSE, backward = FALSE,
  tStart = 1)
```
Arguments

lambda at each time

list containing:

- xList
- lambdaList
- phiList
- \bullet y
- rho
- prior
- \cdot n
- l
- $\bullet\,$ k
- A
- \bullet A_qr
- A1
- A1_inv
- \bullet A2

6 bell.labs and the contract of the contract o

- nEff
- tStart
- backward
- aggregate

References

A.W. Blocker and E.M. Airoldi. Deconvolution of mixing time series on a graph. Proceedings of the Twenty-Seventh Conference Annual Conference on Uncertainty in Artificial Intelligence (UAI-11) 51-60, 2011.

See Also

Other bayesianDynamicModel: [buildPrior](#page-6-1); [move_step](#page-24-1)

bell.labs *Bell Labs 1router data from Cao et al. (2000)*

Description

Data from 4-node network with star topology collected from Bell Labs; used in Cao et al. (2000).

Usage

bell.labs

Objects

The list bell.labs, which contains several objects:

- A, the routing matrix for this network (truncated for full row rank)
- df, a data.frame with all data
- X, a matrix of origin-destination flows formatted for analysis
- Y, a matrix of link loads formatted for analysis
- tvec, a vector of times

In this data, we have A $% f(X) == t(Y)$.

buildPrior 7 and 2012 19:00 the contract of th

Variables

The list bell.labs contains the following:

- The routing matrix A. The columns of this matrix correspond to individual OD flows (the columns of X), and its rows correspond to individual link loads (the columns of Y).
- The data.frame df, containing
	- value, level of traffic recorded
	- nme, name of flow or load
	- method, whether flow was directly observered or inferred (all observed)
	- time, time of observation
	- od, flag for origin-destination vs. link loads
	- orig, origin of flow or load
	- dest, destination of flow or load
	- node, node involved in flow or load
- The OD matrix X. Columns correspond to individual OD flows, and the rows correspond to observations.
- The link load matrix Y. Columns of the Y matrix correspond to individual link loads, and the rows correspond to observations.
- The vector tvec, containing the time in decimal hours since midnight for each observation.

References

J. Cao, D. Davis, S. Van Der Viel, and B. Yu. Time-varying network tomography: router link data. Journal of the American Statistical Association, 95:1063-75, 2000.

buildPrior *Construct prior from calibration model estimates*

Description

Builds prior from appropriately structured output of the calibration model from Blocker & Airoldi (2011). Handles all formatting so result can be fed directly to [bayesianDynamicFilter](#page-3-1).

Usage

```
buildPrior(xHat, varHat, phiHat, Y, A, rho = 0.9, phiPriorDf = ncol(A)/2,
 backward = FALSE, lambdaMin = 1, ipfp.maxit = 1e+06, ipfp.tol = 1e-06)
```
Arguments

Value

list containing priors for lambda and phi, consisting of:

- mu, a matrix (n x k) containing the prior means for the log-change in each lambda at each time
- sigma, a matrix (n x k) containing the prior standard deviations for the log-change in each lambda at each time
- a list phi, containing the numeric prior df and a numeric vector scale of length n

References

A.W. Blocker and E.M. Airoldi. Deconvolution of mixing time series on a graph. Proceedings of the Twenty-Seventh Conference Annual Conference on Uncertainty in Artificial Intelligence (UAI-11) 51-60, 2011.

See Also

Other bayesianDynamicModel: [bayesianDynamicFilter](#page-3-1); [move_step](#page-24-1)

buildRoutingMat *Build routing matrices for linked star topologies; that is, a set of startopology networks with links between a subset of routers*

Description

Build routing matrices for linked star topologies; that is, a set of star-topology networks with links between a subset of routers

Usage

buildRoutingMat(nVec, Cmat)

Arguments

Value

routing matrix of dimension at least $2*sum(nVec)$ x sum(nVec 2)

See Also

[buildStarMat](#page-9-1), which this function depends upon

Examples

```
nVec \leftarrow c(3, 3, 3)Cmat \leftarrow diag(3)
Cmat[1,2] <- Cmat[2,3] <- 1
buildRoutingMat(nVec, Cmat)
```
buildRoutingMatrix *Build routing matrix from table of link relationships*

Description

Constructs routing matrix from link relationships. Determines routes using (weighted) shortest-path calculation (mirroring OSPF). Currently handles tied paths arbitrarily; will incorporate fractions for tie resolution in next version. Can optionally include aggregate source and destination flows for each node; this can make a major difference for some topologies. Tomogravity methods typically make use of such information, which most routers collect. Note that resulting routing matrix need not be of full row rank.

Usage

```
buildRoutingMatrix(nodes, src, dest, weights = NULL, agg = FALSE,
 sep = "'', aggChar = "*", verbose = 0)
```
Arguments

Value

List consisting of routing matrix A (dense) of dimensions m x n and iGraph object for network topo

Description

Build routing matrix for star network topology

Usage

```
buildStarMat(n)
```
Arguments

n integer number of nodes in the network

Value

matrix of dimension 2n x n^2 that transforms OD flows to link loads

Examples

buildStarMat(3)

Compute total traffic from a particular time.

Usage

calcN(yt, A1)

Arguments

Examples

```
data(bell.labs)
A.decomp <- decomposeA(bell.labs$A)
total.traffic <- calcN(yt=bell.labs$Y[1,], A1=A.decomp$A1)
total.traffic == sum(bell.labs$X[1,])
```


Description

Maximum likelihood estimation of the parameters of the calibration model from Blocker & Airoldi (2011) via direct numerical maximization of the marginal log-likelihood. This relies upon efficient Kalman smoothing to evaluate the marginal likelihood, which is provided here by the KFAS package.

Usage

```
calibration_ssm(tme, y, A, Ft, Rt, lambda0, phihat0, tau = 2, w = 11,
  initScale = 1/(1 - diag(Ft)^2), nugget = sqrt(.Machine$double.eps),
  verbose = FALSE, logTrans = TRUE, method = "L-BFGS-B",
  optimArgs = list())
```
Arguments

Value

list containing lambdahat, a numeric vector (length k) containing the MLE for lambda; phihat, the MLE for phi; xhat, the smoothed estimates of the OD flows for the window used as a k x w matrix; and varhat, a k x w matrix containing the diagonal of the estimated covariance for each OD flow in the window

References

A.W. Blocker and E.M. Airoldi. Deconvolution of mixing time series on a graph. Proceedings of the Twenty-Seventh Conference Annual Conference on Uncertainty in Artificial Intelligence (UAI-11) 51-60, 2011.

See Also

Other calibrationModel: [llCalibration](#page-21-1); [mle_filter](#page-23-1)

 ϵ mu ϵ 13

Examples

```
data(bell.labs)
lambda0 <- matrix(1, nrow(bell.labs$Y), ncol(bell.labs$A))
lambda0[100,] <- ipfp(y=bell.labs$Y[100,], A=bell.labs$A,
                   x0=rep(1, ncol(bell.labs$A)))
phihat0 <- rep(1, nrow(bell.labs$Y))
Ft \leq -0.5 * diag_matrix(rep(1, ncol(bell.labs$A)))
Rt <- 0.01 * diag_matrix(rep(1, nrow(bell.labssA)))# Not run
#fit.calibration <- calibration_ssm(tme=100, y=bell.labs$Y, A=bell.labs$A,
# Ft=Ft, Rt=Rt, lambda0=lambda0,
# phihat0=phihat0, w=23)
```
cmu *CMU data from Blocker & Airoldi (2011)*

Description

Data from the 12 node CMU network used in Blocker & Airoldi (2011). The OD flows are actual, observed traffic from a CMU network. The topology does not, however, correspond to the original network due to security considerations.

Usage

cmu

Objects

The list cmu, which contains several objects:

- A, the routing matrix for this network (truncated for full row rank)
- X, a matrix of origin-destination flows formatted for analysis
- Y, a matrix of link loads formatted for analysis
- A.full, the routing matrix for this network without truncatation for full row rank)
- Y.full, a matrix of link loads corresponding to codeA.full

In this data, we have A %*% t(X) == t(Y) and A.full %*% t(X) == t(Y.full)

Variables

The list cmu contains the following:

- The routing matrix A. The columns of this matrix correspond to individual OD flows (the columns of X), and its rows correspond to individual link loads (the columns of Y).
- The OD matrix X. Columns correspond to individual OD flows, and the rows correspond to observations.
- • The link load matrix Y. Columns of the Y matrix correspond to individual link loads, and the rows correspond to observations.
- The routing matrix A.full. This is the complete routing matrix before reduction for full row-rank.
- The link load matrix Y.full, corresponding to A.full.

References

A.W. Blocker and E.M. Airoldi. Deconvolution of mixing time series on a graph. Proceedings of the Twenty-Seventh Conference Annual Conference on Uncertainty in Artificial Intelligence (UAI-11) 51-60, 2011.

Description

Compute pivoted decomposition of routing matrix A into full-rank and remainder, as in Cao et al. 2000, via the QR decomposition.

Usage

decomposeA(A)

Arguments

A routing matrix of dimension m x k

Value

list containing two matrices: A1 (m x m), a full-rank subset of the columns of A, and A2 (m x k m), the remaining columns

Make vector of 1-dimensional diagonal indices for square matrix

Description

Compute vector of indices for efficient access to diagonal of a square matrix

Usage

diag_ind(n)

diag_mat 15

Arguments

n integer dimension of (square) matrix

Value

integer vector of length n with indices (unidimensional) of square matrix

See Also

[diag_mat](#page-14-1)

Examples

ind \leftarrow diag_ind(5) diag_mat(seq(5))[ind]

diag_mat *Make diagonal matrix from vector*

Description

Build matrix with supplied vector on diagonal; this is much faster than diag due to the use of matrix instead of array

Usage

diag_mat(x)

Arguments

x numeric vector for diagonal

Value

matrix of size length(x) x length(x) with x along diagonal

See Also

[diag_ind](#page-13-2)

Examples

diag_mat(seq(5))

dobj.dxt.tomogravity *Analytic gradient of objective function of Zhang et al. 2003*

Description

Requires bounded optimization to maintain positive OD flows, and only those flows that are not deterministically zero should be included in the estimation.

Usage

dobj.dxt.tomogravity(xt, yt, A, srcDstInd, lambda)

Arguments

Value

numeric vector of length k containing gradient of objective function with respect to xt

getActive *Check for deterministically-known OD flows at single time*

Description

Uses xranges from limSolve to find deterministically-known OD flows

Usage

```
getActive(y, A)
```


getSrcDstIndices 17

Value

logical vector of length k; TRUE for unknown OD flows, FALSE for known

Examples

```
data(bell.labs)
getActive(bell.labs$Y[1,], bell.labs$A)
```
getSrcDstIndices *Find indices of source and destination for each point-to-point flow*

Description

This works only for routing matrices that include all aggregate source and destination flows. It is often easier to build these indices manually via string processing or during the construction of the routing matrix.

Usage

```
getSrcDstIndices(A)
```
Arguments

A routing matrix of dimension m x k. This should be the reduced-rank version including all aggregate source and destination flows.

Value

list consisting of two component, src and dst, which are integer vectors of length k containing the index (in $y = A x$) of the source and destination flows that each point-to-point flow is part of.

Examples

```
data(cmu)
src.dst.ind <- getSrcDstIndices(cmu$A.full)
```


Computes gradient of Q-function with respect to log(c(lambda,phi)) for EM algorithm from Cao et al. (2000) for their locally IID model.

Usage

grad_iid(logtheta, c, M, rdiag, epsilon)

Arguments

Value

numeric vector of same length as logtheta containing calculated gradient

References

J. Cao, D. Davis, S. Van Der Viel, and B. Yu. Time-varying network tomography: router link data. Journal of the American Statistical Association, 95:1063-75, 2000.

See Also

Other CaoEtAl: [Q_iid](#page-27-1); [Q_smoothed](#page-28-1); [R_estep](#page-29-1); [grad_smoothed](#page-18-1); [locally_iid_EM](#page-22-1); [m_estep](#page-25-1); [phi_init](#page-27-2); [smoothed_EM](#page-30-1)

Computes gradient of Q-function with respect to log(c(lambda,phi)) for EM algorithm from Cao et al. (2000) for their smoothed model.

Usage

```
grad_smoothed(logtheta, c, M, rdiag, eta0, sigma0, V, eps.lambda, eps.phi)
```
Arguments

Value

numeric vector of same length as logtheta containing calculated gradient

References

J. Cao, D. Davis, S. Van Der Viel, and B. Yu. Time-varying network tomography: router link data. Journal of the American Statistical Association, 95:1063-75, 2000.

See Also

Other CaoEtAl: [Q_iid](#page-27-1); [Q_smoothed](#page-28-1); [R_estep](#page-29-1); [grad_iid](#page-17-1); [locally_iid_EM](#page-22-1); [m_estep](#page-25-1); [phi_init](#page-27-2); [smoothed_EM](#page-30-1)

Run tomogravity estimation on complete time series of aggregate flows

Usage

gravity(Y, srcDstInd)

Arguments

Value

Xhat, a n x k matrix containing a vector of estimated point-to-point flows (for each time point) per row

See Also

Other gravity: [gravity.fit](#page-19-1)

Examples

```
data(cmu)
srcDstInd <- getSrcDstIndices(cmu$A.full)
estimate <- gravity(Y=cmu$Y[1:3,], srcDstInd=srcDstInd)
```


Description

Gravity estimation for a single time point

Usage

gravity.fit(yt, srcDstInd)

ipfp 21

Arguments

Value

xhat, a numeric vector of length k providing gravity estimates of the point-to-point flows of interest

See Also

Other gravity: [gravity](#page-19-2)

Examples

```
data(cmu)
srcDstInd <- getSrcDstIndices(cmu$A.full)
estimate <- gravity.fit(yt=cmu$Y.full[1,], srcDstInd=srcDstInd)
```


Function to run basic IPFP (iterative proportional fitting procedure)

Description

Use IPFP starting from x0 to produce vector x s.t. $Ax = y$ within tolerance. Need to ensure that x0 $>= 0.$

Usage

```
ipfp(y, A, x0, tol = .Machine$double.eps, maxit = 1000, verbose = FALSE,full = FALSE)
```
Arguments

Value

if not full, vector of length ncol containing solution obtained by IPFP. If full, list containing solution (as x), number of iterations (as iter), and norm of Ax - y (as errNorm)

Examples

```
A <- buildStarMat(3)
x <- rgamma(ncol(A), 10, 1/100)
y \le - A \frac{8}{9} \times \frac{6}{9} xx0 \leq x \times \text{rgamma}(\text{length}(x), 10, 10)ans <- ipfp(y, A, x0, full=TRUE)
print(ans)
print(x)
```
llCalibration *Evaluate marginal log-likelihood for calibration SSM*

Description

Evaluates marginal log-likelihood for calibration SSM of Blocker & Airoldi (2011) using Kalman filtering. This is very fast and numerically stable, using the univariate Kalman filtering and smoothing functions of KFAS with Fortran implementations.

Usage

```
llCalibration(theta, Ft, yt, Zt, Rt, k = \text{ncol}(Ft), tau = 2,
  initScale = 1/(1 - diag(Ft)^2), nugget = sqrt(.Machine$double.eps))
```
Arguments

Value

numeric marginal log-likelihood obtained via Kalman smoothing

References

A.W. Blocker and E.M. Airoldi. Deconvolution of mixing time series on a graph. Proceedings of the Twenty-Seventh Conference Annual Conference on Uncertainty in Artificial Intelligence (UAI-11) 51-60, 2011.

locally_iid_EM 23

See Also

Other calibrationModel: [calibration_ssm](#page-10-1); [mle_filter](#page-23-1)

Description

Runs EM algorithm to compute MLE for the locally IID model of Cao et al. (2000). Uses numerical optimization of Q-function for each M-step with analytic computation of its gradient.

Usage

```
locally_iid_EM(Y, A, lambda0, phi0 = NULL, c = 2, maxiter = 1000,
  tol = 1e-06, epsilon = 0.01, method = "L-BFGS-B", checkActive = FALSE)
```
Arguments

Value

list with 3 elements: lambda, the estimated value of lambda; phi, the estimated value of phi; and iter, the number of iterations run

References

J. Cao, D. Davis, S. Van Der Viel, and B. Yu. Time-varying network tomography: router link data. Journal of the American Statistical Association, 95:1063-75, 2000.

See Also

Other CaoEtAl: [Q_iid](#page-27-1); [Q_smoothed](#page-28-1); [R_estep](#page-29-1); [grad_iid](#page-17-1); [grad_smoothed](#page-18-1); [m_estep](#page-25-1); [phi_init](#page-27-2); [smoothed_EM](#page-30-1)

Run Kalman filtering and smoothing at calculated MLE for parameters of calibration SSM. This is used to obtain point and covariance estimates for the actual OD flows X following estimation of other parameters.

Usage

```
mle_filter(mle, Ft, yt, Zt, Rt, k = \text{ncol}(Ft), tau = 2, initScale = 1/(1 -diag(Ft)^2), nugget = sqrt(.Machine$double.eps))
```
Arguments

Value

numeric marginal log-likelihood obtained via Kalman smoothing list containing result of Kalman smoothing; see [SSModel](#page-0-0) and [KFS](#page-0-0) for details

References

A.W. Blocker and E.M. Airoldi. Deconvolution of mixing time series on a graph. Proceedings of the Twenty-Seventh Conference Annual Conference on Uncertainty in Artificial Intelligence (UAI-11) 51-60, 2011.

See Also

Other calibrationModel: [calibration_ssm](#page-10-1); [llCalibration](#page-21-1)

move_step *Move step of sample-resample-move algorithm for multilevel statespace model*

Description

Function to execute single MCMC-based move step for [bayesianDynamicFilter](#page-3-1). This can use two types of stopping rules: number of iterations or number of accepted moves for the X particles. The former is used by default, but the latter adapts better to low acceptance rates (sometimes with substantial computational cost). Most updates in this algorithm are Metropolis-Hastings with customized proposals.

Usage

```
move_step(y, X, tme, lambda, phi, lambdatm1, phitm1, prior, A, A1_inv, A2, rho,
  tau, m = ncol(X), l = nrow(A1_inv), k = length(lambda), ndraws = 10,
 minAccess = 0, verbose = FALSE)
```


26 m_estep m_e

Value

list containing updated values of X, lambda, and phi

References

A.W. Blocker and E.M. Airoldi. Deconvolution of mixing time series on a graph. Proceedings of the Twenty-Seventh Conference Annual Conference on Uncertainty in Artificial Intelligence (UAI-11) 51-60, 2011.

See Also

Other bayesianDynamicModel: [bayesianDynamicFilter](#page-3-1); [buildPrior](#page-6-1)

Description

Computes conditional expectation of OD flows for E-step of EM algorithm from Cao et al. (2000) for their locally IID model.

Usage

m_estep(yt, lambda, phi, A, c, epsilon)

Arguments

Value

numeric vector of same size as lambda with conditional expectations of x

obj.tomogravity 27

References

J. Cao, D. Davis, S. Van Der Viel, and B. Yu. Time-varying network tomography: router link data. Journal of the American Statistical Association, 95:1063-75, 2000.

See Also

Other CaoEtAl: [Q_iid](#page-27-1); [Q_smoothed](#page-28-1); [R_estep](#page-29-1); [grad_iid](#page-17-1); [grad_smoothed](#page-18-1); [locally_iid_EM](#page-22-1); [phi_init](#page-27-2); [smoothed_EM](#page-30-1)

obj.tomogravity *Objective function of Zhang et al. 2003*

Description

Requires bounded optimization to maintain positive OD flows, and only those flows that are not deterministically zero should be included in the estimation.

Usage

obj.tomogravity(xt, yt, A, srcDstInd, lambda)

Arguments

Value

numeric value of objective function to minimize in tomogravity estimation

Uses a crude estimator to get a starting point for phi in the model of Cao et al. (2000).

Usage

phi_init(Y, A, lambda0, c)

Arguments

Value

numeric starting value for phi

References

J. Cao, D. Davis, S. Van Der Viel, and B. Yu. Time-varying network tomography: router link data. Journal of the American Statistical Association, 95:1063-75, 2000.

See Also

Other CaoEtAl: [Q_iid](#page-27-1); [Q_smoothed](#page-28-1); [R_estep](#page-29-1); [grad_iid](#page-17-1); [grad_smoothed](#page-18-1); [locally_iid_EM](#page-22-1); [m_estep](#page-25-1); [smoothed_EM](#page-30-1)

Q_iid *Q function for locally IID EM algorithm of Cao et al. (2000)*

Description

Computes the Q function (expected log-likelihood) for the EM algorithm of Cao et al. (2000) for their locally IID model.

Usage

Q_iid(logtheta, c, M, rdiag, epsilon)

Q_smoothed 29

Arguments

Value

numeric value of Q function; not vectorized in any way

References

J. Cao, D. Davis, S. Van Der Viel, and B. Yu. Time-varying network tomography: router link data. Journal of the American Statistical Association, 95:1063-75, 2000.

See Also

Other CaoEtAl: [Q_smoothed](#page-28-1); [R_estep](#page-29-1); [grad_iid](#page-17-1); [grad_smoothed](#page-18-1); [locally_iid_EM](#page-22-1); [m_estep](#page-25-1); [phi_init](#page-27-2); [smoothed_EM](#page-30-1)

Q_smoothed *Q function for smoothed EM algorithm of Cao et al. (2000)*

Description

Computes the Q function (expected log-likelihood) for the EM algorithm of Cao et al. (2000) for their smoothed model.

Usage

Q_smoothed(logtheta, c, M, rdiag, eta0, sigma0, V, eps.lambda, eps.phi)

30 R_estep

Value

numeric value of Q function; not vectorized in any way

References

J. Cao, D. Davis, S. Van Der Viel, and B. Yu. Time-varying network tomography: router link data. Journal of the American Statistical Association, 95:1063-75, 2000.

See Also

Other CaoEtAl: [Q_iid](#page-27-1); [R_estep](#page-29-1); [grad_iid](#page-17-1); [grad_smoothed](#page-18-1); [locally_iid_EM](#page-22-1); [m_estep](#page-25-1); [phi_init](#page-27-2); [smoothed_EM](#page-30-1)

Description

Computes conditional covariance of OD flows for E-step of EM algorithm from Cao et al. (2000) for their locally IID model.

Usage

R_estep(lambda, phi, A, c, epsilon)

Arguments

Value

conditional covariance matrix (k x k) of OD flows given parameters

smoothed_EM 31

References

J. Cao, D. Davis, S. Van Der Viel, and B. Yu. Time-varying network tomography: router link data. Journal of the American Statistical Association, 95:1063-75, 2000.

See Also

Other CaoEtAl: [Q_iid](#page-27-1); [Q_smoothed](#page-28-1); [grad_iid](#page-17-1); [grad_smoothed](#page-18-1); [locally_iid_EM](#page-22-1); [m_estep](#page-25-1); [phi_init](#page-27-2); [smoothed_EM](#page-30-1)

Description

Runs EM algorithm to compute MLE for the smoothed model of Cao et al. (2000). Uses numerical optimization of Q-function for each M-step with analytic computation of its gradient. This performs estimation for a single time point using output from the previous one.

Usage

```
smoothed_EM(Y, A, eta0, sigma0, V, c = 2, maxiter = 1000, tol = 1e-06,
 eps.lambda = 0, eps.phi = 0, method = "L-BFGS-B")
```


list with 5 elements: lambda, the estimated value of lambda; phi, the estimated value of phi; iter, the number of iterations run; etat, log(c(lambda, phi)); and sigmat, the inverse of the Q functions Hessian at its mode

References

J. Cao, D. Davis, S. Van Der Viel, and B. Yu. Time-varying network tomography: router link data. Journal of the American Statistical Association, 95:1063-75, 2000.

See Also

Other CaoEtAl: [Q_iid](#page-27-1); [Q_smoothed](#page-28-1); [R_estep](#page-29-1); [grad_iid](#page-17-1); [grad_smoothed](#page-18-1); [locally_iid_EM](#page-22-1); [m_estep](#page-25-1); [phi_init](#page-27-2)

strphour *Convert time string to decimal hour*

Description

Convert time string to decimal hour

Usage

 $strphour(x, fmt = "({\%m}/{\%d}/{\%y \%H}:M:{\%N}:{\%S})")$

Arguments

Value

numeric vector of decimal times in hours

Examples

strphour("31/08/87 12:53:29")

Returns a vector of indices with a given spacing for thinning MCMC results

Usage

thin(m, interval = 10)

Arguments

Value

integer vector of indices for thinning

tomogravity *Run tomogravity estimation on complete time series of aggregate flows*

Description

The aggregate flows Y and their corresponding routing matrix A must include all aggregate source and destination flows.

Usage

```
tomogravity(Y, A, lambda, lower = 0, normalize = FALSE,
  .progress = "none", control = list())
```


A list containing three elements:

- resultList, a list containing the output from running tomogravity. fit on each timepoint
- changeFromInit, a vector of length n containing the relative L_1 change between the initial (IPFP) point-to-point flow estimates and the final tomogravity estimates
- Xhat, a n x k matrix containing a vector of estimated point-to-point flows (for each time point) per row

See Also

Other tomogravity: [tomogravity.fit](#page-33-1)

Examples

```
data(cmu)
estimate <- tomogravity(Y=cmu$Y.full[1, , drop=FALSE], A=cmu$A.full,
                        lambda=0.01, .progress='text')
```
tomogravity.fit *Tomogravity estimation for a single time point using L-BFGS-B*

Description

Tomogravity estimation for a single time point using L-BFGS-B

Usage

```
tomogravity.fit(yt, A, srcDstInd, lambda, N = 1, normalize = FALSE,
 lower = 0, control = list())
```


A list as returned by optim, with element par containing the estimated point-to-point flows and elementer gr containing the analytic gradient evaluated at the estimate.

See Also

Other tomogravity: [tomogravity](#page-32-1)

Examples

```
data(cmu)
srcDstInd <- getSrcDstIndices(cmu$A.full)
estimate <- tomogravity.fit(yt=cmu$Y.full[1, ], A=cmu$A.full,
     srcDstInd=srcDstInd, lambda=0.01)
```
twMCMC *Function to run MCMC sampling for model of Tebaldi & West (1998)*

Description

Runs MCMC sampling for the gamma-Poisson model presented in Tebaldi & West (1998). The algorithm used is a modification of that presented in the original paper. It uses a joint proposal for (x_k, λ) to greatly accelerate convergence.

Usage

```
twMCMC(Y, A, prior, ndraws = 120000, burnin = 20000, verbose = 0)
```


list consisting of matrix of draws for X XDraws, matrix of draws for X lambdaDraws, and vector of acceptances per OD flow accepts

References

C. Tebaldi and M. West. Bayesian inference on network traffic using link count data. Journal of the American Statistical Association, 93(442):557-573, 1998.

Examples

```
data(bell.labs)
# Quick, simple run to test the function
prior <- list(a=rep(1, ncol(bell.labs$A)), b=rep(0, ncol(bell.labs$A)))
mcmcOut <- twMCMC(Y=bell.labs$Y[1,], A=bell.labs$A, prior=prior,
                  ndraws=1000, burnin=100,
                  verbose=0)
print(summary(mcmcOut$XDraws))
print(mcmcOut$accepts)
```
vardi.algorithm *Run algorithm of Vardi (1996) given B and S matrices*

Description

Runs moment-matching algorithm of Vardi (1996) until convergence

Usage

```
vardi.algorithm(A, Y, \text{lambda}, \text{tol} = 0.001)
```
Arguments

Value

numeric vector of length k with estimated OD flows

References

Y. Vardi. Network tomography: estimating source-destination traffic intensities from link data. Journal of the American Statistical Association, 91:365-377, 1996.

vardi.compute.BS 37

See Also

Other vardi: [vardi.compute.BS](#page-36-1); [vardi.iteration](#page-36-2)

vardi.compute.BS *Compute B and S matrices in algorithm of Vardi (1996)*

Description

Function to compute B and S matrices for moment equations of Vardi's method (1996). It's not particularly efficient, but it works.

Usage

vardi.compute.BS(A, Y)

Arguments

Value

list containing two entries for the B and S matrices, respectively

References

Y. Vardi. Network tomography: estimating source-destination traffic intensities from link data. Journal of the American Statistical Association, 91:365-377, 1996.

See Also

Other vardi: [vardi.algorithm](#page-35-1); [vardi.iteration](#page-36-2)

vardi.iteration *Execute single iteration for algorithm of Vardi (1996)*

Description

Function to compute B and S matrices for moment equations of Vardi's method (1996). It's not particularly efficient, but it works.

Usage

vardi.iteration(A, yBar, lambda, B, S)

Arguments

Value

numeric vector of length k with updated lambda

References

Y. Vardi. Network tomography: estimating source-destination traffic intensities from link data. Journal of the American Statistical Association, 91:365-377, 1996.

See Also

Other vardi: [vardi.algorithm](#page-35-1); [vardi.compute.BS](#page-36-1)

Index

∗Topic algebra calcN , [11](#page-10-0) decomposeA , [14](#page-13-0) getActive , [16](#page-15-0) getSrcDstIndices , [17](#page-16-0) ∗Topic arith agg , [3](#page-2-0) ∗Topic array buildRoutingMatrix , [9](#page-8-0) buildStarMat , [10](#page-9-0) diag_ind , [14](#page-13-0) diag_mat , [15](#page-14-0) ipfp , [21](#page-20-0) ∗Topic character strphour , [32](#page-31-0) ∗Topic datasets abilene , [2](#page-1-0) bell.labs , [6](#page-5-0) cmu , [13](#page-12-0) ∗Topic iteration ipfp , [21](#page-20-0) ∗Topic manip agg , [3](#page-2-0) thin , [33](#page-32-0) ∗Topic models buildPrior , [7](#page-6-0) calibration_ssm , [11](#page-10-0) gravity , [20](#page-19-0) gravity.fit, [20](#page-19-0) llCalibration , [22](#page-21-0) mle_filter , [24](#page-23-0) move_step, [25](#page-24-0) tomogravity , [33](#page-32-0) tomogravity.fit , [34](#page-33-0) twMCMC, [35](#page-34-0) vardi.algorithm , [36](#page-35-0) vardi.compute.BS , [37](#page-36-0) vardi.iteration, [37](#page-36-0) ∗Topic multivariate

buildPrior , [7](#page-6-0) calibration_ssm , [11](#page-10-0) gravity, [20](#page-19-0) gravity.fit, 20 llCalibration , [22](#page-21-0) mle_filter , [24](#page-23-0) move_step, [25](#page-24-0) tomogravity , [33](#page-32-0) tomogravity.fit , [34](#page-33-0) twMCMC, [35](#page-34-0) vardi.algorithm , [36](#page-35-0) vardi.compute.BS , [37](#page-36-0) vardi.iteration, [37](#page-36-0) ∗Topic ts buildPrior , [7](#page-6-0) calibration_ssm , [11](#page-10-0) gravity, [20](#page-19-0) gravity.fit, 20 llCalibration , [22](#page-21-0) mle_filter , [24](#page-23-0) move_step, [25](#page-24-0) thin , [33](#page-32-0) tomogravity , [33](#page-32-0) tomogravity.fit , [34](#page-33-0) abilene , [2](#page-1-0) agg , [3](#page-2-0) bayesianDynamicFilter , [4](#page-3-0) , *[7,](#page-6-0) [8](#page-7-0)* , *[25](#page-24-0) , [26](#page-25-0)* bell.labs , [6](#page-5-0) buildPrior , *[6](#page-5-0)* , [7](#page-6-0) , *[26](#page-25-0)* buildRoutingMat , [9](#page-8-0) buildRoutingMatrix , [9](#page-8-0) buildStarMat , *[9](#page-8-0)* , [10](#page-9-0) calcN , [11](#page-10-0) calibration_ssm , [11](#page-10-0) , *[23](#page-22-0) , [24](#page-23-0)* cmu , [13](#page-12-0) create_progress_bar , *[34](#page-33-0)* decomposeA , *[11](#page-10-0)* , [14](#page-13-0)

40 INDEX

```
diag_ind
, 14
, 15
diag_mat
, 15
, 15
16
getActive
, 16
getSrcDstIndices
, 16
, 17
, 20
, 21
, 27
, 34
grad_iid
, 18
, 19
, 23
, 27–32
grad_smoothed
, 18
, 19
, 23
, 27–32
gravity
, 20
, 21
gravity.fit
, 20
, 20
ipfp
, 21
KFS
, 24
llCalibration
, 12
, 22
, 24
locally_iid_EM
, 18
, 19
, 23
, 27–32
m_estep
, 18
, 19
, 23
, 26
, 28
–32
mle_filter
, 12
, 23
, 24
6825
obj.tomogravity
, 27
phi_init
, 18
, 19
, 23
, 27
, 28
, 29
–32
Q_iid
, 18
, 19
, 23
, 27, 28
, 28
, 30–32
Q_smoothed
, 18
, 19
, 23
, 27–29
, 29
, 31
, 32
R_estep
, 18
, 19
, 23
, 27–30
, 30
, 32
smoothed_EM
, 18
, 19
, 23
, 27–31
, 31
SSModel
, 24
strphour
, 32
thin
, 33
tomogravity
, 33
, 35
tomogravity.fit
, 34
, 34
35
vardi.algorithm
, 36
, 37, 38
vardi.compute.BS
, 37
, 37
, 38
vardi.iteration
, 37
, 37
```