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abilene Abilene data from Fang et al. (2007)

Description

Data from the 12 node Abilene network from Fang et al. (2007). Both the OD flows and the
topology correspond to the actual network. This is the X1 dataset from the given paper.
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Usage

abilene

Objects

The list abilene, which contains several objects:

• A, the routing matrix for this network (truncated for full row rank)

• X, a matrix of origin-destination flows formatted for analysis

• Y, a matrix of link loads formatted for analysis

• A.full, the routing matrix for this network without truncatation for full row rank)

• Y.full, a matrix of link loads corresponding to codeA.full

In this data, we have A %*% t(X) == t(Y) and A.full %*% t(X) == t(Y.full)

Variables

The list abilene contains the following:

• The routing matrix A. The columns of this matrix correspond to individual OD flows (the
columns of X), and its rows correspond to individual link loads (the columns of Y).

• The OD matrix X. Columns correspond to individual OD flows, and the rows correspond to
observations.

• The link load matrix Y. Columns of the Y matrix correspond to individual link loads, and the
rows correspond to observations.

• The routing matrix A.full. This is the complete routing matrix before reduction for full
row-rank.

• The link load matrix Y.full, corresponding to A.full.

References

J. Fang, Y. Vardi, and C.-H. Zhang. An iterative tomogravity algorithm for the estimation of net-
work traffic. In R. Liu, W. Strawderman, and C.-H. Zhang, editors, Complex Datasets and Inverse
Problems: Tomography, Networks and Beyond, volume 54 of Lecture Notes-Monograph Series.
IMS, 2007.

agg Function to aggregate results from matrix to matrix

Description

Defaults to mean, SD, limits, and given quantiles. Used to limit memory consumption from MCMC
runs.
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Usage

agg(mat, q = c(0.05, 0.16, 0.5, 0.84, 0.95))

Arguments

mat input numeric matrix to summarize

q quantiles of mat’s columns to provide in summary matrix

Value

matrix with each row corresponding to a summary measure and each column corresponding to a
column of mat

Examples

mat <- matrix(rnorm(5e3), ncol=5)
agg(mat)

bayesianDynamicFilter Function for inference with multilevel state-space model

Description

Particle filtering with sample-resample-move algorithm for multilevel state-space model of Blocker
& Airoldi (2011). This has log-normal autoregressive dynamics on OD intensities, log-normal
emission distributions, and truncated normal observation densities. This can return full (all parti-
cles) output, but it is typically better to aggregate results as you go to reduce memory consumption.
It can also run forward or backward filtering for smoothing. These results are combined via a sep-
arate function for smoothing; however, this procedure typically performs poorly due to differences
between the distributions of particles from forward and reverse filtering.

Usage

bayesianDynamicFilter(Y, A, prior, lambda0, sigma0, phi0, rho = 0.1,
tau = 2, m = 1000, verbose = FALSE, Xdraws = 5 * m, Xburnin = m,
Movedraws = 10, nThresh = 10, aggregate = FALSE, backward = FALSE,
tStart = 1)

Arguments

Y matrix (n x l) of observed link loads over time, one observation per row

A routing matrix (l x k) for network; must be of full row rank

prior list containing priors for lambda and phi; must have

• mu, a matrix (n x k) containing the prior means for the log-change in each
lambda at each time
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• sigma, a matrix (n x k) containing the prior standard deviations for the log-
change in each lambda at each time

• a list phi, containing the numeric prior df and a numeric vector scale of
length n

lambda0 numeric vector (length k) of time 0 prior means for OD flows

sigma0 numeric vector (length k) of time 0 prior standard deviations for OD flows

phi0 numeric starting value for phi at time 0

rho numeric fixed autoregressive parameter for dynamics on lambda; see reference
for details

tau numeric fixed power parameter for variance structure on truncated normal noise;
see reference for details

m integer number of particles to use

verbose logical activates verbose diagnostic output

Xdraws integer number of draws to perform for xsample RDA

Xburnin integer number of burnin draws to discard for xsample proposals RDA in addi-
tion to baseline number of draws

Movedraws integer number of iterations to run for each move step

nThresh numeric effective number of independent particles below which redraw will be
performed

aggregate logical to activate aggregation of MCMC results; highly

backward logical to activate reverse filtering (for smoothing

tStart integer time index to begin iterations from

Value

list containing:

• xList

• lambdaList

• phiList

• y

• rho

• prior

• n

• l

• k

• A

• A_qr

• A1

• A1_inv

• A2
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• nEff

• tStart

• backward

• aggregate

References

A.W. Blocker and E.M. Airoldi. Deconvolution of mixing time series on a graph. Proceedings of the
Twenty-Seventh Conference Annual Conference on Uncertainty in Artificial Intelligence (UAI-11)
51-60, 2011.

See Also

Other bayesianDynamicModel: buildPrior; move_step

bell.labs Bell Labs 1router data from Cao et al. (2000)

Description

Data from 4-node network with star topology collected from Bell Labs; used in Cao et al. (2000).

Usage

bell.labs

Objects

The list bell.labs, which contains several objects:

• A, the routing matrix for this network (truncated for full row rank)

• df, a data.frame with all data

• X, a matrix of origin-destination flows formatted for analysis

• Y, a matrix of link loads formatted for analysis

• tvec, a vector of times

In this data, we have A %*% t(X) == t(Y).
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Variables

The list bell.labs contains the following:

• The routing matrix A. The columns of this matrix correspond to individual OD flows (the
columns of X), and its rows correspond to individual link loads (the columns of Y).

• The data.frame df, containing

– value, level of traffic recorded

– nme, name of flow or load

– method, whether flow was directly observered or inferred (all observed)

– time, time of observation

– od, flag for origin-destination vs. link loads

– orig, origin of flow or load

– dest, destination of flow or load

– node, node involved in flow or load

• The OD matrix X. Columns correspond to individual OD flows, and the rows correspond to
observations.

• The link load matrix Y. Columns of the Y matrix correspond to individual link loads, and the
rows correspond to observations.

• The vector tvec, containing the time in decimal hours since midnight for each observation.

References

J. Cao, D. Davis, S. Van Der Viel, and B. Yu. Time-varying network tomography: router link data.
Journal of the American Statistical Association, 95:1063-75, 2000.

buildPrior Construct prior from calibration model estimates

Description

Builds prior from appropriately structured output of the calibration model from Blocker & Airoldi
(2011). Handles all formatting so result can be fed directly to bayesianDynamicFilter.

Usage

buildPrior(xHat, varHat, phiHat, Y, A, rho = 0.9, phiPriorDf = ncol(A)/2,
backward = FALSE, lambdaMin = 1, ipfp.maxit = 1e+06, ipfp.tol = 1e-06)
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Arguments

xHat matrix (n x k) of estimates for OD flows from calibration model, one time point
per row

varHat matrix (n x k) of estimated variances for OD flows from calibration, one time
point per row

phiHat numeric vector (length n) of estimates for phi from calibration model

Y matrix (n x l) of observed link loads, one time point per row

A routing matrix (l x k) for network; must be of full row rank

phiPriorDf numeric prior convolution parameter for independent inverse-gamma priors on
phi_t

rho numeric fixed autoregressive parameter for dynamics on lambda; see reference
for details

backward logical to activate construction of reversed prior (for smoothing applications)

lambdaMin numeric value at which to floor estimated OD flows for prior construction

ipfp.maxit integer maximum number of iterations for IPFP

ipfp.tol numeric tolerance for convergence of IPFP iterations

Value

list containing priors for lambda and phi, consisting of:

• mu, a matrix (n x k) containing the prior means for the log-change in each lambda at each time

• sigma, a matrix (n x k) containing the prior standard deviations for the log-change in each
lambda at each time

• a list phi, containing the numeric prior df and a numeric vector scale of length n

References

A.W. Blocker and E.M. Airoldi. Deconvolution of mixing time series on a graph. Proceedings of the
Twenty-Seventh Conference Annual Conference on Uncertainty in Artificial Intelligence (UAI-11)
51-60, 2011.

See Also

Other bayesianDynamicModel: bayesianDynamicFilter; move_step
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buildRoutingMat Build routing matrices for linked star topologies; that is, a set of star-
topology networks with links between a subset of routers

Description

Build routing matrices for linked star topologies; that is, a set of star-topology networks with links
between a subset of routers

Usage

buildRoutingMat(nVec, Cmat)

Arguments

nVec integer vector containing number of nodes in each sub-network (length m)

Cmat matrix (m x m) containing a one for each linked sub-network; only upper trian-
gular part is used

Value

routing matrix of dimension at least 2*sum(nVec) x sum(nVec^2)

See Also

buildStarMat, which this function depends upon

Examples

nVec <- c(3, 3, 3)
Cmat <- diag(3)
Cmat[1,2] <- Cmat[2,3] <- 1
buildRoutingMat(nVec, Cmat)

buildRoutingMatrix Build routing matrix from table of link relationships

Description

Constructs routing matrix from link relationships. Determines routes using (weighted) shortest-path
calculation (mirroring OSPF). Currently handles tied paths arbitrarily; will incorporate fractions for
tie resolution in next version. Can optionally include aggregate source and destination flows for
each node; this can make a major difference for some topologies. Tomogravity methods typically
make use of such information, which most routers collect. Note that resulting routing matrix need
not be of full row rank.
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Usage

buildRoutingMatrix(nodes, src, dest, weights = NULL, agg = FALSE,
sep = "_", aggChar = "*", verbose = 0)

Arguments

nodes vector (lenght n) of node identifiers

src vector (length m) of sources, one per link, matched with dest

dest vector (length n) of destination identifiers, one per link, matched with src

weights numeric vector (length m) of weights for each link; used in shortest-path routing
calculations (roughly OSPF)

agg logical for whether to include aggregate source and destination flows for each
node

sep character separator between node id’s for link and OD names

aggChar character to indicate aggregate flows; should be distinct from sep

verbose integer level of verbosity; 0 is silent, >=1 are increasing levels of reporting

Value

List consisting of routing matrix A (dense) of dimensions m x n and iGraph object for network topo

buildStarMat Build routing matrix for star network topology

Description

Build routing matrix for star network topology

Usage

buildStarMat(n)

Arguments

n integer number of nodes in the network

Value

matrix of dimension 2n x n^2 that transforms OD flows to link loads

Examples

buildStarMat(3)
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calcN Compute total traffic from a particular time.

Description

Compute total traffic from a particular time.

Usage

calcN(yt, A1)

Arguments

yt length-m numeric vectors of observed aggregate flows at a particular time

A1 m x m matrix containing the full-rank portion of the network’s routing matrix,
as supplied by decomposeA

Examples

data(bell.labs)
A.decomp <- decomposeA(bell.labs$A)
total.traffic <- calcN(yt=bell.labs$Y[1,], A1=A.decomp$A1)
total.traffic == sum(bell.labs$X[1,])

calibration_ssm Estimation for the linear SSM calibration model of Blocker & Airoldi
(2011)

Description

Maximum likelihood estimation of the parameters of the calibration model from Blocker & Airoldi
(2011) via direct numerical maximization of the marginal log-likelihood. This relies upon efficient
Kalman smoothing to evaluate the marginal likelihood, which is provided here by the KFAS package.

Usage

calibration_ssm(tme, y, A, Ft, Rt, lambda0, phihat0, tau = 2, w = 11,
initScale = 1/(1 - diag(Ft)^2), nugget = sqrt(.Machine$double.eps),
verbose = FALSE, logTrans = TRUE, method = "L-BFGS-B",
optimArgs = list())
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Arguments

tme integer time at which to center moving window for estimation

y matrix (n x m) of observed link loads from all times (not just the window used
for estimation; one observation per row

A routing matrix (m x k) for network; should be full row rank

Ft matrix (k x k) containing fixed autoregressive parameters for state evolution
equation; upper-left block of overall matrix for expanded state

Rt covariance matrix for observation equation; typically small and fixed

lambda0 matrix (n x k) of initial estimates for lambda (e.g. obtained via IPFP)

phihat0 numeric vector (length n) of initial estimates for phi

tau numeric power parameter for mean-variance relationship

w number of observations to use for rolling-window estimation; handles boundary
cases cleanly

initScale numeric inflation factor for time-zero state covariance; defaults to steady-state
variance setting

nugget small positive value to add to diagonal of state evolution covariance matrix to
ensure numerical stability

verbose logical to select verbose output from algorithm

logTrans logical whether to log-transform parameters for optimization. If FALSE, sets
method to "L-BFGS-B".

method optimization method to use (in optim calls)

optimArgs list of arguments to append to control argument for optim. Can include all argu-
ments except for fnscale, which is automatically set

Value

list containing lambdahat, a numeric vector (length k) containing the MLE for lambda; phihat, the
MLE for phi; xhat, the smoothed estimates of the OD flows for the window used as a k x w matrix;
and varhat, a k x w matrix containing the diagonal of the estimated covariance for each OD flow
in the window

References

A.W. Blocker and E.M. Airoldi. Deconvolution of mixing time series on a graph. Proceedings of the
Twenty-Seventh Conference Annual Conference on Uncertainty in Artificial Intelligence (UAI-11)
51-60, 2011.

See Also

Other calibrationModel: llCalibration; mle_filter
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Examples

data(bell.labs)

lambda0 <- matrix(1, nrow(bell.labs$Y), ncol(bell.labs$A))
lambda0[100,] <- ipfp(y=bell.labs$Y[100,], A=bell.labs$A,

x0=rep(1, ncol(bell.labs$A)))
phihat0 <- rep(1, nrow(bell.labs$Y))
Ft <- 0.5 * diag_mat(rep(1, ncol(bell.labs$A)))
Rt <- 0.01 * diag_mat(rep(1, nrow(bell.labs$A)))

# Not run
#fit.calibration <- calibration_ssm(tme=100, y=bell.labs$Y, A=bell.labs$A,
# Ft=Ft, Rt=Rt, lambda0=lambda0,
# phihat0=phihat0, w=23)

cmu CMU data from Blocker & Airoldi (2011)

Description

Data from the 12 node CMU network used in Blocker & Airoldi (2011). The OD flows are actual,
observed traffic from a CMU network. The topology does not, however, correspond to the original
network due to security considerations.

Usage

cmu

Objects

The list cmu, which contains several objects:

• A, the routing matrix for this network (truncated for full row rank)

• X, a matrix of origin-destination flows formatted for analysis

• Y, a matrix of link loads formatted for analysis

• A.full, the routing matrix for this network without truncatation for full row rank)

• Y.full, a matrix of link loads corresponding to codeA.full

In this data, we have A %*% t(X) == t(Y) and A.full %*% t(X) == t(Y.full)

Variables

The list cmu contains the following:

• The routing matrix A. The columns of this matrix correspond to individual OD flows (the
columns of X), and its rows correspond to individual link loads (the columns of Y).

• The OD matrix X. Columns correspond to individual OD flows, and the rows correspond to
observations.
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• The link load matrix Y. Columns of the Y matrix correspond to individual link loads, and the
rows correspond to observations.

• The routing matrix A.full. This is the complete routing matrix before reduction for full
row-rank.

• The link load matrix Y.full, corresponding to A.full.

References

A.W. Blocker and E.M. Airoldi. Deconvolution of mixing time series on a graph. Proceedings of the
Twenty-Seventh Conference Annual Conference on Uncertainty in Artificial Intelligence (UAI-11)
51-60, 2011.

decomposeA Compute pivoted decomposition of routing matrix A into full-rank and
remainder, as in Cao et al. 2000, via the QR decomposition.

Description

Compute pivoted decomposition of routing matrix A into full-rank and remainder, as in Cao et al.
2000, via the QR decomposition.

Usage

decomposeA(A)

Arguments

A routing matrix of dimension m x k

Value

list containing two matrices: A1 (m x m), a full-rank subset of the columns of A, and A2 (m x k -
m), the remaining columns

diag_ind Make vector of 1-dimensional diagonal indices for square matrix

Description

Compute vector of indices for efficient access to diagonal of a square matrix

Usage

diag_ind(n)
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Arguments

n integer dimension of (square) matrix

Value

integer vector of length n with indices (unidimensional) of square matrix

See Also

diag_mat

Examples

ind <- diag_ind(5)
diag_mat(seq(5))[ind]

diag_mat Make diagonal matrix from vector

Description

Build matrix with supplied vector on diagonal; this is much faster than diag due to the use of matrix
instead of array

Usage

diag_mat(x)

Arguments

x numeric vector for diagonal

Value

matrix of size length(x) x length(x) with x along diagonal

See Also

diag_ind

Examples

diag_mat(seq(5))
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dobj.dxt.tomogravity Analytic gradient of objective function of Zhang et al. 2003

Description

Requires bounded optimization to maintain positive OD flows, and only those flows that are not
deterministically zero should be included in the estimation.

Usage

dobj.dxt.tomogravity(xt, yt, A, srcDstInd, lambda)

Arguments

xt length-k numeric vector of point-to-point flows

yt length-m numeric vector of observed aggregate flows

A m x k routing matrix, yt = A xt

srcDstInd list of source and destination flow indices corresponding to each point-to-point
flow, as produced by getSrcDstIndices

lambda regularization parameter for mutual information prior. Note that this is scaled
by the squared total traffic in the objective function before scaling the mututal
information prior.

Value

numeric vector of length k containing gradient of objective function with respect to xt

getActive Check for deterministically-known OD flows at single time

Description

Uses xranges from limSolve to find deterministically-known OD flows

Usage

getActive(y, A)

Arguments

y numeric vector of link loads, dimension m

A routing matrix of dimension m x k
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Value

logical vector of length k; TRUE for unknown OD flows, FALSE for known

Examples

data(bell.labs)
getActive(bell.labs$Y[1,], bell.labs$A)

getSrcDstIndices Find indices of source and destination for each point-to-point flow

Description

This works only for routing matrices that include all aggregate source and destination flows. It is
often easier to build these indices manually via string processing or during the construction of the
routing matrix.

Usage

getSrcDstIndices(A)

Arguments

A routing matrix of dimension m x k. This should be the reduced-rank version
including all aggregate source and destination flows.

Value

list consisting of two component, src and dst, which are integer vectors of length k containing the
index (in y = A x) of the source and destination flows that each point-to-point flow is part of.

Examples

data(cmu)
src.dst.ind <- getSrcDstIndices(cmu$A.full)
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grad_iid Compute analytic gradient of Q-function for locally IID EM algorithm
of Cao et al. (2000)

Description

Computes gradient of Q-function with respect to log(c(lambda,phi)) for EM algorithm from Cao et
al. (2000) for their locally IID model.

Usage

grad_iid(logtheta, c, M, rdiag, epsilon)

Arguments

logtheta numeric vector (length k+1) of log(lambda) (1:k) and log(phi) (last entry)

c power parameter in model of Cao et al. (2000)

M matrix (n x k) of conditional expectations for OD flows, one time per row

rdiag numeric vector (length k) containing diagonal of conditional covariance matrix
R

epsilon numeric nugget to add to diagonal of covariance for numerical stability

Value

numeric vector of same length as logtheta containing calculated gradient

References

J. Cao, D. Davis, S. Van Der Viel, and B. Yu. Time-varying network tomography: router link data.
Journal of the American Statistical Association, 95:1063-75, 2000.

See Also

Other CaoEtAl: Q_iid; Q_smoothed; R_estep; grad_smoothed; locally_iid_EM; m_estep; phi_init;
smoothed_EM
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grad_smoothed Compute analytic gradient of Q-function for smoothed EM algorithm
of Cao et al. (2000)

Description

Computes gradient of Q-function with respect to log(c(lambda,phi)) for EM algorithm from Cao et
al. (2000) for their smoothed model.

Usage

grad_smoothed(logtheta, c, M, rdiag, eta0, sigma0, V, eps.lambda, eps.phi)

Arguments

logtheta numeric vector (length k+1) of log(lambda) (1:k) and log(phi) (last entry)

c power parameter in model of Cao et al. (2000)

M matrix (n x k) of conditional expectations for OD flows, one time per row

rdiag numeric vector (length k) containing diagonal of conditional covariance matrix
R

eta0 numeric vector (length k+1) containing value for log(c(lambda, phi)) from pre-
vious time (or initial value)

sigma0 covariance matrix (k+1 x k+1) of log(c(lambda, phi)) from previous time (or
initial value)

V evolution covariance matrix (k+1 x k+1) for log(c(lambda, phi)) (random walk)

eps.lambda numeric small positive value to add to lambda for numerical stability; typically
0

eps.phi numeric small positive value to add to phi for numerical stability; typically 0

Value

numeric vector of same length as logtheta containing calculated gradient

References

J. Cao, D. Davis, S. Van Der Viel, and B. Yu. Time-varying network tomography: router link data.
Journal of the American Statistical Association, 95:1063-75, 2000.

See Also

Other CaoEtAl: Q_iid; Q_smoothed; R_estep; grad_iid; locally_iid_EM; m_estep; phi_init;
smoothed_EM
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gravity Run tomogravity estimation on complete time series of aggregate flows

Description

Run tomogravity estimation on complete time series of aggregate flows

Usage

gravity(Y, srcDstInd)

Arguments

Y n x m matrix contain one vector of observed aggregate flows per row

srcDstInd list of source and destination flow indices corresponding to each point-to-point
flow, as produced by getSrcDstIndices

Value

Xhat, a n x k matrix containing a vector of estimated point-to-point flows (for each time point) per
row

See Also

Other gravity: gravity.fit

Examples

data(cmu)
srcDstInd <- getSrcDstIndices(cmu$A.full)
estimate <- gravity(Y=cmu$Y[1:3,], srcDstInd=srcDstInd)

gravity.fit Gravity estimation for a single time point

Description

Gravity estimation for a single time point

Usage

gravity.fit(yt, srcDstInd)
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Arguments

yt length-m numeric vector of observed aggregate flows at time t

srcDstInd list of source and destination flow indices corresponding to each point-to-point
flow, as produced by getSrcDstIndices

Value

xhat, a numeric vector of length k providing gravity estimates of the point-to-point flows of interest

See Also

Other gravity: gravity

Examples

data(cmu)
srcDstInd <- getSrcDstIndices(cmu$A.full)
estimate <- gravity.fit(yt=cmu$Y.full[1,], srcDstInd=srcDstInd)

ipfp Function to run basic IPFP (iterative proportional fitting procedure)

Description

Use IPFP starting from x0 to produce vector x s.t. Ax = y within tolerance. Need to ensure that x0
>= 0.

Usage

ipfp(y, A, x0, tol = .Machine$double.eps, maxit = 1000, verbose = FALSE,
full = FALSE)

Arguments

y numeric constraint vector (length nrow)

A constraint matrix (nrow x ncol)

x0 numeric initial vector (length ncol)

tol numeric tolerance for IPFP; defaults to .Machine$double.eps

maxit integer maximum number of iterations for IPFP; defaults to 1e3

verbose logical parameter to select verbose output from C function

full logical parameter to select full return (with diagnostic info)

Value

if not full, vector of length ncol containing solution obtained by IPFP. If full, list containing solution
(as x), number of iterations (as iter), and norm of Ax - y (as errNorm)
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Examples

A <- buildStarMat(3)
x <- rgamma(ncol(A), 10, 1/100)
y <- A %*% x
x0 <- x * rgamma(length(x), 10, 10)
ans <- ipfp(y, A, x0, full=TRUE)
print(ans)
print(x)

llCalibration Evaluate marginal log-likelihood for calibration SSM

Description

Evaluates marginal log-likelihood for calibration SSM of Blocker & Airoldi (2011) using Kalman
filtering. This is very fast and numerically stable, using the univariate Kalman filtering and smooth-
ing functions of KFAS with Fortran implementations.

Usage

llCalibration(theta, Ft, yt, Zt, Rt, k = ncol(Ft), tau = 2,
initScale = 1/(1 - diag(Ft)^2), nugget = sqrt(.Machine$double.eps))

Arguments

theta numeric vector (length k+1) of parameters. theta[-1] = log(lambda), and theta[1]
= log(phi)

Ft evolution matrix (k x k) for OD flows; include fixed
yt matrix (k x n) of observed link loads, one observation per column
Zt observation matrix for system; should be routing matrix A
Rt covariance matrix for observation equation; typically small and fixed
k integer number of OD flows to infer
tau numeric power parameter for mean-variance relationship
initScale numeric inflation factor for time-zero state covariance; defaults to steady-state

variance setting
nugget small positive value to add to diagonal of state evolution covariance matrix to

ensure numerical stability

Value

numeric marginal log-likelihood obtained via Kalman smoothing

References

A.W. Blocker and E.M. Airoldi. Deconvolution of mixing time series on a graph. Proceedings of the
Twenty-Seventh Conference Annual Conference on Uncertainty in Artificial Intelligence (UAI-11)
51-60, 2011.
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See Also

Other calibrationModel: calibration_ssm; mle_filter

locally_iid_EM Run EM algorithm to obtain MLE for locally IID model of Cao et al.
(2000)

Description

Runs EM algorithm to compute MLE for the locally IID model of Cao et al. (2000). Uses numerical
optimization of Q-function for each M-step with analytic computation of its gradient.

Usage

locally_iid_EM(Y, A, lambda0, phi0 = NULL, c = 2, maxiter = 1000,
tol = 1e-06, epsilon = 0.01, method = "L-BFGS-B", checkActive = FALSE)

Arguments

Y matrix (h x k) of observations in local window; columns correspond to OD flows,
and rows are individual observations

A routing matrix (m x k) for network being analyzed
lambda0 initial vector of values (length k) for lambda; ipfp is a good way to obtain this
phi0 initial value for covariance scale phi; initializes automatically using phi_init

if NULL, but you can likely do better
c power parameter in model of Cao et al. (2000)
maxiter maximum number of EM iterations to run
tol tolerance (in relative change in Q function value) for stopping EM iterations
epsilon numeric nugget to add to diagonal of covariance for numerical stability
method optimization method to use (in optim calls)
checkActive logical check for deterministically known OD flows

Value

list with 3 elements: lambda, the estimated value of lambda; phi, the estimated value of phi; and
iter, the number of iterations run

References

J. Cao, D. Davis, S. Van Der Viel, and B. Yu. Time-varying network tomography: router link data.
Journal of the American Statistical Association, 95:1063-75, 2000.

See Also

Other CaoEtAl: Q_iid; Q_smoothed; R_estep; grad_iid; grad_smoothed; m_estep; phi_init;
smoothed_EM



24 mle_filter

mle_filter Filtering & smoothing at MLE for calibration SSM

Description

Run Kalman filtering and smoothing at calculated MLE for parameters of calibration SSM. This
is used to obtain point and covariance estimates for the actual OD flows X following estimation of
other parameters.

Usage

mle_filter(mle, Ft, yt, Zt, Rt, k = ncol(Ft), tau = 2, initScale = 1/(1 -
diag(Ft)^2), nugget = sqrt(.Machine$double.eps))

Arguments

mle numeric vector (length k+1) of parameters. theta[-1] = log(lambda), and theta[1]
= log(phi)

Ft evolution matrix (k x k) for OD flows; include fixed

yt matrix (k x n) of observed link loads, one observation per column

Zt observation matrix for system; should be routing matrix A

Rt covariance matrix for observation equation; typically small and fixed

k integer number of OD flows to infer

tau numeric power parameter for mean-variance relationship

initScale numeric inflation factor for time-zero state covariance; defaults to steady-state
variance setting

nugget small positive value to add to diagonal of state evolution covariance matrix to
ensure numerical stability

Value

numeric marginal log-likelihood obtained via Kalman smoothing

list containing result of Kalman smoothing; see SSModel and KFS for details

References

A.W. Blocker and E.M. Airoldi. Deconvolution of mixing time series on a graph. Proceedings of the
Twenty-Seventh Conference Annual Conference on Uncertainty in Artificial Intelligence (UAI-11)
51-60, 2011.

See Also

Other calibrationModel: calibration_ssm; llCalibration
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move_step Move step of sample-resample-move algorithm for multilevel state-
space model

Description

Function to execute single MCMC-based move step for bayesianDynamicFilter. This can use
two types of stopping rules: number of iterations or number of accepted moves for the X parti-
cles. The former is used by default, but the latter adapts better to low acceptance rates (sometimes
with substantial computational cost). Most updates in this algorithm are Metropolis-Hastings with
customized proposals.

Usage

move_step(y, X, tme, lambda, phi, lambdatm1, phitm1, prior, A, A1_inv, A2, rho,
tau, m = ncol(X), l = nrow(A1_inv), k = length(lambda), ndraws = 10,
minAccepts = 0, verbose = FALSE)

Arguments

y numeric vector (length l) of observed link loads

X matrix (m x k) of particles for OD flows, one particle per row, in pivoted order

tme integer time index currently used in estimation

lambda matrix (m x k) of particles for OD intensities, one particle per row, in pivoted
order

phi numeric vector (length m) of particles for phi

lambdatm1 lambda matrix (m x k) of particles for OD intensities from previous time, one
particle per row, in pivoted order

phitm1 numeric vector (length m) of particles for phi from previous time

prior list containing priors for hyperparameters; see bayesianDynamicFilter for de-
tails

A routing matrix (l x k) for network

A1_inv inverse of full-rank portion of routing matrix (l x l)

A2 remainder of routing matrix (l x k-l)

rho numeric fixed autoregressive parameter for dynamics on lambda; see reference
for details

tau numeric fixed power parameter for variance structure on truncated normal noise;
see reference for details

m integer number of particles

l integer number of observed link loads

k integer number of OD flows to infer

ndraws integer number of draws to perform (can be overriden by minAccepts)
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minAccepts integer minimum number of acceptances before results are returned; activates
alternative stopping rule if >= 1

verbose logical activates verbose diagnostic output

Value

list containing updated values of X, lambda, and phi

References

A.W. Blocker and E.M. Airoldi. Deconvolution of mixing time series on a graph. Proceedings of the
Twenty-Seventh Conference Annual Conference on Uncertainty in Artificial Intelligence (UAI-11)
51-60, 2011.

See Also

Other bayesianDynamicModel: bayesianDynamicFilter; buildPrior

m_estep Compute conditional expectations for EM algorithms of Cao et al.
(2000)

Description

Computes conditional expectation of OD flows for E-step of EM algorithm from Cao et al. (2000)
for their locally IID model.

Usage

m_estep(yt, lambda, phi, A, c, epsilon)

Arguments

yt numeric vector (length m) of link loads from single time

lambda numeric vector (length k) of mean OD flows from last M-step

phi numeric scalar scale for covariance matrix of xt

A routing matrix (m x k) for network being analyzed

c power parameter in model of Cao et al. (2000)

epsilon numeric nugget to add to diagonal of covariance for numerical stability

Value

numeric vector of same size as lambda with conditional expectations of x
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References

J. Cao, D. Davis, S. Van Der Viel, and B. Yu. Time-varying network tomography: router link data.
Journal of the American Statistical Association, 95:1063-75, 2000.

See Also

Other CaoEtAl: Q_iid; Q_smoothed; R_estep; grad_iid; grad_smoothed; locally_iid_EM;
phi_init; smoothed_EM

obj.tomogravity Objective function of Zhang et al. 2003

Description

Requires bounded optimization to maintain positive OD flows, and only those flows that are not
deterministically zero should be included in the estimation.

Usage

obj.tomogravity(xt, yt, A, srcDstInd, lambda)

Arguments

xt length-k numeric vector of point-to-point flows

yt length-m numeric vector of observed aggregate flows

A m x k routing matrix, yt = A xt

srcDstInd list of source and destination flow indices corresponding to each point-to-point
flow, as produced by getSrcDstIndices

lambda regularization parameter for mutual information prior. Note that this is scaled
by the squared total traffic in the objective function before scaling the mututal
information prior.

Value

numeric value of objective function to minimize in tomogravity estimation
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phi_init Simple initialization for phi in model of Cao et al. (2000)

Description

Uses a crude estimator to get a starting point for phi in the model of Cao et al. (2000).

Usage

phi_init(Y, A, lambda0, c)

Arguments

Y matrix (n x k) of observed link loads over time

A routing matrix (m x k)

lambda0 numeric vector (length k) of initial guesses for lambda

c power parameter in model of Cao et al. (2000)

Value

numeric starting value for phi

References

J. Cao, D. Davis, S. Van Der Viel, and B. Yu. Time-varying network tomography: router link data.
Journal of the American Statistical Association, 95:1063-75, 2000.

See Also

Other CaoEtAl: Q_iid; Q_smoothed; R_estep; grad_iid; grad_smoothed; locally_iid_EM;
m_estep; smoothed_EM

Q_iid Q function for locally IID EM algorithm of Cao et al. (2000)

Description

Computes the Q function (expected log-likelihood) for the EM algorithm of Cao et al. (2000) for
their locally IID model.

Usage

Q_iid(logtheta, c, M, rdiag, epsilon)
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Arguments

logtheta numeric vector (length k+1) of log(lambda) (1:k) and log(phi) (last entry)

c power parameter in model of Cao et al. (2000)

M matrix (n x k) of conditional expectations for OD flows, one time per row

rdiag numeric vector (length k) containing diagonal of conditional covariance matrix
R

epsilon numeric nugget to add to diagonal of covariance for numerical stability

Value

numeric value of Q function; not vectorized in any way

References

J. Cao, D. Davis, S. Van Der Viel, and B. Yu. Time-varying network tomography: router link data.
Journal of the American Statistical Association, 95:1063-75, 2000.

See Also

Other CaoEtAl: Q_smoothed; R_estep; grad_iid; grad_smoothed; locally_iid_EM; m_estep;
phi_init; smoothed_EM

Q_smoothed Q function for smoothed EM algorithm of Cao et al. (2000)

Description

Computes the Q function (expected log-likelihood) for the EM algorithm of Cao et al. (2000) for
their smoothed model.

Usage

Q_smoothed(logtheta, c, M, rdiag, eta0, sigma0, V, eps.lambda, eps.phi)

Arguments

logtheta numeric vector (length k+1) of log(lambda) (1:k) and log(phi) (last entry)

c power parameter in model of Cao et al. (2000)

M matrix (n x k) of conditional expectations for OD flows, one time per row

rdiag numeric vector (length k) containing diagonal of conditional covariance matrix
R

eta0 numeric vector (length k+1) containing value for log(c(lambda, phi)) from pre-
vious time (or initial value)

sigma0 covariance matrix (k+1 x k+1) of log(c(lambda, phi)) from previous time (or
initial value)
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V evolution covariance matrix (k+1 x k+1) for log(c(lambda, phi)) (random walk)

eps.lambda numeric small positive value to add to lambda for numerical stability; typically
0

eps.phi numeric small positive value to add to phi for numerical stability; typically 0

Value

numeric value of Q function; not vectorized in any way

References

J. Cao, D. Davis, S. Van Der Viel, and B. Yu. Time-varying network tomography: router link data.
Journal of the American Statistical Association, 95:1063-75, 2000.

See Also

Other CaoEtAl: Q_iid; R_estep; grad_iid; grad_smoothed; locally_iid_EM; m_estep; phi_init;
smoothed_EM

R_estep Compute conditional covariance matrix for EM algorithms of Cao et
al. (2000)

Description

Computes conditional covariance of OD flows for E-step of EM algorithm from Cao et al. (2000)
for their locally IID model.

Usage

R_estep(lambda, phi, A, c, epsilon)

Arguments

lambda numeric vector (length k) of mean OD flows from last M-step

phi numeric scalar scale for covariance matrix of xt

A routing matrix (m x k) for network being analyzed

c power parameter in model of Cao et al. (2000)

epsilon numeric nugget to add to diagonal of covariance for numerical stability

Value

conditional covariance matrix (k x k) of OD flows given parameters
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References

J. Cao, D. Davis, S. Van Der Viel, and B. Yu. Time-varying network tomography: router link data.
Journal of the American Statistical Association, 95:1063-75, 2000.

See Also

Other CaoEtAl: Q_iid; Q_smoothed; grad_iid; grad_smoothed; locally_iid_EM; m_estep;
phi_init; smoothed_EM

smoothed_EM Run EM algorithm to obtain MLE (single time) for smoothed model of
Cao et al. (2000)

Description

Runs EM algorithm to compute MLE for the smoothed model of Cao et al. (2000). Uses numerical
optimization of Q-function for each M-step with analytic computation of its gradient. This performs
estimation for a single time point using output from the previous one.

Usage

smoothed_EM(Y, A, eta0, sigma0, V, c = 2, maxiter = 1000, tol = 1e-06,
eps.lambda = 0, eps.phi = 0, method = "L-BFGS-B")

Arguments

Y matrix (h x k) of observations in local window; columns correspond to OD flows,
and rows are individual observations

A routing matrix (m x k) for network being analyzed

eta0 numeric vector (length k+1) containing value for log(c(lambda, phi)) from pre-
vious time (or initial value)

sigma0 covariance matrix (k+1 x k+1) of log(c(lambda, phi)) from previous time (or
initial value)

V evolution covariance matrix (k+1 x k+1) for log(c(lambda, phi)) (random walk)

c power parameter in model of Cao et al. (2000)

maxiter maximum number of EM iterations to run

tol tolerance (in relative change in Q function value) for stopping EM iterations

eps.lambda numeric small positive value to add to lambda for numerical stability; typically
0

eps.phi numeric small positive value to add to phi for numerical stability; typically 0

method optimization method to use (in optim calls)



32 strphour

Value

list with 5 elements: lambda, the estimated value of lambda; phi, the estimated value of phi; iter,
the number of iterations run; etat, log(c(lambda, phi)); and sigmat, the inverse of the Q functions
Hessian at its mode

References

J. Cao, D. Davis, S. Van Der Viel, and B. Yu. Time-varying network tomography: router link data.
Journal of the American Statistical Association, 95:1063-75, 2000.

See Also

Other CaoEtAl: Q_iid; Q_smoothed; R_estep; grad_iid; grad_smoothed; locally_iid_EM;
m_estep; phi_init

strphour Convert time string to decimal hour

Description

Convert time string to decimal hour

Usage

strphour(x, fmt = "(%m/%d/%y %H:%M:%S)")

Arguments

x input character vector of times

fmt input character format for times

Value

numeric vector of decimal times in hours

Examples

strphour("31/08/87 12:53:29")
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thin Thinning vector of indices for MCMC

Description

Returns a vector of indices with a given spacing for thinning MCMC results

Usage

thin(m, interval = 10)

Arguments

m integer length of results

interval thinning interval

Value

integer vector of indices for thinning

tomogravity Run tomogravity estimation on complete time series of aggregate flows

Description

The aggregate flows Y and their corresponding routing matrix A must include all aggregate source
and destination flows.

Usage

tomogravity(Y, A, lambda, lower = 0, normalize = FALSE,
.progress = "none", control = list())

Arguments

Y n x m matrix contain one vector of observed aggregate flows per row. This
should include all observed aggegrate flows with none removed due to redun-
dancy.

A m x k routing matrix. This need not be of full row rank and must include all
source and destination flows.

lambda Regularization parameter for mutual information prior. Note that this is scaled
by the squared total traffic in the objective function before scaling the mututal
information prior.

lower Component-wise lower bound for xt in L-BFGS-B optimization.
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normalize If TRUE, xt and yt are scaled by N. Typically used in conjunction with calcN to
normalize traffic to proportions, easing the tuning of lambda.

.progress name of the progress bar to use, see create_progress_bar in plyr documenta-
tion

control List of control information for optim.

Value

A list containing three elements:

• resultList, a list containing the output from running tomogravity.fit on each timepoint

• changeFromInit, a vector of length n containing the relative L_1 change between the initial
(IPFP) point-to-point flow estimates and the final tomogravity estimates

• Xhat, a n x k matrix containing a vector of estimated point-to-point flows (for each time point)
per row

See Also

Other tomogravity: tomogravity.fit

Examples

data(cmu)
estimate <- tomogravity(Y=cmu$Y.full[1, , drop=FALSE], A=cmu$A.full,

lambda=0.01, .progress='text')

tomogravity.fit Tomogravity estimation for a single time point using L-BFGS-B

Description

Tomogravity estimation for a single time point using L-BFGS-B

Usage

tomogravity.fit(yt, A, srcDstInd, lambda, N = 1, normalize = FALSE,
lower = 0, control = list())

Arguments

yt length-m numeric vector of observed aggregate flows at time t

A m x k routing matrix

srcDstInd list of source and destination flow indices corresponding to each point-to-point
flow, as produced by getSrcDstIndices

lambda regularization parameter for mutual information prior. Note that this is scaled
by the squared total traffic in the objective function before scaling the mututal
information prior.
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N total traffic for normalization. Unused if normalized is FALSE.

normalize If TRUE, xt and yt are scaled by N. Typically used in conjunction with calcN to
normalize traffic to proportions, easing the tuning of lambda.

lower Component-wise lower bound for xt in L-BFGS-B optimization.

control List of control information for optim.

Value

A list as returned by optim, with element par containing the estimated point-to-point flows and
elementer gr containing the analytic gradient evaluated at the estimate.

See Also

Other tomogravity: tomogravity

Examples

data(cmu)
srcDstInd <- getSrcDstIndices(cmu$A.full)
estimate <- tomogravity.fit(yt=cmu$Y.full[1, ], A=cmu$A.full,

srcDstInd=srcDstInd, lambda=0.01)

twMCMC Function to run MCMC sampling for model of Tebaldi & West (1998)

Description

Runs MCMC sampling for the gamma-Poisson model presented in Tebaldi & West (1998). The
algorithm used is a modification of that presented in the original paper. It uses a joint proposal for
(x_k, lambda_k) to greatly accelerate convergence.

Usage

twMCMC(Y, A, prior, ndraws = 120000, burnin = 20000, verbose = 0)

Arguments

Y numeric vector of observed link loads at a single time (length k)

A routing matrix of dimension (k x n); needs to be full row rank

prior parameters for conjugate gamma prior (convolution and rate)

ndraws integer number of draws for sampler to produce (excluding burn-in)

burnin integer number of additional draws to discard as burnin

verbose integer level of verbosity; levels > 1 have no effect currently
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Value

list consisting of matrix of draws for X XDraws, matrix of draws for X lambdaDraws, and vector of
acceptances per OD flow accepts

References

C. Tebaldi and M. West. Bayesian inference on network traffic using link count data. Journal of the
American Statistical Association, 93(442):557-573, 1998.

Examples

data(bell.labs)
# Quick, simple run to test the function
prior <- list(a=rep(1, ncol(bell.labs$A)), b=rep(0, ncol(bell.labs$A)))
mcmcOut <- twMCMC(Y=bell.labs$Y[1,], A=bell.labs$A, prior=prior,

ndraws=1000, burnin=100,
verbose=0)

print(summary(mcmcOut$XDraws))
print(mcmcOut$accepts)

vardi.algorithm Run algorithm of Vardi (1996) given B and S matrices

Description

Runs moment-matching algorithm of Vardi (1996) until convergence

Usage

vardi.algorithm(A, Y, lambda, tol = 0.001)

Arguments

A routing matrix (m x k)

Y matrix of link loads over time (m x n, one column per time)

lambda numeric vector of starting values for OD flows (length k)

tol numeric tolerance for halting iterations

Value

numeric vector of length k with estimated OD flows

References

Y. Vardi. Network tomography: estimating source-destination traffic intensities from link data.
Journal of the American Statistical Association, 91:365-377, 1996.
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See Also

Other vardi: vardi.compute.BS; vardi.iteration

vardi.compute.BS Compute B and S matrices in algorithm of Vardi (1996)

Description

Function to compute B and S matrices for moment equations of Vardi’s method (1996). It’s not
particularly efficient, but it works.

Usage

vardi.compute.BS(A, Y)

Arguments

A routing matrix (m x k)

Y matrix of link loads over time (m x n, one column per time)

Value

list containing two entries for the B and S matrices, respectively

References

Y. Vardi. Network tomography: estimating source-destination traffic intensities from link data.
Journal of the American Statistical Association, 91:365-377, 1996.

See Also

Other vardi: vardi.algorithm; vardi.iteration

vardi.iteration Execute single iteration for algorithm of Vardi (1996)

Description

Function to compute B and S matrices for moment equations of Vardi’s method (1996). It’s not
particularly efficient, but it works.

Usage

vardi.iteration(A, yBar, lambda, B, S)
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Arguments

A routing matrix (m x k)

yBar numeric vector of mean link loads (length m)

lambda value of lambda from last iteration

B B matrix computed by vardi.compute.BS

S S matrix computed by vardi.compute.BS

Value

numeric vector of length k with updated lambda

References

Y. Vardi. Network tomography: estimating source-destination traffic intensities from link data.
Journal of the American Statistical Association, 91:365-377, 1996.

See Also

Other vardi: vardi.algorithm; vardi.compute.BS
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