Package 'netdiffuseR'

May 7, 2020
Title Analysis of Diffusion and Contagion Processes on Networks
Version 1.22.0
Description Empirical statistical analysis, visualization and simulation of diffusion and contagion processes on networks. The package implements algorithms for calculating network diffusion statistics such as transmission rate, hazard rates, exposure models, network threshold levels, infectiousness (contagion), and susceptibility. The package is inspired by work published in Valente, et al., (2015) DOI:10.1016/j.socscimed.2015.10.001; Valente (1995) <ISBN: $9781881303213>$, Myers (2000) DOI:10.1086/303110, Iyengar and others (2011) DOI:10.1287/mksc.1100.0566, Burt (1987) DOI:10.1086/228667; among others.

Depends R (>= 3.1.1)
License MIT + file LICENSE
LazyData true
Imports Rcpp (>=0.12.1), sna, network, networkDynamic, Matrix, MASS,
MatchIt, SparseM, methods, grDevices, graphics, stats, utils,
boot, igraph, viridisLite
Suggests covr, testthat, knitr, ape, RSiena, survival
VignetteBuilder knitr
LinkingTo Rcpp, RcppArmadillo
RoxygenNote 7.0.2
Encoding UTF-8
URL https://github.com/USCCANA/netdiffuseR,
https://USCCANA.github.io/netdiffuseR
BugReports https://github.com/USCCANA/netdiffuseR/issues
Classification/MSC 90C35, 90B18, 91D30
Collate 'RcppExports.R' 'imports.r' 'graph_data.r' 'adjmat.r' 'bass.r'
'bootnet.r' 'data.r' 'diffnet-c.R' 'diffnet-class.r'
'diffnet-indexing.r' 'diffnet-methods.r' 'egonets.R'
'formula.r' 'igraph.r' 'infect_suscept.r' 'mentor.r' 'misc.r'
'moran.r' 'netmatch.r' 'network.r' 'options.R' 'package-doc.r'
'plot_diffnet2.r' 'rewire.r' 'random_graph.R' 'rdiffnet.r'

'read_write_foreign.r' 'select_egoalter.R' 'spatial.R'

'stats.R' 'struct_equiv.R' 'struct_test.R'

'survey_to_diffnet.R'

NeedsCompilation yes

Author George Vega Yon [aut, cre] (https://orcid.org/0000-0002-3171-0844, Rewrite functions with Rcpp, plus new features), Thomas Valente [aut, cph] (https://orcid.org/0000-0002-8824-5816, R original code), Stephanie Dyal [ctb] (Package's first version), Timothy Hayes [ctb] (Package's first version)
Maintainer George Vega Yon g.vegayon@gmail.com
Repository CRAN
Date/Publication 2020-05-07 13:00:06 UTC

R topics documented:

approx_geodesic 4
as.array.diffnet 5
as_dgCMatrix 6
bass 8
bootnet 10
brfarmers 13
brfarmersDiffNet 18
c.diffnet 18
classify_adopters 19
classify_graph 22
cumulative_adopt_count 23
dgr 24
diag_expand 26
diffnet-arithmetic 28
diffnet-class 29
diffnet_check_attr_class 35
diffnet_index 36
diffreg 38
diffusion-data 40
diffusionMap 41
drawColorKey 44
edgelist_to_adjmat 46
edges_coords 49
egonet_attrs 52
ego_variance 54
exposure 55
fakeDynEdgelist 60
fakeEdgelist 61
fakesurvey 61R topics documented:3
fakesurveyDyn 62
grid_distribution 63
hazard_rate 64
igraph 66
infection 67
isolated 70
kfamily 71
kfamilyDiffNet 84
matrix_compare 84
medInnovations 86
medInnovationsDiffNet 88
mentor_matching 89
moran 91
netdiffuseR 93
netdiffuseR-graphs 93
netdiffuseR-options 94
netmatch 95
network 97
nvertices 99
permute_graph 100
plot.diffnet 102
plot_adopters 103
plot_diffnet 105
plot_diffnet2 107
plot_infectsuscep 109
plot_threshold 112
pretty_within 115
rdiffnet 116
read_pajek 119
read_ucinet_head 121
recode 122
rescale_vertex_igraph 123
rewire_graph 125
rgraph_ba 129
rgraph_er 131
rgraph_ws 133
ring_lattice 134
round_to_seq 135
select_egoalter 136
struct_equiv 137
struct_test 139
summary.diffnet 143
survey_to_diffnet 145
threshold 148
toa_diff 150
toa_mat 151
transformGraphBy 152
vertex_covariate_compare 153
vertex_covariate_dist 154
weighted_var 156
\%*\% 157
Index 159
approx_geodesic Approximate Geodesic Distances

Description

Computes approximate geodesic distance matrix using graph powers and keeping the amount of memory used low.

Usage

approx_geodesic(graph, $\mathrm{n}=6 \mathrm{~L}$, warn = FALSE)
approx_geodist(graph, $\mathrm{n}=6 \mathrm{~L}$, warn = FALSE)

Arguments

graph Any class of accepted graph format (see netdiffuseR-graphs).
$\mathrm{n} \quad$ Integer scalar. Degree of approximation. Bigger values increase precision (see details).
warn Logical scalar. When TRUE, it warns if the algorithm performs less steps than required.

Details

While both igraph and sna offer very good and computationally efficient routines for computing geodesic distances, both functions return dense matrices, i.e. not sparse, which can be troublesome. Furthermore, from the perspective of social network analysis, path lengths of more than 6 steps, for example, may not be meaningful, or at least, relevant for the researcher. In such cases, approx_geodesic serves as a solution to this problem, computing geodesics up to the number of steps, n, desired, hence, if $n=6$, once the algorithm finds all paths of 6 or less steps it will stop, returning a sparse matrix with zeros for those pairs of vertices for which it was not able to find a path with less than n steps.

Depending on the graph size and density, approx_geodesic's performance can be compared to that of sna: : geodist. Although, as n increases, geodist becomes a better alternative.
The algorithm was implemented using power graphs. At each itereation i the power graph of order i is computed, and its values are compared to the current values of the geodesic matrix (which is initialized in zero).

1. Initialize the output ans (n, n)
2. For $i=1$ to $i<n$ do
(a) Iterate through the edges of $\mathrm{G}^{\wedge} \mathrm{i}$, if ans has a zero value in the corresponding row+column, replace it with i
(b) next
3. Replace all diagonal elements with a zero and return.

This implementation can be more memory efficient that the aforementioned ones, but at the same time it can be significant slower.
approx_geodist is just an allias for approx_geodesic.

Value

A sparse matrix of class dgCMatrix of size nnodes(graph)^2 with geodesic distances up to n.

Examples

```
# A very simple example ---------------------------------------------------------
g <- ring_lattice(10, 3)
approx_geodesic(g, 6)
sna::geodist(as.matrix(g))[[2]]
igraph::distances(
    igraph::graph_from_adjacency_matrix(g, mode = "directed"),
    mode = "out"
)
```

as.array.diffnet \quad Coerce a diffnet graph into an array

Description

Coerce a diffnet graph into an array

Usage

\#\# S3 method for class 'diffnet'
as.array (x, ...)

Arguments

x ... Ignored.

Details

The function takes the list of sparse matrices stored in x and creates an array with them. Attributes and other elements from the diffnet object are dropped.
dimnames are obtained from the metadata of the diffnet object.

Value

A three-dimensional array of T matrices of size $n \times n$.

See Also

diffnet.
Other diffnet methods: \%*\%(), c.diffnet(), diffnet-arithmetic, diffnet-class, diffnet_index, plot.diffnet(), summary.diffnet()

Examples

```
# Creating a random diffnet object
set.seed(84117)
mydiffnet <- rdiffnet(30, 5)
# Coercing it into an array
as.array(mydiffnet)
```

```
as_dgCMatrix Coerce a matrix-like objects to dgCMatrix (sparse matrix)
```


Description

This helper function allows easy coercion to sparse matrix objects from the Matrix package, dgCMatrix.

Usage

as_dgCMatrix(x, make.dimnames = TRUE, ...)
as.dgCMatrix(x, make.dimnames = TRUE, ...)
as_spmat(x, make.dimnames = TRUE, ...)
\#\# Default S3 method:
as_dgCMatrix(x, make.dimnames = TRUE, ...)
\#\# S3 method for class 'diffnet'
as_dgCMatrix (x, make.dimnames = TRUE, ...)
\#\# S3 method for class 'array'
as_dgCMatrix(x, make.dimnames = TRUE, ...)
\#\# S3 method for class 'igraph'
as_dgCMatrix(x, make.dimnames = TRUE, ...)
\#\# S3 method for class 'network'

```
as_dgCMatrix(x, make.dimnames = TRUE, ...)
## S3 method for class 'list'
as_dgCMatrix(x, make.dimnames = TRUE, ...)
```


Arguments

x
An object to be coerced into a sparse matrix.
make.dimnames Logical scalar. When TRUE, it makes sure that the returned object has dimnames.
. . . Further arguments passed to the method.

Details

In the case of the igraph and network methods, . . . is passed to as_adj and as.matrix. network respectively.

Value

Either a list with dgCMatrix objects or a dgCMatrix object.

Examples

```
set.seed(1231)
x <- rgraph_er(10)
# From matrix object
as_dgCMatrix(as.matrix(x))
# From a network object
as_dgCMatrix(network::as.network(as.matrix(x)))
# From igraph object
as_dgCMatrix(igraph::graph_from_adjacency_matrix(x))
# From array
myarray <- array(dim=c(10,10,2))
myarray[,,1] <- as.matrix(x)
myarray[,,2] <- as.matrix(x)
myarray
as_dgCMatrix(myarray)
# From a diffnet object
ans <- as_dgCMatrix(medInnovationsDiffNet)
str(ans)
```

bass Bass Model

Description

Fits the Bass Diffusion model. In particular, fits an observed curve of proportions of adopters to $F(t)$, the proportion of adopters at time t, finding the corresponding coeficients p, Innovation rate, and q, imitation rate.

Usage

```
fitbass(dat, ...)
## S3 method for class 'diffnet'
fitbass(dat, ...)
## Default S3 method:
fitbass(dat, ...)
## S3 method for class 'diffnet_bass'
plot(
    x,
    y = 1:length(x$m$lhs()),
    add = FALSE,
    pch = c(21, 24),
    main = "Bass Diffusion Model",
    ylab = "Proportion of adopters",
    xlab = "Time",
    type = c("b", "b"),
    lty = c(2, 1),
    col = c("black", "black"),
    bg = c("lightblue", "gray"),
        include.legend = TRUE,
)
bass_F(Time, p, q)
bass_dF(p, q, Time)
bass_f(Time, p, q)
```


Arguments

dat
Either a diffnet object, or a numeric vector. Observed cumulative proportion of adopters.
... Further arguments passed to the method.

x	An object of class diffnet_bass.
y	Integer vector. Time (label).
add	Passed to matplot.
pch	Passed to matplot.
main	Passed to matplot.
ylab	Character scalar. Label of the y axis.
xlab	Character scalar. Label of the x axis.
type	Passed to matplot.
lty	Passed to matplot.
col	Passed to matplot.
bg	Passed to matplot.
include.legend	Logical scalar. When TRUE, draws a legend.
Time	Integer vector with values greater than 0. The t parameter.
p	Numeric scalar. Coefficient of innovation.
q	Numeric scalar. Coefficient of imitation.

Details

The function fits the bass model with parameters $[p, q]$ for values $t=1,2, \ldots, T$, in particular, it fits the following function:

$$
F(t)=\frac{1-\exp -(p+q) t}{1+\frac{q}{p} \exp -(p+q) t}
$$

Which is implemented in the bass_F function. The proportion of adopters at time $t, f(t)$ is:

$$
f(t)= \begin{cases}F(t), & t=1 \\ F(t)-F(t-1), & t>1\end{cases}
$$

and it's implemented in the bass_f function.
For testing purposes only, the gradient of F with respect to p and q is implemented in bass_dF.
The estimation is done using nl s.

Value

An object of class nls and diffnet_bass. For more details, see nls in the stats package.

Author(s)

George G. Vega Yon

References

Bass's Basement Institute Institute. The Bass Model. (2010). Available at: http: //www. bassbasement . org/BassModel/Default.aspx. (Accessed: 29th March 2017)

See Also

Other statistics: classify_adopters(), cumulative_adopt_count(), dgr(), ego_variance(), exposure(), hazard_rate(), infection(), moran(), struct_equiv(), threshold(), vertex_covariate_dist()

Examples

```
# Fitting the model for the Brazilian Farmers Data ------------------------------
data(brfarmersDiffNet)
ans <- fitbass(brfarmersDiffNet)
# All the methods that work for the -nls- object work here
ans
summary(ans)
coef(ans)
vcov(ans)
# And the plot method returns both, fitted and observed curve
plot(ans)
```

bootnet Network Bootstrapping

Description

Implements the bootstrapping method described in Snijders and Borgatti (1999). This function is essentially a wrapper of boot.

Usage

```
resample_graph(graph, self = NULL, useR = FALSE, ...)
    bootnet(graph, statistic, R, resample.args = list(self = FALSE), ...)
    ## S3 method for class 'diffnet_bootnet'
    c(..., recursive = FALSE)
    ## S3 method for class 'diffnet_bootnet'
    print(x, ...)
    ## S3 method for class 'diffnet_bootnet'
    hist(
        x,
        main = "Empirical Distribution of Statistic",
        xlab = expression(Values ~ of ~ t),
        breaks = 20,
        annotated = TRUE,
        b0 = expression(atop(plain("") %up% plain("")), t[0]),
```

```
    b = expression(atop(plain("") %up% plain("")), t[]),
    ask = TRUE,
)
```


Arguments

graph	Any class of accepted graph format (see netdiffuseR-graphs).
self	Logical scalar. When TRUE autolinks (loops, self edges) are allowed (see details).
useR	Logical scalar. When TRUE, autolinks are filled using an R based rutine. Otherwise it uses the Rcpp implementation (default). This is intended for testing only.
	Further arguments passed to the method (see details).
statistic	A function that returns a vector with the statistic(s) of interest. The first argument must be the graph, and the second argument a vector of indices (see details)
R	Number of reps
resample.args	List. Arguments to be passed to resample_graph
recursive	Ignored
x	A diffnet_bootnet class object.
main	Character scalar. Title of the histogram.
xlab	Character scalar. x-axis label.
breaks	Passed to hist.
annotated	Logical scalar. When TRUE marks the observed data average and the simulated data average.
b0	Character scalar. When annotated=TRUE, label for the value of b0.
b	Character scalar. When annotated=TRUE, label for the value of b.
ask	Logical scalar. When TRUE, asks the user to type <Enter> to see each plot (as many as statistics where computed).

Details

Just like the boot function of the boot package, the statistic that is passed must have as arguments the original data (the graph in this case), and a vector of indicides. In each repetition, the graph that is passed is a resampled version generated as described in Snijders and Borgatti (1999).
When self = FALSE, for pairs of individuals that haven been drawn more than once the algorithm, in particular, resample_graph, takes care of filling these pseudo autolinks that are not in the diagonal of the network. By default it is assumed that these pseudo-autolinks depend on whether the original graph had any, hence, if the diagonal has any non-zero value the algorithm assumes that self= TRUE, skiping the 'filling algorithm'. It is important to notice that, in order to preserve the density of the original network, when assigning an edge value to a pair of the form (i, i) (pseudo-autolinks), such is done with probabilty proportional to the density of the network, in other words, before
choosing from the existing list of edge values, the algorithm decides whether to set a zero value first.

The vector of indices that is passed to statistic, an integer vector with range 1 to n, corresponds to the drawn sample of nodes, so the user can, for example, use it to get a subset of a data.frame that will be used with the graph.

Value

A list of class diffnet_bootnet containing the following:
graph The graph passed to bootnet.
p.value \quad The resulting p-value of the test (see details).
t0 The observed value of the statistic.
mean_t The average value of the statistic applied to the simulated networks.
var_t A vector of length length(t0). Bootstrap variances.
$R \quad$ Number of simulations.
statistic The function statistic passed to bootnet.
boot A boot class object as return from the call to boot.
resample.args The list resample.args passed to bootnet.

References

Snijders, T. A. B., \& Borgatti, S. P. (1999). Non-Parametric Standard Errors and Tests for Network Statistics. Connections, 22(2), 1-10. Retrieved from https://www.stats.ox.ac.uk/~snijders/ Snijders_Borgatti.pdf

See Also

Other Functions for inference: moran(), struct_test()

Examples

\#
set.seed(13)
g <- rgraph_ba(t=99)
ans <- bootnet(g, function(w, ...) length(w@x), R=100) ans

```
brfarmers Brazilian Farmers
```


Description

From Valente (1995) "In the mid-1960s, Rogers and others conducted an ambitious 'three country study' to determine influences on adoption of farm practices in Nigeria, India and Brazil. [...] Only in Brazil, and only for hybrid corn, did adoption of the innovation reach more than a small proportion of the farmers."

Usage

brfarmers

Format

A data frame with 692 rows and 148 columns:
village village number
idold respondent id
age respondent's age
liveout Lived outside of community
visits \# of visits to large city
contact \# of contacts with relatives
coop membership in coop
orgs membership in organizations
patry Patriarchalism score
liter Literate
news1 \# of newspapers or mags pr mon
subs subscribe to news
radio1 Own radio
radio2 Frequency radio listening
radio3 program preference
tv frequency Tv viewing
movie freq movie attendance
letter freq letter writing
source total \# of sources used for ag
practA Ever used practice A
practB Ever used practice B
practC Ever used practice C
practD Ever used practice D
practE Ever used practice E
practF Ever used practice F
practG Ever used practice G
practH Ever used practice H
practI Ever used practice I
practJ Ever used practice J
practK Ever used practice K
practL Ever used practice L
yrA A year of adoption
$\mathbf{y r B}$ B year of adoption
$\mathbf{y r C}$ C year of adoption
$\mathbf{y r D}$ D year of adoption
$\mathbf{y r E}$ E year of adoption
$\mathbf{y r F}$ F year of adoption
yrG G year of adoption
$\mathbf{y r H}$ H year of adoption
yrI I year of adoption
yrJ J year of adoption
yrK K year of adoption
$\mathbf{y r L}$ L year of adoption
curA A Current use
curB B Current use
curC C Current use
curD D Current use
curE E Current use
curF F Current use
curG G Current use
curH H Current use
curI I Current use
curJ J Current use
curK K Current use
curL L Current use
srce1 Source of aware in A
timeA Years ago 1st aware
src2 Source of more info on A
src3 Most influential source
use use during trial stage
total total \# of practices adopted
futatt Future attitude
achiev Achievement Score
attcred Attitude toward credit
littest Score on functional literacy t
acarcomm Communication with ACAR repres
econk Economic knowledge
caact recognize any change agent act
hfequip \# of home \& farm equips owned
politk political knowledge score
income income
land1 total land area in pasture
land2 total land area planted
cows \# of cows giving milk
land3 total land owned
respf respondent named as friend
respa respondent named as ag adv
resppa respondent named for practic A
resppb respondent named for practic B
resppe respondent named for practic C
poly polymorphic OL for 3 practices
respl respondent named for loan
resppi resp named for price info
repsccp resp named for coop comm proj
counter counterfactuality score
opinion opinionness score
school years of schooling by resp
pk1 political know 1
pk2 political know 2
pk3 political know 3
pk4 political know 4
pk5 political know 5
innovtim innovativeness time
adoptpet adoption percent
discon \# of practices discontinued
mmcred Mass media credibility
trust Trust

```
stusincn Status inconsistency
nach N achievement motivation
attcred2 Attitude toward credit
risk Risk taking
socpart Social participate
patriarc patriarchy
crdit2 attit to credit for product
visicit visitin cities
nondep non-dependence on farming
oltotal OL total }7\mathrm{ items t-score
innov overall innovativeness score
icosmo cosmo index
immexp mass media exposure index
iempath empathy index
iach5 achievement motivation index 5
iach7 achievement motivation index 7
ipk political knowledge index
immc mass media credibililty index
iol OL index
yr Actual Year of Adoption
fs - MISSING INFO -
ado Time of Adoption
tri Triangular values used as appro
hlperc high low percent of diffusion
hlperc1 - MISSING INFO -
new new or old villages
card1 card number
sour1 Source: radio
sour2 Source: TV
sour3 Source: Newpaper
sour4 Source: Magazine
sour5 Source: ACAR Bulletin
sour6 Source: Agronomist
sour7 Source: Neighbor
sourc6 - MISSING INFO -
adopt - MISSING INFO -
net31 nomination friend 1
```

net32 nomination friend 2
net 33 nomination friend 3
net21 nomination influential 1
net22 nomination influential 2
net23 nomination influential 3
net11 nomination practice A
net12 nomination practice B
net13 nomination practice C
net41 nomination coop comm proj
id — MISSING INFO -
commun Number of community
toa Time of Adoption
test — MISSING INFO -
study Number of study in Valente (1995)

Details

The dataset has 692 respondents (farmers) from 11 communities. Collected during 1966, it spans 20 years of farming pracitices.

Source

The Brazilian Farmers data were collected as part of a USAID-funded study of farming practicing in the three countries, India, Nigeria, and Brazil. There was only one wave of data that contained survey questions regarding social networks, and only in Brazil did diffusion of the studied farming innovations reach an appreciable saturation level- that was for hybrid seed corn. The data were stored along with hundreds of other datasets by the University of Wisconsin library and I, Tom Valente, paid a fee to have the disks mailed to me in the early 1990s.

References

Rogers, E. M., Ascroft, J. R., \& Röling, N. (1970). Diffusion of Innovation in Brazil, Nigeria, and India. Unpublished Report. Michigan State University, East Lansing.

Valente, T. W. (1995). Network models of the diffusion of innovations (2nd ed.). Cresskill N.J.: Hampton Press.

See Also

Other diffusion datasets: brfarmersDiffNet, diffusion-data, fakeDynEdgelist, fakeEdgelist, fakesurveyDyn, fakesurvey, kfamilyDiffNet, kfamily, medInnovationsDiffNet, medInnovations

Description

A directed dynamic graph with 692 vertices and 21 time periods. The attributes in the graph are static and described in brfarmers.

Format

A diffnet class object.

See Also

Other diffusion datasets: brfarmers, diffusion-data, fakeDynEdgelist, fakeEdgelist, fakesurveyDyn, fakesurvey, kfamilyDiffNet, kfamily, medInnovationsDiffNet, medInnovations
c.diffnet

Combine diffnet objects

Description

Combining diffnet objects that share time periods and attributes names, but vertices ids (only valid for diffnet objects that have an empty intersection between vertices ids).

Usage

\#\# S3 method for class 'diffnet'
c(..., recursive = FALSE)

Arguments

... diffnet objects to be concatenated.
recursive Ignored.

Details

The diffnet objects in . . . must fulfill the following conditions:

1. Have the same time range,
2. have the same vertex attributes, and
3. have an empty intersection of vertices ids,

The meta data regarding undirected, value, and multiple are set to TRUE if any of the concatenating diffnet objects has that meta equal to TRUE.
The resulting diffnet object's columns in the vertex attributes ordering (both dynamic and static) will coincide with the first diffnet's ordering.

Value

A new diffnet object with as many vertices as the sum of each concatenated diffnet objects' number of vertices.

See Also

Other diffnet methods: \%*\%(), as.array.diffnet(), diffnet-arithmetic, diffnet-class, diffnet_index, plot.diffnet(), summary.diffnet()

Examples

```
# Calculate structural equivalence exposure by city ------------------------------
data(medInnovationsDiffNet)
# Subsetting diffnets
city1 <- medInnovationsDiffNet[medInnovationsDiffNet[["city"]] == 1]
city2 <- medInnovationsDiffNet[medInnovationsDiffNet[["city"]] == 2]
city3 <- medInnovationsDiffNet[medInnovationsDiffNet[["city"]] == 3]
city4 <- medInnovationsDiffNet[medInnovationsDiffNet[["city"]] == 4]
# Computing exposure in each one
city1[["expo_se"]] <- exposure(city1, alt.graph="se", valued=TRUE)
city2[["expo_se"]] <- exposure(city2, alt.graph="se", valued=TRUE)
city3[["expo_se"]] <- exposure(city3, alt.graph="se", valued=TRUE)
city4[["expo_se"]] <- exposure(city4, alt.graph="se", valued=TRUE)
# Concatenating all
diffnet <- c(city1, city2, city3, city4)
diffnet
```

classify_adopters Classify adopters accordingly to Time of Adoption and Threshold levels.

Description

Adopters are classified as in Valente (1995). In general, this is done depending on the distance in terms of standard deviations from the mean of Time of Adoption and Threshold.

Usage

classify_adopters(...)
classify(...)
\#\# S3 method for class 'diffnet'
classify_adopters(graph, include_censored = FALSE, ...)

```
## Default S3 method:
classify_adopters(
    graph,
    toa,
    t0 = NULL,
    t1 = NULL,
    expo = NULL,
    include_censored = FALSE,
)
## S3 method for class 'diffnet_adopters'
ftable(x, as.pcent = TRUE, digits = 2, ...)
## S3 method for class 'diffnet_adopters'
as.data.frame(x, row.names = NULL, optional = FALSE, ...)
## S3 method for class 'diffnet_adopters'
plot(x, y = NULL, ftable.args = list(), table.args = list(), ...)
```


Arguments

\ldots	Further arguments passed to the method.
graph include_censored	A dynamic graph.
	Logical scalar, passed to threshold.
toa	Integer vector of length n with times of adoption.
t0	Integer scalar passed to threshold and toa_mat.
t1	Integer scalar passed to toa_mat.
expo	Numeric matrix of size $n \times T$ with network exposures.
x	A diffnet_adopters class object.
as.pcent	Logical scalar. When TRUE returns a table with percentages instead.
digits	Integer scalar. Passed to round.
row.names	Passed to as.data.frame.
optional	Passed to as.data.frame.
y	Ignored.
ftable.args	List of arguments passed to ftable.
table.args	List of arguments passed to table.

Details

Classifies (only) adopters according to time of adoption and threshold as described in Valente (1995). In particular, the categories are defined as follow:

For Time of Adoption, with toa as the vector of times of adoption:

- Early Adopters: toa[i] <= mean(toa) -sd(toa),
- Early Majority: mean(toa) -sd(toa) < toa[i] <= mean(toa),
- Late Majority: mean(toa) < toa[i] <= mean(toa) + sd(toa), and
- Laggards: mean(toa) + sd(toa) <toa[i] .

For Threshold levels, with thr as the vector of threshold levels:

- Very Low Thresh.: thr[i] <= mean(thr) -sd(thr),
- Low Thresh.: mean(thr) -sd(thr) < thr[i] <= mean(thr),
- High Thresh.: mean (thr) < thr[i] <= mean(thr) + sd(thr), and
- Very High. Thresh.: mean(thr) + sd(thr) <thr[i].

By default threshold levels are not computed for left censored data. These will have a NA value in the thr vector.
The plot method, plot.diffnet_adopters, is a wrapper for the plot.table method. This generates a mosaicplot plot.

Value

A list of class diffnet_adopters with the following elements:
toa A factor vector of length n with 4 levels: "Early Adopters", "Early Majority", "Late Majority", and "Laggards"
thr A factor vector of length n with 4 levels: "Very Low Thresh.", "Low Thresh.", "High Thresh.", and "Very High Thresh."

Author(s)

George G. Vega Yon

References

Valente, T. W. (1995). "Network models of the diffusion of innovations" (2nd ed.). Cresskill N.J.: Hampton Press.

See Also

Other statistics: bass, cumulative_adopt_count(), dgr(), ego_variance(), exposure(), hazard_rate(), infection(), moran(), struct_equiv(), threshold(), vertex_covariate_dist()

Examples

```
# Classifying brfarmers ---------------------------------------------------------------
x <- brfarmersDiffNet
diffnet.toa(x)[x$toa==max(x$toa, na.rm = TRUE)] <- NA
out <- classify_adopters(x)
# This is one way
```

```
round(
with(out, ftable(toa, thr, dnn=c("Time of Adoption", "Threshold")))/
    nnodes(x[!is.na(x$toa)])*100, digits=2)
# This is other
ftable(out)
# Can be coerced into a data.frame, e.g. ---------------------------------------
    str(classify(brfarmersDiffNet))
    ans <- cbind(
    as.data.frame(classify(brfarmersDiffNet)), brfarmersDiffNet$toa
    )
    head(ans)
# Creating a mosaic plot with the medical innovations ---------------------------
x <- classify(medInnovationsDiffNet)
plot(x)
```

classify_graph Analyze an R object to identify the class of graph (if any)

Description

Analyze an R object to identify the class of graph (if any)

Usage

classify_graph(graph)

Arguments

graph Any class of accepted graph format (see netdiffuseR-graphs).

Details

This function analyzes an R object and tries to classify it among the accepted classes in netdiffuseR. If the object fails to fall in one of the types of graphs the function returns with an error indicating what (and when possible, where) the problem lies.

The function was designed to be used with as_diffnet.

Value

Whe the object fits any of the accepted graph formats, a list of attributes including

type	Character scalar. Whether is a static or a dynamic graph
class	Character scalar. The class of the original object
ids	Character vector. Labels of the vertices

pers Integer vector. Labels of the time periods
nper Integer scalar. Number of time periods
n
Integer scalar. Number of vertices in the graph
Otherwise returns with error.

Author(s)

George G. Vega Yon

See Also

as_diffnet, netdiffuseR-graphs

```
cumulative_adopt_count
```


Cummulative count of adopters

Description

For each time period, calculates the number of adopters, the proportion of adopters, and the adoption rate.

Usage

cumulative_adopt_count(obj)

Arguments

obj
A $n \times T$ matrix (Cumulative adoption matrix obtained from toa_mat) or a diffnet object.

Details

The rate of adoption-returned in the 3rd row out the resulting matrix-is calculated as

$$
\frac{q_{t}-q_{t-1}}{q_{t-1}}
$$

where q_{i} is the number of adopters in time t. Note that it is only calculated fot $t>1$.

Value

A $3 \times T$ matrix, where its rows contain the number of adoptes, the proportion of adopters and the rate of adoption respectively, for earch period of time.

Author(s)

George G. Vega Yon \& Thomas W. Valente

See Also

Other statistics: bass, classify_adopters(), dgr(), ego_variance(), exposure(), hazard_rate(), infection(), moran(), struct_equiv(), threshold(), vertex_covariate_dist()
dgr
Indegree, outdegree and degree of the vertices

Description

Computes the requested degree measure for each node in the graph.

```
Usage
    dgr(
        graph,
        cmode = "degree",
        undirected = getOption("diffnet.undirected", FALSE),
        self = getOption("diffnet.self", FALSE),
        valued = getOption("diffnet.valued", FALSE)
    )
    ## S3 method for class 'diffnet_degSeq'
    plot(
        x,
        breaks = min(100L, nrow(x)/5),
        freq = FALSE,
        y = NULL,
        log = "xy",
        hist.args = list(),
        slice = ncol(x),
        xlab = "Degree",
        ylab = "Freq",
    )
```


Arguments

graph Any class of accepted graph format (see netdiffuseR-graphs).
cmode Character scalar. Either "indegree", "outdegree" or "degree".
undirected Logical scalar. When TRUE only the lower triangle of the adjacency matrix will considered (faster).
self Logical scalar. When TRUE autolinks (loops, self edges) are allowed (see details).
valued Logical scalar. When TRUE weights will be considered. Otherwise non-zero values will be replaced by ones.
$d g r$

x	An diffnet_degSeq object
breaks	Passed to hist.
freq	Logical scalar. When TRUE the y-axis will reflex counts, otherwise densities.
y	Ignored
log	Passed to plot (see par).
hist.args	Arguments passed to hist.
slice	Integer scalar. In the case of dynamic graphs, number of time point to plot.
xlab	Character scalar. Passed to plot.
ylab	Character scalar. Passed to plot.
\ldots	Further arguments passed to plot.

Value

A numeric matrix of size $n \times T$. In the case of plot, returns an object of class histogram.

Author(s)

George G. Vega Yon

See Also

Other statistics: bass, classify_adopters(), cumulative_adopt_count(), ego_variance(), exposure(), hazard_rate(), infection(), moran(), struct_equiv(), threshold(), vertex_covariate_dist()
Other visualizations: diffusionMap(), drawColorKey(), grid_distribution(), hazard_rate(), plot_adopters(), plot_diffnet2(), plot_diffnet(), plot_infectsuscep(), plot_threshold(), rescale_vertex_igraph()

Examples

```
# Comparing degree measurements ------------------------------------------------------
# Creating an undirected graph
graph <- rgraph_ba()
graph
data.frame(
    In=dgr(graph, "indegree", undirected = FALSE),
    Out=dgr(graph, "outdegree", undirected = FALSE),
    Degree=dgr(graph, "degree", undirected = FALSE)
)
# Testing on Korean Family Planning (weighted graph) -----------------------------
data(kfamilyDiffNet)
d_unvalued <- dgr(kfamilyDiffNet, valued=FALSE)
d_valued <- dgr(kfamilyDiffNet, valued=TRUE)
any(d_valued!=d_unvalued)
```

```
# Classic Scale-free plot -------------------------------------------------------------
set.seed(1122)
g <- rgraph_ba(t=1e3-1)
hist(dgr(g))
# Since by default uses logscale, here we suppress the warnings
# on points been discarded for <=0.
suppressWarnings(plot(dgr(g)))
```

 diag_expand Creates a square matrix suitable for spatial statistics models.

Description

Creates a square matrix suitable for spatial statistics models.

Usage

```
diag_expand(...)
## S3 method for class 'list'
diag_expand(
    graph,
    self = getOption("diffnet.self"),
    valued = getOption("diffnet.valued"),
    ...
    )
    ## S3 method for class 'diffnet'
    diag_expand(
        graph,
        self = getOption("diffnet.self"),
        valued = getOption("diffnet.valued"),
        ...
    )
    ## S3 method for class 'matrix'
    diag_expand(
        graph,
        nper,
        self = getOption("diffnet.self"),
        valued = getOption("diffnet.valued"),
    )
    ## S3 method for class 'array'
    diag_expand(
```

```
    graph,
    self = getOption("diffnet.self"),
    valued = getOption("diffnet.valued"),
    ...
)
## S3 method for class 'dgCMatrix'
diag_expand(
    graph,
    nper,
    self = getOption("diffnet.self"),
    valued = getOption("diffnet.valued"),
)
```


Arguments

\ldots.	Further arguments to be passed to the method.
graph	Any class of accepted graph format (see netdiffuseR-graphs).
self	Logical scalar. When TRUE autolinks (loops, self edges) are allowed (see de- tails).
valued	Logical scalar. When TRUE weights will be considered. Otherwise non-zero values will be replaced by ones.
nper	Integer scalar. Number of time periods of the graph.

Value

A square matrix of class dgCMatrix of size (nnode $(g) * n p e r)^{\wedge} 2$

Examples

```
# Simple example ----------------------------------------------------------------
set.seed(23)
g <- rgraph_er(n=10, p=.5, t=2,undirected=TRUE)
# What we've done: A list with 2 bernoulli graphs
g
# Expanding to a 20*20 matrix with structural zeros on the diagonal
# and on cell 'off' adjacency matrix
diag_expand(g)
```

diffnet-arithmetic diffnet Arithmetic and Logical Operators

Description

Addition, subtraction, network power of diffnet and logical operators such as \& and \| as objects

Usage

\#\# S3 method for class 'diffnet'
$x^{\wedge} y$
graph_power(x, y, valued = getOption("diffnet.valued", FALSE))
\#\# S3 method for class 'diffnet'
y / x
\#\# S3 method for class 'diffnet'
x-y
\#\# S3 method for class 'diffnet'
x * y
\#\# S3 method for class 'diffnet'
$x \& y$
\#\# S3 method for class 'diffnet'
$\mathrm{x} \mid \mathrm{y}$

Arguments

x
$y \quad$ Integer scalar. Power of the network
valued Logical scalar. When FALSE all non-zero entries of the adjacency matrices are set to one.

Details

Using binary operators, ease data management process with diffnet.
By default the binary operator ${ }^{\wedge}$ assumes that the graph is valued, hence the power is computed using a weighted edges. Otherwise, if more control is needed, the user can use graph_power instead.

Value

A diffnet class object

See Also

Other diffnet methods: \%*\%(), as.array.diffnet(), c.diffnet(), diffnet-class, diffnet_index, plot.diffnet(), summary.diffnet()

Examples

```
# Computing two-steps away threshold with the Brazilian farmers data --------
data(brfarmersDiffNet)
expo1 <- threshold(brfarmersDiffNet)
expo2 <- threshold(brfarmersDiffNet^2)
# Computing correlation
cor(expo1,expo2)
# Drawing a qqplot
qqplot(expo1, expo2)
# Working with inverse --------------------------------------------------------------
brf2_step <- brfarmersDiffNet^2
brf2_step <- 1/brf2_step
# Removing the first 3 vertex of medInnovationsDiffnet --------------------------
data(medInnovationsDiffNet)
# Using a diffnet object
first3Diffnet <- medInnovationsDiffNet[1:3,,]
medInnovationsDiffNet - first3Diffnet
# Using indexes
medInnovationsDiffNet - 1:3
# Using ids
medInnovationsDiffNet - as.character(1001:1003)
```


diffnet-class Creates a diffnet class object

Description

diffnet objects contain difussion networks. With adjacency matrices and time of adoption (toa) vector as its main components, most of the package's functions have methods for this class of objects.

Usage

as_diffnet(graph, ...)
\#\# Default S3 method:

```
as_diffnet(graph, ...)
## S3 method for class 'networkDynamic'
as_diffnet(graph, toavar, ...)
new_diffnet(
    graph,
    toa,
    t0 = min(toa, na.rm = TRUE),
    t1 = max(toa, na.rm = TRUE),
    vertex.dyn.attrs = NULL,
    vertex.static.attrs = NULL,
    id.and.per.vars = NULL,
    graph.attrs = NULL,
    undirected = getOption("diffnet.undirected"),
    self = getOption("diffnet.self"),
    multiple = getOption("diffnet.multiple"),
    name = "Diffusion Network",
    behavior = "Unspecified"
)
## S3 method for class 'diffnet'
as.data.frame(
    x,
    row.names = NULL,
    optional = FALSE,
    attr.class = c("dyn", "static"),
)
diffnet.attrs(
    graph,
    element = c("vertex", "graph"),
    attr.class = c("dyn", "static"),
    as.df = FALSE
)
diffnet.attrs(graph, element = "vertex", attr.class = "static") <- value
diffnet.toa(graph)
diffnet.toa(graph, i) <- value
## S3 method for class 'diffnet'
print(x, ...)
nodes(graph)
```

```
diffnetLapply(graph, FUN, ...)
## S3 method for class 'diffnet'
str(object, ...)
## S3 method for class 'diffnet'
dimnames(x)
## S3 method for class 'diffnet'
t(x)
## S3 method for class 'diffnet'
dim(x)
```


Arguments

graph A dynamic graph (see netdiffuseR-graphs).
... Further arguments passed to the jmethod.
toavar Character scalar. Name of the variable that holds the time of adoption.
toa Numeric vector of size n. Times of adoption.
t0 Integer scalar. Passed to toa_mat.
t1 Integer scalar. Passed to toa_mat.
vertex.dyn.attrs
Vertices dynamic attributes (see details).
vertex.static.attrs
Vertices static attributes (see details).
id.and.per.vars
A character vector of length 2 . Optionally specified to check the order of the rows in the attribute data.
graph.attrs Graph dynamic attributes (not supported yet).
undirected Logical scalar. When TRUE only the lower triangle of the adjacency matrix will considered (faster).
self Logical scalar. When TRUE autolinks (loops, self edges) are allowed (see details).
multiple Logical scalar. When TRUE allows multiple edges.
name \quad Character scalar. Name of the diffusion network (descriptive).
behavior Character scalar. Name of the behavior been analyzed (innovation).
x
row.names Ignored.
optional Ignored.
attr.class Character vector/scalar. Indicates the class of the attribute, either dynamic ("dyn"), or static ("static").
element Character vector/scalar. Indicates what to retrieve/alter.

as.df	Logical scalar. When TRUE returns a data.frame.
value	In the case of diffnet. toa, replacement, otherwise see below.
i	Indices specifying elements to replace. See Extract.
FUN	a function to be passed to lapply
object	A diffnet object.

Details

diffnet objects hold both, static and dynamic vertex attributes. When creating diffnet objects, these can be specified using the arguments vertex.static.attrs and vertex.dyn.attrs; depending on whether the attributes to specify are static or dynamic, netdiffuseR currently supports the following objects:

Class	Dimension	Check sorting
Static attributes		
matrix	with n rows	id
data.frame	with n rows	id
vector	of length n	-
Dynamic attributes		
matrix	with $n \times T$ rows	id, per
data.frame	with $n \times T$ rows	id, per
vector	of length $n \times T$	-
list	of length T with matrices or data.frames of n rows	id, per

The last column, Check sorting, lists the variables that the user should specify if he wants the function to check the order of the rows of the attributes (notice that this is not possible for the case of vectors). By providing the name of the vertex id variable, id, and the time period id variable, per, the function makes sure that the attribute data is presented in the right order. See the example below. If the user does not provide the names of the vertex id and time period variables then the function does not check the way the rows are sorted, further it assumes that the data is in the correct order.

Value

A list of class diffnet with the following elements:

```
graph A list of length T. Containing sparse square matrices of size n and class dgCMatrix.
toa An integer vector of size T with times of adoption.
adopt, cumadopt
    Numeric matrices of size n < T as those returned by toa_mat.
vertex.static.attrs
    If not NULL, a data frame with }n\mathrm{ rows with vertex static attributes.
vertex.dyn.attrs
A list of length \(T\) with data frames containing vertex attributes throught time (dynamic).
```

graph.attrs
meta

A data frame with T rows.
A list of length 9 with the following elements:

- type: Character scalar equal to "dynamic".
- class: Character scalar equal to "list".
- ids: Character vector of size n with vertices' labels.
- pers: Integer vector of size T.
- nper: Integer scalar equal to T.
- n : Integer scalar equal to n.
- self: Logical scalar.
- undirected: Logical scalar.
- multiple: Logical scalar.
- name: Character scalar.
- behavior: Character scalar.

Auxiliary functions

diffnet.attrs Allows retriving network attributes. In particular, by default returns a list of length T with data frames with the following columns:

1. per Indicating the time period to which the observation corresponds.
2. toa Indicating the time of adoption of the vertex.
3. Further columns depending on the vertex and graph attributes.

Each vertex static attributes' are repeated T times in total so that these can be binded (rbind) to dynamic attributes.
When as. $d f=T R U E$, this convenience function is useful as it can be used to create event history (panel data) datasets used for model fitting.
Conversely, the replacement method allows including new vertex or graph attributes either dynamic or static (see examples below).
diffnet.toa(graph) works as an alias of graph\$toa. The replacement method, diffnet.toa<used as diffnet. toa (graph)<- . . , is the right way of modifying times of adoption as when doing so it performs several checks on the time ranges, and recalculates adoption and cumulative adoption matrices using toa_mat.
nodes(graph) is an alias for graph\$meta\$ids.

Author(s)

George G. Vega Yon

See Also

Default options are listed at netdiffuseR-options
Other diffnet methods: \%*\%(), as.array.diffnet(), c.diffnet(), diffnet-arithmetic, diffnet_index, plot.diffnet(), summary.diffnet()
Other data management functions: edgelist_to_adjmat(), egonet_attrs(), isolated(), survey_to_diffnet()

Examples

```
# Creating a random graph
set.seed(123)
graph <- rgraph_ba(t=9)
graph <- lapply(1:5, function(x) graph)
# Pretty TOA
names(graph) <- 2001L:2005L
toa <- sample(c(2001L:2005L,NA), 10, TRUE)
# Creating diffnet object
diffnet <- new_diffnet(graph, toa)
diffnet
summary(diffnet)
# Plotting slice 4
plot(diffnet, t=4)
# ATTRIBUTES -----------------------------------------------------------------------
# Retrieving attributes
diffnet.attrs(diffnet, "vertex", "static")
# Now as a data.frame (only static)
diffnet.attrs(diffnet, "vertex", "static", as.df = TRUE)
# Now as a data.frame (all of them)
diffnet.attrs(diffnet, as.df = TRUE)
as.data.frame(diffnet) # This is a wrapper
# Unsorted data
# Loading example data
data(fakesurveyDyn)
# Creating a diffnet object
fs_diffnet <- survey_to_diffnet(
    fakesurveyDyn, "id", c("net1", "net2", "net3"), "toa", "group",
    timevar = "time", keep.isolates=TRUE, warn.coercion=FALSE)
# Now, we extract the graph data and create a diffnet object from scratch
graph <- fs_diffnet$graph
ids <- fs_diffnet$meta$ids
graph <- Map(function(g) {
    dimnames(g) <- list(ids,ids)
    g
    },g=graph)
attrs <- diffnet.attrs(fs_diffnet, as.df=TRUE)
toa <- diffnet.toa(fs_diffnet)
# Lets apply a different sorting to the data to see if it works
n <- nrow(attrs)
```

```
attrs <- attrs[order(runif(n)),]
# Now, recreating the old diffnet object (notice -id.and.per.vars- arg)
fs_diffnet_new <- new_diffnet(graph, toa=toa, vertex.dyn.attrs=attrs,
    id.and.per.vars = c("id", "per"))
# Now, retrieving attributes. The 'new one' will have more (repeated)
attrs_new <- diffnet.attrs(fs_diffnet_new, as.df=TRUE)
attrs_old <- diffnet.attrs(fs_diffnet, as.df=TRUE)
# Comparing elements!
tocompare <- intersect(colnames(attrs_new), colnames(attrs_old))
all(attrs_new[,tocompare] == attrs_old[,tocompare], na.rm = TRUE) # TRUE!
# diffnetLapply ----------------------------------------------------------------
data(medInnovationsDiffNet)
diffnetLapply(medInnovationsDiffNet, function(x, cumadopt, ...) {sum(cumadopt)})
```

diffnet_check_attr_class
Infer whether value is dynamic or static.

Description

Intended for internal use only, this function is used in diffnet_index methods.

Usage

diffnet_check_attr_class(value, meta)

Arguments

value Either a matrix, data frame or a list. Attribute values.
meta A list. A diffnet object's meta data.

Value

The value object either as a data frame (if static) or as a list of data frames (if dynamic). If value does not follows the permitted types of diffnet_index, then returns with error.
diffnet_index Indexing diffnet objects (on development)

Description

Access and assign (replace) elements from the adjacency matrices or the vertex attributes data frames.

Usage

```
## S3 method for class 'diffnet'
    x[[name, as.df = FALSE]]
    ## S3 replacement method for class 'diffnet'
    x[[i, j]] <- value
    ## S3 method for class 'diffnet'
    x[i, j, k, drop = FALSE]
    ## S3 replacement method for class 'diffnet'
    x[i, j, k] <- value
```


Arguments

x
name String vector. Names of the vertices attributes.
as.df
i
j
value
k
drop
A diffnet class object.

Index of the i-th row of the adjacency matrix (see details).
Index of the j-th column of the adjacency matrix (see details)
Value to assign (see details)
Index of the k-th slice of the adjacency matrix (see details).

Logical scalar. When TRUE returns a data frame, otherwise a list of length T.

Logical scalar. When TRUE returns an adjacency matrix, otherwise a filtered diffnet object.

Details

The [[.diffnet methods provides access to the diffnet attributes data frames, static and dynamic. By providing the name of the corresponding attribute, depending on whether it is static or dynamic the function will return either a data frame-static attributes-or a list of these-dynamic attributes. For the assigning method, [$[<-$-diffnet, the function will infer what kind of attribute is by analyzing the dimensions of value, in particular we have the following possible cases:

Class	Dimension	Inferred
matrix	$n \times T$	Dynamic
matrix	$n \times 1$	Static

matrix	$(n \times T) \times 1$	Dynamic
data.frame	$n \times T$	Dynamic
data.frame	$n \times 1$	Static
data.frame	$(n \times T) \times 1$	Dynamic
vector	n	Static
vector	$n \times T$	Dynamic
list*	T data.frames/matrices/vectors	Dynamic

*: With $n \times 1$ data. frame/matrix or n length vector.
Other cases will return with error.
In the case of the slices index k, either an integer vector with the positions, a character vector with the labels of the time periods or a logical vector of length T can be used to specify which slices to retrieve. Likewise, indexing vertices works in the same way with the only difference that, instead of time period labels and a logical vector of length T, vertices ids labels and a logical vector of length n should be provided.
When subsetting slices, the function modifies the toa vector as well as the adopt and cumadopt matrices collapsing network tinmming. For example, if a network goes from time 1 to 20 and we set $\mathrm{k}=3: 10$, all individuals who adopted prior to time 3 will be set as adopters at time 3 , and all individuals who adopted after time 10 will be set as adopters at time 10 , changing the adoption and cumulative adoption matrices. Importantly, k have no gaps, and it should be within the graph time period range.

Value

In the case of the assigning methods, a diffnet object. Otherwise, for [[. diffnet a vector extracted from one of the attributes data frames, and for [.diffnet a list of length length(k) with the corresponding $[i, j]$ elements from the adjacency matrix.

Author(s)

George G. Vega Yon

See Also

Other diffnet methods: \%*\%(), as.array.diffnet(), c.diffnet(), diffnet-arithmetic, diffnet-class, plot.diffnet(), summary.diffnet()

Examples

```
# Creating a random diffusion network ------------------------------------------
set.seed(111)
graph <- rdiffnet(50,4)
# Accessing to a static attribute
graph[["real_threshold"]]
# Accessing to subsets of the adjacency matrix
```

```
graph[1,, 1:3, drop=TRUE]
graph[,,1:3, drop=TRUE][[1]]
# ... Now, as diffnet objects (the default)
graph[1,,1:3, drop=FALSE]
graph[,, 1:3, drop=FALSE]
# Changing values in the adjacency matrix
graph[1, , , drop=TRUE]
graph[1,,] <- -5
graph[1, , , drop=TRUE]
# Adding attributes (dynamic)
# Preparing the data
set.seed(1122)
x <- rdiffnet(30, 4, seed.p.adopt=.15)
# Calculating exposure, and storing it diffe
expoM <- exposure(x)
expoL <- lapply(seq_len(x$meta$nper), function(x) expoM[,x,drop=FALSE])
expoD <- do.call(rbind, expoL)
# Adding data (all these are equivalent)
x[["expoM"]] <- expoM
x[["expoL"]] <- expoL
x[["expoD"]] <- expoD
# Lets compare
identical(x[["expoM"]], x[["expoL"]]) # TRUE
identical(x[["expoM"]], x[["expoD"]]) # TRUE
```

diffreg Diffusion regression model

Description

A wrapper of glm, this function estimates a lagged regression model of adoption as a function of exposure and other controls as especified by the user.

Usage

diffreg(model, type = c("logit", "probit"))

Arguments

model An object of class formula where the right-hand-side is an object of class diffnet
type Character scalar. Either "probit" or "logit".

Details

The model must be in the following form:

```
<diffnet object> ~ exposure + covariate1 + covariate2 + ...
```

Where exposure can be especified either as a simple term, or as a call to the exposure function, e.g. to compute exposure with a lag of length 2 , the formula could be:
<diffnet object> ~ exposure(lags = 2) + covariate1 + covariate2 + ...

When no argument is passed to exposure, the function sets a lag of length 1 by default (see the Lagged regression section).
This is a wrapper of glm. The function does the following steps:

1. Compute exposure by calling exposure on the LHS.
2. Modify the formula so that the model is on adoption as a function of exposure and whatever covariates the user specifies.
3. Selects either "probit" or "logit" and prepares the call to glm. This includes passing the following line:
```
subset = ifelse(is.na(toa), TRUE, toa >= per)
```

This results in including observations that either did not adopted or up to the time of adoption.
4. Estimates the model.

The data passed to glm is obtained by using as.data. frame. diffnet.

Value

An object of class glm.

Lagged regression

The model estimated is a lagged regression model that has two main assumptions:

1. The network is exogenous to the behavior (no selection effect)
2. The influence effect (diffusion) happens in a lagged fasion, hence, exposure is computed lagged.

If either of these two assumptions is not met, then the model becomes endogenous, ans so inference becomes invalid.

In the case of the first assumption, the user can overcome the non-exogeneity problem by providing an alternative network. This can be done by especifying alt.graph in the exposure function so that the network becomes exogenous to the adoption.

Examples

```
data("medInnovationsDiffNet")
# Default model
ans <- diffreg(
    medInnovationsDiffNet ~ exposure + factor(city) + proage + per)
summary(ans)
```

```
diffusion-data
Diffusion Network Datasets
```


Description

Diffusion Network Datasets

Details

The three classic network diffusion datasets included in netdiffuseR are the medical innovation data originally collected by Coleman, Katz \& Menzel (1966); the Brazilian Farmers collected as part of the three country study implemented by Everett Rogers (Rogers, Ascroft, \& Röling, 1970), and Korean Family Planning data collected by researchers at the Seoul National University's School of Public (Rogers \& Kincaid, 1981). The table below summarizes the three datasets:

	Medical Innovation	Brazilian Farmers	Korean Family Planning
Country	USA	Brazil	Korean
\# Respondents	125 Doctors	692 Farmers	1,047 Women
\# Communities	4	11	25
Innovation	Tetracycline	Hybrid Corn Seed	Family Planning
Time for Diffusion	18 Months	20 Years	11 Years
Year Data Collected	$1955-1956$	1966	1973
Ave. Time to 50\%	6	16	7
Highest Saturation	0.89	0.98	0.83
Lowest Saturation	0.81	0.29	0.44
Citation	Coleman et al (1966)	Rogers et al (1970)	Rogers \& Kincaid (1981)

All datasets include a column called study which is coded as (1) Medical Innovation (2) Brazilian Farmers, (3) Korean Family Planning.

Right censored data

By convention, non-adopting actors are coded as one plus the last observed time of adoption. Prior empirical event history approaches have used this approach (Valente, 2005; Marsden and Podolny, 1990) and studies have shown that omitting such observations leads to biased results (van den Bulte \& Iyengar, 2011).

Author(s)

Thomas W. Valente

References

Burt, R. S. (1987). "Social Contagion and Innovation: Cohesion versus Structural Equivalence". American Journal of Sociology, 92(6), 1287-1335. doi: 10.1086/228667

Coleman, J., Katz, E., \& Menzel, H. (1966). Medical innovation: A diffusion study (2nd ed.). New York: Bobbs-Merrill
Granovetter, M., \& Soong, R. (1983). Threshold models of diffusion and collective behavior. The Journal of Mathematical Sociology, 9(October 2013), 165-179. doi: 10.1080/0022250X.1983.9989941
Rogers, E. M., Ascroft, J. R., \& Röling, N. (1970). Diffusion of Innovation in Brazil, Nigeria, and India. Unpublished Report. Michigan State University, East Lansing.
Everett M. Rogers, \& Kincaid, D. L. (1981). Communication Networks: Toward a New Paradigm for Research. (C. Macmillan, Ed.). New York; London: Free Press.
Mardsen, P., \& Podolny, J. (1990). Dynamic Analysis of Network Diffusion Processes, J. Weesie, H. Flap, eds. Social Networks Through Time, 197-214.

Marsden, P. V., \& Friedkin, N. E. (1993). Network Studies of Social Influence. Sociological Methods \& Research, 22(1), 127-151. doi: 10.1177/0049124193022001006
Van den Bulte, C., \& Iyengar, R. (2011). Tricked by Truncation: Spurious Duration Dependence and Social Contagion in Hazard Models. Marketing Science, 30(2), 233-248. doi: 10.1287/ mksc. 1100.0615

Valente, T. W. (1991). Thresholds and the critical mass: Mathematical models of the diffusion of innovations. University of Southern California.
Valente, T. W. (1995). "Network models of the diffusion of innovations" (2nd ed.). Cresskill N.J.: Hampton Press.
Valente, T. W. (2005). Network Models and Methods for Studying the Diffusion of Innovations. In Models and Methods in Social Network Analysis, Volume 28 of Structural Analysis in the Social Sciences (pp. 98-116). New York: Cambridge University Press.

See Also

Other diffusion datasets: brfarmersDiffNet, brfarmers, fakeDynEdgelist, fakeEdgelist, fakesurveyDyn, fakesurvey, kfamilyDiffNet, kfamily, medInnovationsDiffNet, medInnovations
diffusionMap Creates a heatmap based on a graph layout and a vertex attribute

Description

Using bi-dimensional kernel smoothers, creates a heatmap based on a graph layout and colored accordingly to x. This visualization technique is intended to be used with large graphs.

```
Usage
diffusionMap(graph, ...)
diffmap(graph, ...)
## Default S3 method:
diffusionMap(
        graph,
        x,
        x.adj = round_to_seq,
        layout = NULL,
        jitter.args = list(),
        kde2d.args = list(n = 100),
        sharp.criter = function(x, w) { wvar(x, w) > (max (x, na.rm = TRUE) - min(x, na.rm
            = TRUE))^2/12 },
)
## S3 method for class 'diffnet'
diffusionMap(graph, slice = nslices(graph), ...)
## S3 method for class 'diffnet_diffmap'
image(x, ...)
## S3 method for class 'diffnet_diffmap'
print(x, ...)
## S3 method for class 'diffnet_diffmap'
plot(x, y = NULL, ...)
```


Arguments

graph \quad A square matrix of size $n \times n$.
... Arguments passed to method.
x
x.adj
layout Either a $n \times 2$ matrix of coordinates or a layout function applied to graph (must return coordinates).
jitter.args A list including arguments to be passed to jitter.
kde2d.args A list including arguments to be passed to kde2d.
sharp.criter A function choose whether to apply a weighted mean for each cell, or randomize over the values present in that cell (see details).
slice Integer scalar. Slice of the network to be used as baseline for drawing the graph.
y
Ignored.

Details

The image is created using the function kde2d from the MASS package. The complete algorithm follows:

1. x is coerced into integer and the range is adjusted to start from 1 . NA are replaced by zero.
2. If no layout is passed, layout is computed using layout_nicely from igraph
3. Then, a kde2d map is computed for each level of x. The resulting matrices are added up as a weighted sum. This only holds if at the cell level the function sharp. criter returns FALSE.
4. The jitter function is applied to the repeated coordinates.
5. 2D kernel is computed using kde2d over the coordinates.

The function sharp.criter must take two values, a vector of levels and a vector of weights. It must return a logical scalar with value equal to TRUE when a randomization at the cell level must be done, in which case the final value of the cell is chosen using sample ($x, 1$, prob=w).
The resulting matrix can be passed to image or similar.
The argument x.adj uses by default the function round_to_seq which basically maps x to a fix length sequence of numbers such that $x . \operatorname{adj}(x)$ resembles an integer sequence.

Value

A list of class diffnet_diffmap
coords A matrix of size $n \times 2$ of vertices coordinates.
map \quad Output from kde2d. This is a list with 3 elements, vectors x, y and matrix z of size $n \times n$ (passed via kde2d. args).
h Bandwidth passed to kde2d.

Author(s)

George G. Vega Yon

References

Vega Yon, George G., and Valente, Thomas W., Visualizing Large Annotated Networks as Heatmaps using Weighted Averages based on Kernel Smoothers (Working paper).

See Also

Other visualizations: dgr(), drawColorKey(), grid_distribution(), hazard_rate(), plot_adopters(), plot_diffnet2(), plot_diffnet(), plot_infectsuscep(), plot_threshold(), rescale_vertex_igraph()

Examples

set.seed(1231)

```
# Random scale-free diffusion network
x <- rdiffnet(500, 4, seed.graph="scale-free", seed.p.adopt = .025,
    rewire = FALSE, seed.nodes = "central",
    rgraph.arg=list(self=FALSE, m=4),
    threshold.dist = function(id) runif(1,.2,.4))
# Diffusion map (no random toa)
dm0 <- diffusionMap(x, kde2d.args=list(n=150, h=.5), layout=igraph::layout_with_fr)
# Random
diffnet.toa(x) <- sample(x$toa, size = nnodes(x))
# Diffusion map (random toa)
dm1 <- diffusionMap(x, layout = dm0$coords, kde2d.args=list(n=150, h=.5))
oldpar <- par(no.readonly = TRUE)
col <- colorRampPalette(blues9)(100)
par(mfrow=c(1,2), oma=c(1,0,0,0))
image(dm0, col=col, main="Non-random Times of Adoption\nAdoption from the core.")
image(dm1, col=col, main="Random Times of Adoption")
par(mfrow=c(1,1))
mtext("Both networks have the same distribution on times of adoption", 1,
        outer = TRUE)
par(oldpar)
# Example with Brazilian Farmers
dn <- brfarmersDiffNet
# Setting last TOA as NA
diffnet.toa(dn)[dn$toa == max(dn$toa)] <-
    NA
# Coordinates
coords <- sna::gplot.layout.fruchtermanreingold(
    as.matrix(dn$graph[[1]]), layout.par=NULL
)
# Plotting diffusion
plot_diffnet2(dn, layout=coords, vertex.size = 300)
# Adding diffusion map
out <- diffusionMap(dn, layout=coords, kde2d.args=list(n=100, h=50))
col <- adjustcolor(colorRampPalette(c("white","lightblue", "yellow", "red"))(100),.5)
with(out$map, .filled.contour(x,y,z,pretty(range(z), 100),col))
```

drawColorKey
Draw a color key in the current device

Description

Draw a color key in the current device

Usage

```
drawColorKey(
        x,
        tick.marks = pretty_within(x),
        labels = tick.marks,
        main = NULL,
        key.pos = c(0.925, 0.975, 0.05, 0.95),
        pos = 2,
        nlevels = length(tick.marks),
        color.palette = viridisLite::viridis(nlevels),
        tick.width = c(0.01, 0.0075),
        add.box = TRUE,
        na.col = NULL,
        na.height = 0.1,
        na.lab = "n/a",
    )
```


Arguments

x
tick.marks
labels Character vector. When provided, specifies using different labels for the tick marks than those provided by tick.marjks.
main Character scalar. Title of the key.
key.pos A numeric vector of length 4 with relative coordinates of the key (as $\%$ of the plotting area, see par("usr"))
pos Integer scalar. Position of the axis as in text.
nlevels Integer scalar. Number of levels (colors) to include in the color key.
color. palette Color palette of length(nlevels).
tick. width Numeric vector of length 2 indicating the length of the inner and outer tick marks as percentage of the axis.
add.box Logical scalar. When TRUE adds a box around the key.
na.col Character scalar. If specified, adds an aditional box indicating the NA color.
na.height Numeric scalar. Relative height of the NA box. Only use if na.col is not NULL.
na.lab Character scalar. Label of the NA block. Only use if na.col is not NULL.
... Further arguments to be passed to rect

Value

Invisible NULL.

Author(s)

George G. Vega Yon

See Also

Other visualizations: dgr(), diffusionMap(), grid_distribution(), hazard_rate(), plot_adopters(), plot_diffnet2(), plot_diffnet(), plot_infectsuscep(), plot_threshold(), rescale_vertex_igraph()

Examples

```
set.seed(166)
x <- rnorm(100)
col <- colorRamp(c("lightblue", "yellow", "red"))((x - min(x))/(max(x) - min(x)))
col <- rgb(col, maxColorValue = 255)
plot(x, col=col, pch=19)
drawColorKey(x, nlevels = 100, border="transparent",
    main="Key\nLike A\nBoss")
```

edgelist_to_adjmat Conversion between adjacency matrix and edgelist

Description

Generates adjacency matrix from an edgelist and vice versa.

Usage

edgelist_to_adjmat(
edgelist,
$\mathrm{w}=\mathrm{NULL}$,
t0 $=$ NULL,
$\mathrm{t} 1=\mathrm{NULL}$,
$\mathrm{t}=\mathrm{NULL}$,
simplify = TRUE, undirected = getOption("diffnet.undirected"), self = getOption("diffnet.self"), multiple = getOption("diffnet.multiple"), keep.isolates = TRUE, recode.ids = TRUE
)
adjmat_to_edgelist(graph, undirected = getOption("diffnet.undirected", FALSE), keep.isolates = getOption("diffnet.keep.isolates", TRUE))

Arguments

edgelist Two column matrix/data.frame in the form of ego -source- and alter -target- (see details).

w	Numeric vector. Strength of ties (optional).
t0	Integer vector. Starting time of the ties (optional).
t1	Integer vector. Finishing time of the ties (optional).
t	Integer scalar. Repeat the network t times (if no t0, t1 are provided).
simplify	Logical scalar. When TRUE and times=NULL it will return an adjacency matrix, otherwise an array of adjacency matrices. (see details).
undirected	Logical scalar. When TRUE only the lower triangle of the adjacency matrix will considered (faster).
self	Logical scalar. When TRUE autolinks (loops, self edges) are allowed (see de- tails).
multiple	Logical scalar. When TRUE allows multiple edges.
keep.isolates	Logical scalar. When FALSE, rows with NA/NULL values (isolated vertices un- less have autolink) will be droped (see details).
recode.ids	Logical scalar. When TRUE ids are recoded using as.factor (see details).
graph	Any class of accepted graph format (see netdiffuseR-graphs).

Details

When converting from edglist to adjmat the function will recode the edgelist before starting. The user can keep track after the recording by checking the resulting adjacency matrices' row. names. In the case that the user decides skipping the recoding (because wants to keep vertices index numbers, implying that the resulting graph will have isolated vertices), he can override this by setting recode.ids=FALSE (see example).
When multiple edges are included, multiple=TRUE, each vertex between $\{i, j\}$ will be counted as many times it appears in the edgelist. So if a vertex $\{i, j\}$ appears 2 times, the adjacency matrix element (i, j) will be 2 .

Edges with incomplete information (missing data on w or times) are not included on the graph. Incomplete cases are tagged using complete.cases and can be retrieved by the user by accessing the attribute incomplete.
Were the case that either ego or alter are missing (i.e. NA values), the function will either way include the non-missing vertex. See below for an example of this.
The function performs several checks before starting to create the adjacency matrix. These are:

- Dimensions of the inputs, such as number of columns and length of vectors
- Having complete cases. If anly edge has a non-numeric value such as NAs or NULL in either times or w, it will be removed. A full list of such edges can be retrieved from the attribute incomplete
- Nodes and times ids coding
recode. ids=FALSE is useful when the vertices ids have already been coded. For example, after having use adjmat_to_edgelist, ids are correctly encoded, so when going back (using edgelist_to_adjmat) recode.ids should be FALSE.

Value

In the case of edgelist_to_adjmat either an adjacency matrix (if times is NULL) or an array of these (if times is not null). For adjmat_to_edgelist the output is an edgelist with the following columns:

ego	Origin of the tie.
alter	Target of the tie.
value	Value in the adjacency matrix.
time	Either a 1 (if the network is static) or the time stamp of the tie.

Author(s)

George G. Vega Yon \& Thomas W. Valente

See Also

Other data management functions: diffnet-class, egonet_attrs(), isolated(), survey_to_diffnet()

Examples

```
# Base data
set.seed(123)
n <- 5
edgelist <- rgraph_er(n, as.edgelist=TRUE, p=.2)[,c("ego","alter")]
times <- sample.int(3, nrow(edgelist), replace=TRUE)
w <- abs(rnorm(nrow(edgelist)))
# Simple example
edgelist_to_adjmat(edgelist)
edgelist_to_adjmat(edgelist, undirected = TRUE)
# Using w
edgelist_to_adjmat(edgelist, w)
edgelist_to_adjmat(edgelist, w, undirected = TRUE)
# Using times
edgelist_to_adjmat(edgelist, t0 = times)
edgelist_to_adjmat(edgelist, t0 = times, undirected = TRUE)
# Using times and w
edgelist_to_adjmat(edgelist, t0 = times, w = w)
edgelist_to_adjmat(edgelist, t0 = times, undirected = TRUE, w = w)
# Not recoding -------------------------------------------------------
# Notice that vertices 3, 4 and 5 are not present in this graph.
graph <- matrix(c(
    1,2,6,
    6,6,7
), ncol=2)
# Generates an adjmat of size 4 x 4
```

```
edgelist_to_adjmat(graph)
# Generates an adjmat of size 7 x 7
edgelist_to_adjmat(graph, recode.ids=FALSE)
# Dynamic with spells
edgelist <- rbind(
    c(1, 2,NA, 1990),
    c(2,3,NA,1991),
    c(3,4,1991,1992),
    c(4,1,1992,1993),
    c(1,2,1993,1993)
)
graph <- edgelist_to_adjmat(edgelist[,1:2], t0=edgelist[,3], t1=edgelist[,4])
# Creating a diffnet object with it so we can apply the plot_diffnet function
diffnet <- as_diffnet(graph, toa=1:4)
plot_diffnet(diffnet, label=rownames(diffnet))
# Missing alter in the edgelist -------------------------------------------------
data(fakeEdgelist)
# Notice that edge 202 is isolated
fakeEdgelist
# The function still includes vertex 202
edgelist_to_adjmat(fakeEdgelist[,1:2])
edgelist
```


edges_coords
 Compute ego/alter edge coordinates considering alter's size and as-

 pect ratio
Description

Given a graph, vertices' positions and sizes, calculates the absolute positions of the endpoints of the edges considering the plot's aspect ratio.

Usage

edges_coords(
graph,
toa,
x ,
y,
vertex_cex,

```
    undirected = TRUE,
    no_contemporary = TRUE,
    dev = as.numeric(c()),
    ran = as.numeric(c()),
    curved = as.logical(c())
)
```


Arguments

graph	A square matrix of size n. Adjacency matrix.
toa	Integer vector of size n. Times of adoption.
x	Numeric vector of size n. x-coordinta of vertices.
y	Numeric vector of size n. y-coordinta of vertices.
vertex_cex	Numeric vector of size n. Vertices' sizes in terms of the x-axis (see symbols).
undirected	Logical scalar. Whether the graph is undirected or not.
no_contemporary	
	Logical scalar. Whether to return (compute) edges' coordiantes for vertices with the same time of adoption (see details).
dev	Numeric vector of size 2. Height and width of the device (see details).
ran	Numeric vector of size 2. Range of the x and y axis (see details).
curved	Logical vector.

Details

In order to make the plot's visualization more appealing, this function provides a straight forward way of computing the tips of the edges considering the aspect ratio of the axes range. In particular, the following corrections are made at the moment of calculating the egdes coords:

- Instead of using the actual distance between ego and alter, a relative one is calculated as follows

$$
d^{\prime}=\left[\left(x_{0}-x_{1}\right)^{2}+\left(y_{0}^{\prime}-y_{1}^{\prime}\right)^{2}\right]^{\frac{1}{2}}
$$

where $y_{i}^{\prime}=y_{i} \times \frac{\max x-\min x}{\max y-\min y}$

- Then, for the relative elevation angle, alpha, the relative distance d^{\prime} is used, $\alpha^{\prime}=\arccos \left(\left(x_{0}-x_{1}\right) / d^{\prime}\right)$
- Finally, the edge's endpoint's (alter) coordinates are computed as follows:

$$
\begin{gathered}
x_{1}^{\prime}=x_{1}+\cos \left(\alpha^{\prime}\right) \times v_{1} \\
y_{1}^{\prime}=y_{1}-+\sin \left(\alpha^{\prime}\right) \times v_{1} \times \frac{\max y-\min y}{\max x-\min x}
\end{gathered}
$$

Where v_{1} is alter's size in terms of the x -axis, and the sign of the second term in y_{1}^{\prime} is negative iff $y_{0}<y_{1}$.

The same process (with sign inverted) is applied to the edge starting piont. The resulting values, $x_{1}^{\prime}, y_{1}^{\prime}$ can be used with the function arrows. This is the workhorse function used in plot_threshold.

The dev argument provides a reference to rescale the plot accordingly to the device, and former, considering the size of the margins as well (this can be easily fetched via par("pin"), plot area in inches).

On the other hand, ran provides a reference for the adjustment according to the range of the data, this is range (x)[2]-range (x)[1] and range(y) [2]-range(y)[1] respectively.

Value

A numeric matrix of size $m \times 5$ with the following columns:

$\mathrm{x} 0, \mathrm{y} 0$	Edge origin
$\mathrm{x} 1, \mathrm{y} 1$	Edge target
alpha	Relative angle between $(\mathrm{x} 0, \mathrm{y} 0)$ and $(\mathrm{x} 1, \mathrm{y} 1)$ in terms of radians

With m as the number of resulting edges.

Examples

```
# ----------------------------------------------------------------------------------
data(medInnovationsDiffNet)
library(sna)
# Computing coordinates
set.seed(79)
coords <- sna::gplot(as.matrix(medInnovationsDiffNet$graph[[1]]))
# Getting edge coordinates
vcex <- rep(1.5, nnodes(medInnovationsDiffNet))
ecoords <- edges_coords(
    medInnovationsDiffNet$graph[[1]],
    diffnet.toa(medInnovationsDiffNet),
    x = coords[,1], y = coords[,2],
    vertex_cex = vcex,
    dev = par("pin")
    )
ecoords <- as.data.frame(ecoords)
# Plotting
symbols(coords[,1], coords[,2], circles=vcex,
    inches=FALSE, xaxs="i", yaxs="i")
with(ecoords, arrows(x0,y0, x1,y1, length=.1))
```


Description

For a given set of vertices V, retrieves each vertex's alter's attributes. This function enables users to calculate exposure on variables other than the attribute that is diffusing. Further, it enables the specification of alternative functions to use to characterize ego's personal network including calculating the mean, maximum, minimum, median, or sum of the alters' attributes. These measures may be static or dynamic over the interval of diffusion and they may be binary or valued.

Usage

egonet_attrs(graph, attrs, V = NULL,
direction = "outgoing",
fun $=$ function(x) x,
as.df = FALSE,
self = getOption("diffnet.self"),
valued = getOption("diffnet.valued"),
...
)

Arguments

graph Any class of accepted graph format (see netdiffuseR-graphs).
attrs If graph is static, Numeric matrix with n rows, otherwise a list of numeric matrices with n rows.
$\checkmark \quad$ Integer vector. Set of vertices from which the attributes will be retrieved.
direction Character scalar. Either "outgoing", "incoming".
fun Function. Applied to each
as.df Logical scalar. When TRUE returns a data.frame instead of a list (see details).
self Logical scalar. When TRUE autolinks (loops, self edges) are allowed (see details).
valued Logical scalar. When TRUE weights will be considered. Otherwise non-zero values will be replaced by ones.
... Further arguments to be passed to fun.

Details

By indexing inner/outer edges, this function retrieves ego network attributes for all $v \in V$, which by default is the complete set of vertices in the graph.

When as. $\mathrm{df}=$ TRUE the function returns a data.frame of size $(|V| \times T) \times k$ where T is the number of time periods and k is the number of columns generated by the function.
The function can be used to create network effects as those in the RSiena package. The difference here is that the definition of the statistic directly relies on the user. For example, in the RSiena package, the dyadic covariate effect 37 . covariate (centered) main effect (X)

$$
s_{i 37}(x)=\sum_{j} x_{i j}\left(w_{i j}-\bar{w}\right)
$$

Which, having a diffnet object with attributes named x and w, can be calculated as

```
egonet_attrs(diffnet, as.df=TRUE, fun=function(dat) {
    sum(dat[, "x"]*(dat[, "w"] - mean(dat[, "w"])))
})
```

Furthermore, we could use the median centered instead, for example

```
egonet_attrs(diffnet, as.df=TRUE, fun=function(dat) {
    sum(dat[, "x"]*(dat[, "w"] - median(dat[, "w"])))
})
```

Where for each i, dat will be a matrix with as many rows as individuals in his egonetwork. Such matrix holds the column names of the attributes in the network.
When self = TRUE, it will include ego's attributes, regardless the network has loops or not.

Value

A list with ego alters's attributes. By default, if the graph is static, the output is a list of length length (V) with matrices having the following columns:
value \quad Either the corresponding value of the tie.
id
Alter's id
... Further attributes contained in attrs
On the other hand, if graph is dynamic, the output is list of length T of lists of length length (V) with data frames having the following columns:
value \quad The corresponding value of the adjacency matrix.
id
Alter's id
per Time id
.. Further attributes contained in attrs

Author(s)

George G. Vega Yon

See Also

Other data management functions: diffnet-class, edgelist_to_adjmat(), isolated(), survey_to_diffnet()

Examples

```
# Simple example with diffnet ----------------------------------------------------
set.seed(1001)
diffnet <- rdiffnet(150, 5, seed.graph="small-world")
# Adding attributes
indeg <- dgr(diffnet, cmode="indegree")
head(indeg)
diffnet[["indegree"]] <- indeg
# Retrieving egonet's attributes (vertices 1 and 20)
egonet_attrs(diffnet, V=c(1,20))
# Example with a static network -----------------------------------------------------
set.seed(1231)
n <- 20
net <- rgraph_ws(n = n, k = 4, p = .5)
someattr <- matrix(rnorm(n * 2), ncol= 2, dimnames = list(NULL, c("a", "b")))
# Maximum of -a- in ego network
ans <- egonet_attrs(net, someattr, fun = function(x) max(x[,"a"]))
ans
# checking it worked, taking a look at node 1, 2, and 3
max(someattr[which(net[1,] == 1),"a"]) == ans[1] # TRUE
max(someattr[which(net[2,] == 1),"a"]) == ans[2] # TRUE
max(someattr[which(net[3,] == 1),"a"]) == ans[3] # TRUE
```

ego_variance Computes variance of Y at ego level

Description

Computes variance of Y at ego level

Usage

ego_variance(graph, Y, funname, all = FALSE)

Arguments

graph A matrix of size $n \times n$ of class dgCMatrix.
$Y \quad$ A numeric vector of length n.
funname Character scalar. Comparison to make (see vertex_covariate_compare).
all Logical scalar. When FALSE (default) f_{i} is mean at ego level. Otherwise is fix for all i (see details).

Details

For each vertex i the variance is computed as follows

$$
\left(\sum_{j} a_{i j}\right)^{-1} \sum_{j} a_{i j}\left[f\left(y_{i}, y_{j}\right)-f_{i}\right]^{2}
$$

Where $a_{i j}$ is the ij -th element of graph, f is the function specified in funname, and, if all=FALSE $f_{i}=\sum_{j} a_{i j} f\left(y_{i}, y_{j}\right)^{2} / \sum_{j} a_{i j}$, otherwise $f_{i}=f_{j}=\frac{1}{n^{2}} \sum_{i, j} f\left(y_{i}, y_{j}\right)$
This is an auxiliary function for struct_test. The idea is to compute an adjusted measure of disimilarity between vertices, so the closest in terms of f is i to its neighbors, the smaller the relative variance.

Value

A numeric vector of length n.

See Also

struct_test
Other statistics: bass, classify_adopters(), cumulative_adopt_count(), dgr(), exposure(), hazard_rate(), infection(), moran(), struct_equiv(), threshold(), vertex_covariate_dist()
exposure Ego exposure

Description

Calculates exposure to adoption over time via multiple different types of weight matrices. The basic model is exposure to adoption by immediate neighbors (outdegree) at the time period prior to ego's adoption. This exposure can also be based on (1) incoming ties, (2) structural equivalence, (3) indirect ties, (4) attribute weighted (5) network-metric weighted (e.g., central nodes have more influence), and attribute-weighted (e.g., based on homophily or tie strength).

Usage

```
exposure(
        graph,
        cumadopt,
        attrs = NULL,
        alt.graph = NULL,
        outgoing = getOption("diffnet.outgoing", TRUE),
        valued = getOption("diffnet.valued", FALSE),
        normalized = TRUE,
        groupvar = NULL,
        self = getOption("diffnet.self"),
        lags = 0L,
    )
```


Arguments

\(\left.$$
\begin{array}{ll}\text { graph } & \text { A dynamic graph (see netdiffuseR-graphs). } \\
\text { cumadopt } & n \times T \text { matrix. Cumulative adoption matrix obtained from toa_mat } \\
\text { attrs } & \begin{array}{l}\text { Either a character scalar (if graph is diffnet), or a numeric matrix of size } n \times T . \\
\text { Weighting for each time, period (see details). }\end{array} \\
\text { alt.graph } & \begin{array}{l}\text { Either a graph that should be used instead of graph, or "se" (see details). } \\
\text { outgoing } \\
\text { valued }\end{array}
$$

Logical scalar. When TRUE, computed using outgoing ties.

Logical scalar. When TRUE weights will be considered. Otherwise non-zero

values will be replaced by ones.\end{array}\right]\)| Logical scalar. When TRUE, the exposure will be between zero and one (see |
| :--- |
| details). |
| groupvar |
| self |\quad| Passed to struct_equiv. |
| :--- |
| Logical scalar. When TRUE autolinks (loops, self edges) are allowed (see de- |
| tails). |\quad| Integer scalar. When different from 0, the resulting exposure matrix will be the |
| :--- |
| lagged exposure as specified (see examples). |

Details

Exposure is calculated as follows:

$$
E_{t}=\left(S_{t} \times\left[x_{t} \circ A_{t}\right]\right) /\left(S_{t} \times x_{t}\right)
$$

Where S_{t} is the graph in time t, x_{t} is an attribute vector of size n at time t, A_{t} is the t -th column of the cumulative adopters matrix (a vector of length n with $a_{t i}=1$ if i has adopted at or prior to t), \circ is the kronecker product (element-wise), and \times is the matrix product.
By default the graph used for this calculation, S, is the social network. Alternatively, in the case of diffnet objects, the user can provide an alternative graph using alt.graph. An example of this
would be using $1 / S E$, the element-wise inverse of the structural equivalence matrix (see example below). Furthermore, if alt.graph="se", the inverse of the structural equivalence is computed via struct_equiv and used instead of the provided graph. Notice that when using a valued graph the option valued should be equal to TRUE, this check is run automatically when running the model using structural equivalence.
If the alt.graph is static, then the function will warn about it and will recycle the graph to compute exposure at each time point.

An important remark is that when calculating structural equivalence the function assumes that this is to be done to the entire graph regardless of disconnected communities (as in the case of the medical innovations data set). Hence, structural equivalence for individuals for two different communites may not be zero. If the user wants to calculate structural equivalence separately by community, he should create different diffnet objects and do so (see example below). Alternatively, for the case of diffnet objects, by using the option groupvar (see struct_equiv), the user can provide the function with the name of a grouping variable-which should one in the set of static vertex attributes-so that the algorithm is done by group (or community) instead of in an aggregated way.
If the user does not specifies a particular weighting attribute in attrs, the function sets this as a matrix of ones. Otherwise the function will return an attribute weighted exposure. When graph is of class diffnet, attrs can be a character scalar specifying the name of any of the graph's attributes, both dynamic and static. See the examples section for a demonstration using degree.

When outgoing=FALSE, S is replaced by its transposed, so in the case of a social network exposure will be computed based on the incoming ties.
If normalize=FALSE then denominator, $S_{t} \times x_{t}$, is not included. This can be useful when, for example, exposure needs to be computed as a count instead of a proportion. A good example of this can be found at the examples section of the function rdiffnet.

Value

A matrix of size $n \times T$ with exposure for each node.

Author(s)

George G. Vega Yon \& Thomas W. Valente

References

Burt, R. S. (1987). "Social Contagion and Innovation: Cohesion versus Structural Equivalence". American Journal of Sociology, 92(6), 1287. doi: 10.1086/228667

Valente, T. W. (1995). "Network models of the diffusion of innovations" (2nd ed.). Cresskill N.J.: Hampton Press.

See Also

Other statistics: bass, classify_adopters(), cumulative_adopt_count(), dgr(), ego_variance(), hazard_rate(), infection(), moran(), struct_equiv(), threshold(), vertex_covariate_dist()

Examples

```
# Calculating lagged exposure
set.seed(8)
graph <- rdiffnet(20, 4)
expo0 <- exposure(graph)
expo1 <- exposure(graph, lags = 1)
# These should be equivalent
stopifnot(all(expo0[, -4] == expo1[, -1])) # No stop!
# Calculating the exposure based on Structural Equivalence
set.seed(113132)
graph <- rdiffnet(100, 4)
SE <- lapply(struct_equiv(graph), "[[", "SE")
SE <- lapply(SE, function(x) {
    x <- 1/x
    x[!is.finite(x)] <- 0
    x
})
# These three lines are equivalent to:
expo_se2 <- exposure(graph, alt.graph="se", valued=TRUE)
# Notice that we are setting valued=TRUE, but this is not necesary since when
# alt.graph = "se" the function checks this to be setted equal to TRUE
# Weighted Exposure using degree -----------------------------------------------------
eDE <- exposure(graph, attrs=dgr(graph))
# Which is equivalent to
graph[["deg"]] <- dgr(graph)
eDE2 <- exposure(graph, attrs="deg")
# Comparing using incoming edges
eIN <- exposure(graph, outgoing=FALSE)
# Structral equivalence for different communities ------------------------------
data(medInnovationsDiffNet)
# Only using 4 time slides, this is for convenience
medInnovationsDiffNet <- medInnovationsDiffNet[, , 1:4]
# METHOD 1: Using the c.diffnet method:
# Creating subsets by city
cities <- unique(medInnovationsDiffNet[["city"]])
diffnet <- medInnovationsDiffNet[medInnovationsDiffNet[["city"]] == cities[1]]
```

```
diffnet[["expo_se"]] <- exposure(diffnet, alt.graph="se", valued=TRUE)
for (v in cities[-1]) {
    diffnet_v <- medInnovationsDiffNet[medInnovationsDiffNet[["city"]] == v]
    diffnet_v[["expo_se"]] <- exposure(diffnet_v, alt.graph="se", valued=TRUE)
    diffnet <- c(diffnet, diffnet_v)
}
# We can set the original order (just in case) of the data
diffnet <- diffnet[medInnovationsDiffNet$meta$ids]
diffnet
# Checking everything is equal
test <- summary(medInnovationsDiffNet, no.print=TRUE) ==
    summary(diffnet, no.print=TRUE)
stopifnot(all(test[!is.na(test)]))
# METHOD 2: Using the 'groupvar' argument
# Further, we can compare this with using the groupvar
diffnet[["expo_se2"]] <- exposure(diffnet, alt.graph="se",
    groupvar="city", valued=TRUE)
# These should be equivalent
test <- diffnet[["expo_se", as.df=TRUE]] == diffnet[["expo_se2", as.df=TRUE]]
stopifnot(all(test[!is.na(test)]))
# METHOD 3: Computing exposure, rbind and then adding it to the diffnet object
expo_se3 <- NULL
for (v in unique(cities))
    expo_se3 <- rbind(
        expo_se3,
        exposure(
            diffnet[diffnet[["city"]] == v],
            alt.graph = "se", valued=TRUE
        ))
# Just to make sure, we sort the rows
expo_se3 <- expo_se3[diffnet$meta$ids,]
diffnet[["expo_se3"]] <- expo_se3
test <- diffnet[["expo_se", as.df=TRUE]] == diffnet[["expo_se3", as.df=TRUE]]
stopifnot(all(test[!is.na(test)]))
# METHOD 4: Using the groupvar in struct_equiv
se <- struct_equiv(diffnet, groupvar="city")
se <- lapply(se, "[[", "SE")
se <- lapply(se, function(x) {
    x <- 1/x
    x[!is.finite(x)] <- 0
    x
```

\})
diffnet[["expo_se4"]] <- exposure(diffnet, alt.graph=se, valued=TRUE)
test <- diffnet[["expo_se", as.df=TRUE]] == diffnet[["expo_se4", as.df=TRUE]]
stopifnot(all(test[!is.na(test)]))
fakeDynEdgelist Fake dynamic edgelist

Description

A data frame used for examples in reading edgelist format networks. This edgelist can be merged with the dataset fakesurveyDyn.

Format

A data frame with 22 rows and 4 variables
ego Nominating individual
alter Nominated individual
value Strength of the tie
time Integer with the time of the spell

Author(s)

George G. Vega Yon

Source

Generated for the package

See Also

Other diffusion datasets: brfarmersDiffNet, brfarmers, diffusion-data, fakeEdgelist, fakesurveyDyn, fakesurvey, kfamilyDiffNet, kfamily, medInnovationsDiffNet, medInnovations
fakeEdgelist Fake static edgelist

Description

A data frame used for examples in reading edgelist format networks. This edgelist can be merged with the dataset fakesurvey.

Format

A data frame with 11 rows and 3 variables
ego Nominating individual
alter Nominated individual
value Strength of the tie

Author(s)

George G. Vega Yon

Source

Generated for the package

See Also

Other diffusion datasets: brfarmersDiffNet, brfarmers, diffusion-data, fakeDynEdgelist, fakesurveyDyn, fakesurvey, kfamilyDiffNet, kfamily, medInnovationsDiffNet, medInnovations
fakesurvey Fake survey data

Description

This data frame is used to ilustrate some of the functions of the package, in particular, the survey_to_diffnet function. This dataset can be merged with the fakeEdgelist.

Format

A data frame with 9 rows and 9 variables
id Unique id at group level
toa Time of adoption
group Group id
net1 Network nomination 1
net2 Network nomination 2
net3 Network nomination 3
age Age of the respondent
gender Gende of the respondent
note Descroption of the respondent

Author(s)

George G. Vega Yon

Source

Generated for the package.

See Also

Other diffusion datasets: brfarmersDiffNet, brfarmers, diffusion-data, fakeDynEdgelist, fakeEdgelist, fakesurveyDyn, kfamilyDiffNet, kfamily, medInnovationsDiffNet, medInnovations

```
fakesurveyDyn Fake longitudinal survey data
```


Description

This data frame is used to ilustrate some of the functions of the package, in particular, the survey_to_diffnet function. This dataset can be merged with the fakeDynEdgelist.

Format

A data frame with 18 rows and 10 variables
id Unique id at group level
toa Time of adoption
group Group id
net1 Network nomination 1
net2 Network nomination 2
net3 Network nomination 3
age Age of the respondent
gender Gende of the respondent
note Descroption of the respondent
time Timing of the wave

Author(s)

George G. Vega Yon

Source

Generated for the package.

See Also

Other diffusion datasets: brfarmersDiffNet, brfarmers, diffusion-data, fakeDynEdgelist, fakeEdgelist, fakesurvey, kfamilyDiffNet, kfamily, medInnovationsDiffNet, medInnovations

```
grid_distribution Distribution over a grid
```


Description

Distribution of pairs over a grid of fix size.

Usage

grid_distribution(x, y, nlevels = 100L)

Arguments

x	Numeric vector of size n
y	Numeric vector of size n
nlevels	Integer scalar. Number of bins to return

Details

This function ment for internal use only.

Value

Returns a list with three elements
$x \quad$ Numeric vector of size nlevels with the class marks for x
$y \quad$ Numeric vector of size nlevels with the class marks for y
z Numeric matrix of size nlevels by nlevels with the distribution of the elements in terms of frequency

Examples

\# Generating random vectors of size 100
x <- rnorm(100)
y <- rnorm(100)
\# Calculating distribution
grid_distribution(x,y,20)

See Also

Used by plot_infectsuscep
Other visualizations: dgr(), diffusionMap(), drawColorKey(), hazard_rate(), plot_adopters(), plot_diffnet2(), plot_diffnet(), plot_infectsuscep(), plot_threshold(), rescale_vertex_igraph()
hazard_rate Network Hazard Rate

Description

The hazard rate is the instantaneous probability of adoption at each time representing the likelihood members will adopt at that time (Allison 1984). The shape of the hazard rate indicates the pattern of new adopters over time. Rapid diffusion with convex cumulative adoption curves will have hazard functions that peak early and decay over time whereas slow concave cumulative adoption curves will have hazard functions that are low early and rise over time. Smooth hazard curves indicate constant adoption whereas those that oscillate indicate variability in adoption behavior over time.

Usage

```
hazard_rate(obj, no.plot = FALSE, include.grid = TRUE, ...)
plot_hazard(x, ...)
    ## S3 method for class 'diffnet_hr'
    plot(
    x,
    y = NULL,
    main = "Hazard Rate",
    xlab = "Time",
    ylab = "Hazard Rate",
    type = "b",
    include.grid = TRUE,
    bg = "lightblue",
    pch = 21,
    add = FALSE,
    ylim = c(0, 1),
    )
```


Arguments

obj
A $n \times T$ matrix (Cumulative adoption matrix obtained from toa_mat) or a diffnet object.
no.plot Logical scalar. When TRUE, suppress plotting (only returns hazard rates).
include.grid Logical scalar. When TRUE includes a grid on the plot.
. . .
further arguments to be passed to the method.

X
y
main Character scalar. Title of the plot
xlab
ylab
type
bg Character scalar. Color of the points.
pch Integer scalar. See par.
add Logical scalar. When TRUE it adds the hazard rate to the current plot.
ylim Numeric vector. See plot.

Details

This function computes hazard rate, plots it and returns the hazard rate vector invisible (so is not printed on the console). For $t>1$, hazard rate is calculated as

$$
\frac{q_{t}-q_{t-1}}{n-q_{t-1}}
$$

where q_{i} is the number of adopters in time t, and n is the number of vertices in the graph. In survival analysis, hazard rate is defined formally as

$$
\lambda(t)=\lim _{h \rightarrow+0} \frac{F(t+h)-F(t)}{h} \frac{1}{1-F(t)}
$$

Then, by approximating $h=1$, we can rewrite the equation as

$$
\lambda(t)=\frac{F(t+1)-F(t)}{1-F(t)}
$$

Furthermore, we can estimate $F(t)$, the probability of not having adopted the innovation in time t, as the proportion of adopters in that time, this is $F(t) \sim q_{t} / n$, so now we have

$$
\lambda(t)=\frac{q_{t+1} / n-q_{t} / n}{1-q_{t} / n}=\frac{q_{t+1}-q_{t}}{n-q_{t}}
$$

As showed above.
The plot_hazard function is an alias for the plot.diffnet_hr method.

Value

A row vector of size T with hazard rates for $t>1$ of class diffnet_hr. The class of the object is only used by the S3 plot method.

Author(s)

George G. Vega Yon \& Thomas W. Valente

References

Allison, P. (1984). Event history analysis regression for longitudinal event data. Beverly Hills: Sage Publications.

Wooldridge, J. M. (2010). Econometric Analysis of Cross Section and Panel Data (2nd ed.). Cambridge: MIT Press.

See Also

Other statistics: bass, classify_adopters(), cumulative_adopt_count(), dgr(), ego_variance(), exposure(), infection(), moran(), struct_equiv(), threshold(), vertex_covariate_dist()
Other visualizations: $\operatorname{dgr}()$, diffusionMap(), drawColorKey(), grid_distribution(), plot_adopters(), plot_diffnet2(), plot_diffnet(), plot_infectsuscep(), plot_threshold(), rescale_vertex_igraph()

Examples

```
# Creating a random vector of times of adoption
toa <- sample(2000:2005, 20, TRUE)
# Computing cumulative adoption matrix
cumadopt <- toa_mat(toa)$cumadopt
# Visualizing the hazard rate
hazard_rate(cumadopt)
```

igraph Coercion between graph classes

Description

Coercion between graph classes

```
Usage
    diffnet_to_igraph(graph, slices = 1:nslices(graph))
    igraph_to_diffnet(
    graph = NULL,
    graph.list = NULL,
    toavar,
    t0 = NULL,
    t1 = NULL,
)
```


Arguments

graph	Either a diffnet or igraph graph object.
slices	An integer vector indicating the slices to subset.
graph.list	A list of igraph objects.
toavar	Character scalar. Name of the attribute that holds the times of adoption.
t0	Integer scalar. Passed to new_diffnet.
t1	Integer scalar. Passed to new_diffnet.
\ldots	Further arguments passed to as_diffnet.

Value

Either a list of length(slices) igraph (diffnet_to_igraph), or a diffnet object (igraph_to_diffnet) objects.

See Also

Other Foreign: network, read_pajek(), read_ucinet_head()

Examples

```
# Reading the medical innovation data into igraph ----------------------------
x <- diffnet_to_igraph(medInnovationsDiffNet[, ,1:4])
# Fetching the times of adoption
igraph::vertex_attr(x[[1]], "toa")
```

```
infection Susceptibility and Infection
```


Description

Calculates infectiousness and susceptibility for each node in the graph

Usage

```
infection(
    graph,
    toa,
    t0 = NULL,
    normalize = TRUE,
    K = 1L,
    r=0.5,
    expdiscount = FALSE,
    valued = getOption("diffnet.valued", FALSE),
    outgoing = getOption("diffnet.outgoing", TRUE)
)
```

```
susceptibility(
    graph,
    toa,
    t0 = NULL,
    normalize = TRUE,
    K = 1L,
    r=0.5,
    expdiscount = FALSE,
    valued = getOption("diffnet.valued", FALSE),
    outgoing = getOption("diffnet.outgoing", TRUE)
)
```


Arguments

graph	A dynamic graph (see netdiffuseR-graphs).
toa	Integer vector of length n with the times of adoption.
t0	Integer scalar. See toa_mat.
normalize	Logical. Whether or not to normalize the outcome
K	Integer scalar. Number of time periods to consider
r	Numeric scalar. Discount rate used when expdiscount=TRUE
expdiscount	Logical scalar. When TRUE, exponential discount rate is used (see details).
valued	Logical scalar. When TRUE weights will be considered. Otherwise non-zero values will be replaced by ones.
outgoing	Logical scalar. When TRUE, computed using outgoing ties.

Details

Normalization, normalize=TRUE, is applied by dividing the resulting number from the infectiousness/susceptibility stat by the number of individuals who adopted the innovation at time t.
Given that node i adopted the innovation in time t, its Susceptibility is calculated as follows

$$
S_{i}=\frac{\sum_{k=1}^{K} \sum_{j=1}^{n} x_{i j(t-k+1)} z_{j(t-k)} \times \frac{1}{w_{k}}}{\sum_{k=1}^{K} \sum_{j=1}^{n} x_{i j(t-k+1)} z_{j(1 \leq t \leq t-k)} \times \frac{1}{w_{k}}} \quad \text { for } i, j=1, \ldots, n \quad i \neq j
$$

where $x_{i j(t-k+1)}$ is 1 whenever there's a link from i to j at time $t-k+1, z_{j(t-k)}$ is 1 whenever individual j adopted the innovation at time $t-k, z_{j(1 \leq t \leq t-k)}$ is 1 whenever j had adopted the innovation up to $t-k$, and w_{k} is the discount rate used (see below).
Similarly, infectiousness is calculated as follows

$$
I_{i}=\frac{\sum_{k=1}^{K} \sum_{j=1}^{n} x_{j i(t+k-1)} z_{j(t+k)} \times \frac{1}{w_{k}}}{\sum_{k=1}^{K} \sum_{j=1}^{n} x_{j i(t+k-1)} z_{j(t+k \leq t \leq T)} \times \frac{1}{w_{k}}} \quad \text { for } i, j=1, \ldots, n \quad i \neq j
$$

It is worth noticing that, as we can see in the formulas, while susceptibility is from alter to ego, infection is from ego to alter.

When outgoing=FALSE the algorithms are based on incoming edges, this is the adjacency matrices are transposed swapping the indexes (i, j) by (j, i). This can be useful for some users.
Finally, by default both are normalized by the number of individuals who adopted the innovation in time $t-k$. Thus, the resulting formulas, when normalize=TRUE, can be rewritten as

$$
S_{i}^{\prime}=\frac{S_{i}}{\sum_{k=1}^{K} \sum_{j=1}^{n} z_{j(t-k)} \times \frac{1}{w_{k}}} \quad I_{i}^{\prime}=\frac{I_{i}}{\sum_{k=1}^{K} \sum_{j=1}^{n} z_{j(t-k)} \times \frac{1}{w_{k}}}
$$

For more details on these measurements, please refer to the vignette titled Time Discounted Infection and Susceptibility.

Value

A numeric column vector (matrix) of size n with either infection/susceptibility rates.

Discount rate

Discount rate, w_{k} in the formulas above, can be either exponential or linear. When expdiscount=TRUE, $w_{k}=(1+r)^{k-1}$, otherwise it will be $w_{k}=k$.
Note that when $K=1$, the above formulas are equal to the ones presented in Valente et al. (2015).

Author(s)

George G. Vega Yon

References

Thomas W. Valente, Stephanie R. Dyal, Kar-Hai Chu, Heather Wipfli, Kayo Fujimoto Diffusion of innovations theory applied to global tobacco control treaty ratification, Social Science \& Medicine, Volume 145, November 2015, Pages 89-97, ISSN 0277-9536 doi: 10.1016/j.socscimed.2015.10.001
Myers, D. J. (2000). The Diffusion of Collective Violence: Infectiousness, Susceptibility, and Mass Media Networks. American Journal of Sociology, 106(1), 173-208. doi: 10.1086/303110

See Also

The user can visualize the distribution of both statistics by using the function plot_infectsuscep
Other statistics: bass, classify_adopters(), cumulative_adopt_count(), dgr(), ego_variance(), exposure(), hazard_rate(), moran(), struct_equiv(), threshold(), vertex_covariate_dist()

Examples

```
# Creating a random dynamic graph
set.seed(943)
graph <- rgraph_er(n=100, t=10)
toa <- sample.int(10, 100, TRUE)
# Computing infection and susceptibility (K=1)
infection(graph, toa)
```

```
susceptibility(graph, toa)
# Now with K=4
infection(graph, toa, K=4)
susceptibility(graph, toa, K=4)
```

```
    isolated Find and remove isolated vertices
```


Description

Find and remove unconnected vertices from the graph.

Usage

```
isolated(
    graph,
    undirected = getOption("diffnet.undirected", FALSE),
    self = getOption("diffnet.self", FALSE)
)
    drop_isolated(
        graph,
        undirected = getOption("diffnet.undirected", FALSE),
        self = getOption("diffnet.self", FALSE)
    )
```


Arguments

graph Any class of accepted graph format (see netdiffuseR-graphs).
undirected Logical scalar. When TRUE only the lower triangle of the adjacency matrix will considered (faster).
self Logical scalar. When TRUE autolinks (loops, self edges) are allowed (see details).

Value

When graph is an adjacency matrix:
isolated an matrix of size $n \times 1$ with 1 's where a node is isolated
drop_isolated a modified graph excluding isolated vertices.
Otherwise, when graph is a list
isolated an matrix of size $n \times T$ with 1 's where a node is isolated
drop_isolated a modified graph excluding isolated vertices.

Author(s)

George G. Vega Yon

See Also

Other data management functions: diffnet-class, edgelist_to_adjmat(), egonet_attrs(), survey_to_diffnet()

Examples

\# Generating random graph
set. seed(123)
adjmat <- rgraph_er()
\# Making nodes 1 and 4 isolated
$\operatorname{adjmat}[c(1,4)]<$,
$\operatorname{adjmat}[, c(1,4)]<-0$
adjmat
\# Finding isolated nodes
iso <- isolated(adjmat)
iso
\# Removing isolated nodes
drop_isolated(adjmat)
\# Now with a dynamic graph
graph <- rgraph_er (n=10, t=3)
\# Making 1 and 5 isolated
graph <- lapply (graph, "[<-", i=c (1,5), j=1:10, value=0)
graph <- lapply(graph, "[<-", i=1:10, j=c $(1,5)$, value=0)
graph
isolated(graph)
drop_isolated(graph)
kfamily Korean Family Planning

Description

From Valente (1995) "Scholars at Seoul National University's School of Public Health (Park, Chung, Han \& Lee, 1974) collected data on the adoption of family planning methods among all married women of child-bearing age 25 in Korea villages in 1973 ($\mathrm{N}=1,047$)."

Format

A data frame with 1,047 rows and 432 columns:
village Village of residence
id Respondent ID number
recno1 Card number NA
studno1 Study number NA
area1 Village of residence
id1 Respondent ID number
nmage1 Number males age 0
nmage 2 Number males age 0-4
nmage 3 Number males age 5-9
nmage4 Number males age 10-14
nmage 5 Number males age 15-19
nmage6 Number males age 20-24
nmage 7 Number males age 25-29
nmage8 Number males age 30-34
nmage9 Number males age 35-39
nmage10 Number males age 40-44
nmage 11 Number males age 45-49
nmage 12 Number males age 50-54
nmage13 Number males age 55-59
nmage14 Number males age 60-64
nmage15 Number males age 65-69
nmage16 Number males age 70-74
nmage17 Number males age 75-79
nmage 18 Number males age 80+
nfage 1 Number females age 0
nfage 2 Number females age 0-4
nfage 3 Number females age 5-9
nfage4 Number females age 10-14
nfage5 Number females age 15-19
nfage6 Number females age 20-24
nfage7 Number females age 25-29
nfage8 Number females age 30-34
nfage9 Number females age 35-39
nfage10 Number females age 40-44
nfage11 Number females age 45-49
nfage 12 Number females age 50-54
nfage13 Number females age 55-59
nfage14 Number females age 60-64
nfage15 Number females age 65-69
nfage16 Number females age 70-74
nfage17 Number females age 75-79
nfage18 Number females age 80+
pregs total pregnancies
pregs 1 number normal deliveries
pregs2 number of induced abortions
pregs 3 number of spontaneous abortions
pregs4 number of still births
pregs5 number of deaths after live birth
pregs6 currently pregnant
sons number of sons
daughts number of daughters
planning Ever heard of FP or birth control
loop1 Awareness of Loop
loop2 Detailed knowledge of Loop
loop3 Attitudes toward Loop
loop4 Knowledge of Loop used by neighbors
loop5 Knowledge of place of service for Loop
pill1 Awareness of Pill
pill2 Detailed knowledge of Pill
pill3 Attitudes toward Pill
pill4 Knowledge of Pill used by neighbors
pill5 Knowledge of place of service for Pill
vase1 Awareness of Vasectomy
vase2 Detailed knowledge of Vasectomy
vase3 Attitudes toward Vasectomy
vase 4 Knowledge of Vasectomy used by neighbors
vase5 Knowledge of place of service for Vasectomy
cond1 Awareness of Condoms
cond2 Detailed knowledge Condoms
cond3 Attitudes toward Condoms
cond4 Knowledge of Condoms used by neighbors
cond5 Knowledge of place of service for Condoms

```
rhyt1 Awareness of Rhythm
rhyt2 Detailed knowledge Rhythm
rhyt3 Attitudes toward Rhythm
rhyt4 Knowledge of Rhythm used by neighbors
bbt1 Awareness of Basic Body Temperature
bbt2 Detailed knowledge Basic Body Temperature
bbt3 Attitudes toward BBT
recno2 Record Number NA
studno2 Study Number NA
area2 village number
id2 id number
bbt4 Knowledge of BBT used by neighbors
diap1 Awareness of Diaphragm
diap2 Detailed knowledge Diaphragm
diap3 Attitudes toward Diaphragm
diap4 Knowledge of Diaphragm used by neighbors
with1 Awareness of Withdrawal
with2 Detailed knowledge Withdrawal
with3 Attitudes toward Withdrawal
with4 Knowledge of Withdrawal used by neighbors
tuba1 Awareness of Tubal Ligation
tuba2 Detailed knowledge TL
tuba3 Attitudes toward TL
tuba4 Knowledge of TL used by neighbors
fp1 Experience with an FP practice
fp2 Reasons for not practicing
fp3 What would you do if problem was solved
fp4 Any other reason for not practicing
fp5 Reasons for practicing
fp6 time between decision and adoption
fp7 reasons for time lag
fp8 Ever discontinued practicing
fp9 Reasons for discontinuing
fp10 Attitude toward FP
child1 Ideal number of sons
child2 Ideal number of daughters
child3 Ideal number of children regardless of sex
```

```
child4 what do if kept having girls
comop1 Spousal communication on # of children
comop2 Spousal communication on FP
comop3 Consensus on opinion between couple
comop4 What was the difference
comop5 Opinion on who should practice
comop6 Different opinions on who should practice
comop7 Who should make final decision
comop8 Residence in old age
net11 Neighbors talk to about FP-1
net12 Neighbors talk to about FP- }
net13 Neighbors talk to about FP- }
net14 Neighbors talk to about FP-4
net15 Neighbors talk to about FP-5
famawe1 Family members of FP Practice
famawe2 Parents awareness of FP Practice
famawe3 How did parents-in-law become aware
famawe4 How did parents become aware
famawe5 How did husband become aware
advic1 Advice given to neighbors where to go
advic2 Advice given on method
advic3 Ever met persons who give advice on FP
advic4 Credibility of person advising on FP
advic5 Counter advice given to others
rumor1 Rumors on Loop
rumor2 Rumors on Pill
rumor3 Rumors on Vasectomy
rumor4 Rumors on Condom
rumor5 Rumors on Tuballigation
media1 Possession of Radio
media2 Possession of TV
media3 Subscription to Newspaper
media4 Subscription to Happy Home
media5 Subscription to other magazine
media6 Radio exposure to FP
media7 TV exposure to FP
media8 Daily paper exposure to FP
```

media9 Happy Home exposure to FP
media10 Magazine exposure to FP
media11 Movie or slide exposure to FP
media12 Poster exposure to FP
media13 Pamphlet exposure to FP
media14 FP Meeting exposure to FP
recno3 Record number NA
studno3 Study number NA
area3 village
id3 id
media15 Public lecture exposure to FP
media16 Mobile van exposure to FP
media17 Neighbors exposure to FP
media18 Workers home visiting exposure to FP
media19 Husband exposure to FP
club1 Awareness of clubs in community
club2 Membership in club
club3 Reasons for not becoming a member
club4 Feeling of necessity of club
club5 Visit of mobile van to area
club6 Service received from van
club7 Decision-making on FP on \# children
club8 Decision-making on important goods
club9 Decision-making on childrens discipline
club10 Decision making on purchase wife clothes
net21 Closest neighbor most frequently met
n1adv Advice received from neighbor 1
n1prac practice of FP by neighbor 1
net22 Closest neighbor person 2
n2adv Advice received from neighbor 2
n2prac Practice of FP by neighbor 2
net23 Closest neighbor person 3
n3adv Advice received from neighbor 3
n3prac Practice of FP by neighbor 3
net24 Closest neighbor 4
n4adv Advice received from neighbor 4
n4prac Practice of FP by neighbor 4
net25 Closest neighbor 5
n5adv Advice received from neighbor 5
n5prac Practice of FP by neighbor 5
stand Standard living of above neighbors
educ Education level of named neighbors
net31 Advice on FP sought from 1
net 32 Advice on FP sought from 2
net33 Advice on FP sought from 3
net34 Advice on FP sought from 4
net35 Advice on FP sought from 5
net41 Information provided on FP by 1
net42 Information provided on FP by 1
net43 Information provided on FP by 1
net44 Information provided on FP by 1
net45 Information provided on FP by 1
net51 Seek advice on induced abortion 1
net52 Seek advice on induced abortion 2
net53 Seek advice on induced abortion 3
net54 Seek advice on induced abortion 4
net55 Seek advice on induced abortion 5
age Age of respondent
agemar Age at first marriage
recno4 Rec no NA
studno4 Study no NA
area4 village
id4 id
net61 Advice on health sought from 1
net62 Advice on health sought from 2
net63 Advice on health sought from 3
net64 Advice on health sought from 4
net65 Advice on health sought from 5
net71 Advice on purchase of goods 1
net72 Advice on purchase of goods 2
net73 Advice on purchase of goods 3
net74 Advice on purchase of goods 4
net75 Advice on purchase of goods 5
net81 Advice on childrens education 1
net82 Advice on childrens education 2
net83 Advice on childrens education 3
net84 Advice on childrens education 4
net85 Advice on childrens education 5
rfampl1 Advice on FP sought by 1
rfampl2 Advice on FP sought by 2
rfampl3 Advice on FP sought by 3
rfampl4 Advice on FP sought by 4
rfampl5 Advice on FP sought by 5
rfampll Leadership score - indegree FP
rabort1 Advice on abortion sought by 1
rabort2 Advice on abortion sought by 2
rabort3 Advice on abortion sought by 3
rabort4 Advice on abortion sought by 4
rabort5 Advice on abortion sought by 5
rabortl Leadership score - indegree abortion
rhealth1 Advice on health sought by 1
rhealth2 Advice on health sought by
rhealth3 Advice on health sought by
rhealth4 Advice on health sought by
rhealth5 Advice on health sought by
rhealthl Leadership score - indegree health
recno5 rec no NA
studno5 study no NA
area5 village
id5 id
rgoods1 Advice on purchases sought by 1
rgoods 2 Advice on purchases sought by 2
rgoods3 Advice on purchases sought by 3
rgoods4 Advice on purchases sought by 4
rgoods 5 Advice on purchases sought by 5
rgoodsl Leadership score - indegree purchases
reduc1 Advice on education sought by 1
reduc2 Advice on education sought by 2
reduc3 Advice on education sought by 3
reduc4 Advice on education sought by 4
reduc5 Advice on education sought by 5

```
reducl Leadership score - indegree education
hub1 Husbands friend 1
hub2 Husbands friend 2
hub3 Husbands friend 3
hub4 Husbands friend 4
hub5 Husbands friend 5
hubed Husbands education
wifeed Wifes education
wiferel Wifes religion
hubocc Husbands occupation
wifeocc Wifes occupation
know1 Can you insert a loop yourself
know2 Can you remove it alone
know3 Can a man use a loop
know4 How long can a loop be used
know5 Which doctor
know6 Doctor or nurse
know7 Oral pill method
know8 Can men take pills
know9 Long term use
know10 Time required for vasectomy
know11 Does vasectomy = castration
know12 Can any doctor do vasectomies
pref1 Who prefer use: Husband or wife
pref2 Reasons for preferring FP practice by wife
pref3 Reasons for preferring FP practice by husband
ageend Ideal age to end childbearing
cfp Current status of FP
cfatt1 Husbands attitude
cfatt2 In-laws attitude
cfatt3 Own parents attitude
cbyr Start of period from year
cbmnth Start of period from month
ceyr End of period year
cemnth End of period month
clngth Length of period
cawe1 FP contact
```

```
cawe2 Awareness of contraceptive method at the time
cawe3 Awareness of service site
cawe4 Credibiilty
recno6 rec no NA
studno6 study no NA
area6 village
id6 id
fpt1 FP Status time 1
fatt1t1 Husbands attitude T1
fatt2t1 In-laws attitude T1
fatt3t1 Own parents attitude T1
byrt1 Start of Time 1 from year
lngtht1 Length of Time 1
awe1t1 FP Contact Time 1
awe2t1 Methods known at Time 1
awe3t1 Knowledge of service sites Time 1
awe4t1 Credibility of service site Time 1
fpt2 FP Status time 2
fatt1t2 Husbands attitude T2
fatt2t2 In-laws attitude T2
fatt3t2 Own parents attitude T2
byrt2 Start of Time 2 from year
lngtht2 Length of Time 2
awe1t2 FP Contact Time 2
awe2t2 Methods known at Time 2
awe3t2 Knowledge of service sites Time 2
awe4t2 Credibility of service site Time 2
fpt3 FP Status time 3
fatt1t3 Husbands attitude T3
fatt2t3 In-laws attitude T3
fatt3t3 Own parents attitude T3
byrt3 Start of Time 3 from year
lngtht3 Length of Time 3
awe1t3 FP Contact Time 3
awe2t3 Methods known at Time 3
awe3t3 Knowledge of service sites Time 3
awe4t3 Credibility of service site Time 3
```

fpt4 FP Status time 4
fatt1t4 Husbands attitude T4
fatt2t4 In-laws attitude T4
fatt3t4 Own parents attitude T4
byrt4 Start of Time 4 from year
lngtht4 Length of Time 4
awe1t4 FP Contact Time 4
awe2t4 Methods known at Time 4
awe3t4 Knowledge of service sites Time 4
awe4t4 Credibility of service site Time 4
fpt5 FP Status time 5
fatt1t5 Husbands attitude T5
fatt2t5 In-laws attitude T5
fatt3t5 Own parents attitude T5
byrt5 Start of Time 5 from year
lngtht5 Length of Time 5
awe1t5 FP Contact Time 5
awe2t5 Methods known at Time 5
awe3t5 Knowledge of service sites Time 5
awe4t5 Credibility of service site Time 5
fpt6 FP Status time 6
fatt1t6 Husbands attitude T6
fatt2t6 In-laws attitude T6
fatt3t6 Own parents attitude T6
byrt6 Start of Time 6 from year
lngtht6 Length of Time 6
awe1t6 FP Contact Time 6
awe2t6 Methods known at Time 6
awe3t6 Knowledge of service sites Time 6
awe4t6 Credibility of service site Time 6
recno7 rec no NA
studno7 study no NA
area7 village
id7 id
fpt7 FP Status time 7
fatt1t7 Husbands attitude T7
fatt2t7 In-laws attitude T7

[^0]fpt11 FP Status time 11
fatt1t11 Husbands attitude T11
fatt2t11 In-laws attitude T11
fatt3t11 Own parents attitude T11
byrt11 Start of Time 11 from year
Ingtht11 Length of Time 11
awe1t11 FP Contact Time 11
awe2t11 Methods known at Time 11
awe3t11 Knowledge of service sites Time 11
awe4t11 Credibility of service site Time 11
fpt12 FP Status time 12
fatt1t12 Husbands attitude T12
fatt2t12 In-laws attitude T12
fatt3t12 Own parents attitude T12
byrt12 Start of Time 12 from year
Ingtht12 Length of Time 12
awe1t12 FP Contact Time 12
awe2t12 Methods known at Time 12
awe3t12 Knowledge of service sites Time 12
awe 4 t12 Credibility of service site Time 12
ado adopt times years converted to $1=63$
ado1
ado2
ado3
commun Village number
toa Time of Adoption
study Study (for when multiple diff studies used)

Details

The dataset has 1,047 respondents (women) from 25 communities. Collected during 1973 it spans 11 years of data.

Source

The Korean Family Planning data were stored on a Vax tape that Rogers had given to Marc Granovetter who then gave it to his colleague Roland Soong (see Granovetter \& Soong, 1983). Granovetter instructed Song to send the tape to me and I had it loaded on the Vax machine at USC in 1990 and was able to download the data to a PC. The first two datasets were acquired for my dissertation (Valente, 1991) and the third added as I completed my book on Network Models of the Diffusion of Innovations (Valente, 1995; also see Valente, 2005).

References

Everett M. Rogers, \& Kincaid, D. L. (1981). Communication Networks: Toward a New Paradigm for Research. (C. Macmillan, Ed.). New York; London: Free Press.
Valente, T. W. (1995). Network models of the diffusion of innovations (2nd ed.). Cresskill N.J.: Hampton Press.

See Also

Other diffusion datasets: brfarmersDiffNet, brfarmers, diffusion-data, fakeDynEdgelist, fakeEdgelist, fakesurveyDyn, fakesurvey, kfamilyDiffNet, medInnovationsDiffNet, medInnovations
kfamilyDiffNet diffnet version of the Korean Family Planning data

Description

A directed dynamic graph with 1,047 vertices and 11 time periods. The attributes in the graph are static and described in kfamily.

Format

A diffnet class object.

See Also

Other diffusion datasets: brfarmersDiffNet, brfarmers, diffusion-data, fakeDynEdgelist, fakeEdgelist, fakesurveyDyn, fakesurvey, kfamily, medInnovationsDiffNet, medInnovations

```
matrix_compare Non-zero element-wise comparison between two sparse matrices
```


Description

Taking advantage of matrix sparseness, the function only evaluates fun between pairs of elements of A and B where either A or B have non-zero values. This can be helpful to implement other binary operators between sparse matrices that may not be implemented in the Matrix package.

Usage

matrix_compare(A, B, fun)
compare_matrix(A, B, fun)
matrix_compare

Arguments

A

B
fun

A matrix of size $n * m$ of class dgCMatrix.
A matrix of size $n * m$ of class dgCMatrix.
A function that receives 2 arguments and returns a scalar.

Details

Instead of comparing element by element, the function loops through each matrix non-zero elements to make the comparisons, which in the case of sparse matrices can be more efficient (faster). Algorithmically it can be described as follows:

```
# Matrix initialization
init ans[n,m];
# Looping through non-zero elements of A
for e_A in E_A:
    ans[e_A] = fun(A[e_A], B[e_A])
# Looping through non-zero elements of B and applying the function
# in e_B only if it was not applied while looping in E_A.
for e_B in E_B:
    if (ans[e_B] == Empty)
        ans[e_B] = fun(A[e_B], B[e_B])
```

 compare_matrix is just an alias for matrix_compare.

Value

An object of class dgCMatrix of size $n * m$.

See Also

Other dyadic-level comparison functions: vertex_covariate_compare(), vertex_covariate_dist()

Examples

```
# These two should yield the same results --------------------------------------
# Creating two random matrices
set.seed(89)
A <- rgraph_ba(t = 9, m = 4)
B <- rgraph_ba(t = 9, m = 4)
A;B
# Comparing
ans0 <- matrix_compare(A,B, function(a,b) (a+b)/2)
ans1 <- matrix(0, ncol=10, nrow=10)
```

```
    for (i in 1:10)
    for (j in 1:10)
        ans1[i,j] <- mean(c(A[i,j], B[i,j]))
    # Are these equal?
    all(ans0[] == ans1[]) # Should yield TRUE
```

 medInnovations Medical Innovation

Description

From Valente (1995) "Coleman, Katz and Menzel from Columbia University’s Bureau of Applied Research studied the adoption of tetracycline by physiciams in four Illinois communities in 1954.[...] Tetracycline was a powerful and useful antibiotic just introduced in the mid-1950s"

Format

A data frame with 125 rows and 59 columns:
city city id
id sequential respondent id
detail detail man
meet meetings, lectures, hospitals
coll colleagues
attend attend professional meets
proage professional age
length lenght of reside in community
here only practice here
science science versus patients
position position in home base
journ2 journal subscriptions
paadico Percent alter adoption date imp
ado adoption month 1 to 18
thresh threshold
ctl corrected tl tl-exp level
catbak category 1-init 2-marg 3-low tl
sourinfo source of information
origid original respondent id
adopt adoption date $1=11 / 53$
recon reconstructed med innov
date date became aware
info information source
most most important info source
journ journals
drug drug houses
net1_1 advisor nomination1
net1_2 advisor nomination2
net1_3 advisor nomination3
net2_1 discuss nomination1
net2_2 discuss nomination2
net2_3 discuss nomination3
net3_1 friends nomination1
net3_2 friends nomination2
net3_3 friends nomination3
nojourn number of pro journals receive
free free time companions
social med discussions during social
club club membership
friends friends are doctors
young young patients
nonpoor nonpoverty patients
office office visits
house house calls
tend tendency to prescribe drugs
reltend relative tendency to prescribe
perc perceived drug competition
proximty physical proximity to other doc
home home base hospital affiliation
special specialty
belief belief in science
proage 2 profesional age 2
presc prescription prone
detail2 contact with detail man
dichot dichotomous personal preference
expect adoption month expected
recall recalls adopting
commun Number of community
toa Time of Adoption
study Number of study in Valente (1995)

Details

The collected dataset has 125 respondents (doctors), and spans 17 months of data collected in 1955. Time of adoption of non-adopters has been set to month 18 (see the manual entry titled Difussion Network Datasets).

Source

The Medical Innovation data were stored in file cabinets in a basement building at Columbia University. Ron Burt (1987) acquired an NSF grant to develop network diffusion models and retrieve the original surveys and enter them into a database. He distributed copies of the data on diskette and sent one to me, Tom Valente, and I imported onto a PC environment.

References

Coleman, J., Katz, E., \& Menzel, H. (1966). Medical innovation: A diffusion study (2nd ed.). New York: Bobbs-Merrill

Valente, T. W. (1995). Network models of the diffusion of innovations (2nd ed.). Cresskill N.J.: Hampton Press.

See Also

Other diffusion datasets: brfarmersDiffNet, brfarmers, diffusion-data, fakeDynEdgelist, fakeEdgelist, fakesurveyDyn, fakesurvey, kfamilyDiffNet, kfamily, medInnovationsDiffNet
medInnovationsDiffNet diffnet version of the Medical Innovation data

Description

A directed dynamic graph with 125 vertices and 18 time periods. The attributes in the graph are static and described in medInnovations.

Format

A diffnet class object.

See Also

Other diffusion datasets: brfarmersDiffNet, brfarmers, diffusion-data, fakeDynEdgelist, fakeEdgelist, fakesurveyDyn, fakesurvey, kfamilyDiffNet, kfamily, medInnovations

```
mentor_matching Optimal Leader/Mentor Matching
```


Description

Implementes the algorithm described in Valente and Davis (1999)

Usage

```
mentor_matching(
    graph,
    n,
    cmode = "indegree",
    lead.ties.method = "average",
    geodist.args = list()
    )
    leader_matching(
        graph,
        n,
        cmode = "indegree",
        lead.ties.method = "average",
        geodist.args = list()
    )
    ## S3 method for class 'diffnet_mentor'
    plot(
        x,
        y = NULL,
        vertex.size = "degree",
        minmax.relative.size = getOption("diffnet.minmax.relative.size", c(0.01, 0.04)),
        lead.cols = grDevices::topo.colors(attr(x, "nleaders")),
        vshapes = c(Leader = "square", Follower = "circle"),
        add.legend = TRUE,
        main = "Mentoring Network",
    )
```


Arguments

graph	Any class of accepted graph format (see netdiffuseR-graphs).
n	Number of leaders
cmode	Passed to dgr.
lead.ties.method	
	Passed to rank
geodist.args	Passed to approx_geodesic.

X
y
vertex.size Either a numeric scalar or vector of size n, or any of the following values: "indegree", "degree", or "outdegree" (see details).
minmax.relative.size
Passed to rescale_vertex_igraph.
lead.cols Character vector of length attr (x,"nleaders"). Colors to be applied to each group. (see details)
vshapes Character scalar of length 2. Shapes to identify leaders (mentors) and followers respectively.
add.legend Logical scalar. When TRUE generates a legend to distinguish between leaders and followers.
main Character scalar. Passed to title
... Further arguments passed to plot.igraph

Details

The algorithm works as follows:

1. Find the top n individuals ranking them by dgr (graph, cmode). The rank is computed by the function rank. Denote this set M.
2. Compute the geodesic matrix.
3. For each v in \vee do:
(a) Find the mentor m in M such that is closest to v
(b) Were there a tie, choose the mentor that minimizes the average path length from v's direct neighbors to m .
(c) If there are no paths to any member of M , or all have the same average path length to v 's neighbors, then assign one randomly.

Plotting is done via the function plot.igraph.
When vertex.size is either of "degree", "indegree", or "outdegree", vertex. size will be replace with $\operatorname{dgr}(.$, cmode $=)$ so that the vertex size reflects the desired degree.
The argument minmax.relative.size is passed to rescale_vertex_igraph which adjusts vertex. size so that the largest and smallest vertices have a relative size of minmax. relative.size[2] and minmax. relative.size[1] respectively with respect to the x-axis.

Value

An object of class diffnet_mentor and data.frame with the following columns:

name	Character. Labels of the vertices
degree	Numeric. Degree of each vertex in the graph
iselader	Logical. TRUE when the vertex was picked as a leader.
match	Character. The corresponding matched leader.

The object also contains the following attributes:
$\begin{array}{ll}\text { nleaders } & \text { Integer scalar. The resulting number of leaders (could be greater than } n \text {) } \\ \text { graph } & \text { The original graph used to run the algorithm. }\end{array}$

References

Valente, T. W., \& Davis, R. L. (1999). Accelerating the Diffusion of Innovations Using Opinion Leaders. The ANNALS of the American Academy of Political and Social Science, 566(1), 55-67. doi: 10.1177/000271629956600105

Examples

```
# A simple example -------------------------------------------------------------
set.seed(1231)
graph <- rgraph_ws(n=50, k = 4, p = .5)
# Looking for 3 mentors
ans <- mentor_matching(graph, n = 3)
head(ans)
table(ans$match) # We actually got 9 b/c of ties
# Visualizing the mentor network
plot(ans)
```

moran Computes Moran's I correlation index

Description

Natively built for computing Moran's I on dgCMatrix objects, this routine allows computing the I on large sparse matrices (graphs). Part of its implementation was based on ape::Moran.I, which computes the I for dense matrices.

Usage

moran(x, w, normalize.w = TRUE, alternative = "two.sided")

Arguments

$\mathrm{x} \quad$ Numeric vector of size n.
w Numeric matrix of size $n \times n$. Weights. It can be either a object of class matrix or dgCMatrix from the Matrix package.
normalize.w Logical scalar. When TRUE normalizes rowsums to one (or zero).
alternative Character String. Specifies the alternative hypothesis that is tested against the null of no autocorrelation; must be of one "two.sided", "less", or "greater".

Details

In the case that the vector x is close to constant (degenerate random variable), the statistic becomes irrelevant, and furthermore, the standard error tends to be undefined (NaN).

Value

A list of class diffnet_moran with the following elements: observed Numeric scalar. Observed correlation index. expected \quad Numeric scalar. Expected correlation index equal to $-1 /(N-1)$.
sd Numeric scalar. Standard error under the null.
p.value \quad Numeric scalar. p-value of the specified alternative.

Author(s)

George G. Vega Yon

References

Moran's I. (2015, September 3). In Wikipedia, The Free Encyclopedia. Retrieved 06:23, December 22, 2015, from https://en.wikipedia.org/w/index.php?title=Moran\'s_I\&oldid=679297766

See Also

Other statistics: bass, classify_adopters(), cumulative_adopt_count(), dgr(), ego_variance(), exposure(), hazard_rate(), infection(), struct_equiv(), threshold(), vertex_covariate_dist()

Other Functions for inference: bootnet(), struct_test()

Examples

```
if (require("ape")) {
    # Generating a small random graph
    set.seed(123)
    graph <- rgraph_ba(t = 4)
    w <- approx_geodesic(graph)
    x <- rnorm(5)
    # Computing Moran's I
    moran(x, w)
    # Comparing with the ape's package version
    ape::Moran.I(x, as.matrix(w))
}
```

```
netdiffuseR netdiffuseR
```


Description

Statistical analysis, visualization and simulation of diffusion and contagion processes on networks. The package implements algorithms for calculating stats such as innovation threshold levels, infectiousness (contagion) and susceptibility, and hazard rates as presented in Burt (1987), Valente (1995), and Myers (2000) (among others).

You can access to the project website at https://github.com/USCCANA/netdiffuseR

Details

Analysis of Diffusion and Contagion Processes on Networks

Acknowledgements

netdiffuseR was created with the support of grant R01 CA157577 from the National Cancer Institute/National Institutes of Health.

Workshops and Tutorials

Online you can find several learning resources:

- Sunbelt 2016 https://github.com/USCCANA/netdiffuser-sunbelt2016
- NASN 2017 https://github.com/USCCANA/netdiffuser-nasn2017
- Sunbelt 2018 https://github.com/USCCANA/netdiffuser-sunbelt2018

Author(s)

George G. Vega Yon \& Thomas W. Valente

```
netdiffuseR-graphs Network data formats
```


Description

List of accepted graph formats

Details

The netdiffuseR package can handle different types of graph objects. Two general classes are defined across the package's functions: static graphs, and dynamic graphs.

- In the case of static graphs, these are represented as adjacency matrices of size $n \times n$ and can be either matrix (dense matrices) or dgCMatrix (sparse matrix from the Matrix package). While most of the package functions are defined for both classes, the default output graph is sparse, i.e. dgCMatrix.
- With respect to dynamic graphs, these are represented by either a diffnet object, an array of size $n \times n \times T$, or a list of size T with sparse matrices (class dgCMatrix) of size $n \times n$. Just like the static graph case, while most of the functions accept both graph types, the default output is dgCMatrix.

diffnet objects

In the case of diffnet-class objects, the following arguments can be omitted when calling fuictions suitable for graph objects:

- toa: Time of Adoption vector
- adopt: Adoption Matrix
- cumadopt: Cumulative Adoption Matrix
- undirected: Whether the graph is directed or not

Objects' names

When possible, netdiffuse \mathbf{R} will try to reuse graphs dimensional names, this is, rownames, colnames, dimnames and names (in the case of dynamic graphs as lists). Otherwise, when no names are provided, these will be created from scratch.

Author(s)

George G. Vega Yon

```
netdiffuseR-options netdiffuseR default options
```


Description

netdiffuseR default options

Details

Set of default options used by the package. These can be retrieved via getOption using the prefix diffnet (see examples)

Value

The full list of options follows:

undirected	FALSE
self	FALSE
multiple	FALSE
tol	1e-8 (used for package testing)
valued	FALSE
outgoing	TRUE
keep.isolates	TRUE
minmax.relative.size	
	$c(0.025,0.05)$

Author(s)

George G. Vega Yon

Examples

```
getOption("diffnet.undirected")
getOption("diffnet.multiple")
getOption("diffnet.self")
```

netmatch Matching Estimators with Network Data

Description

WARNING: This function is still in development and has not been tested throughly. Following Aral et al. (2009), netmatch computes matching estimators for network data. The function netmatch_prepare, which prepares the data to be used with matchit from the MatchIt package, is called by netmatch.

Usage

```
netmatch_prepare(
    dat,
    graph,
    timevar,
    depvar,
    covariates,
    treat_thr = rep(1L, length(graph)),
    adopt_thr = rep(1L, length(graph)),
    expo_pcent = FALSE,
    expo_lag = 0L
```

```
)
netmatch(
    dat,
    graph,
    timevar,
    depvar,
    covariates,
    treat_thr = rep(1L, length(graph)),
    adopt_thr = rep(1L, length(graph)),
    expo_pcent = FALSE,
    expo_lag = 0L,
)
```


Arguments

dat	data.frame with dynamic data. Must be of nrow(dat)==nslices(graph)*nnodes(graph).
graph	List with sparse matrices.
timevar	Character scalar. Name of time variable
depvar	Character scalar. Name of the dependent variable
covariates	Character vector. Name(s) of the control variable(s).
treat_thr	Either a numeric scalar or vector of length nslices(graph). Sets the threshold of exposure at which it is considered that an observation is treated.
adopt_thr	Either a numeric scalar or vector of length nslices(graph). Sets the threshold of depvar at which it is considered that an observation has adopted a behavior.
expo_pcent	Logical scalar. When TRUE, exposure is computed non-normalized (so it is a count rather than a percentage).
expo_lag	Integer scalar. Number of lags to consider when computing exposure. expo_lag=1 defines exposure in T considering behavior and network at T-1.
..	Further arguments to be passed to matchit.

Details

In Aral et al. (2009), the matching estimator is used as a response to the fact that the observed network is homophilous. Essentially, using exposure as a treatment indicator, which is known to be endogenous, we can apply the same principle of matching estimators in which, after controlling for characteristics (covariates), individuals from the treated group (exposed to some behavior) can be compared to individuals from the control group (not exposed to that behavior), as the only difference between the two is the exposure.
As pointed out in King \& Nielsen (2015), it is suggested that, contrary to what Aral et al. (2009), the matching is not performed over propensity score since it is know that the later can increase imbalances in the data and thus obtaining exactly the opposed outcome that matching based estimators pursue.
A couple of good references for matching estimators are Imbens and Wooldridge (2009), and Sekhon (2008).

Value

In the case of netmatch_prepare
dat A data.frame with the original data (covariates), plus the following new variables: treat, adopt, exposure.
match_model A formula to be passed to netmatch
netmatch returns the following:
fATT A numeric vector of length N_{1} (number of treated used in the matching process). Treatment effects on the treated at the individual level
match_obj The output from matchit.

Author(s)

George G. Vega Yon

References

Aral, S., Muchnik, L., \& Sundararajan, A. (2009). Distinguishing influence-based contagion from homophily-driven diffusion in dynamic networks. Proceedings of the National Academy of Sciences of the United States of America, 106(51), 21544-21549. doi: 10.1073/pnas. 0908800106
Imbens, G. W., \& Wooldridge, J. M. (2009). Recent Developments in the Econometrics of Program Evaluation. Journal of Economic Literature, 47(1), 5-86. doi: 10.1257/jel.47.1.5
King, G., \& Nielsen, R. (2015). Why Propensity Scores Should Not Be Used for.
Sekhon, J. S. (2008). The Neyman-Rubin Model of Causal Inference and Estimation Via Matching
Methods. The Oxford Handbook of Political Methodology. doi: 10.1093/oxfordhb/9780199286546.003.0011
network Coercion between diffnet, network and networkDynamic

Description

Coercion between diffnet, network and networkDynamic

```
Usage
    diffnet_to_network(graph, slices = 1:nslices(graph), ...)
    diffnet_to_networkDynamic(
        graph,
        slices = 1:nslices(graph),
        diffnet2net.args = list(),
        netdyn.args = list()
    )
```

```
networkDynamic_to_diffnet(graph, toavar)
network_to_diffnet(
    graph = NULL,
    graph.list = NULL,
    toavar,
    t0 = NULL,
    t1 = NULL
)
```


Arguments

```
graph An object of class diffnet
slices An integer vector indicating the slices to subset
... Further arguments passed to networkDynamic
diffnet2net.args
                    List of arguments passed to diffnet_to_network.
netdyn.args List of arguments passed to networkDynamic
toavar Character scalar. Name of the vertex attribute that holds the times of adoption.
graph.list A list of network objects.
t0 Integer scalar. Passed to new_diffnet.
t1 Integer scalar. Passed to new_diffnet.
```


Details

diffnet_to_networkDynamic calls diffnet_to_network and uses the output to call networkDynamic, passing the resulting list of network objects as network. list (see networkDynamic).
By default, diffnet_to_networkDynamic passes net.obs.period as

```
net.obs.period = list(
    observations = list(range(graph$meta$pers)),
    mode="discrete",
    time.increment = 1,
    time.unit = "step"
)
```

By default, networkDynamic_to_diffnet uses the first slice as reference for vertex attributes and times of adoption.
By default, network_to_diffnet uses the first element of graph (a list) as reference for vertex attributes and times of adoption.

Value

diffnet_to_network returns a list of length length(slices) in which each element is a network object corresponding a slice of the graph (diffnet object). The attributes list will include toa (time of adoption).
An object of class networkDynamic.
nvertices

Caveats

Since diffnet does not support edges attributes, these will be lost when converting from networktype objects. The same applies to network attributes.

See Also

Other Foreign: igraph, read_pajek(), read_ucinet_head()

Examples

```
# Cohersing a diffnet to a list of networks
set.seed(1)
ans <- diffnet_to_network(rdiffnet(20, 2))
ans
# and back
network_to_diffnet(graph.list = ans, toavar="toa")
# If it was static, we can use -graph- instead
network_to_diffnet(ans[[1]], toavar="toa")
# A random diffusion network -------------------------------------------------------
set.seed(87)
dn <- rdiffnet(50, 4)
ans <- diffnet_to_networkDynamic(dn)
# and back
networkDynamic_to_diffnet(ans, toavar = "toa")
```

nvertices

Description

Count the number of vertices/edges/slices in a graph

Usage

nvertices(graph)
nnodes(graph)
nedges(graph)
nlinks(graph)
nslices(graph)

Arguments

graph Any class of accepted graph format (see netdiffuseR-graphs).

Details

nnodes and nlinks are just aliases for nvertices and nedges respectively.

Value

For nvertices and nslices, an integer scalar equal to the number of vertices and slices in the graph. Otherwise, from nedges, either a list of size t with the counts of edges (non-zero elements in the adjacency matrices) at each time period, or, when graph is static, a single scalar with such number.

Examples

```
# Creating a dynamic graph (we will use this for all the classes) ------------
set.seed(13133)
diffnet <- rdiffnet(100, 4)
# Lets use the first time period as a static graph
graph_mat <- diffnet$graph[[1]]
graph_dgCMatrix <- methods::as(graph_mat, "dgCMatrix")
# Now lets generate the other dynamic graphs
graph_list <- diffnet$graph
graph_array <- as.array(diffnet) # using the as.array method for diffnet objects
# Now we can compare vertices counts
nvertices(diffnet)
nvertices(graph_list)
nvertices(graph_array)
nvertices(graph_mat)
nvertices(graph_dgCMatrix)
# ... and edges count
nedges(diffnet)
nedges(graph_list)
nedges(graph_array)
nedges(graph_mat)
nedges(graph_dgCMatrix)
```


Description

permute_graph Shuffles the values of a matrix either considering loops and multiple links (which are processed as cell values different than 1/0). rewire_qap generates a new graph graph' that is isomorphic to graph.

Usage

permute_graph(graph, self = FALSE, multiple = FALSE)
rewire_permute(graph, self = FALSE, multiple = FALSE)
rewire_qap(graph)

Arguments

graph Any class of accepted graph format (see netdiffuseR-graphs).
self Logical scalar. When TRUE autolinks (loops, self edges) are allowed (see details).
multiple Logical scalar. When TRUE allows multiple edges.

Value

A permuted version of graph.

Author(s)

George G. Vega Yon

References

Anderson, B. S., Butts, C., \& Carley, K. (1999). The interaction of size and density with graph-level indices. Social Networks, 21(3), 239-267. doi: 10.1016/S03788733(99)000118

Mantel, N. (1967). The detection of disease clustering and a generalized regression approach. Cancer Research, 27(2), 209-20. http://cancerres.aacrjournals.org/content/27/2_Part_ 1/209

See Also

This function can be used as null distribution in struct_test
Other simulation functions: rdiffnet(), rewire_graph(), rgraph_ba(), rgraph_er(), rgraph_ws(), ring_lattice()

Examples

```
# Simple example ----------------------------------------------------------------
set.seed(1231)
g <- rgraph_ba(t=9)
g
```

```
# These preserve the density
permute_graph(g)
permute_graph(g)
# These are isomorphic to g
rewire_qap(g)
rewire_qap(g)
```

plot.diffnet S3 plotting method for diffnet objects.

Description

S3 plotting method for diffnet objects.

Usage

```
## S3 method for class 'diffnet'
plot(
    x,
    y = NULL,
    t = 1,
    vertex.color = c(adopt = "steelblue", noadopt = "white"),
    vertex.size = "degree",
    main = "Diffusion network in time %d",
    minmax.relative.size = getOption("diffnet.minmax.relative.size", c(0.01, 0.04)),
    ...
)
```


Arguments

x
y
t
vertex.color Character scalar/vector. Color of the vertices.
vertex.size Either a numeric scalar or vector of size n, or any of the following values: "indegree", "degree", or "outdegree" (see details).
main Character. A title template to be passed to sprintf.
minmax.relative.size
Passed to rescale_vertex_igraph.
... Further arguments passed to plot.igraph.

Details

Plotting is done via the function plot.igraph.
When vertex.size is either of "degree", "indegree", or "outdegree", vertex.size will be replace with $\operatorname{dgr}(.$, cmode $=)$ so that the vertex size reflects the desired degree.
The argument minmax. relative.size is passed to rescale_vertex_igraph which adjusts vertex.size so that the largest and smallest vertices have a relative size of minmax.relative.size[2] and minmax. relative.size[1] respectively with respect to the x -axis.

Value

A matrix with the coordinates of the vertices.

Author(s)

George G. Vega Yon

See Also

Other diffnet methods: \%*\%(), as.array.diffnet(), c.diffnet(), diffnet-arithmetic, diffnet-class, diffnet_index, summary.diffnet()

Examples

```
data(medInnovationsDiffNet)
plot(medInnovationsDiffNet)
```

```
plot_adopters Visualize adopters and cumulative adopters
```


Description

Visualize adopters and cumulative adopters

Usage

plot_adopters(
obj,
freq = FALSE,

```
    what = c("adopt", "cumadopt"),
```

 add = FALSE,
 include.legend = TRUE,
 include.grid = TRUE,
 pch \(=c(21,24)\),
 type \(=c(" b ", \quad " b ")\),
    ```
    ylim = if (!freq) c(0, 1) else NULL,
    lty = c(1, 1),
    col = c("black", "black"),
    bg = c("tomato", "gray"),
    xlab = "Time",
    ylab = ifelse(freq, "Frequency", "Proportion"),
    main = "Adopters and Cumulative Adopters",
    ..
)
```


Arguments

obj Either a diffnet object or a cumulative a doption matrix.
freq Logical scalar. When TRUE frequencies are plotted instead of proportions.
what Character vector of length 2 . What to plot.
add Logical scalar. When TRUE lines and dots are added to the current graph.
include.legend Logical scalar. When TRUE a legend of the graph is plotted.
include.grid Logical scalar. When TRUE, the grid of the graph is drawn
pch Integer vector of length 2 . See matplot.
type \quad Character vector of length 2. See matplot.
ylim \quad Numeric vector of length 2. Sets the plotting limit for the y-axis.
lty \quad Numeric vector of length 2. See matplot.
col Character vector of length 2. See matplot.
bg Character vector of length 2. See matplot.
$x l a b \quad$ Character scalar. Name of the x-axis.
ylab Character scalar. Name of the y-axis.
main Character scalar. Title of the plot
... Further arguments passed to matplot.

Value

A matrix as described in cumulative_adopt_count.

Author(s)

George G. Vega Yon

See Also

Other visualizations: $\operatorname{dgr}()$, diffusionMap(), drawColorKey(), grid_distribution(), hazard_rate(), plot_diffnet2(), plot_diffnet(), plot_infectsuscep(), plot_threshold(), rescale_vertex_igraph()

Examples

```
# Generating a random diffnet -------------------------------------------------------
set.seed(821)
diffnet <- rdiffnet(100, 5, seed.graph="small-world", seed.nodes="central")
plot_adopters(diffnet)
# Alternatively, we can use a TOA Matrix
toa <- sample(c(NA, 2010L,2015L), 20, TRUE)
mat <- toa_mat(toa)
plot_adopters(mat$cumadopt)
```

plot_diffnet Plot the diffusion process

Description

Creates a colored network plot showing the structure of the graph through time (one network plot for each time period) and the set of adopter and non-adopters in the network.

Usage

```
plot_diffnet(...)
## S3 method for class 'diffnet'
plot_diffnet(graph, ...)
## Default S3 method:
plot_diffnet(
    graph,
    cumadopt,
    slices = NULL,
    vertex.color = c("white", "tomato", "steelblue"),
    vertex.shape = c("square", "circle", "circle"),
    vertex.size = "degree",
    mfrow.par = NULL,
    main = c("Network in period %s", "Diffusion Network"),
    legend.args = list(),
    minmax.relative.size = getOption("diffnet.minmax.relative.size", c(0.01, 0.04)),
    background = NULL,
)
```


Arguments

$$
\begin{array}{ll}
\ldots & \text { Further arguments to be passed to plot.igraph. } \\
\text { graph } & \text { A dynamic graph (see netdiffuseR-graphs). }
\end{array}
$$

| cumadopt | $n \times T$ matrix. |
| :--- | :--- |
| slices | Integer vector. Indicates what slices to plot. By default all are plotted. |
| vertex.color | A character vector of size 3 with colors names. |
| vertex.shape | A character vector of size 3 with shape names. |
| vertex.size | Either a numeric scalar or vector of size n, or any of the following values: "in-
 degree", "degree", or "outdegree" (see details). |
| mfrow. par | Vector of size 2 with number of rows and columns to be passed to par.
 main |
| Character scalar. A title template to be passed to sprintf. | |
| legend.args | List of arguments to be passed to legend. |
| minmax.relative.size | |
| background | Passed to rescale_vertex_igraph.
 Either a function to be called before plotting each slice, a color to specify the
 backgroupd color, or NULL (in which case nothing is done). |

Details

Plotting is done via the function plot.igraph.
When vertex.size is either of "degree", "indegree", or "outdegree", vertex. size will be replace with $\operatorname{dgr}(.$, cmode $=)$ so that the vertex size reflects the desired degree.

The argument minmax. relative.size is passed to rescale_vertex_igraph which adjusts vertex.size so that the largest and smallest vertices have a relative size of minmax.relative.size[2] and minmax. relative.size[1] respectively with respect to the x -axis.
Plotting is done via the function plot.igraph.
In order to center the attention on the diffusion process itself, the positions of each vertex are computed only once by aggregating the networks through time, this is, instead of computing the layout for each time t, the function creates a new graph accumulating links through time.
The mfrow. par sets how to arrange the plots on the device. If $T=5$ and mfrow. par=c $(2,3)$, the first three networks will be in the top of the device and the last two in the bottom.
The argument vertex.color contains the colors of non-adopters, new-adopters, and adopters respectively. The new adopters (default color "tomato") have a different color that the adopters when the graph is at their time of adoption, hence, when the graph been plotted is in $t=2$ and $t o a=2$ the vertex will be plotted in red.
legend.args has the following default parameter:

| x | "bottom" |
| :--- | :--- |
| legend | c("Non adopters", "New adopters","Adopters") |
| pch | sapply(vertex.shape, switch, circle = 21, square = 22, 21) |
| bty | "n" |
| horiz | TRUE |

Value

Calculated coordinates for the grouped graph (invisible).

Author(s)

George G. Vega Yon

See Also

Other visualizations: dgr(), diffusionMap(), drawColorKey(), grid_distribution(), hazard_rate(), plot_adopters(), plot_diffnet2(), plot_infectsuscep(), plot_threshold(), rescale_vertex_igraph()

Examples

```
# Generating a random graph
set.seed(1234)
n <- 6
nper <- 5
graph <- rgraph_er(n,nper, p=.3, undirected = FALSE)
toa <- sample(2000:(2000+nper-1), n, TRUE)
adopt <- toa_mat(toa)
plot_diffnet(graph, adopt$cumadopt)
```

```
plot_diffnet2 Another way of visualizing diffusion
```


Description

Another way of visualizing diffusion

Usage

```
plot_diffnet2(graph, ...)
## S3 method for class 'diffnet'
    plot_diffnet2(graph, toa, slice = nslices(graph), ...)
    ## Default S3 method:
    plot_diffnet2(
        graph,
        toa,
        pers = min(toa, na.rm = TRUE):max(toa, na.rm = TRUE),
        color.ramp = grDevices::colorRamp(viridisLite::magma(20)),
        layout = NULL,
        key.width = 0.1,
        key.args = list(),
        main = "Diffusion dynamics",
        add.map = NULL,
        diffmap.args = list(kde2d.args = list(n = 100)),
        diffmap.alpha = 0.5,
```

```
    include.white = "first",
    vertex.size = "degree",
minmax.relative.size = getOption("diffnet.minmax.relative.size", c(0.01, 0.04)),
    no.graph = FALSE,
)
```


Arguments

graph Any class of accepted graph format (see netdiffuseR-graphs).
... Further arguments passed to plot.igraph.
toa Integer vector of length n with the times of adoption.
slice Integer scalar. Number of slice to use as baseline for drawing the graph.
pers Integer vector of length T indicating the time periods of the data.
color.ramp A function as returned by colorRamp.
layout Passed to plot.igraph.
key.width \quad Numeric scalar. Sets the proportion of the plot (x-axis) that the key uses.
key.args List. Further arguments to be passed to drawColorKey.
main Character scalar. Title of the graph.
add.map Character scalar. When "first" plots a diffusionMap before the graph itself. If "last" then it adds it at the end. When NULL adds nothing.
diffmap.args List. If add.map=TRUE, arguments passed to diffusionMap.
diffmap.alpha Numeric scalar between [0,1]. Alpha level for the map.
include.white Character scalar. Includes white in the color palette used in the map. When include. white=NULL then it won't include it.
vertex.size Either a numeric scalar or vector of size n, or any of the following values: "indegree", "degree", or "outdegree" (see details).
minmax.relative.size
Passed to rescale_vertex_igraph.
no.graph Logical scala. When TRUE the graph is not drawn. This only makes sense when the option add.map is active.

Details

Plotting is done via the function plot.igraph.
When vertex.size is either of "degree", "indegree", or "outdegree", vertex.size will be replace with $\operatorname{dgr}(.$, cmode $=)$ so that the vertex size reflects the desired degree.
The argument minmax.relative.size is passed to rescale_vertex_igraph which adjusts vertex.size so that the largest and smallest vertices have a relative size of minmax.relative.size[2] and minmax.relative.size[1] respectively with respect to the x-axis.
If key.width<=0 then no key is created.
By defult, the function passes the following values to plot.igraph:

- vertex. label equals to ""
- vertex.frame.color equals to "white"
- add equals to TRUE
- rescale equals to FALSE
- vertex. size equals to rescale.fun(vertex.size)

Value

A list with the following elements
layout A numeric matrix with vertex coordinates.
vertex.color A character vector with computed colors for each vertex.
vertex.label The value passed to plot_diffnet2.
vertex. shape A character vector with assigned shapes.
vertex.size A numeric vector with vertices sizes
diffmap If add.map=TRUE, the returned values from diffmap

Author(s)

George G. Vega Yon

See Also

Other visualizations: dgr(), diffusionMap(), drawColorKey(), grid_distribution(), hazard_rate(), plot_adopters(), plot_diffnet(), plot_infectsuscep(), plot_threshold(), rescale_vertex_igraph()

```
plot_infectsuscep Plot distribution of infect/suscep
```


Description

After calculating infectiousness and susceptibility of each individual on the network, it creates an nlevels by nlevels matrix indicating the number of individuals that lie within each cell, and draws a heatmap.

Usage

plot_infectsuscep(graph, toa, t0 = NULL, normalize = TRUE, $K=1 L$, $r=0.5$, expdiscount $=$ FALSE,

```
    bins = 20,
    nlevels = round(bins/2),
    h = NULL,
    logscale = TRUE,
    main = "Distribution of Infectiousness and\nSusceptibility",
    xlab = "Infectiousness of ego",
    ylab = "Susceptibility of ego",
    sub = ifelse(logscale, "(in log-scale)", NA),
    color.palette = function(n) viridisLite::viridis(n),
    include.grid = TRUE,
    exclude.zeros = FALSE,
    valued = getOption("diffnet.valued", FALSE),
)
```


Arguments

graph A dynamic graph (see netdiffuseR-graphs).
toa Integer vector of length n with the times of adoption.
t0 Integer scalar. See toa_mat.
normalize Logical scalar. Passed to infection/susceptibility.
K Integer scalar. Passed to infection/susceptibility.
r Numeric scalar. Passed to infection/susceptibility.
expdiscount Logical scalar. Passed to infection/susceptibility.
bins Integer scalar. Size of the grid (n).
nlevels Integer scalar. Number of levels to plot (see filled. contour).
h Numeric vector of length 2. Passed to kde2d in the MASS package.
logscale Logical scalar. When TRUE the axis of the plot will be presented in log-scale.
main Character scalar. Title of the graph.
$x l a b \quad$ Character scalar. Title of the x-axis.
ylab Character scalar. Title of the y-axis.
sub Character scalar. Subtitle of the graph.
color. palette a color palette function to be used to assign colors in the plot (see filled. contour).
include.grid Logical scalar. When TRUE, the grid of the graph is drawn.
exclude.zeros Logical scalar. When TRUE, observations with zero values
valued Logical scalar. When FALSE non-zero values in the adjmat are set to one. in infect or suscept are excluded from the graph. This is done explicitly when logscale=TRUE.
... Additional parameters to be passed to filled.contour.

Details

This plotting function was inspired by Aral, S., \& Walker, D. (2012).
By default the function will try to apply a kernel smooth function via kde2d. If not possible (because not enought data points), then the user should try changing the parameter h or set it equal to zero.
toa is passed to infection/susceptibility.

Value

A list with three elements:
infect A numeric vector of size n with infectiousness levels
suscep A numeric vector of size n with susceptibility levels
coords A list containing the class marks and counts used to draw the plot via filled. contour (see grid_distribution)
complete A logical vector with TRUE when the case was included in the plot. (this is relevant whenever logscale=TRUE)

Author(s)

George G. Vega Yon

References

Aral, S., \& Walker, D. (2012). "Identifying Influential and Susceptible Members of Social Networks". Science, 337(6092), 337-341. doi: 10.1126/science. 1215842

See Also

Infectiousness and susceptibility are computed via infection and susceptibility.
Other visualizations: dgr(), diffusionMap(), drawColorKey(), grid_distribution(), hazard_rate(), plot_adopters(), plot_diffnet2(), plot_diffnet(), plot_threshold(), rescale_vertex_igraph()

Examples

```
# Generating a random graph -------------------------------------------------------
set.seed(1234)
n <- 100
nper <- 20
graph <- rgraph_er(n,nper, p=.2, undirected = FALSE)
toa <- sample(1:(1+nper-1), n, TRUE)
# Visualizing distribution of suscep/infect
out <- plot_infectsuscep(graph, toa, K=3, logscale = FALSE)
```

plot_threshold Threshold levels through time

Description

Draws a graph where the coordinates are given by time of adoption, x-axis, and threshold level, y-axis.

Usage

plot_threshold(graph, expo, ...)
\#\# S3 method for class 'diffnet'
plot_threshold(graph, expo, ...)
\#\# S3 method for class 'array'
plot_threshold(graph, expo, ...)
\#\# Default S3 method:
plot_threshold(
graph,
expo,
toa,
include_censored = FALSE,
t0 $=$ min(toa, na.rm $=$ TRUE),
attrs = NULL,
undirected = getOption("diffnet.undirected"),
no. contemporary = TRUE,
main $=$ "Time of Adoption by \nNetwork Threshold",
xlab = "Time",
ylab = "Threshold",
vertex.size = "degree",
vertex.color = NULL,
vertex.label = "",
vertex.label.pos = NULL,
vertex. label.cex = 1,
vertex.label.adj $=c(0.5,0.5)$,
vertex.label.color = NULL,
vertex.sides $=40 \mathrm{~L}$,
vertex.rot $=0$,
edge.width $=2$,
edge.color = NULL,
arrow.width $=$ NULL,
arrow.length = NULL,
arrow.color $=$ NULL,
include.grid = FALSE,
vertex.frame.color = NULL,

```
    bty = "n",
    jitter.factor = c(1, 1),
    jitter.amount = c(0.25, 0.025),
    xlim = NULL,
    ylim = NULL,
    edge.curved = NULL,
    background = NULL,
)
```


Arguments

| graph | A dynamic graph (see netdiffuseR-graphs). |
| :---: | :---: |
| expo | $n \times T$ matrix. Esposure to the innovation obtained from exposure |
| | Additional arguments passed to plot. |
| toa | Integer vector of length n with the times of adoption. |
| include_censored | |
| | Logical scalar. Passed to threshold. |
| t0 | Integer scalar. Passed to threshold. |
| attrs | Passed to exposure (via threshold). |
| undirected | Logical scalar. When TRUE only the lower triangle of the adjacency matrix will considered (faster). |
| no. contemporary | |
| | Logical scalar. When TRUE, edges for vertices with the same toa won't be plotted. |
| main | Character scalar. Title of the plot. |
| xlab | Character scalar. x-axis label. |
| ylab | Character scalar. y-axis label. |
| vertex.size | Numeric vector of size n. Relative size of the vertices. |
| vertex.color | Either a vector of size n or a scalar indicating colors of the vertices. |
| vertex.label
 vertex.label. | Character vector of size n. Labels of the vertices. s |
| | Integer value to be passed to text via pos. |
| vertex.label.cex | |
| vertex.label. | Either a numeric scalar or vector of size n. Passed to text. j |
| vertex.label.adj | |
| vertex.label.color | |
| | Passed to text. |
| vertex.sides | Either a vector of size n or a scalar indicating the number of sides of each vertex (see details). |
| vertex.rot | Either a vector of size n or a scalar indicating the rotation in radians of each vertex (see details). |

| edge.width | Numeric. Width of the edges. |
| :--- | :--- |
| edge.color | Character. Color of the edges. |
| arrow.width | Numeric value to be passed to arrows. |
| arrow.length | Numeric value to be passed to arrows. |
| arrow.color | Color. |
| include.grid | Logical. When TRUE, the grid of the graph is drawn. |
| vertex.frame.color | |
| | Either a vector of size n or a scalar indicating colors of vertices' borders. |
| bty | See par. |
| jitter.factor | Numeric vector of size 2 (for x and y) passed to jitter. |
| jitter.amount | Numeric vector of size 2 (for x and y) passed to jitter. |
| xlim | Passed to plot. |
| ylim | Passed to plot. |
| edge.curved | Logical scalar. When curved, generates curved edges. |
| background | TBD |

Details

When vertex. label=NULL the function uses vertices ids as labels. By default vertex.label="" plots no labels.
Vertices are drawn using an internal function for generating polygons. Polygons are inscribed in a circle of radius vertex.size, and can be rotated using vertex. rot. The number of sides of each polygon is set via vertex. sides.

Author(s)

George G. Vega Yon

See Also

Use threshold to retrieve the corresponding threshold obtained returned by exposure.
Other visualizations: dgr(), diffusionMap(), drawColorKey(), grid_distribution(), hazard_rate(), plot_adopters(), plot_diffnet2(), plot_diffnet(), plot_infectsuscep(), rescale_vertex_igraph()

Examples

```
# Generating a random graph
set.seed(1234)
n <- 6
nper <- 5
graph <- rgraph_er(n,nper, p=.3, undirected = FALSE)
toa <- sample(2000:(2000+nper-1), n, TRUE)
adopt <- toa_mat(toa)
# Computing exposure
```

```
pretty_within
    expos <- exposure(graph, adopt$cumadopt)
    plot_threshold(graph, expos, toa)
    # Calculating degree (for sizing the vertices)
    plot_threshold(graph, expos, toa, vertex.size = "indegree")
```

 pretty_within Pretty numbers within a range.

Description

A wrapper for pretty.

Usage

pretty_within(x, min.n = 5, xrange = range(x, na.rm = TRUE), ...)

Arguments

x
min.n
xrange Numeric vector of length 2. Indicates the range in which the output vector should lie on.
... Further arguments passed to the method.
The only difference with pretty is that this function subsets the resulting vector as
tick[(tick >= xrange[1]) \& (tick <= xrange[2])]

Examples

```
# Simple example ---------------------------------------------------------------
set.seed(3331)
x <- runif(10)
pretty(x)
pretty_within(x)
range(x)
```

```
rdiffnet
```

Random diffnet network

Description

Simulates a diffusion network by creating a random dynamic network and adoption threshold levels.

```
Usage
    rdiffnet_multiple(R, statistic, ..., ncpus = 1L, cl = NULL)
    rdiffnet(
        n,
        t,
        seed.nodes = "random",
        seed.p.adopt = 0.05,
        seed.graph = "scale-free",
        rgraph.args = list(),
        rewire = TRUE,
        rewire.args = list(),
        threshold.dist = runif(n),
        exposure.args = list(),
        name = "A diffusion network",
        behavior = "Random contagion",
        stop.no.diff = TRUE
    )
```


Arguments

R
statistic
. . .
ncpus
cl
n
t
seed.nodes
seed.p.adopt
seed.graph
rgraph.args
rewire Logical scalar. When TRUE, network slices are generated by rewiring (see rewire_graph).
rewire.args List. Arguments to be passed to rewire_graph.
threshold.dist Either a function to be applied via sapply, a numeric scalar, or a vector/matrix with n elements. Sets the adoption threshold for each node.
exposure.args List. Arguments to be passed to exposure.
name Character scalar. Passed to as_diffnet.
behavior Character scalar. Passed to as_diffnet.
stop.no.diff Logical scalar. When TRUE, the function will return with error if there was no diffusion. Otherwise it throws a warning.

Details

Instead of randomizing whether an individual adopts the innovation or not, this toy model randomizes threshold levels, seed adopters and network structure, so an individual adopts the innovation in time T iff his exposure is above or equal to his threshold. The simulation is done in the following steps:

1. Using seed.graph, a baseline graph is created.
2. Given the baseline graph, the set of initial adopters is defined using seed. nodes.
3. Afterwards, if rewire=TRUE $t-1$ slices of the network are created by iteratively rewiring the baseline graph.
4. The threshold.dist function is applied to each node in the graph.
5. Simulation starts at $t=2$ assigning adopters in each time period accordingly to each vertex's threshold and exposure.

When seed. nodes is a character scalar it can be "marginal", "central" or "random", So each of these values sets the initial adopters using the vertices with lowest degree, with highest degree or completely randomly. The number of early adoptes is set as seed. p. adopt $* \mathrm{n}$. Please note that when marginal nodes are set as seed it may be the case that no diffusion process is attained as the chosen set of first adopters can be isolated. Any other case will be considered as an index (via [<methods), hence the user can manually set the set of initial adopters, for example if the user sets seed. nodes $=c(1,4,7)$ then nodes 1,4 and 7 will be selected as initial adopters.
The argument seed.graph can be either a function that generates a graph (Any class of accepted graph format (see netdiffuseR-graphs)), a graph itself or a character scalar in which the user sets the algorithm used to generate the first network (network in $t=1$), this can be either "scalefree" (Barabasi-Albert model using the rgraph_ba function, the default), "bernoulli" (ErdosRenyi model using the rgraph_er function), or "small-world" (Watts-Strogatz model using the rgraph_ws function). The list rgraph.args passes arguments to the chosen algorithm.
When rewire=TRUE, the networks that follow $\mathrm{t}=1$ will be generated using the rewire_graph function as $G(t)=R(G(t-1))$, where R is the rewiring algorithm.
If a function, the argument threshold.dist sets the threshold for each vertex in the graph. It is applied using sapply as follows

```
sapply(1:n, threshold.dist)
```

By default sets the threshold to be random for each node in the graph.
If seed.graph is provided, no random graph is generated and the simulation is applied using that graph instead.
rewire.args has the following default options:

```
p . }
undirected getOption("diffnet.undirected", FALSE)
self getOption("diffnet.self", FALSE)
```

exposure.args has the following default options:

```
outgoing TRUE
valued getOption("diffnet.valued", FALSE)
normalized TRUE
```

The function rdiffnet_multiple is a wrapper of rdiffnet wich allows simulating multiple diffusion networks with the same parameters and apply the same function to all of them. This function is designed to allow the user to perform larger simulation studies in which the distribution of a particular statistic is observed.
When cl is provided, then simulations are done via parSapply. If ncpus is greater than 1 , then the function creates a cluster via makeCluster which is stopped (removed) once the process is complete.

Value

A random diffnet class object.
rdiffnet_multiple returns either a vector or an array depending on what statistic is (see sapply and parSapply).

Author(s)

George G. Vega Yon

See Also

Other simulation functions: permute_graph(), rewire_graph(), rgraph_ba(), rgraph_er(), rgraph_ws(), ring_lattice()

Examples

```
# Asimple example --------------------------------------------------------------------
set.seed(123)
z <- rdiffnet(100,10)
z
summary(z)
# A more complex example: Adopt if at least one neighbor has adopted --------
y <- rdiffnet(100, 10, threshold.dist=function(x) 1,
    exposure.args=list(valued=FALSE, normalized=FALSE))
# Re thinking the Adoption of Tetracycline
newMI <- rdiffnet(seed.graph = medInnovationsDiffNet$graph,
    threshold.dist = threshold(medInnovationsDiffNet), rewire=FALSE)
```

```
# Simulation study comparing the diffusion with diff sets of seed nodes -----
# Random seed nodes
set.seed(1)
ans0 <- rdiffnet_multiple(R=50, statistic=function(x) sum(!is.na(x$toa)),
    n = 100, t = 4, seed.nodes = "random", stop.no.diff=FALSE)
# Central seed nodes
set.seed(1)
ans1 <- rdiffnet_multiple(R=50, statistic=function(x) sum(!is.na(x$toa)),
    n = 100, t = 4, seed.nodes = "central", stop.no.diff=FALSE)
boxplot(cbind(Random = ans0, Central = ans1), main="Number of adopters")
```

read_pajek Read foreign graph formats

Description

Reading pajek and Ucinet files, this function returns weighted edgelists in the form of data frames including a data frame of the vertices. (function on development)

Usage

read_pajek(x)
read_ml(x)

Arguments

x
Character scalar. Path to the file to be imported.

Details

Since .net files allow working with multi-relational networks (more than one class of edge), the function returns lists of edges and edgeslist with the corresponding tag on the .net file. For example, if the .net file contains

```
*Arcslist :9 "SAMPPR"
*Arcslist :10 "SAMNPR"
```

The output will include data frames of edgelists with those tags.

Value

In the case of read_pajek, a list with three elements
vertices A data frame with n rows and two columns: id and label
edges If not null, a list of data frames with three columns: ego, alter, w (weight)
edgelist If not null, a list of data frame with three columns: ego, alter, w (weight)

For read_ml, a list with two elements:
adjmat An array with the graph
meta A list with metadata

Author(s)

George G. Vega Yon

Source

From the pajek manual http://mrvar.fdv.uni-lj.si/pajek/pajekman.pdf

See Also

Other Foreign: igraph, network, read_ucinet_head()

Examples

```
# From .net: Sampson monastery data from UCINET dataset -------------------------
# Reading the arcs/edges format
path <- system.file("extdata", "SAMPSON.NET", package = "netdiffuseR")
SAMPSON <- read_pajek(path)
# Reading the arcslist/edgelist format
path <- system.file("extdata", "SAMPSONL.NET", package = "netdiffuseR")
SAMPSONL <- read_pajek(path)
# From DL (UCINET): Sampson monastery data (again)
path <- system.file("extdata", "SAMPSON.DAT", package = "netdiffuseR")
SAMPSONL <- read_ml(path)
```

```
read_ucinet_head Reads UCINET files
```


Description

Reads UCINET files

Read UCINET files (binary)

Usage

read_ucinet_head(f)
read_ucinet (f, echo = FALSE)

Arguments

$\begin{array}{ll}f & \text { Character scalar. Name of the header file. e.g. mydata.\#\#h. } \\ \text { echo } & \text { Logical scalar. When TRUE shows a message. }\end{array}$

Value

An array including dimnames (if there are) and the following attributes:

| headerversion
 year
 month | Character scalar |
| :--- | :--- |
| Integer. Year the file was created | |
| day | Integer. Month of the year the file was created. |
| labtype | Integer. Day of the month the file was created. |
| infile.dt | Integer. Day of the week the file was created. |
| dim | Character scalar. Type of data of the array. |
| tit | Integer vector. Dimensions of the array. |
| haslab | Logical vector. Whether each dim has a label. |

See Also

Other Foreign: igraph, network, read_pajek()

recode \quad Recodes an edgelist such that ids go from 1 to n

Description

Recodes an edgelist such that ids go from 1 to n

Usage

```
    recode(data, ...)
    ## S3 method for class 'data.frame'
    recode(data, ...)
    ## S3 method for class 'matrix'
    recode(data, ...)
```


Arguments

$$
\begin{array}{ll}
\text { data } & \text { Edgelist as either a matrix or dataframe with ego and alter } \\
\ldots & \text { Further arguments for the method (ignored) }
\end{array}
$$

Details

Required for using most of the package's functions, as ids are used as a reference for accessing elements in adjacency matrices.

Value

A recoded edgelist as a two-column matrix/data.frame depending on the class of data. The output includes an attribute called "recode" which contains a two column data.frame providing a mapping between the previous code and the new code (see the examples)

Author(s)

George G. Vega Yon

See Also

```
edgelist_to_adjmat
```


Examples

```
# Simple example ----------------------------------------------------------------
edgelist <- cbind(c(1,1,3,6),c(4,3,200,1))
edgelist
recoded_edgelist <- recode(edgelist)
recoded_edgelist
```

```
# Retrieving the "recode" attribute
```

attr(recoded_edgelist, "recode")
rescale_vertex_igraph Rescale vertex size to be used in plot.igraph.

Description

This function rescales a vertex size before passing it to plot.igraph so that the resulting vertices have the desired size relative to the x -axis.

Usage

rescale_vertex_igraph(
vertex.size,
par.usr = par("usr"),
minmax.relative.size = getOption("diffnet.minmax. relative.size", c(0.01, 0.04)), adjust = 200
)
igraph_vertex_rescale(
vertex.size,
par.usr = par("usr"),
minmax. relative.size = getOption("diffnet.minmax.relative.size", c(0.01, 0.04)), adjust $=200$
)
vertex_rescale_igraph(vertex.size, par.usr = par("usr"), minmax. relative.size = getOption("diffnet.minmax.relative.size", c(0.01, 0.04)), adjust $=200$
)

Arguments

vertex.size Numeric vector of unscaled vertices’ sizes. This is unit-free.
par.usr Integer vector of length 4 with the coordinates of plotting region. by default uses par("usr").
minmax.relative.size
A numeric vector of length 2. Represents the desired min and max vertex sizes relative to the x -axis in terms of percentage (see details).
adjust Numeric scalar. Adjustment made to the resulting adjusted size (see details).

Details

minmax. relative.size limits the minimum and maximum size that a vertex can take in the plot relative to the x -axis scale. The values for the x -axis scale are by default retrieved by accessing to par("usr"). By default the vertex are rescaled to be at least 1% of the size of the plotting region and no more than 5% of the plotting region, minmax. relative. size $=c(.01, .05)$.
The default value for adjust is taken from igraph version 1.0.1. In particular, the function igraph:::.igraph.shape.circle.plot, in which before passing the vertex.size to the function symbols, the vertex size is reduced by 200.

The rescaling is as follows:

$$
v^{\prime}=\frac{v-\underline{\mathrm{v}}}{\bar{v}-\underline{\mathrm{v}}} \times(\bar{s}-\underline{\mathrm{s}})+\underline{\mathrm{s}}
$$

Where v is the vertex size, \bar{v} and $\underline{\mathrm{v}}$ are the max and min values of v respectively, and \bar{s} and $\underline{\mathrm{s}}$ are the max and min size that vertices take in terms of minmax. relative. size and par. usr. The adjusted value v^{\prime} is then multiplied by adjust.
igraph_vertex_rescale and vertex_rescale_igraph are aliases.

Value

An integer vector of the same length as vertex. size with rescaled values.

Author(s)

George G. Vega Yon

See Also

Other visualizations: dgr(), diffusionMap(), drawColorKey(), grid_distribution(), hazard_rate(), plot_adopters(), plot_diffnet2(), plot_diffnet(), plot_infectsuscep(), plot_threshold()

Examples

```
library(igraph)
# Random graph and coordinates
set.seed(2134)
g <- barabasi.game(10)
coords <- layout_nicely(g)
# Random size and figures
size <- runif(10)
size <- cbind(size, size)
shap <- sample(c("circle", "square"),10,TRUE)
# Plotting
oldpar <- par(no.readonly = TRUE)
par(mfrow=c(2,2), mai=rep(.5,4))
for (i in seq(1, 1000, length.out = 4)) {
    # New plot-window
```

rewire_graph

```
    plot.new()
    plot.window(xlim=range(coords[,1]*i), ylim=range(coords[,2]*i))
    # plotting graph
    plot(g, layout=coords*i, add=TRUE, rescale=FALSE,
        vertex.shape = shap,
        vertex.size = rescale_vertex_igraph(size) # HERE WE RESCALE!
    )
    # Adding some axis
    axis(1, lwd=0, lwd.ticks = 1)
    axis(2, lwd=0, lwd.ticks = 1)
    box()
}
par(oldpar)
```

rewire_graph

Graph rewiring algorithms

Description

Changes the structure of a graph by altering ties.

Usage

```
rewire_graph(
    graph,
    p,
    algorithm = "endpoints",
    both.ends = FALSE,
    self = FALSE,
    multiple = FALSE,
    undirected = getOption("diffnet.undirected"),
    pr.change = ifelse(self, 0.5, 1),
    copy.first = TRUE,
    althexagons = FALSE
)
```


Arguments

graph Any class of accepted graph format (see netdiffuseR-graphs).
p Either a $[0,1]$ vector with rewiring probabilities (algorithm="endpoints"), or an integer vector with number of iterations (algorithm="swap").
algorithm Character scalar. Either "swap", "endpoints", or "qap" (see rewire_qap).
both.ends Logical scalar. When TRUE rewires both ends.

| self | Logical scalar. When TRUE, allows loops (self edges). |
| :--- | :--- |
| multiple | Logical scalar. When TRUE allows multiple edges. |
| undirected | Logical scalar. When TRUE only the lower triangle of the adjacency matrix will
 considered (faster). |
| pr.change | Numeric scalar. Probability ([0,1]) of doing a rewire (see details).
 copy.first |
| Logical scalar. When TRUE and graph is dynamic uses the first slice as a baseline
 for the rest of slices (see details). | |
| althexagons | Logical scalar. When TRUE uses the compact alternating hexagons algorithm
 (currently ignored [on development]). |

Details

The algorithm "qap" is described in rewire_qap, and only uses graph from the arguments (since it is simply relabelling the graph).
In the case of "swap" and "endpoints", both algorithms are implemented sequentially, this is, edgewise checking self edges and multiple edges over the changing graph; in other words, at step m (in which either a new endpoint or edge is chosen, depending on the algorithm), the algorithms verify whether the proposed change creates either multiple edges or self edges using the resulting graph at step $m-1$.

The main difference between the two algorithms is that the "swap" algorithm preserves the degree sequence of the graph and "endpoints" does not. The "swap" algorithm is specially useful to asses the non-randomness of a graph's structural properties, furthermore it is this algorithm the one used in the struct_test routine implemented in netdiffuseR.

Rewiring assumes a weighted network, hence $G(i, j)=k=G\left(i^{\prime}, j^{\prime}\right)$, where i^{\prime}, j^{\prime} are the new end points of the edge and k may not be equal to one.
In the case of dynamic graphs, when copy. first=TRUE, after rewiring the first slice $-t=1$-the rest of slices are generated by rewiring the rewired version of the first slice. Formally:

$$
G(t)^{\prime}= \begin{cases}R(G(t)) & \text { if } t=1 \\ R\left(G(1)^{\prime}\right) & \text { otherwise }\end{cases}
$$

Where $G(t)$ is the t -th slice, $G(t)^{\prime}$ is the t -th rewired slice, and R is the rewiring function. Otherwise, copy. first=FALSE (default), The rewiring function is simply $G(t)^{\prime}=R(G(t))$.
The following sections describe the way both algorithms were implemented.

Swap algorithm

The "swap" algorithm chooses randomly two edges (a, b) and (c, d) and swaps the 'right' endpoint of boths such that we get (a, d) and (c, b) (considering self and multiple edges).
Following Milo et al. (2004) testing procedure, the algorithm shows to be well behaved in terms of been unbiased, so after each iteration each possible structure of the graph has the same probability of been generated. The algorithm has been implemented as follows:
Let E be the set of edges of the graph G. For $i=1$ to p, do:

1. With probability $1-\mathrm{pr}$. change got to the last step.
2. Choose $e 0=(a, b)$ from E. If ! self \& $\mathrm{a}==\mathrm{b}$ then go to the last step.
3. Choose $e 1=(c, d)$ from E. If ! self \& $\mathrm{c}==\mathrm{d}$ then go to the last step.
4. Define $e 0^{\prime}=(a, d)$ and $e 1^{\prime}=(c, b)$. If !multiple \& $\left[\mathrm{G}\left[\mathrm{e} 0^{\prime}\right]!=0 \mid \mathrm{G}\left[\mathrm{e} 1^{\prime}\right]!=0\right]$ then go to the last step. (*)
5. Define $v 0=G[e 0]$ and $v 1=G[e 1]$, set $G[e 0]=0$ and $G[e 1]=0$ (and the same to the diagonally opposed coordinates in the case of undirected graphs)
6. Set $G\left[e 0^{\prime}\right]=v 0$ and $G\left[e 1^{\prime}\right]=v 1$ (and so with the diagonally opposed coordinates in the case of undirected graphs).
7. Next i.
(*) When althexagons=TRUE, the algorithm changes and applies what Rao et al. (1996) describe as Compact Alternating Hexagons. This modification assures the algorithm to be able to achieve any structure. The algorithm consists on doing the following swapping: $(i 1 i 2, i 1 i 3, i 2 i 3, i 2 i 1, i 3 i 1, i 3 i 2)$ with values $(1,0,1,0,1,0)$ respectively with $i 1!=i 2!=i 3$. See the examples and references.
In Milo et al. (2004) is suggested that in order for the rewired graph to be independent from the original one researchers usually iterate around nlinks(graph)*100 times, so p=nlinks (graph)*100. On the other hand in Ray et al (2012) it is shown that in order to achive such it is needed to perform nlinks (graph)*log(1/eps), where eps $\sim 1 \mathrm{e}-7$, in other words, around nlinks(graph)*16. We set the default to be 20.

In the case of Markov chains, the variable pr.change allows making the algorithm aperiodic. This is relevant only if the probability self-loop to a particular state is null, for example, if we set self=TRUE and muliple=TRUE, then in every step the algorithm will be able to change the state. For more details see Stanton and Pinar (2012) [p. 3.5:9].

Endpoints algorithm

This reconnect either one or both of the endpoints of the edge randomly. As a big difference with the swap algorithm is that this does not preserves the degree sequence of the graph (at most the outgoing degree sequence). The algorithm is implemented as follows:
Let G be the baseline graph and G^{\prime} be a copy of it. Then, For $l=1$ to $|E|$ do:

1. Pick the l-th edge from E, define it as $e=(i, j)$.
2. Draw r from $U(0,1)$, if $r>p$ go to the last step.
3. If ! undirected \& $\mathrm{i}<\mathrm{j}$ go to the last step.
4. Randomly select a vertex j^{\prime} (and i^{\prime} if both_ends==TRUE). And define $e^{\prime}=\left(i, j^{\prime}\right)$ (or $e^{\prime}=$ (i^{\prime}, j^{\prime}) if both_ends==TRUE).
5. If ! self \& $i==j$ ($o r$ if both_ends==TRUE \& $i^{\prime}==j^{\prime}$) go to the last step.
6. If !multiple \& G'[e']!=0 then go to the last step.
7. Define $v=G[e]$, set $G^{\prime}[e]=0$ and $G^{\prime}\left[e^{\prime}\right]=v$ (and the same to the diagonally opposed coordinates in the case of undirected graphs).
8. Next l.

The endpoints algorithm is used by default in rdiffnet and used to be the default in struct_test (now swap is the default).

Author(s)

George G. Vega Yon

References

Watts, D. J., \& Strogatz, S. H. (1998). Collectivedynamics of "small-world" networks. Nature, 393(6684), 440-442. doi: 10.1038/30918

Milo, R., Kashtan, N., Itzkovitz, S., Newman, M. E. J., \& Alon, U. (2004). On the uniform generation of random graphs with prescribed degree sequences. Arxiv Preprint condmat0312028, condmat/0, 1-4. Retrieved from http://arxiv.org/abs/cond-mat/0312028
Ray, J., Pinar, A., and Seshadhri, C. (2012). Are we there yet? When to stop a Markov chain while generating random graphs. pages $1-21$.
Ray, J., Pinar, A., \& Seshadhri, C. (2012). Are We There Yet? When to Stop a Markov Chain while Generating Random Graphs. In A. Bonato \& J. Janssen (Eds.), Algorithms and Models for the Web Graph (Vol. 7323, pp. 153-164). Berlin, Heidelberg: Springer Berlin Heidelberg. doi: 10.1007/ 9783642305412

A . Ramachandra Rao, R. J. and S. B. (1996). A Markov Chain Monte Carlo Method for Generating Random (0,1) -Matrices with Given Marginals. The Indian Journal of Statistics, 58, 225-242.
Stanton, I., \& Pinar, A. (2012). Constructing and sampling graphs with a prescribed joint degree distribution. Journal of Experimental Algorithmics, 17(1), 3.1. doi: 10.1145/2133803.2330086

See Also

Other simulation functions: permute_graph(), rdiffnet(), rgraph_ba(), rgraph_er(), rgraph_ws(), ring_lattice()

Examples

```
# Checking the consistency of the "swap" ----------------------------------------
# A graph with known structure (see Milo 2004)
n<- 5
x <- matrix(0, ncol=n, nrow=n)
x <- as(x, "dgCMatrix")
x[1,c(-1,-n)] <- 1
x[c(-1,-n),n] <- 1
x
# Simulations (increase the number for more precision)
set.seed(8612)
nsim <- 1e4
w <- sapply(seq_len(nsim), function(y) {
    # Creating the new graph
    g <- rewire_graph(x,p=nlinks(x)*100, algorithm = "swap")
    # Categorizing (tag of the generated structure)
    paste0(as.vector(g), collapse="")
})
```

```
# Counting
coded <- as.integer(as.factor(w))
plot(table(coded)/nsim*100, type="p", ylab="Frequency %", xlab="Class of graph", pch=3,
    main="Distribution of classes generated by rewiring")
# Marking the original structure
baseline <- paste0(as.vector(x), collapse="")
points(x=7,y=table(as.factor(w))[baseline]/nsim*100, pch=3, col="red")
```

rgraph_ba

Scale-free and Homophilic Random Networks

Description

Generates a scale-free random graph based on Bollabas et al. (2001), also know as Linearized Chord Diagram (LCD) which has nice mathematical propoerties. And also scale-free homophilic networks when an vertex attribute eta is passed.

Usage

rgraph_ba(m0 $=1 \mathrm{~L}, \mathrm{~m}=1 \mathrm{~L}, \mathrm{t}=10 \mathrm{~L}$, graph $=\mathrm{NULL}$, self $=$ TRUE, eta $=$ NULL)

Arguments

m0 Integer scalar. Number of initial vertices in the graph.
m Integer scalar. Number of new edges per vertex added.
$t \quad$ Integer scalar. Number of time periods (steps).
graph Any class of accepted graph format (see netdiffuseR-graphs).
self Logical scalar. When TRUE autolinks (loops, self edges) are allowed (see details).
eta Numeric vector of length $t+m 0$. When specified, it generates a scale-free homophilic network (see details).

Details

Based on Ballobás et al. (2001) creates a directed random graph of size $t+m 0$. A big difference with B-A model is that this allows for loops (self/auto edges) and further multiple links, nevertheless, as t increases, the number of such cases reduces.
By default, the degree of the first $m 0$ vertices is set to be 2 (loops). When $m>1$, as described in the paper, each new link from the new vertex is added one at a time "counting 'outward half' of the edge being added as already contributing to the degrees".
When self=FALSE, the generated graph is created without autolinks. This means that at the beginning, if the number of links equals zero, all vertices have the same probability of receiving a new link.

When eta is passed, it implements the model specified in De Almeida et al. (2013), a scale-free homophilic network. To do so eta is rescaled to be between 0 and 1 and the probability that the node i links to node j is as follows:

$$
\frac{\left(1-A_{i j}\right) k_{j}}{\sum_{j}\left(1-A_{i j}\right) k_{j}}
$$

Where $A_{i j}=\left|\eta_{i}-\eta_{j}\right|$ and k_{j} is the degree of the j-th vertex.

Value

If graph is not provided, a static graph, otherwise an expanded graph (t aditional vertices) of the same class as graph.
The resulting graph will have graph\$meta\$undirected = FALSE if it is of class diffnet and attr (graph, "undirected")=FALSE otherwise.

Author(s)

George G. Vega Yon

References

Bollobás, B́., Riordan, O., Spencer, J., \& Tusnády, G. (2001). The degree sequence of a scale-free random graph process. Random Structures \& Algorithms, 18(3), 279-290. doi: 10.1002/rsa. 1009
Albert-László Barabási, \& Albert, R. (1999). Emergence of Scaling in Random Networks. Science, 286(5439), 509-512. doi: 10.1126/science.286.5439.509
Albert-László Barabási. (2016). Network Science: (1st ed.). Cambridge University Press. Retrieved from http://barabasi.com/book/network-science

De Almeida, M. L., Mendes, G. A., Madras Viswanathan, G., \& Da Silva, L. R. (2013). Scale-free homophilic network. European Physical Journal B, 86(2). doi: 10.1140/epjb/e201230802x

See Also

Other simulation functions: permute_graph(), rdiffnet(), rewire_graph(), rgraph_er(), rgraph_ws(), ring_lattice()

Examples

```
# Using another graph as a base graph ------------------------------------------
graph <- rgraph_ba()
graph
graph <- rgraph_ba(graph=graph)
# Generating a scale-free homophilic graph (no loops) ---------------------------
set.seed(112)
eta <- rep(c(1,1,1,1,2,2,2,2), 20)
ans <- rgraph_ba(t=length(eta) - 1, m=3, self=FALSE, eta=eta)
```

rgraph_er

```
# Converting it to igraph (so we can plot it)
ig <- igraph::graph_from_adjacency_matrix(ans)
    # Neat plot showing the output
    oldpar <- par(no.readonly = TRUE)
    par(mfrow=c(1,2))
    plot(ig, vertex.color=c("red","blue")[factor(eta)], vertex.label=NA,
    vertex.size=5, main="Scale-free homophilic graph")
    suppressWarnings(plot(dgr(ans), main="Degree distribution"))
    par(oldpar)
```

 rgraph_er Erdos-Renyi model

Description

Generates a bernoulli random graph.

Usage

```
rgraph_er
    \(\mathrm{n}=10\),
    \(\mathrm{t}=1\),
    p = 0.01,
    undirected = getOption("diffnet.undirected"),
    weighted = FALSE,
    self = getOption("diffnet.self"),
    as.edgelist = FALSE
)
```


Arguments

n
t
p
undirected
weighted
self
as.edgelist Logical. When TRUE the graph is presented as an edgelist instead of an adjacency matrix.

Details

For each pair of nodes $\{i, j\}$, an edge is created with probability p, this is, $\operatorname{Pr}\{\operatorname{Link} i-j\}=$ $\operatorname{Pr}\{x<p\}$, where x is drawn from a $\operatorname{Uniform}(0,1)$.

When weighted=TRUE, the strength of ties is given by the random draw x used to compare against p, hence, if $x<p$ then the strength will be set to x.
In the case of dynamic graphs, the algorithm is repeated t times, so the networks are uncorrelated.

Value

A graph represented by an adjacency matrix (if $t=1$), or an array of adjacency matrices (if $t>1$).

Note

The resulting adjacency matrix is store as a dense matrix, not as a sparse matrix, hence the user should be careful when choosing the size of the network.

Author(s)

George G. Vega Yon

References

Barabasi, Albert-Laszlo. "Network science book" Retrieved November 1 (2015) http://barabasi . com/book/network-science.

See Also

Other simulation functions: permute_graph(), rdiffnet(), rewire_graph(), rgraph_ba(), rgraph_ws(), ring_lattice()

Examples

```
# Setting the seed
set.seed(13)
# Generating an directed graph
rgraph_er(undirected=FALSE, p = 0.1)
# Comparing P(tie)
x <- rgraph_er(1000, p=.1)
sum(x)/length(x)
# Several period random gram
rgraph_er(t=5)
```

rgraph_ws Watts-Strogatz model

Description

Generates a small-world random graph.

Usage

```
    rgraph_ws(
        n,
        k,
        p,
        both.ends = FALSE,
        self = FALSE,
        multiple = FALSE,
        undirected = FALSE
    )
```


Arguments

$\mathrm{n} \quad$ Integer scalar. Set the size of the graph.
$\mathrm{k} \quad$ Integer scalar. Set the initial degree of the ring (must be less than n).
$\mathrm{p} \quad$ Numeric scalar/vector of length T. Set the probability of changing an edge.
both.ends Logical scalar. When TRUE rewires both ends.
self Logical scalar. When TRUE, allows loops (self edges).
multiple Logical scalar. When TRUE allows multiple edges.
undirected Logical scalar. Passed to ring_lattice

Details

Implemented as in Watts and Strogatz (1998). Starts from an undirected ring with n vertices all with degree k (so it must be an even number), and then rewire each edge by setting the endpoint (so now you treat it as a digraph) randomly any vertex in $N \backslash i$ avoiding multiple links (by default) using the rewiring algorithm described on the paper.

Value

A random graph of size $n \times n$ following the small-world model. The resulting graph will have attr(graph, "undirected")=FALSE.

Author(s)

George G. Vega Yon

References

Watts, D. J., \& Strogatz, S. H. (1998). Collective dynamics of "small-world" networks. Nature, 393(6684), 440-2. doi: 10.1038/30918

Newman, M. E. J. (2003). The Structure and Function of Complex Networks. SIAM Review, 45(2), 167-256. doi: 10.1137/S003614450342480

See Also

Other simulation functions: permute_graph(), rdiffnet(), rewire_graph(), rgraph_ba(), rgraph_er(), ring_lattice()

Examples

```
library(igraph)
set.seed(7123)
x0 <- graph_from_adjacency_matrix(rgraph_ws(10,2, 0))
x1 <- graph_from_adjacency_matrix(rgraph_ws(10,2, .3))
x2 <- graph_from_adjacency_matrix(rgraph_ws(10,2, 1))
oldpar <- par(no.readonly=TRUE)
par(mfrow=c (1,3))
plot(x0, layout=layout_in_circle, edge.curved=TRUE, main="Regular")
plot(x1, layout=layout_in_circle, edge.curved=TRUE, main="Small-world")
plot(x2, layout=layout_in_circle, edge.curved=TRUE, main="Random")
par(oldpar)
```

 ring_lattice Ring lattice graph

Description

Creates a ring lattice with n vertices, each one of degree (at most) k as an undirected graph. This is the basis of rgraph_ws.

Usage

ring_lattice(n, k, undirected $=$ FALSE)

Arguments

$\mathrm{n} \quad$ Integer scalar. Size of the graph.
$\mathrm{k} \quad$ Integer scalar. Out-degree of each vertex.
undirected Logical scalar. Whether the graph is undirected or not.
round_to_seq

Details

when undirected=TRUE, the degree of each node always even. So if $k=3$, then the degree will be 2 .

Value

A sparse matrix of class dgCMatrix of size $n \times n$.

References

Watts, D. J., \& Strogatz, S. H. (1998). Collective dynamics of "small-world" networks. Nature, 393(6684), 440-2. http://doi.org/10.1038/30918

See Also

Other simulation functions: permute_graph(), rdiffnet(), rewire_graph(), rgraph_ba(), rgraph_er(), rgraph_ws()

```
round_to_seq Takes a numeric vector and maps it into a finite length sequence
```


Description

Takes a numeric vector and maps it into a finite length sequence

Usage

round_to_seq(x, nlevels = 20, as_factor = FALSE)

Arguments

x
A numeric or integer vector.
nlevels Integer scalar. Length of the sequence to be map onto.
as_factor Logical scalar. When TRUE the resulting vector is factor.

Value

A vector of length length (x) with values mapped to a sequence with $n l e v e l$ s unique valuess

See Also

Used in diffmap and plot_diffnet2

Examples

```
x <- rnorm(100)
w <- data.frame(as.integer(round_to_seq(x, as_factor = TRUE)),x)
plot(w,x)
```


Description

This function calculates the 16 possible configurations between ego and alter over two time points in terms of their behavior and tie changes. From time one to time two, given a binary state of behavior, ego and alter can be related in 16 different ways. The function adopt_changes is just an alias for select_egoalter.

Usage

select_egoalter(graph, adopt, period = NULL)
adopt_changes(graph, adopt, period = NULL)
\#\# S3 method for class 'diffnet_adoptChanges'
summary (object, ...)

Arguments

graph A dynamic graph (see netdiffuseR-graphs).
adopt $n \times T$ matrix. Cumulative adoption matrix obtained from toa_mat.
period Integer scalar. Optional to make the count for a particular period of time.
object An object of class diffnet_adoptChanges.
... Ignored.

Details

The 16 possibilities are summarized in this matrix:

| | | Alter | | | | |
| :---: | :---: | ---: | :---: | :---: | :---: | :---: |
| Ego | | $t-1$ | No | | Yes | |
| | $t-1$ | t | No | Yes | No | Yes |
| | No | No | 1 | 2 | 9 | 10 |
| | | Yes | 3 | 4 | 11 | 12 |
| | Yes | No | 5 | 6 | 13 | 14 |
| | | Yes | 7 | 8 | 15 | 16 |

The first two Yes/No columns represent Ego's adoption of the innovation in $t-1$ and t; while the first two Yes/No rows represent Alter's adoption of the innovation in $t-1$ and t respectively. So for example, number 4 means that while neither of the two had addopted the innovation in $t-1$, both have in t. At the same time, number 12 means that ego adopted the innovation in t, but alter had already adopted in $t-1$ (so it has it in both, t and $t-1$).

Value

An object of class diffnet_adoptChanges and data. frame with $n \times(T-1)$ rows and $2+16 \times 3$ columns. The column names are:
time Integer represting the time period
id Node id
select_a_01, . . . , select_a_16
Number of new links classified between categories 1 to 16 .
select_d_01, . . . , select_d_16
Number of remove links classified between categories 1 to 16 .
select_s_01, . . . , select_s_16
Number of unchanged links classified between categories 1 to 16 .

Author(s)

George G. Vega Yon \& Thomas W. Valente

References

Thomas W. Valente, Stephanie R. Dyal, Kar-Hai Chu, Heather Wipfli, Kayo Fujimoto, Diffusion of innovations theory applied to global tobacco control treaty ratification, Social Science \& Medicine, Volume 145, November 2015, Pages 89-97, ISSN 0277-9536 doi: 10.1016/j.socscimed.2015.10.001

Examples

```
# Simple example -------------------------------------------------------------
set.seed(1312)
dn <- rdiffnet(20, 5, seed.graph="small-world")
ans <- adopt_changes(dn)
str(ans)
summary(ans)
```

```
struct_equiv Structural Equivalence
```


Description

Computes structural equivalence between ego and alter in a network

Usage

struct_equiv(graph, v = 1, inf.replace = 0, groupvar = NULL, ...)
\#\# S3 method for class 'diffnet_se'
print(x, ...)

Arguments

| graph | Any class of accepted graph format (see netdiffuseR-graphs). |
| :--- | :--- |
| v | Numeric scalar. Cohesion constant (see details). |
| inf.replace | Deprecated. |
| groupvar | Either a character scalar (if graph is diffnet), or a vector of size n. |
| \ldots | Further arguments to be passed to approx_geodesic (not valid for the print
 method). |
| x | A diffnet_se class object. |

Details

Structure equivalence is computed as presented in Valente (1995), and Burt (1987), in particular

$$
S E_{i j}=\frac{\left(d \max _{i}-d_{j i}\right)^{v}}{\sum_{k \neq i}^{n}\left(d \max _{i}-d_{k i}\right)^{v}}
$$

with the summation over $k \neq i$, and $d_{j i}$, Eucledian distance in terms of geodesics, is defined as

$$
d_{j i}=\left[\left(z_{j i}-z_{i j}\right)^{2}+\sum_{k}^{n}\left(z_{j k}-z_{i k}\right)^{2}+\sum_{k}^{n}\left(z_{k i}-z_{k j}\right)^{2}\right]^{\frac{1}{2}}
$$

with $z_{i j}$ as the geodesic (shortest path) from i to j, and $d \max _{i}$ equal to largest Euclidean distance between i and any other vertex in the network. All summations are made over $k \notin\{i, j\}$
Here, the value of v is interpreted as cohesion level. The higher its value, the higher will be the influence that the closests alters will have over ego (see Burt's paper in the reference).
Structural equivalence can be computed either for the entire graph or by groups of vertices. When, for example, the user knows before hand that the vertices are distributed accross separated communities, he can make this explicit to the function and provide a groupvar variable that accounts for this. Hence, when groupvar is not NULL the algorithm will compute structural equivalence within communities as marked by groupvar.

Value

If graph is a static graph, a list with the following elements:

| SE | Matrix of size $n \times n$ with Structural equivalence |
| :--- | :--- |
| d | Matrix of size $n \times n$ Euclidean distances |
| gdist | Matrix of size $n \times n$ Normalized geodesic distance |

In the case of dynamic graph, is a list of size t in which each element contains a list as described before. When groupvar is specified, the resulting matrices will be of class dgCMatrix, otherwise will be of class matrix.

Author(s)

George G. Vega Yon \& Thomas W. Valente

References

Burt, R. S. (1987). "Social Contagion and Innovation: Cohesion versus Structural Equivalence". American Journal of Sociology, 92(6), 1287-1335. doi: 10.1086/228667
Valente, T. W. (1995). "Network models of the diffusion of innovations" (2nd ed.). Cresskill N.J.: Hampton Press.

See Also

Other statistics: bass, classify_adopters(), cumulative_adopt_count(), dgr(), ego_variance(), exposure(), hazard_rate(), infection(), moran(), threshold(), vertex_covariate_dist()

Examples

```
# Computing structural equivalence for the fakedata --------------------------
data(fakesurvey)
# Coercing it into a diffnet object
fakediffnet <- survey_to_diffnet(
    fakesurvey, "id", c("net1", "net2", "net3"), "toa", "group"
)
# Computing structural equivalence without specifying group
se_all <- struct_equiv(fakediffnet)
# Notice that pairs of individuals from different communities have
# non-zero values
se_all
se_all[[1]]$SE
# ... Now specifying a groupvar
se_group <- struct_equiv(fakediffnet, groupvar="group")
# Notice that pairs of individuals from different communities have
# only zero values.
se_group
se_group[[1]]$SE
```

struct_test Structure dependence test

Description

Test whether or not a network estimates can be considered structurally dependent, i.e. a function of the network structure. By rewiring the graph and calculating a particular statistic t, the test compares the observed mean of t against the empirical distribution of it obtained from rewiring the network.

Usage

```
n_rewires(graph, p = c(20L, rep(0.1, nslices(graph) - 1)))
struct_test(graph, statistic, R, rewire.args = list(), ...)
\#\# S3 method for class 'diffnet_struct_test'
c(..., recursive = FALSE)
\#\# S3 method for class 'diffnet_struct_test'
print(x, ...)
\#\# S3 method for class 'diffnet_struct_test'
hist(
    x ,
    main = "Empirical Distribution of Statistic",
    xlab = expression(Values ~ of ~ t),
    breaks = 20,
        annotated = TRUE,
        b0 = expression(atop(plain("") \%up\% plain("")), t[0]),
        b = expression(atop(plain("") \%up\% plain("")), t[]),
        ask = TRUE,
    ...
)
struct_test_asymp(graph, Y, statistic_name = "distance", p = 2, ...)
```


Arguments

| graph | A diffnet graph. |
| :---: | :---: |
| p | Either a Numeric scalar or vector of length nslices(graph)-1 with the number of rewires per links. |
| statistic | A function that returns either a scalar or a vector. |
| R | Integer scalar. Number of repetitions. |
| rewire.args | List. Arguments to be passed to rewire_graph |
| | Further arguments passed to the method (see details). |
| recursive | Ignored |
| x | A diffnet_struct_test class object. |
| main | Character scalar. Title of the histogram. |
| xlab | Character scalar. x-axis label. |
| breaks | Passed to hist. |
| annotated | Logical scalar. When TRUE marks the observed data average and the simulated data average. |
| b0 | Character scalar. When annotated=TRUE, label for the value of b0. |
| b | Character scalar. When annotated=TRUE, label for the value of b. |

```
ask Logical scalar. When TRUE, asks the user to type <Enter> to see each plot (as
    many as statistics where computed).
Y Numeric vector of length n.
statistic_name Character scalar. Name of the metric to compute. Currently this can be either
    "distance",">","<","==", ">=", or "<=".
```


Details

struct_test computes the test by generating the null distribution using Monte Carlo simulations (rewiring). struct_test_asymp computes the test using an asymptotic approximation. While available, we do not recommend using the asymptotic approximation since it has not shown good results when compared to the MC approximation. Furthermore, the asymptotic version has only been implemented for graph as static graph.
The output from the hist method is the same as hist. default.
struct_test is a wrapper for the function boot from the boot package. Instead of resampling datavertices or edges-in each iteration the function rewires the original graph using rewire_graph and applies the function defined by the user in statistic.
The default values to rewire_graph via rewire.args are:

```
p Number or Integer with default n_rewires(graph).
    undirected Logical scalar with default getOption("diffnet.undirected", FALSE).
    copy.first Logical scalar with TRUE.
    algorithm Character scalar with default "swap".
```

In struct_test . . . are passed to boot, otherwise are passed to the corresponding method (hist for instance).

From the print method, p-value for the null of the statistic been equal between graph and its rewired versions is computed as follows

$$
p(\tau)=2 \times \min (\operatorname{Pr}(t \leq \tau), \operatorname{Pr}(t \geq \tau))
$$

Where $\operatorname{Pr}\{\cdot\}$ is approximated using the Empirical Distribution Function retrieved from the simulations.

For the case of the asymptotic approximation, under the null we have

$$
\sqrt{n}\left(\hat{\beta}(Y, G)-\mu_{\beta}\right) \sim^{d} \mathrm{~N}\left(0, \sigma_{\beta}^{2}\right)
$$

The test is actually on development by Vega Yon and Valente. A copy of the working paper can be distributed upon request to <g.vegayon@gmail. com>.
The function $n _r e w i r e s$ proposes a vector of number of rewirings that are performed in each iteration.

Value

A list of class diffnet_struct_test containing the following:

| graph | The graph passed to struct_test. |
| :--- | :--- |
| p.value | The resulting p-value of the test (see details). |
| t0 | The observed value of the statistic. |
| mean_t | The average value of the statistic applied to the simulated networks. |
| R | Number of simulations. |
| statistic | The function statistic passed to struct_test. |
| boot | A boot class object as return from the call to boot. |
| rewire.args | The list rewire.args passed to struct_test. |

Author(s)

George G. Vega Yon

References

Vega Yon, George G. and Valente, Thomas W. (On development).
Davidson, R., \& MacKinnon, J. G. (2004). Econometric Theory and Methods. New York: Oxford University Press.

See Also

Other Functions for inference: bootnet (), moran()

Examples

```
# Creating a random graph
set.seed(881)
diffnet <- rdiffnet(100, 5, seed.graph="small-world")
# Testing structure-dependency of threshold
res <- struct_test(
    diffnet,
    function(g) mean(threshold(g), na.rm=TRUE),
    R=100
)
res
hist(res)
# Adding a legend
legend("topright", bty="n",
    legend=c(
        expression(t[0]:~Baseline),
        expression(t:~Rewired~average)
    )
    )
# Concatenating results
c(res, res)
```

```
    # Running in parallel fashion
    res <- struct_test(
        diffnet, function(g) mean(threshold(g), na.rm=TRUE),
        R=100, ncpus=2, parallel="multicore"
    )
    res
    hist(res)
```

 summary.diffnet Summary of diffnet objects

Description

Summary of diffnet objects

Usage

```
    ## S3 method for class 'diffnet'
    summary(
        object,
        slices = NULL,
        no.print = FALSE,
        skip.moran = FALSE,
        valued = getOption("diffnet.valued", FALSE),
    )
```


Arguments

object An object of class diffnet.
slices Either an integer or character vector. While integer vectors are used as indexes, character vectors are used jointly with the time period labels.
no.print Logical scalar. When TRUE suppress screen messages.
skip.moran Logical scalar. When TRUE Moran's I is not reported (see details).
valued Logical scalar. When TRUE weights will be considered. Otherwise non-zero values will be replaced by ones.
... Further arguments to be passed to approx_geodesic.

Details

Moran's I is calculated over the cumulative adoption matrix using as weighting matrix the inverse of the geodesic distance matrix. All this via moran. For each time period t, this is calculated as:

$$
m=\operatorname{moran}\left(C[, t], G^{\wedge}(-1)\right)
$$

Where $C[, t]$ is the t-th column of the cumulative adoption matrix, $G^{\wedge}(-1)$ is the element-wise inverse of the geodesic matrix at time t, and moran is netdiffuseR's moran's I routine. When skip.moran=TRUE Moran's I is not reported. This can be useful for both: reducing computing time and saving memory as geodesic distance matrix can become large. Since version 1.18.0, geodesic matrices are approximated using approx_geodesic which, as a difference from geodist from the sna package, and distances from the igraph package returns a matrix of class dgCMatrix (more details in approx_geodesic).

Value

A data frame with the following columns:

| adopt | Integer. Number of adopters at each time point. |
| :--- | :--- |
| cum_adopt | Integer. Number of cumulative adopters at each time point. |
| cum_adopt_pcent | Numeric. Proportion of comulative adopters at each time point. |
| hazard | Numeric. Hazard rate at each time point. |
| density | Numeric. Density of the network at each time point. |
| moran_obs | Numeric. Observed Moran's I. |
| moran_exp | Numeric. Expected Moran's I. |
| moran_sd | Numeric. Standard error of Moran's I under the null. |
| moran_pval | Numeric. P-value for the observed Moran's I. |

Author(s)

George G. Vega Yon

See Also

Other diffnet methods: \%*\%(), as.array.diffnet(), c.diffnet(), diffnet-arithmetic, diffnet-class, diffnet_index, plot.diffnet()

Examples

```
data(medInnovationsDiffNet)
summary(medInnovationsDiffNet)
```


Description

These convenient functions turn network nomination datasets and edgelists with vertex attributes datasets into diffnet objects. Both work as wrappers of edgelist_to_adjmat and new_diffnet.

Usage

survey_to_diffnet(
dat,
idvar,
netvars,
toavar,
groupvar = NULL,
no. unsurveyed = TRUE,
timevar = NULL,
$\mathrm{t}=\mathrm{NULL}$,
undirected = getOption("diffnet.undirected", FALSE),
self = getOption("diffnet.self", FALSE),
multiple = getOption("diffnet.multiple", FALSE),
keep.isolates = TRUE,
recode.ids = TRUE,
warn. coercion = TRUE,
)
edgelist_to_diffnet(
edgelist,
w = NULL,
t0 $=$ NULL,
t1 = NULL,
dat,
idvar,
toavar,
timevar = NULL,
undirected = getOption("diffnet.undirected", FALSE), self = getOption("diffnet.self", FALSE), multiple = getOption("diffnet.multiple", FALSE), fill.missing = NULL, keep.isolates = TRUE, recode.ids = TRUE, warn. coercion $=$ TRUE
)

Arguments

| dat | A data frame. |
| :---: | :---: |
| idvar | Character scalar. Name of the id variable. |
| netvars | Character vector. Names of the network nomination variables. |
| toavar | Character scalar. Name of the time of adoption variable. |
| groupvar | Character scalar. Name of cohort variable (e.g. city). |
| no.unsurveyed | Logical scalar. When TRUE the nominated individuals that do not show in idvar are set to NA (see details). |
| timevar | Character sacalar. In the case of longitudinal data, name of the time var. |
| t | Integer scalar. Repeat the network times (if no t0, t 1 are provided). |
| undirected | Logical scalar. When TRUE only the lower triangle of the adjacency matrix will considered (faster). |
| self | Logical scalar. When TRUE autolinks (loops, self edges) are allowed (see details). |
| multiple | Logical scalar. When TRUE allows multiple edges. |
| keep.isolates | Logical scalar. When FALSE, rows with NA/NULL values (isolated vertices unless have autolink) will be droped (see details). |
| recode.ids | Logical scalar. When TRUE ids are recoded using as.factor (see details). |
| warn.coercion | Logical scalar. When TRUE warns coercion from numeric to integer. |
| | Further arguments to be passed to new_diffnet. |
| edgelist | Two column matrix/data.frame in the form of ego -source- and alter -target- (see details). |
| w | Numeric vector. Strength of ties (optional). |
| t0 | Integer vector. Starting time of the ties (optional). |
| t1 | Integer vector. Finishing time of the ties (optional). |
| fill.missing | Character scalar. In the case of having unmatching ids between dat and edgelist fills the data (see details). |

Details

All of netvars, toavar and groupvar must be integers. Were these numeric they are coerced into integers, otherwise, when neither of both, the function returns with error. idvar, on the other hand, should only be integer when calling survey_to_diffnet, on the contrary, for edgelist_to_diffnet, idvar may be character.

In field work it is not unusual that some respondents nominate unsurveyed individuals. In such case, in order to exclude them from the analysis, the user can set no. unsurveyed=TRUE (the default), telling the function to exclude such individuals from the adjacency matrix. This is done by setting variables in netvars equal to NA when the nominated id can't be found in idvar.
If the network nomination process was done in different groups (location for example) the survey id numbers may be define uniquely within each group but not across groups (there may be many individuals with id=1, for example). To encompass this issue, the user can tell the function what variable can be used to distinguish between groups through the groupvar argument. When groupvar is provided, function redifines idvar and the variables in netvars as follows:

```
dat[[idvar]] <- dat[[idvar]] + dat[[groupvar]]*z
```

Where $z=10^{\wedge} \operatorname{nchar}(\max (\operatorname{dat}[[i d v a r]]))$.
For longitudinal data, it is assumed that the toavar holds the same information through time, this is, time-invariable. This as the package does not yet support variable times of adoption.
The fill.missing option can take any of these three values: "edgelist", "dat", or "both". This argument works as follows:

1. When fill.missing="edgelist" (or "both") the function will check which vertices show in dat but do not show in edgelist. If there is any, the function will include these in edgelist as ego to NA (so they have no link to anyone), and, if specified, will fill the t 0 , t 1 vectors with NAs for those cases. If w is also specified, the new vertices will be set to min($w, n a . r m=T R U E)$.
2. When fill.missing="dat" (or "both") the function checks which vertices show in edgelist but not in dat. If there is any, the function will include these in dat by adding one row per individual.

Value

A diffnet object.

Author(s)

Vega Yon

See Also

fakesurvey, fakesurveyDyn
Other data management functions: diffnet-class, edgelist_to_adjmat(), egonet_attrs(), isolated()

Examples

```
# Loading a fake survey (data frame)
data(fakesurvey)
# Diffnet object keeping isolated vertices --------------------------------------
dn1 <- survey_to_diffnet(fakesurvey, "id", c("net1", "net2", "net3"), "toa",
    "group", keep.isolates=TRUE)
# Diffnet object NOT keeping isolated vertices
dn2 <- survey_to_diffnet(fakesurvey, "id", c("net1", "net2", "net3"), "toa",
    "group", keep.isolates=FALSE)
# dn1 has an extra vertex than dn2
dn1
dn2
# Loading a longitudinal survey data (two waves) -------------------------------
data(fakesurveyDyn)
```

```
groupvar <- "group"
x <- survey_to_diffnet(
    fakesurveyDyn, "id", c("net1", "net2", "net3"), "toa", "group" ,
    timevar = "time", keep.isolates = TRUE, warn.coercion=FALSE)
plot_diffnet(x, vertex.label = rownames(x))
# Reproducing medInnovationsDiffNet object --------------------------------------
data(medInnovations)
# What are the netvars
netvars <- names(medInnovations)[grepl("^net", names(medInnovations))]
medInnovationsDiffNet2 <- survey_to_diffnet(
    medInnovations,
    "id", netvars, "toa", "city",
    warn.coercion=FALSE)
medInnovationsDiffNet2
# Comparing with the package's version
all(diffnet.toa(medInnovationsDiffNet2) == diffnet.toa(medInnovationsDiffNet)) #TRUE
all(
    diffnet.attrs(medInnovationsDiffNet2, as.df = TRUE) ==
    diffnet.attrs(medInnovationsDiffNet, as.df = TRUE),
    na.rm=TRUE) #TRUE
```


Description

Thresholds are each vertexes exposure at the time of adoption. Substantively it is the proportion of adopters required for each ego to adopt. (see exposure).

Usage

```
threshold(
    obj,
    toa,
    t0 = min(toa, na.rm = TRUE),
    include_censored = FALSE,
    lags = 0L,
)
```


Arguments

| obj | Either a $n \times T$ matrix (eposure to the innovation obtained from exposure) or a
 diffnet object. | | |
|---|---|---|---|
| toa | Integer vector. Indicating the time of adoption of the innovation. |
| to | Integer scalar. See toa_mat. |
| include_censored | |\quad| Logical scalar. When TRUE (default), threshold |
| :--- |
| lags |\quad| Integer scalar. Number of lags to consider when computing thresholds. lags=1 |
| :--- |
| defines threshold as exposure at $T-1$, where T is time of adoption. levels are |
| not reported for observations adopting in the first time period. |

Details

By default exposure is not computed for vertices adopting at the first time period, include_censored=FALSE, as estimating threshold for left censored data may yield biased outcomes.

Value

A vector of size n indicating the threshold for each node.

Author(s)

George G. Vega Yon \& Thomas W. Valente

See Also

Threshold can be visualized using plot_threshold
Other statistics: bass, classify_adopters(), cumulative_adopt_count(), dgr(), ego_variance(), exposure(), hazard_rate(), infection(), moran(), struct_equiv(), vertex_covariate_dist()

Examples

```
# Generating a random graph with random Times of Adoption
set.seed(783)
toa <- sample.int(4, 5, TRUE)
graph <- rgraph_er(n=5, t=max(toa) - min(toa) + 1)
# Computing exposure using Structural Equivalnece
adopt <- toa_mat(toa)
se <- struct_equiv(graph)
se <- lapply(se, function(x) methods::as((x$SE)^(-1), "dgCMatrix"))
expo <- exposure(graph, adopt$cumadopt, alt.graph=se)
# Retrieving threshold
threshold(expo, toa)
# We can do the same by creating a diffnet object
diffnet <- as_diffnet(graph, toa)
```


Description

Creates $n \times n$ matrix indicating the difference in times of adoption between each pair of nodes

Usage

toa_diff(obj, t0 = NULL, labels = NULL)

Arguments

obj Either an integer vector of size n containing time of adoption of the innovation, or a diffnet object.
t0 Integer scalar. Sets the lower bound of the time window (e.g. 1955).
labels Character vector of size n. Labels (ids) of the vertices.

Details

Each cell ij of the resulting matrix is calculated as $t o a_{j}-t o a_{i}$, so that whenever its positive it means that the j -th individual (alter) adopted the innovation sooner.

Value

An $n \times n$ symmetric matrix indicating the difference in times of adoption between each pair of nodes.

Author(s)

George G. Vega Yon \& Thomas W. Valente

Examples

```
# Generating a random vector of time
set.seed(123)
times <- sample(2000:2005, 10, TRUE)
# Computing the TOA differences
toa_diff(times)
```


Description

Creates two matrices recording times of adoption of the innovation. One matrix records the time period of adoption for each node with zeros elsewhere. The second records the cumulative time of adoption such that there are ones for the time of adoption and every time period thereafter.

Usage

toa_mat(obj, labels = NULL, t0 = NULL, t1 = NULL)

Arguments

obj Either an integer vector of size n containing time of adoption of the innovation, or a diffnet object.
labels Character vector of size n. Labels (ids) of the vertices.
t0 Integer scalar. Sets the lower bound of the time window (e.g. 1955).
t1 Integer scalar. Sets the upper bound of the time window (e.g. 2000).

Details

In order to be able to work with time ranges other than $1, \ldots, T$ the function receives as input the boundary labels of the time windows through the variables $t 0$ and t. While by default the function assumes that the the boundaries are given by the range of the times vector, the user can set a personalized time range exceeding the one given by the times vector. For instance, times of adoption may range between 2001 and 2005 but the actual data, the network, is observed between 2000 and 2005 (so there is not left censoring in the data), hence, the user could write:

```
adopmats <- toa_mat(times, t0=2000, t1=2005)
```

That way the resulting cumadopt and adopt matrices would have 2005-2000 $+1=6$ columns instead of 2005-2001 $+1=5$ columns, with the first column of the two matrices containing only zeros (as the first adoption happend after the year 2000).

Value

A list of two $n \times T$

| cumadopt | has 1 's for all years in which a node indicates having the innovation. |
| :--- | :--- |
| adopt | has 1 's only for the year of adoption and 0 for the rest. |

Author(s)

George G. Vega Yon \& Thomas W. Valente

Examples

```
# Random set of times of adoptions
times <- sample(c(NA, 2001:2005), 10, TRUE)
toa_mat(times)
# Now, suppose that we observe the graph from 2000 to 2006
toa_mat(times, t0=2000, t1=2006)
```

transformGraphBy Apply a function to a graph considering non-diagonal structural zeros

Description

When there are structural zeros given by groups, this function applies a particular transformation function of a graph by groups returning a square matrix of the same size of the original one with structural zeros and the function applied by INDICES.

Usage

```
transformGraphBy (graph, INDICES, fun \(=\) function (g, ...) g, ...)
\#\# S3 method for class 'diffnet'
transformGraphBy (graph, INDICES, fun = function(g, ...) g, ...)
\#\# S3 method for class 'dgCMatrix'
transformGraphBy (graph, INDICES, fun \(=\) function(g, ...) g, ...)
```


Arguments

| graph | A graph |
| :--- | :--- |
| INDICES | A vector of length n. |
| fun | A function. This function must return a matrix of class dgCMatrix with the
 same dimension as dim (g). |
| \ldots | Further arguments passed to fun |

Details

The transformation function fun must return a square matrix of size $m \times m$, where m is the size of the subgroup given by INDICES. See examples below

Examples


```
\# Two Random graphs of different size
set.seed (123)
g0 <- rgraph_ba(m=2, self=FALSE)
g1 <- rgraph_ba(m=3, t=19, self=FALSE)
\# Need a place to store both networks together!
G <- methods: :new (
    Class \(=\) "dgCMatrix",
    \(\operatorname{Dim}=c(1 L, 1 L) *(\operatorname{nnodes}(g 0)+\operatorname{nnodes}(g 1))\),
    \(\mathrm{p}=\operatorname{rep}(0 \mathrm{~L},(\operatorname{nnodes}(\mathrm{~g} 0)+\operatorname{nnodes}(\mathrm{g} 1))+1 \mathrm{~L})\)
    )
\# Filling the matrix
\(\mathrm{G}[1: \operatorname{nnodes}(\mathrm{g} 0), 1: \operatorname{nnodes}(\mathrm{g} 0)]<-\mathrm{g} 0\)
\(G[(\operatorname{nnodes}(g 0)+1): \operatorname{nnodes}(G),(\operatorname{nnodes}(g 0)+1): \operatorname{nnodes}(G)]<-g 1\)
\# Creating an index (community)
indx <- c (rep(1, nnodes(g0)), rep(2, nnodes(g1)))
\# Apply the rewiring algorithm per group
ans <- transformGraphBy (G, indx, function(g, ...) \{
    rewire_graph (g, 100, "swap")
    \})
ans
```

```
vertex_covariate_compare
```

 Comparisons at dyadic level

Description

Comparisons at dyadic level

Usage

vertex_covariate_compare(graph, X, funname)

Arguments

graph A matrix of size $n \times n$ of class dgCMatrix.
$X \quad$ A numeric vector of length n.
funname Character scalar. Comparison to make (see details).

Details

This auxiliary function takes advantage of the sparseness of graph and applies a function in the form of funname $\left(x_{i}, x_{j}\right)$ only to (i, j) that have no empty entry. In other words, applies a compares elements of X only between vertices that have a link; making nlinks (graph) comparisons instead of looping through $n \times n$, which is much faster.
funname can take any of the following values: "distance", "^2" or "quaddistance", ">" or "greater", "<" or "smaller", ">=" or "greaterequal", "<=" or "smallerequal", "==" or "equal".

Value

A matrix dgCMatrix of size $n \times n$ with values in the form of funname $\left(x_{i}, x_{j}\right)$.

See Also

Other dyadic-level comparison functions: matrix_compare(), vertex_covariate_dist()

Examples

```
# Basic example ----------------------------------------------------------------------
set.seed(1313)
G <- rgraph_ws(10, 4, .2)
x <- rnorm(10)
vertex_covariate_compare(G, x, "distance")
vertex_covariate_compare(G, x, "^2")
vertex_covariate_compare(G, x, ">=")
vertex_covariate_compare(G, x, "<=")
```

vertex_covariate_dist Computes covariate distance between connected vertices

Description

Computes covariate distance between connected vertices

Usage

vertex_covariate_dist(graph, X, p = 2)
vertex_mahalanobis_dist(graph, X, S)

Arguments

graph A square matrix of size n of class dgCMatrix.
$\mathrm{X} \quad$ A numeric matrix of size $n \times K$. Vertices attributes
$\mathrm{p} \quad$ Numeric scalar. Norm to compute
S Square matrix of size $n c o l(x)$. Usually the var-covar matrix.

Details

Faster than dist, these functions compute distance metrics between pairs of vertices that are connected (otherwise skip).
The function vertex_covariate_dist is the simil of dist and returns p-norms (Minkowski distance). It is implemented as follows (for each pair of vertices):

$$
D_{i j}=\left(\sum_{k=1}^{K}\left|X_{i k}-X_{j k}\right|^{p}\right)^{1 / p} \text { if } g r a p h_{i, j} \neq 0
$$

In the case of mahalanobis distance, for each pair of vertex (i, j), the distance is computed as follows:

$$
D_{i j}=\left(\left(X_{i}-X_{j}\right) \times S \times\left(X_{i}-X_{j}\right)^{\prime}\right)^{1 / 2} \text { if } \operatorname{graph}_{i, j} \neq 0
$$

Value

A matrix of size $n \times n$ of class dgCMatrix. Will be symmetric only if graph is symmetric.

Author(s)

George G. Vega Yon

References

Mahalanobis distance. (2016, September 27). In Wikipedia, The Free Encyclopedia. Retrieved 20:31, September 27, 2016, from https://en.wikipedia.org/w/index.php?title=Mahalanobis_ distance\&oldid=741488252

See Also

mahalanobis in the stats package.
Other statistics: bass, classify_adopters(), cumulative_adopt_count(), dgr(), ego_variance(), exposure(), hazard_rate(), infection(), moran(), struct_equiv(), threshold()
Other dyadic-level comparison functions: matrix_compare(), vertex_covariate_compare()

Examples

```
# Distance (aka p norm) ---------------------------------------------------------------
set.seed(123)
G <- rgraph_ws(20, 4, .1)
X <- matrix(runif(40), ncol=2)
vertex_covariate_dist(G, X)[1:5, 1:5]
# Mahalanobis distance
S <- var(X)
M <- vertex_mahalanobis_dist(G, X, S)
```

```
    # Example with diffnet objects ---------------------------------------------------------
    data(medInnovationsDiffNet)
    X <- cbind(
        medInnovationsDiffNet[["proage"]],
        medInnovationsDiffNet[["attend"]]
)
S <- var(X, na.rm=TRUE)
ans <- vertex_mahalanobis_dist(medInnovationsDiffNet, X, S)
```

weighted_var

Computes weighted variance

Description

Computes weighted variance

Usage

weighted_var(x, w)
wvar (x, w)

Arguments

$\mathrm{x} \quad$ A numeric vector of length n.
w A numeric vector of length n.

Details

weighted_variance implements weighted variance computation in the following form:

$$
\frac{\sum_{i} w_{i}^{\prime}\left(x_{i}-\bar{x}\right)^{2}}{(1-n)}
$$

where $w_{i}^{\prime}=w_{i} / \sum_{i} w_{i}$, and $\bar{x}=\sum_{i} w_{i}^{\prime} x_{i}$.

Value

Numeric scalar with the weighted variance.

See Also

This function is used in diffmap.
$\%$ Matrix multiplication

Description

Matrix multiplication methods, including diffnet objects. This function creates a generic method for $\% * \%$ allowing for multiplying diffnet objects.

Usage

x \%*\% y
\#\# Default S3 method:
x \%*\% y
\#\# S3 method for class 'diffnet'
x \%*\% y

Arguments

$x \quad$ Numeric or complex matrices or vectors, or diffnet objects.
$y \quad$ Numeric or complex matrices or vectors, or diffnet objects.

Details

This function can be usefult to generate alternative graphs, for example, users could compute the n-steps graph by doing net $\% * \%$ net (see examples).

Value

In the case of diffnet objects performs matrix multiplication via mapply using $\mathrm{x} \$ \mathrm{graph}$ and $y \$ g r a p h$ as arguments, returnling a diffnet. Otherwise returns the default according to \%*\%.

See Also

Other diffnet methods: as.array.diffnet(), c.diffnet(), diffnet-arithmetic, diffnet-class, diffnet_index, plot.diffnet(), summary.diffnet()

Examples

```
# Finding the Simmelian Ties network -------------------------------------------
# Random diffnet graph
set.seed(773)
net <- rdiffnet(100, 4, seed.graph='small-world', rgraph.args=list(k=8))
netsim <- net
# According to Dekker (2006), Simmelian ties can be computed as follows
```

```
netsim <- net * t(net) # Keeping mutal
netsim <- netsim * (netsim %*% netsim)
# Checking out differences (netsim should have less)
nlinks(net)
nlinks(netsim)
mapply(`-`, nlinks(net), nlinks(netsim))
```


Index

*Topic datasets
brfarmers, 13
$*$ Topic distribution
rgraph_ba, 129
rgraph_er, 131
$*$ Topic dplot
edges_coords, 49
grid_distribution, 63
$*$ Topic hplot
plot_diffnet, 105
plot_infectsuscep, 109
plot_threshold, 112
*Topic manip
edgelist_to_adjmat, 46
isolated, 70
toa_diff, 150
toa_mat, 151
*Topic misc
drawColorKey, 44
edges_coords, 49
grid_distribution, 63
pretty_within, 115
recode, 122
*Topic univar
cumulative_adopt_count, 23
dgr, 24
exposure, 55
hazard_rate, 64
infection, 67
struct_equiv, 137
threshold, 148
*.diffnet (diffnet-arithmetic), 28
-.diffnet (diffnet-arithmetic), 28
/.diffnet (diffnet-arithmetic), 28
[.diffnet (diffnet_index), 36
[<-.diffnet (diffnet_index), 36
[[.diffnet (diffnet_index), 36
[[<-.diffnet (diffnet_index), 36
\&.diffnet (diffnet-arithmetic), 28
$\% * \%, 6,19,29,33,37,103,144,157,157$
^. diffnet (diffnet-arithmetic), 28
adjmat_to_edgelist
(edgelist_to_adjmat), 46
adopt_changes (select_egoalter), 136
ape::Moran.I, 91
approx_geodesic, 4, 89, 138, 143, 144
approx_geodist (approx_geodesic), 4
array, 94
arrows, 50, 114
as.array.diffnet, 5, 19, 29, 33, 37, 103, 144, 157
as.data.frame, 20
as.data.frame.diffnet, 39
as.data.frame.diffnet (diffnet-class), 29
as.data.frame.diffnet_adopters
(classify_adopters), 19
as.dgCMatrix (as_dgCMatrix), 6
as.factor, 47,146
as.matrix.network, 7
as_adj, 7
as_dgCMatrix, 6
as_diffnet, 22, 23, 67, 117
as_diffnet (diffnet-class), 29
as_spmat (as_dgCMatrix), 6
bass, $8,21,24,25,55,57,66,69,92,139$, 149, 155
bass_dF (bass), 8
bass_F (bass), 8
bass_f (bass), 8
bernoulli (rgraph_er), 131
binary-functions (matrix_compare), 84
boot, 10, 141
bootnet, 10, 92, 142
brfarmers, 13, 18, 41, 60-63, 84, 88
brfarmersDiffNet, $17,18,41,60-63,84,88$
c.diffnet, $6,18,29,33,37,103,144,157$
c.diffnet_bootnet (bootnet), 10
c.diffnet_struct_test (struct_test), 139
classify (classify_adopters), 19
classify_adopters, 10, 19, 24, 25, 55, 57, 66, 69, 92, 139, 149, 155
classify_graph, 22
colnames, 94
colorRamp, 108
compare_matrix (matrix_compare), 84
complete.cases, 47
CUG (permute_graph), 100
cumulative_adopt_count, 10, 21, 23, 25, 55, $57,66,69,92,104,139,149,155$
degree (dgr), 24
dgCMatrix, 5, 6, 27, 32, 85, 91, 94, 135, 138, 152
dgr, $10,21,24,24,43,46,55,57,64,66,69$, 89, 92, 104, 107, 109, 111, 114, 124, 139, 149, 155
diag_expand, 26
diffmap, 109, 135, 156
diffmap (diffusionMap), 41
diffnet, $6,18,23,38,64,67,84,88,94,98$, $102,118,140,143,147,150,151$, 157
diffnet (diffnet-class), 29
diffnet-arithmetic, 28
diffnet-class, 29
diffnet.attrs(diffnet-class), 29
diffnet.attrs<- (diffnet-class), 29
diffnet.toa (diffnet-class), 29
diffnet.toa<- (diffnet-class), 29
diffnet_check_attr_class, 35
diffnet_index, $6,19,29,33,35,36,103$, 144, 157
diffnet_to_igraph (igraph), 66
diffnet_to_network (network), 97
diffnet_to_networkDynamic (network), 97
diffnetLapply (diffnet-class), 29
diffreg, 38
diffusion-data, 40
diffusionMap, 25, 41, 46, 64, 66, 104, 107-109, 111, 114, 124
Difussion Network Datasets, 88
dim.diffnet (diffnet-class), 29
dimnames, 94
dimnames.diffnet (diffnet-class), 29
dist, 155
distances, 144
drawColorKey, 25, 43, 44, 64, 66, 104, 107-109, 111, 114, 124
drop_isolated (isolated), 70
edgelist_to_adjmat, $33,46,54,71,122$, 145, 147
edgelist_to_diffnet (survey_to_diffnet), 145
edges_coords, 49
ego_variance, $10,21,24,25,54,57,66,69$, 92, 139, 149, 155
egonet_attrs, 33, 48, 52, 71, 147
exposure, $10,21,24,25,55,55,66,69,92$, $113,114,117,139,148,149,155$
Extract, 32
fakeDynEdgelist, $17,18,41,60,61-63,84$, 88
fakeEdgelist, $17,18,41,60,61,61,62,63$, 84, 88
fakesurvey, $17,18,41,60,61,61,63,84,88$, 147
fakesurveyDyn, 17, 18, 41, 60-62, 62, 84, 88, 147
filled. contour, 110, 111
fitbass (bass), 8
ftable, 20
ftable.diffnet_adopters
(classify_adopters), 19
Geodesic (approx_geodesic), 4
geodist, 144
getOption, 94
glm, 39
graph_power (diffnet-arithmetic), 28
grid_distribution, $25,43,46,63,66,104$, 107, 109, 111, 114, 124
hazard_rate, $10,21,24,25,43,46,55,57$, 64, 64, 69, 92, 104, 107, 109, 111, $114,124,139,149,155$
hist, 11, 25, 140, 141
hist.default, 141
hist.diffnet_bootnet (bootnet), 10
hist.diffnet_struct_test (struct_test), 139
histogram, 25

```
igraph, 66, 67, 99, 120, 121, 124
igraph_to_diffnet (igraph), 66
igraph_vertex_rescale
    (rescale_vertex_igraph), 123
image,43
image.diffnet_diffmap (diffusionMap), 41
indegree (dgr), 24
infection, 10, 21, 24, 25, 55, 57, 66, 67, 92,
    111,139, 149, 155
isolated, 33, 48, 54, 70, 147
jitter,42,114
```

kde2d, 42, 110
kfamily, 17, 18, 41, 60-63, 71, 84, 88
kfamilyDiffNet, 17, 18, 41, 60-63, 84, 84, 88
layout_nicely, 43
leader_matching (mentor_matching), 89
legend, 106
mahalanobis, 155
mahalanobis (vertex_covariate_dist), 154
makeCluster, 118
mapply, 157
MatchIt, 95
matchit, 95, 96
matplot, 9, 104
Matrix, 91, 94
matrix, 91, 94, 138
matrix_compare, $84,154,155$
medInnovations, $17,18,41,60-63,84,86,88$
medInnovationsDiffNet, 17, 18, 41, 60-63,
84, 88, 88
mentor_matching, 89
minkowski (vertex_covariate_dist), 154
moran, 10, 12, 21, 24, 25, 55, 57, 66, 69, 91,
$139,142,143,149,155$
mosaicplot, 21
n_rewires (struct_test), 139
names, 94
nedges (nvertices), 99
netdiffuseR, 93
netdiffuseR-graphs, 93
netdiffuseR-options, 94
netmatch, 95
netmatch_prepare (netmatch), 95
network, 67, 97, 98, 120, 121
network_to_diffnet (network), 97
networkDynamic, 98
networkDynamic (network), 97
networkDynamic_to_diffnet (network), 97
new_diffnet, $67,98,145,146$
new_diffnet (diffnet-class), 29
nlinks (nvertices), 99
nls, 9
nnodes (nvertices), 99
nodes (diffnet-class), 29
nslices (nvertices), 99
nvertices, 99
outdegree (dgr), 24
p-norm (vertex_covariate_dist), 154
par, 25, 65, 106, 114
par(usr), 45
parSapply, 118
permute_graph, 100, 118, 128, 130, 132, 134, 135
plot, 25, 65, 113, 114
plot.diffnet, $6,19,29,33,37,102,144,157$
plot.diffnet_adopters
(classify_adopters), 19
plot.diffnet_bass (bass), 8
plot.diffnet_degSeq (dgr), 24
plot.diffnet_diffmap (diffusionMap), 41
plot.diffnet_hr (hazard_rate), 64
plot.diffnet_mentor (mentor_matching), 89
plot.igraph, 90, 102, 103, 105, 106, 108, 123
plot.table, 21
plot_adopters, 25, 43, 46, 64, 66, 103, 107, $109,111,114,124$
plot_diffnet, $25,43,46,64,66,104,105$, $109,111,114,124$
plot_diffnet2, 25, 43, 46, 64, 66, 104, 107, 107, 111, 114, 124, 135
plot_hazard (hazard_rate), 64
plot_hazarrate (hazard_rate), 64
plot_infectsuscep, 25, 43, 46, 64, 66, 69, 104, 107, 109, 109, 114, 124
plot_threshold, 25, 43, 46, 50, 64, 66, 104, 107, 109, 111, 112, 124, 149
pretty, 115
pretty_within, 115
print.diffnet (diffnet-class), 29
print.diffnet_bootnet (bootnet), 10
print.diffnet_diffmap (diffusionMap), 41
print.diffnet_se (struct_equiv), 137
print.diffnet_struct_test (struct_test), 139

QAP (permute_graph), 100
rank, 89,90
rdiffnet, 57, 101, 116, 127, 128, 130, 132, 134, 135
rdiffnet_multiple (rdiffnet), 116
read_dl (read_pajek), 119
read_ml (read_pajek), 119
read_net (read_pajek), 119
read_pajek, 67, 99, 119, 121
read_ucinet (read_ucinet_head), 121
read_ucinet_head, $67,99,120,121$
recode, 47, 122
rect, 45
resample_graph, 11
resample_graph (bootnet), 10
rescale_vertex_igraph, 25, 43, 46, 64, 66, 90, 102-104, 106-109, 111, 114, 123
rewire_graph, 101, 116-118, 125, 130, 132, 134, 135, 140, 141
rewire_permute (permute_graph), 100
rewire_qap, 125, 126
rewire_qap (permute_graph), 100
rgraph_ba, 101, 117, 118, 128, 129, 132, 134, 135
rgraph_er, 101, 117, 118, 128, 130, 131, 134, 135
rgraph_ws, 101, 117, 118, 128, 130, 132, 133, 134, 135
ring_lattice, 101, 118, 128, 130, 132-134, 134
round, 20
round_to_seq, 43, 135
row.names, 47
rownames, 94
sapply, 117, 118
scale-free (rgraph_ba), 129
select_egoalter, 136
Shortest-Path (approx_geodesic), 4
small-world (rgraph_ws), 133
sna: :geodist, 4
sprintf, 106
str.diffnet (diffnet-class), 29
struct_equiv, 10, 21, 24, 25, 55-57, 66, 69, 92, 137, 149, 155
struct_test, $12,55,92,126,127,139$
struct_test_asymp (struct_test), 139
summary.diffnet, $6,19,29,33,37,103,143$, 157
summary.diffnet_adoptChanges
(select_egoalter), 136
survey_to_diffnet, $33,48,54,61,62,71$, 145
susceptibility, 111
susceptibility (infection), 67
symbols, 50, 124
t.diffnet (diffnet-class), 29
table, 20
text, 45, 113
threshold, 10, 20, 21, 24, 25, 55, 57, 66, 69, 92, 113, 114, 139, 148, 155
title, 90
toa_diff, 150
toa_mat, $20,23,31,32,56,64,68,110,136$, 149, 151
transformGraphBy, 152
UCINET (read_ucinet_head), 121
ucinet (read_ucinet_head), 121
vertex_covariate_compare, $55,85,153$, 155
vertex_covariate_dist, $10,21,24,25,55$, $57,66,69,85,92,139,149,154,154$
vertex_mahalanobis_dist (vertex_covariate_dist), 154
vertex_rescale_igraph (rescale_vertex_igraph), 123
weighted_var, 156
wvar (weighted_var), 156

[^0]: fatt3t7 Own parents attitude T7
 byrt7 Start of Time 7 from year
 lngtht7 Length of Time 7
 awe1t7 FP Contact Time 7
 awe2t7 Methods known at Time 7
 awe 3 t7 Knowledge of service sites Time 7
 awe $4 \mathbf{t 7}$ Credibility of service site Time 7
 fpt8 FP Status time 8
 fatt1t8 Husbands attitude T8
 fatt2t8 In-laws attitude T8
 fatt3t8 Own parents attitude T8
 byrt8 Start of Time 8 from year
 lngtht8 Length of Time 8
 awe1t8 FP Contact Time 8
 awe2t8 Methods known at Time 8
 awe $3 t 8$ Knowledge of service sites Time 8
 awe4t8 Credibility of service site Time 8
 fpt9 FP Status time 9
 fatt1t9 Husbands attitude T9
 fatt2t9 In-laws attitude T9
 fatt3t9 Own parents attitude T9
 byrt9 Start of Time 9 from year
 lngtht9 Length of Time 9
 awe1t9 FP Contact Time 9
 awe 2 t9 Methods known at Time 9
 awe $3 t 9$ Knowledge of service sites Time 9
 awe 4 49 Credibility of service site Time 9
 fpt10 FP Status time 10
 fatt1t10 Husbands attitude T10
 fatt2t10 In-laws attitude T10
 fatt3t10 Own parents attitude T10
 byrt10 Start of Time 10 from year
 Ingtht10 Length of Time 10
 awe1t10 FP Contact Time 10
 awe2t10 Methods known at Time 10
 awe 3 t10 Knowledge of service sites Time 10
 awe 4 t10 Credibility of service site Time 10

