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approx_geodesic Approximate Geodesic Distances

Description

Computes approximate geodesic distance matrix using graph powers and keeping the amount of
memory used low.

Usage

approx_geodesic(graph, n = 6L, warn = FALSE)

approx_geodist(graph, n = 6L, warn = FALSE)

Arguments

graph Any class of accepted graph format (see netdiffuseR-graphs).

n Integer scalar. Degree of approximation. Bigger values increase precision (see
details).

warn Logical scalar. When TRUE, it warns if the algorithm performs less steps than
required.

Details

While both igraph and sna offer very good and computationally efficient routines for computing
geodesic distances, both functions return dense matrices, i.e. not sparse, which can be trouble-
some. Furthermore, from the perspective of social network analysis, path lengths of more than 6
steps, for example, may not be meaningful, or at least, relevant for the researcher. In such cases,
approx_geodesic serves as a solution to this problem, computing geodesics up to the number of
steps, n, desired, hence, if n = 6, once the algorithm finds all paths of 6 or less steps it will stop,
returning a sparse matrix with zeros for those pairs of vertices for which it was not able to find a
path with less than n steps.

Depending on the graph size and density, approx_geodesic’s performance can be compared to that
of sna::geodist. Although, as n increases, geodist becomes a better alternative.

The algorithm was implemented using power graphs. At each itereation i the power graph of order
i is computed, and its values are compared to the current values of the geodesic matrix (which is
initialized in zero).

1. Initialize the output ans(n,n)

2. For i=1 to i < n do
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(a) Iterate through the edges of G^i, if ans has a zero value in the corresponding row+column,
replace it with i

(b) next

3. Replace all diagonal elements with a zero and return.

This implementation can be more memory efficient that the aforementioned ones, but at the same
time it can be significant slower.

approx_geodist is just an allias for approx_geodesic.

Value

A sparse matrix of class dgCMatrix of size nnodes(graph)^2 with geodesic distances up to n.

Examples

# A very simple example -----------------------------------------------------
g <- ring_lattice(10, 3)
approx_geodesic(g, 6)
sna::geodist(as.matrix(g))[[2]]
igraph::distances(

igraph::graph_from_adjacency_matrix(g, mode = "directed"),
mode = "out"

)

as.array.diffnet Coerce a diffnet graph into an array

Description

Coerce a diffnet graph into an array

Usage

## S3 method for class 'diffnet'
as.array(x, ...)

Arguments

x A diffnet object.

... Ignored.

Details

The function takes the list of sparse matrices stored in x and creates an array with them. Attributes
and other elements from the diffnet object are dropped.

dimnames are obtained from the metadata of the diffnet object.
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Value

A three-dimensional array of T matrices of size n× n.

See Also

diffnet.

Other diffnet methods: %*%(), c.diffnet(), diffnet-arithmetic, diffnet-class, diffnet_index,
plot.diffnet(), summary.diffnet()

Examples

# Creating a random diffnet object
set.seed(84117)
mydiffnet <- rdiffnet(30, 5)

# Coercing it into an array
as.array(mydiffnet)

as_dgCMatrix Coerce a matrix-like objects to dgCMatrix (sparse matrix)

Description

This helper function allows easy coercion to sparse matrix objects from the Matrix package,
dgCMatrix.

Usage

as_dgCMatrix(x, make.dimnames = TRUE, ...)

as.dgCMatrix(x, make.dimnames = TRUE, ...)

as_spmat(x, make.dimnames = TRUE, ...)

## Default S3 method:
as_dgCMatrix(x, make.dimnames = TRUE, ...)

## S3 method for class 'diffnet'
as_dgCMatrix(x, make.dimnames = TRUE, ...)

## S3 method for class 'array'
as_dgCMatrix(x, make.dimnames = TRUE, ...)

## S3 method for class 'igraph'
as_dgCMatrix(x, make.dimnames = TRUE, ...)

## S3 method for class 'network'
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as_dgCMatrix(x, make.dimnames = TRUE, ...)

## S3 method for class 'list'
as_dgCMatrix(x, make.dimnames = TRUE, ...)

Arguments

x An object to be coerced into a sparse matrix.

make.dimnames Logical scalar. When TRUE, it makes sure that the returned object has dimnames.

... Further arguments passed to the method.

Details

In the case of the igraph and network methods, ... is passed to as_adj and as.matrix.network
respectively.

Value

Either a list with dgCMatrix objects or a dgCMatrix object.

Examples

set.seed(1231)
x <- rgraph_er(10)

# From matrix object
as_dgCMatrix(as.matrix(x))

# From a network object
as_dgCMatrix(network::as.network(as.matrix(x)))

# From igraph object
as_dgCMatrix(igraph::graph_from_adjacency_matrix(x))

# From array
myarray <- array(dim=c(10,10,2))
myarray[,,1] <- as.matrix(x)
myarray[,,2] <- as.matrix(x)

myarray
as_dgCMatrix(myarray)

# From a diffnet object
ans <- as_dgCMatrix(medInnovationsDiffNet)
str(ans)
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bass Bass Model

Description

Fits the Bass Diffusion model. In particular, fits an observed curve of proportions of adopters to
F (t), the proportion of adopters at time t, finding the corresponding coeficients p, Innovation rate,
and q, imitation rate.

Usage

fitbass(dat, ...)

## S3 method for class 'diffnet'
fitbass(dat, ...)

## Default S3 method:
fitbass(dat, ...)

## S3 method for class 'diffnet_bass'
plot(
x,
y = 1:length(x$m$lhs()),
add = FALSE,
pch = c(21, 24),
main = "Bass Diffusion Model",
ylab = "Proportion of adopters",
xlab = "Time",
type = c("b", "b"),
lty = c(2, 1),
col = c("black", "black"),
bg = c("lightblue", "gray"),
include.legend = TRUE,
...

)

bass_F(Time, p, q)

bass_dF(p, q, Time)

bass_f(Time, p, q)

Arguments

dat Either a diffnet object, or a numeric vector. Observed cumulative proportion of
adopters.

... Further arguments passed to the method.
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x An object of class diffnet_bass.

y Integer vector. Time (label).

add Passed to matplot.

pch Passed to matplot.

main Passed to matplot.

ylab Character scalar. Label of the y axis.

xlab Character scalar. Label of the x axis.

type Passed to matplot.

lty Passed to matplot.

col Passed to matplot.

bg Passed to matplot.

include.legend Logical scalar. When TRUE, draws a legend.

Time Integer vector with values greater than 0. The t parameter.

p Numeric scalar. Coefficient of innovation.

q Numeric scalar. Coefficient of imitation.

Details

The function fits the bass model with parameters [p, q] for values t = 1, 2, . . . , T , in particular, it
fits the following function:

F (t) =
1− exp−(p+ q)t

1 + q
p exp−(p+ q)t

Which is implemented in the bass_F function. The proportion of adopters at time t, f(t) is:

f(t) =

{
F (t), t = 1
F (t)− F (t− 1), t > 1

and it’s implemented in the bass_f function.

For testing purposes only, the gradient of F with respect to p and q is implemented in bass_dF.

The estimation is done using nls.

Value

An object of class nls and diffnet_bass. For more details, see nls in the stats package.

Author(s)

George G. Vega Yon

References

Bass’s Basement Institute Institute. The Bass Model. (2010). Available at: http://www.bassbasement.
org/BassModel/Default.aspx. (Accessed: 29th March 2017)

http://www.bassbasement.org/BassModel/Default.aspx
http://www.bassbasement.org/BassModel/Default.aspx
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See Also

Other statistics: classify_adopters(), cumulative_adopt_count(), dgr(), ego_variance(),
exposure(), hazard_rate(), infection(), moran(), struct_equiv(), threshold(), vertex_covariate_dist()

Examples

# Fitting the model for the Brazilian Farmers Data --------------------------
data(brfarmersDiffNet)
ans <- fitbass(brfarmersDiffNet)

# All the methods that work for the -nls- object work here
ans
summary(ans)
coef(ans)
vcov(ans)

# And the plot method returns both, fitted and observed curve
plot(ans)

bootnet Network Bootstrapping

Description

Implements the bootstrapping method described in Snijders and Borgatti (1999). This function is
essentially a wrapper of boot.

Usage

resample_graph(graph, self = NULL, useR = FALSE, ...)

bootnet(graph, statistic, R, resample.args = list(self = FALSE), ...)

## S3 method for class 'diffnet_bootnet'
c(..., recursive = FALSE)

## S3 method for class 'diffnet_bootnet'
print(x, ...)

## S3 method for class 'diffnet_bootnet'
hist(
x,
main = "Empirical Distribution of Statistic",
xlab = expression(Values ~ of ~ t),
breaks = 20,
annotated = TRUE,
b0 = expression(atop(plain("") %up% plain("")), t[0]),
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b = expression(atop(plain("") %up% plain("")), t[]),
ask = TRUE,
...

)

Arguments

graph Any class of accepted graph format (see netdiffuseR-graphs).

self Logical scalar. When TRUE autolinks (loops, self edges) are allowed (see de-
tails).

useR Logical scalar. When TRUE, autolinks are filled using an R based rutine. Oth-
erwise it uses the Rcpp implementation (default). This is intended for testing
only.

... Further arguments passed to the method (see details).

statistic A function that returns a vector with the statistic(s) of interest. The first ar-
gument must be the graph, and the second argument a vector of indices (see
details)

R Number of reps

resample.args List. Arguments to be passed to resample_graph

recursive Ignored

x A diffnet_bootnet class object.

main Character scalar. Title of the histogram.

xlab Character scalar. x-axis label.

breaks Passed to hist.

annotated Logical scalar. When TRUE marks the observed data average and the simulated
data average.

b0 Character scalar. When annotated=TRUE, label for the value of b0.

b Character scalar. When annotated=TRUE, label for the value of b.

ask Logical scalar. When TRUE, asks the user to type <Enter> to see each plot (as
many as statistics where computed).

Details

Just like the boot function of the boot package, the statistic that is passed must have as argu-
ments the original data (the graph in this case), and a vector of indicides. In each repetition, the
graph that is passed is a resampled version generated as described in Snijders and Borgatti (1999).

When self = FALSE, for pairs of individuals that haven been drawn more than once the algorithm, in
particular, resample_graph, takes care of filling these pseudo autolinks that are not in the diagonal
of the network. By default it is assumed that these pseudo-autolinks depend on whether the original
graph had any, hence, if the diagonal has any non-zero value the algorithm assumes that self =
TRUE, skiping the ’filling algorithm’. It is important to notice that, in order to preserve the density of
the original network, when assigning an edge value to a pair of the form (i, i) (pseudo-autolinks),
such is done with probabilty proportional to the density of the network, in other words, before
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choosing from the existing list of edge values, the algorithm decides whether to set a zero value
first.

The vector of indices that is passed to statistic, an integer vector with range 1 to n, corresponds
to the drawn sample of nodes, so the user can, for example, use it to get a subset of a data.frame
that will be used with the graph.

Value

A list of class diffnet_bootnet containing the following:

graph The graph passed to bootnet.

p.value The resulting p-value of the test (see details).

t0 The observed value of the statistic.

mean_t The average value of the statistic applied to the simulated networks.

var_t A vector of length length(t0). Bootstrap variances.

R Number of simulations.

statistic The function statistic passed to bootnet.

boot A boot class object as return from the call to boot.

resample.args The list resample.args passed to bootnet.

References

Snijders, T. A. B., & Borgatti, S. P. (1999). Non-Parametric Standard Errors and Tests for Network
Statistics. Connections, 22(2), 1–10. Retrieved from https://www.stats.ox.ac.uk/~snijders/
Snijders_Borgatti.pdf

See Also

Other Functions for inference: moran(), struct_test()

Examples

#
set.seed(13)
g <- rgraph_ba(t=99)

ans <- bootnet(g, function(w, ...) length(w@x), R=100)
ans

https://www.stats.ox.ac.uk/~snijders/Snijders_Borgatti.pdf
https://www.stats.ox.ac.uk/~snijders/Snijders_Borgatti.pdf
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brfarmers Brazilian Farmers

Description

From Valente (1995) “In the mid-1960s, Rogers and others conducted an ambitious ‘three country
study’ to determine influences on adoption of farm practices in Nigeria, India and Brazil. [...]
Only in Brazil, and only for hybrid corn, did adoption of the innovation reach more than a small
proportion of the farmers.”

Usage

brfarmers

Format

A data frame with 692 rows and 148 columns:

village village number

idold respondent id

age respondent’s age

liveout Lived outside of community

visits # of visits to large city

contact # of contacts with relatives

coop membership in coop

orgs membership in organizations

patry Patriarchalism score

liter Literate

news1 # of newspapers or mags pr mon

subs subscribe to news

radio1 Own radio

radio2 Frequency radio listening

radio3 program preference

tv frequency Tv viewing

movie freq movie attendance

letter freq letter writing

source total # of sources used for ag

practA Ever used practice A

practB Ever used practice B

practC Ever used practice C

practD Ever used practice D
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practE Ever used practice E

practF Ever used practice F

practG Ever used practice G

practH Ever used practice H

practI Ever used practice I

practJ Ever used practice J

practK Ever used practice K

practL Ever used practice L

yrA A year of adoption

yrB B year of adoption

yrC C year of adoption

yrD D year of adoption

yrE E year of adoption

yrF F year of adoption

yrG G year of adoption

yrH H year of adoption

yrI I year of adoption

yrJ J year of adoption

yrK K year of adoption

yrL L year of adoption

curA A Current use

curB B Current use

curC C Current use

curD D Current use

curE E Current use

curF F Current use

curG G Current use

curH H Current use

curI I Current use

curJ J Current use

curK K Current use

curL L Current use

srce1 Source of aware in A

timeA Years ago 1st aware

src2 Source of more info on A

src3 Most influential source

use use during trial stage
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total total # of practices adopted

futatt Future attitude

achiev Achievement Score

attcred Attitude toward credit

littest Score on functional literacy t

acarcomm Communication with ACAR repres

econk Economic knowledge

caact recognize any change agent act

hfequip # of home & farm equips owned

politk political knowledge score

income income

land1 total land area in pasture

land2 total land area planted

cows # of cows giving milk

land3 total land owned

respf respondent named as friend

respa respondent named as ag adv

resppa respondent named for practic A

resppb respondent named for practic B

resppc respondent named for practic C

poly polymorphic OL for 3 practices

respl respondent named for loan

resppi resp named for price info

repsccp resp named for coop comm proj

counter counterfactuality score

opinion opinionness score

school years of schooling by resp

pk1 political know 1

pk2 political know 2

pk3 political know 3

pk4 political know 4

pk5 political know 5

innovtim innovativeness time

adoptpct adoption percent

discon # of practices discontinued

mmcred Mass media credibility

trust Trust
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stusincn Status inconsistency

nach N achievement motivation

attcred2 Attitude toward credit

risk Risk taking

socpart Social participate

patriarc patriarchy

crdit2 attit to credit for product

visicit visitin cities

nondep non-dependence on farming

oltotal OL total 7 items t-score

innov overall innovativeness score

icosmo cosmo index

immexp mass media exposure index

iempath empathy index

iach5 achievement motivation index 5

iach7 achievement motivation index 7

ipk political knowledge index

immc mass media credibililty index

iol OL index

yr Actual Year of Adoption

fs — MISSING INFO —

ado Time of Adoption

tri Triangular values used as appro

hlperc high low percent of diffusion

hlperc1 — MISSING INFO —

new new or old villages

card1 card number

sour1 Source: radio

sour2 Source: TV

sour3 Source: Newpaper

sour4 Source: Magazine

sour5 Source: ACAR Bulletin

sour6 Source: Agronomist

sour7 Source: Neighbor

sourc6 — MISSING INFO —

adopt — MISSING INFO —

net31 nomination friend 1
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net32 nomination friend 2

net33 nomination friend 3

net21 nomination influential 1

net22 nomination influential 2

net23 nomination influential 3

net11 nomination practice A

net12 nomination practice B

net13 nomination practice C

net41 nomination coop comm proj

id — MISSING INFO —

commun Number of community

toa Time of Adoption

test — MISSING INFO —

study Number of study in Valente (1995)

Details

The dataset has 692 respondents (farmers) from 11 communities. Collected during 1966, it spans
20 years of farming pracitices.

Source

The Brazilian Farmers data were collected as part of a USAID-funded study of farming practicing
in the three countries, India, Nigeria, and Brazil. There was only one wave of data that contained
survey questions regarding social networks, and only in Brazil did diffusion of the studied farming
innovations reach an appreciable saturation level- that was for hybrid seed corn. The data were
stored along with hundreds of other datasets by the University of Wisconsin library and I, Tom
Valente, paid a fee to have the disks mailed to me in the early 1990s.

References

Rogers, E. M., Ascroft, J. R., & Röling, N. (1970). Diffusion of Innovation in Brazil, Nigeria, and
India. Unpublished Report. Michigan State University, East Lansing.

Valente, T. W. (1995). Network models of the diffusion of innovations (2nd ed.). Cresskill N.J.:
Hampton Press.

See Also

Other diffusion datasets: brfarmersDiffNet, diffusion-data, fakeDynEdgelist, fakeEdgelist,
fakesurveyDyn, fakesurvey, kfamilyDiffNet, kfamily, medInnovationsDiffNet, medInnovations
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brfarmersDiffNet diffnet version of the Brazilian Farmers data

Description

A directed dynamic graph with 692 vertices and 21 time periods. The attributes in the graph are
static and described in brfarmers.

Format

A diffnet class object.

See Also

Other diffusion datasets: brfarmers, diffusion-data, fakeDynEdgelist, fakeEdgelist, fakesurveyDyn,
fakesurvey, kfamilyDiffNet, kfamily, medInnovationsDiffNet, medInnovations

c.diffnet Combine diffnet objects

Description

Combining diffnet objects that share time periods and attributes names, but vertices ids (only
valid for diffnet objects that have an empty intersection between vertices ids).

Usage

## S3 method for class 'diffnet'
c(..., recursive = FALSE)

Arguments

... diffnet objects to be concatenated.
recursive Ignored.

Details

The diffnet objects in ... must fulfill the following conditions:

1. Have the same time range,
2. have the same vertex attributes, and
3. have an empty intersection of vertices ids,

The meta data regarding undirected, value, and multiple are set to TRUE if any of the concate-
nating diffnet objects has that meta equal to TRUE.

The resulting diffnet object’s columns in the vertex attributes ordering (both dynamic and static)
will coincide with the first diffnet’s ordering.
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Value

A new diffnet object with as many vertices as the sum of each concatenated diffnet objects’
number of vertices.

See Also

Other diffnet methods: %*%(), as.array.diffnet(), diffnet-arithmetic, diffnet-class,
diffnet_index, plot.diffnet(), summary.diffnet()

Examples

# Calculate structural equivalence exposure by city -------------------------
data(medInnovationsDiffNet)

# Subsetting diffnets
city1 <- medInnovationsDiffNet[medInnovationsDiffNet[["city"]] == 1]
city2 <- medInnovationsDiffNet[medInnovationsDiffNet[["city"]] == 2]
city3 <- medInnovationsDiffNet[medInnovationsDiffNet[["city"]] == 3]
city4 <- medInnovationsDiffNet[medInnovationsDiffNet[["city"]] == 4]

# Computing exposure in each one
city1[["expo_se"]] <- exposure(city1, alt.graph="se", valued=TRUE)
city2[["expo_se"]] <- exposure(city2, alt.graph="se", valued=TRUE)
city3[["expo_se"]] <- exposure(city3, alt.graph="se", valued=TRUE)
city4[["expo_se"]] <- exposure(city4, alt.graph="se", valued=TRUE)

# Concatenating all
diffnet <- c(city1, city2, city3, city4)
diffnet

classify_adopters Classify adopters accordingly to Time of Adoption and Threshold lev-
els.

Description

Adopters are classified as in Valente (1995). In general, this is done depending on the distance in
terms of standard deviations from the mean of Time of Adoption and Threshold.

Usage

classify_adopters(...)

classify(...)

## S3 method for class 'diffnet'
classify_adopters(graph, include_censored = FALSE, ...)
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## Default S3 method:
classify_adopters(
graph,
toa,
t0 = NULL,
t1 = NULL,
expo = NULL,
include_censored = FALSE,
...

)

## S3 method for class 'diffnet_adopters'
ftable(x, as.pcent = TRUE, digits = 2, ...)

## S3 method for class 'diffnet_adopters'
as.data.frame(x, row.names = NULL, optional = FALSE, ...)

## S3 method for class 'diffnet_adopters'
plot(x, y = NULL, ftable.args = list(), table.args = list(), ...)

Arguments

... Further arguments passed to the method.

graph A dynamic graph.
include_censored

Logical scalar, passed to threshold.

toa Integer vector of length n with times of adoption.

t0 Integer scalar passed to threshold and toa_mat.

t1 Integer scalar passed to toa_mat.

expo Numeric matrix of size n× T with network exposures.

x A diffnet_adopters class object.

as.pcent Logical scalar. When TRUE returns a table with percentages instead.

digits Integer scalar. Passed to round.

row.names Passed to as.data.frame.

optional Passed to as.data.frame.

y Ignored.

ftable.args List of arguments passed to ftable.

table.args List of arguments passed to table.

Details

Classifies (only) adopters according to time of adoption and threshold as described in Valente
(1995). In particular, the categories are defined as follow:

For Time of Adoption, with toa as the vector of times of adoption:
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• Early Adopters: toa[i] <= mean(toa) -sd(toa),

• Early Majority: mean(toa) -sd(toa) < toa[i] <= mean(toa) ,

• Late Majority: mean(toa) < toa[i] <= mean(toa) + sd(toa) , and

• Laggards: mean(toa) + sd(toa) < toa[i] .

For Threshold levels, with thr as the vector of threshold levels:

• Very Low Thresh.: thr[i] <= mean(thr) -sd(thr),

• Low Thresh.: mean(thr) -sd(thr) < thr[i] <= mean(thr) ,

• High Thresh.: mean(thr) < thr[i] <= mean(thr) + sd(thr) , and

• Very High. Thresh.: mean(thr) + sd(thr) < thr[i] .

By default threshold levels are not computed for left censored data. These will have a NA value in
the thr vector.

The plot method, plot.diffnet_adopters, is a wrapper for the plot.table method. This gener-
ates a mosaicplot plot.

Value

A list of class diffnet_adopters with the following elements:

toa A factor vector of length n with 4 levels: "Early Adopters", "Early Majority",
"Late Majority", and "Laggards"

thr A factor vector of length n with 4 levels: "Very Low Thresh.", "Low Thresh.",
"High Thresh.", and "Very High Thresh."

Author(s)

George G. Vega Yon

References

Valente, T. W. (1995). "Network models of the diffusion of innovations" (2nd ed.). Cresskill N.J.:
Hampton Press.

See Also

Other statistics: bass, cumulative_adopt_count(), dgr(), ego_variance(), exposure(), hazard_rate(),
infection(), moran(), struct_equiv(), threshold(), vertex_covariate_dist()

Examples

# Classifying brfarmers -----------------------------------------------------

x <- brfarmersDiffNet
diffnet.toa(x)[x$toa==max(x$toa, na.rm = TRUE)] <- NA
out <- classify_adopters(x)

# This is one way
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round(
with(out, ftable(toa, thr, dnn=c("Time of Adoption", "Threshold")))/

nnodes(x[!is.na(x$toa)])*100, digits=2)

# This is other
ftable(out)

# Can be coerced into a data.frame, e.g. ------------------------------------
str(classify(brfarmersDiffNet))
ans <- cbind(
as.data.frame(classify(brfarmersDiffNet)), brfarmersDiffNet$toa
)
head(ans)

# Creating a mosaic plot with the medical innovations -----------------------
x <- classify(medInnovationsDiffNet)
plot(x)

classify_graph Analyze an R object to identify the class of graph (if any)

Description

Analyze an R object to identify the class of graph (if any)

Usage

classify_graph(graph)

Arguments

graph Any class of accepted graph format (see netdiffuseR-graphs).

Details

This function analyzes an R object and tries to classify it among the accepted classes in netdiffuseR.
If the object fails to fall in one of the types of graphs the function returns with an error indicating
what (and when possible, where) the problem lies.

The function was designed to be used with as_diffnet.

Value

Whe the object fits any of the accepted graph formats, a list of attributes including

type Character scalar. Whether is a static or a dynamic graph

class Character scalar. The class of the original object

ids Character vector. Labels of the vertices
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pers Integer vector. Labels of the time periods

nper Integer scalar. Number of time periods

n Integer scalar. Number of vertices in the graph

Otherwise returns with error.

Author(s)

George G. Vega Yon

See Also

as_diffnet, netdiffuseR-graphs

cumulative_adopt_count

Cummulative count of adopters

Description

For each time period, calculates the number of adopters, the proportion of adopters, and the adoption
rate.

Usage

cumulative_adopt_count(obj)

Arguments

obj A n × T matrix (Cumulative adoption matrix obtained from toa_mat) or a
diffnet object.

Details

The rate of adoption–returned in the 3rd row out the resulting matrix–is calculated as

qt − qt−1
qt−1

where qi is the number of adopters in time t. Note that it is only calculated fot t > 1.

Value

A 3 × T matrix, where its rows contain the number of adoptes, the proportion of adopters and the
rate of adoption respectively, for earch period of time.

Author(s)

George G. Vega Yon & Thomas W. Valente
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See Also

Other statistics: bass, classify_adopters(), dgr(), ego_variance(), exposure(), hazard_rate(),
infection(), moran(), struct_equiv(), threshold(), vertex_covariate_dist()

dgr Indegree, outdegree and degree of the vertices

Description

Computes the requested degree measure for each node in the graph.

Usage

dgr(
graph,
cmode = "degree",
undirected = getOption("diffnet.undirected", FALSE),
self = getOption("diffnet.self", FALSE),
valued = getOption("diffnet.valued", FALSE)

)

## S3 method for class 'diffnet_degSeq'
plot(
x,
breaks = min(100L, nrow(x)/5),
freq = FALSE,
y = NULL,
log = "xy",
hist.args = list(),
slice = ncol(x),
xlab = "Degree",
ylab = "Freq",
...

)

Arguments

graph Any class of accepted graph format (see netdiffuseR-graphs).

cmode Character scalar. Either "indegree", "outdegree" or "degree".

undirected Logical scalar. When TRUE only the lower triangle of the adjacency matrix will
considered (faster).

self Logical scalar. When TRUE autolinks (loops, self edges) are allowed (see de-
tails).

valued Logical scalar. When TRUE weights will be considered. Otherwise non-zero
values will be replaced by ones.
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x An diffnet_degSeq object

breaks Passed to hist.

freq Logical scalar. When TRUE the y-axis will reflex counts, otherwise densities.

y Ignored

log Passed to plot (see par).

hist.args Arguments passed to hist.

slice Integer scalar. In the case of dynamic graphs, number of time point to plot.

xlab Character scalar. Passed to plot.

ylab Character scalar. Passed to plot.

... Further arguments passed to plot.

Value

A numeric matrix of size n× T . In the case of plot, returns an object of class histogram.

Author(s)

George G. Vega Yon

See Also

Other statistics: bass, classify_adopters(), cumulative_adopt_count(), ego_variance(),
exposure(), hazard_rate(), infection(), moran(), struct_equiv(), threshold(), vertex_covariate_dist()

Other visualizations: diffusionMap(), drawColorKey(), grid_distribution(), hazard_rate(),
plot_adopters(), plot_diffnet2(), plot_diffnet(), plot_infectsuscep(), plot_threshold(),
rescale_vertex_igraph()

Examples

# Comparing degree measurements ---------------------------------------------
# Creating an undirected graph
graph <- rgraph_ba()
graph

data.frame(
In=dgr(graph, "indegree", undirected = FALSE),
Out=dgr(graph, "outdegree", undirected = FALSE),
Degree=dgr(graph, "degree", undirected = FALSE)

)

# Testing on Korean Family Planning (weighted graph) ------------------------
data(kfamilyDiffNet)
d_unvalued <- dgr(kfamilyDiffNet, valued=FALSE)
d_valued <- dgr(kfamilyDiffNet, valued=TRUE)

any(d_valued!=d_unvalued)
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# Classic Scale-free plot ---------------------------------------------------
set.seed(1122)
g <- rgraph_ba(t=1e3-1)
hist(dgr(g))

# Since by default uses logscale, here we suppress the warnings
# on points been discarded for <=0.
suppressWarnings(plot(dgr(g)))

diag_expand Creates a square matrix suitable for spatial statistics models.

Description

Creates a square matrix suitable for spatial statistics models.

Usage

diag_expand(...)

## S3 method for class 'list'
diag_expand(
graph,
self = getOption("diffnet.self"),
valued = getOption("diffnet.valued"),
...

)

## S3 method for class 'diffnet'
diag_expand(
graph,
self = getOption("diffnet.self"),
valued = getOption("diffnet.valued"),
...

)

## S3 method for class 'matrix'
diag_expand(
graph,
nper,
self = getOption("diffnet.self"),
valued = getOption("diffnet.valued"),
...

)

## S3 method for class 'array'
diag_expand(
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graph,
self = getOption("diffnet.self"),
valued = getOption("diffnet.valued"),
...

)

## S3 method for class 'dgCMatrix'
diag_expand(
graph,
nper,
self = getOption("diffnet.self"),
valued = getOption("diffnet.valued"),
...

)

Arguments

... Further arguments to be passed to the method.

graph Any class of accepted graph format (see netdiffuseR-graphs).

self Logical scalar. When TRUE autolinks (loops, self edges) are allowed (see de-
tails).

valued Logical scalar. When TRUE weights will be considered. Otherwise non-zero
values will be replaced by ones.

nper Integer scalar. Number of time periods of the graph.

Value

A square matrix of class dgCMatrix of size (nnode(g)*nper)^2

Examples

# Simple example ------------------------------------------------------------
set.seed(23)
g <- rgraph_er(n=10, p=.5, t=2,undirected=TRUE)

# What we've done: A list with 2 bernoulli graphs
g

# Expanding to a 20*20 matrix with structural zeros on the diagonal
# and on cell 'off' adjacency matrix
diag_expand(g)
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diffnet-arithmetic diffnet Arithmetic and Logical Operators

Description

Addition, subtraction, network power of diffnet and logical operators such as & and | as objects

Usage

## S3 method for class 'diffnet'
x ^ y

graph_power(x, y, valued = getOption("diffnet.valued", FALSE))

## S3 method for class 'diffnet'
y / x

## S3 method for class 'diffnet'
x - y

## S3 method for class 'diffnet'
x * y

## S3 method for class 'diffnet'
x & y

## S3 method for class 'diffnet'
x | y

Arguments

x A diffnet class object.

y Integer scalar. Power of the network

valued Logical scalar. When FALSE all non-zero entries of the adjacency matrices are
set to one.

Details

Using binary operators, ease data management process with diffnet.

By default the binary operator ^ assumes that the graph is valued, hence the power is computed using
a weighted edges. Otherwise, if more control is needed, the user can use graph_power instead.

Value

A diffnet class object
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See Also

Other diffnet methods: %*%(), as.array.diffnet(), c.diffnet(), diffnet-class, diffnet_index,
plot.diffnet(), summary.diffnet()

Examples

# Computing two-steps away threshold with the Brazilian farmers data --------
data(brfarmersDiffNet)

expo1 <- threshold(brfarmersDiffNet)
expo2 <- threshold(brfarmersDiffNet^2)

# Computing correlation
cor(expo1,expo2)

# Drawing a qqplot
qqplot(expo1, expo2)

# Working with inverse ------------------------------------------------------
brf2_step <- brfarmersDiffNet^2
brf2_step <- 1/brf2_step

# Removing the first 3 vertex of medInnovationsDiffnet ----------------------
data(medInnovationsDiffNet)

# Using a diffnet object
first3Diffnet <- medInnovationsDiffNet[1:3,,]
medInnovationsDiffNet - first3Diffnet

# Using indexes
medInnovationsDiffNet - 1:3

# Using ids
medInnovationsDiffNet - as.character(1001:1003)

diffnet-class Creates a diffnet class object

Description

diffnet objects contain difussion networks. With adjacency matrices and time of adoption (toa)
vector as its main components, most of the package’s functions have methods for this class of
objects.

Usage

as_diffnet(graph, ...)

## Default S3 method:
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as_diffnet(graph, ...)

## S3 method for class 'networkDynamic'
as_diffnet(graph, toavar, ...)

new_diffnet(
graph,
toa,
t0 = min(toa, na.rm = TRUE),
t1 = max(toa, na.rm = TRUE),
vertex.dyn.attrs = NULL,
vertex.static.attrs = NULL,
id.and.per.vars = NULL,
graph.attrs = NULL,
undirected = getOption("diffnet.undirected"),
self = getOption("diffnet.self"),
multiple = getOption("diffnet.multiple"),
name = "Diffusion Network",
behavior = "Unspecified"

)

## S3 method for class 'diffnet'
as.data.frame(
x,
row.names = NULL,
optional = FALSE,
attr.class = c("dyn", "static"),
...

)

diffnet.attrs(
graph,
element = c("vertex", "graph"),
attr.class = c("dyn", "static"),
as.df = FALSE

)

diffnet.attrs(graph, element = "vertex", attr.class = "static") <- value

diffnet.toa(graph)

diffnet.toa(graph, i) <- value

## S3 method for class 'diffnet'
print(x, ...)

nodes(graph)
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diffnetLapply(graph, FUN, ...)

## S3 method for class 'diffnet'
str(object, ...)

## S3 method for class 'diffnet'
dimnames(x)

## S3 method for class 'diffnet'
t(x)

## S3 method for class 'diffnet'
dim(x)

Arguments

graph A dynamic graph (see netdiffuseR-graphs).

... Further arguments passed to the jmethod.

toavar Character scalar. Name of the variable that holds the time of adoption.

toa Numeric vector of size n. Times of adoption.

t0 Integer scalar. Passed to toa_mat.

t1 Integer scalar. Passed to toa_mat.
vertex.dyn.attrs

Vertices dynamic attributes (see details).
vertex.static.attrs

Vertices static attributes (see details).
id.and.per.vars

A character vector of length 2. Optionally specified to check the order of the
rows in the attribute data.

graph.attrs Graph dynamic attributes (not supported yet).

undirected Logical scalar. When TRUE only the lower triangle of the adjacency matrix will
considered (faster).

self Logical scalar. When TRUE autolinks (loops, self edges) are allowed (see de-
tails).

multiple Logical scalar. When TRUE allows multiple edges.

name Character scalar. Name of the diffusion network (descriptive).

behavior Character scalar. Name of the behavior been analyzed (innovation).

x A diffnet object.

row.names Ignored.

optional Ignored.

attr.class Character vector/scalar. Indicates the class of the attribute, either dynamic ("dyn"),
or static ("static").

element Character vector/scalar. Indicates what to retrieve/alter.
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as.df Logical scalar. When TRUE returns a data.frame.

value In the case of diffnet.toa, replacement, otherwise see below.

i Indices specifying elements to replace. See Extract.

FUN a function to be passed to lapply

object A diffnet object.

Details

diffnet objects hold both, static and dynamic vertex attributes. When creating diffnet objects,
these can be specified using the arguments vertex.static.attrs and vertex.dyn.attrs; de-
pending on whether the attributes to specify are static or dynamic, netdiffuseR currently supports
the following objects:

Class Dimension Check sorting
Static attributes
matrix with n rows id
data.frame with n rows id
vector of length n -

Dynamic attributes
matrix with n× T rows id, per
data.frame with n× T rows id, per
vector of length n× T -
list of length T with matrices or data.frames of n rows id, per

The last column, Check sorting, lists the variables that the user should specify if he wants the
function to check the order of the rows of the attributes (notice that this is not possible for the case
of vectors). By providing the name of the vertex id variable, id, and the time period id variable,
per, the function makes sure that the attribute data is presented in the right order. See the example
below. If the user does not provide the names of the vertex id and time period variables then the
function does not check the way the rows are sorted, further it assumes that the data is in the correct
order.

Value

A list of class diffnet with the following elements:

graph A list of length T . Containing sparse square matrices of size n and class dgCMatrix.

toa An integer vector of size T with times of adoption.
adopt, cumadopt

Numeric matrices of size n× T as those returned by toa_mat.
vertex.static.attrs

If not NULL, a data frame with n rows with vertex static attributes.
vertex.dyn.attrs

A list of length T with data frames containing vertex attributes throught time
(dynamic).
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graph.attrs A data frame with T rows.

meta A list of length 9 with the following elements:

• type: Character scalar equal to "dynamic".
• class: Character scalar equal to "list".
• ids: Character vector of size n with vertices’ labels.
• pers: Integer vector of size T .
• nper: Integer scalar equal to T .
• n: Integer scalar equal to n.
• self: Logical scalar.
• undirected: Logical scalar.
• multiple: Logical scalar.
• name: Character scalar.
• behavior: Character scalar.

Auxiliary functions

diffnet.attrs Allows retriving network attributes. In particular, by default returns a list of length
T with data frames with the following columns:

1. per Indicating the time period to which the observation corresponds.

2. toa Indicating the time of adoption of the vertex.

3. Further columns depending on the vertex and graph attributes.

Each vertex static attributes’ are repeated T times in total so that these can be binded (rbind) to
dynamic attributes.

When as.df=TRUE, this convenience function is useful as it can be used to create event history
(panel data) datasets used for model fitting.

Conversely, the replacement method allows including new vertex or graph attributes either dynamic
or static (see examples below).

diffnet.toa(graph) works as an alias of graph$toa. The replacement method, diffnet.toa<-
used as diffnet.toa(graph)<-..., is the right way of modifying times of adoption as when doing
so it performs several checks on the time ranges, and recalculates adoption and cumulative adoption
matrices using toa_mat.

nodes(graph) is an alias for graph$meta$ids.

Author(s)

George G. Vega Yon

See Also

Default options are listed at netdiffuseR-options

Other diffnet methods: %*%(), as.array.diffnet(), c.diffnet(), diffnet-arithmetic, diffnet_index,
plot.diffnet(), summary.diffnet()

Other data management functions: edgelist_to_adjmat(), egonet_attrs(), isolated(), survey_to_diffnet()
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Examples

# Creating a random graph
set.seed(123)
graph <- rgraph_ba(t=9)
graph <- lapply(1:5, function(x) graph)

# Pretty TOA
names(graph) <- 2001L:2005L
toa <- sample(c(2001L:2005L,NA), 10, TRUE)

# Creating diffnet object
diffnet <- new_diffnet(graph, toa)
diffnet
summary(diffnet)

# Plotting slice 4
plot(diffnet, t=4)

# ATTRIBUTES ----------------------------------------------------------------

# Retrieving attributes
diffnet.attrs(diffnet, "vertex", "static")

# Now as a data.frame (only static)
diffnet.attrs(diffnet, "vertex", "static", as.df = TRUE)

# Now as a data.frame (all of them)
diffnet.attrs(diffnet, as.df = TRUE)
as.data.frame(diffnet) # This is a wrapper

# Unsorted data -------------------------------------------------------------
# Loading example data
data(fakesurveyDyn)

# Creating a diffnet object
fs_diffnet <- survey_to_diffnet(

fakesurveyDyn, "id", c("net1", "net2", "net3"), "toa", "group",
timevar = "time", keep.isolates=TRUE, warn.coercion=FALSE)

# Now, we extract the graph data and create a diffnet object from scratch
graph <- fs_diffnet$graph
ids <- fs_diffnet$meta$ids
graph <- Map(function(g) {

dimnames(g) <- list(ids,ids)
g
}, g=graph)

attrs <- diffnet.attrs(fs_diffnet, as.df=TRUE)
toa <- diffnet.toa(fs_diffnet)

# Lets apply a different sorting to the data to see if it works
n <- nrow(attrs)
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attrs <- attrs[order(runif(n)),]

# Now, recreating the old diffnet object (notice -id.and.per.vars- arg)
fs_diffnet_new <- new_diffnet(graph, toa=toa, vertex.dyn.attrs=attrs,

id.and.per.vars = c("id", "per"))

# Now, retrieving attributes. The 'new one' will have more (repeated)
attrs_new <- diffnet.attrs(fs_diffnet_new, as.df=TRUE)
attrs_old <- diffnet.attrs(fs_diffnet, as.df=TRUE)

# Comparing elements!
tocompare <- intersect(colnames(attrs_new), colnames(attrs_old))
all(attrs_new[,tocompare] == attrs_old[,tocompare], na.rm = TRUE) # TRUE!

# diffnetLapply -------------------------------------------------------------

data(medInnovationsDiffNet)
diffnetLapply(medInnovationsDiffNet, function(x, cumadopt, ...) {sum(cumadopt)})

diffnet_check_attr_class

Infer whether value is dynamic or static.

Description

Intended for internal use only, this function is used in diffnet_index methods.

Usage

diffnet_check_attr_class(value, meta)

Arguments

value Either a matrix, data frame or a list. Attribute values.

meta A list. A diffnet object’s meta data.

Value

The value object either as a data frame (if static) or as a list of data frames (if dynamic). If value
does not follows the permitted types of diffnet_index, then returns with error.
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diffnet_index Indexing diffnet objects (on development)

Description

Access and assign (replace) elements from the adjacency matrices or the vertex attributes data
frames.

Usage

## S3 method for class 'diffnet'
x[[name, as.df = FALSE]]

## S3 replacement method for class 'diffnet'
x[[i, j]] <- value

## S3 method for class 'diffnet'
x[i, j, k, drop = FALSE]

## S3 replacement method for class 'diffnet'
x[i, j, k] <- value

Arguments

x A diffnet class object.

name String vector. Names of the vertices attributes.

as.df Logical scalar. When TRUE returns a data frame, otherwise a list of length T .

i Index of the i-th row of the adjacency matrix (see details).

j Index of the j-th column of the adjacency matrix (see details)

value Value to assign (see details)

k Index of the k-th slice of the adjacency matrix (see details).

drop Logical scalar. When TRUE returns an adjacency matrix, otherwise a filtered
diffnet object.

Details

The [[.diffnet methods provides access to the diffnet attributes data frames, static and dynamic.
By providing the name of the corresponding attribute, depending on whether it is static or dynamic
the function will return either a data frame–static attributes–or a list of these–dynamic attributes.
For the assigning method, [[<-.diffnet, the function will infer what kind of attribute is by analyzing
the dimensions of value, in particular we have the following possible cases:

Class Dimension Inferred
matrix n× T Dynamic
matrix n× 1 Static
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matrix (n× T )× 1 Dynamic
data.frame n× T Dynamic
data.frame n× 1 Static
data.frame (n× T )× 1 Dynamic
vector n Static
vector n× T Dynamic
list* T data.frames/matrices/vectors Dynamic

*: With n× 1 data.frame/matrix or n length vector.

Other cases will return with error.

In the case of the slices index k, either an integer vector with the positions, a character vector with
the labels of the time periods or a logical vector of length T can be used to specify which slices to
retrieve. Likewise, indexing vertices works in the same way with the only difference that, instead of
time period labels and a logical vector of length T, vertices ids labels and a logical vector of length
n should be provided.

When subsetting slices, the function modifies the toa vector as well as the adopt and cumadopt
matrices collapsing network tinmming. For example, if a network goes from time 1 to 20 and we
set k=3:10, all individuals who adopted prior to time 3 will be set as adopters at time 3, and all
individuals who adopted after time 10 will be set as adopters at time 10, changing the adoption and
cumulative adoption matrices. Importantly, k have no gaps, and it should be within the graph time
period range.

Value

In the case of the assigning methods, a diffnet object. Otherwise, for [[.diffnet a vector extracted
from one of the attributes data frames, and for [.diffnet a list of length length(k) with the
corresponding [i,j] elements from the adjacency matrix.

Author(s)

George G. Vega Yon

See Also

Other diffnet methods: %*%(), as.array.diffnet(), c.diffnet(), diffnet-arithmetic, diffnet-class,
plot.diffnet(), summary.diffnet()

Examples

# Creating a random diffusion network ---------------------------------------
set.seed(111)
graph <- rdiffnet(50,4)

# Accessing to a static attribute
graph[["real_threshold"]]

# Accessing to subsets of the adjacency matrix
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graph[1,,1:3, drop=TRUE]
graph[,,1:3, drop=TRUE][[1]]

# ... Now, as diffnet objects (the default)
graph[1,,1:3, drop=FALSE]
graph[,,1:3, drop=FALSE]

# Changing values in the adjacency matrix
graph[1, , , drop=TRUE]
graph[1,,] <- -5
graph[1, , , drop=TRUE]

# Adding attributes (dynamic) -----------------------------------------------
# Preparing the data
set.seed(1122)
x <- rdiffnet(30, 4, seed.p.adopt=.15)

# Calculating exposure, and storing it diffe
expoM <- exposure(x)
expoL <- lapply(seq_len(x$meta$nper), function(x) expoM[,x,drop=FALSE])
expoD <- do.call(rbind, expoL)

# Adding data (all these are equivalent)
x[["expoM"]] <- expoM
x[["expoL"]] <- expoL
x[["expoD"]] <- expoD

# Lets compare
identical(x[["expoM"]], x[["expoL"]]) # TRUE
identical(x[["expoM"]], x[["expoD"]]) # TRUE

diffreg Diffusion regression model

Description

A wrapper of glm, this function estimates a lagged regression model of adoption as a function of
exposure and other controls as especified by the user.

Usage

diffreg(model, type = c("logit", "probit"))

Arguments

model An object of class formula where the right-hand-side is an object of class diffnet

type Character scalar. Either "probit" or "logit".
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Details

The model must be in the following form:

<diffnet object> ~ exposure + covariate1 + covariate2 + ...

Where exposure can be especified either as a simple term, or as a call to the exposure function, e.g.
to compute exposure with a lag of length 2, the formula could be:

<diffnet object> ~ exposure(lags = 2) + covariate1 + covariate2 + ...

When no argument is passed to exposure, the function sets a lag of length 1 by default (see the
Lagged regression section).

This is a wrapper of glm. The function does the following steps:

1. Compute exposure by calling exposure on the LHS.

2. Modify the formula so that the model is on adoption as a function of exposure and whatever
covariates the user specifies.

3. Selects either "probit" or "logit" and prepares the call to glm. This includes passing the
following line:

subset = ifelse(is.na(toa), TRUE, toa >= per)

This results in including observations that either did not adopted or up to the time of adoption.

4. Estimates the model.

The data passed to glm is obtained by using as.data.frame.diffnet.

Value

An object of class glm.

Lagged regression

The model estimated is a lagged regression model that has two main assumptions:

1. The network is exogenous to the behavior (no selection effect)

2. The influence effect (diffusion) happens in a lagged fasion, hence, exposure is computed
lagged.

If either of these two assumptions is not met, then the model becomes endogenous, ans so inference
becomes invalid.

In the case of the first assumption, the user can overcome the non-exogeneity problem by providing
an alternative network. This can be done by especifying alt.graph in the exposure function so
that the network becomes exogenous to the adoption.



40 diffusion-data

Examples

data("medInnovationsDiffNet")

# Default model
ans <- diffreg(

medInnovationsDiffNet ~ exposure + factor(city) + proage + per)
summary(ans)

diffusion-data Diffusion Network Datasets

Description

Diffusion Network Datasets

Details

The three classic network diffusion datasets included in netdiffuseR are the medical innovation data
originally collected by Coleman, Katz & Menzel (1966); the Brazilian Farmers collected as part
of the three country study implemented by Everett Rogers (Rogers, Ascroft, & Röling, 1970), and
Korean Family Planning data collected by researchers at the Seoul National University’s School of
Public (Rogers & Kincaid, 1981). The table below summarizes the three datasets:

Medical Innovation Brazilian Farmers Korean Family Planning
Country USA Brazil Korean
# Respondents 125 Doctors 692 Farmers 1,047 Women
# Communities 4 11 25
Innovation Tetracycline Hybrid Corn Seed Family Planning
Time for Diffusion 18 Months 20 Years 11 Years
Year Data Collected 1955-1956 1966 1973
Ave. Time to 50% 6 16 7
Highest Saturation 0.89 0.98 0.83
Lowest Saturation 0.81 0.29 0.44
Citation Coleman et al (1966) Rogers et al (1970) Rogers & Kincaid (1981)

All datasets include a column called study which is coded as (1) Medical Innovation (2) Brazilian
Farmers, (3) Korean Family Planning.

Right censored data

By convention, non-adopting actors are coded as one plus the last observed time of adoption. Prior
empirical event history approaches have used this approach (Valente, 2005; Marsden and Podolny,
1990) and studies have shown that omitting such observations leads to biased results (van den Bulte
& Iyengar, 2011).
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Author(s)

Thomas W. Valente

References
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See Also

Other diffusion datasets: brfarmersDiffNet, brfarmers, fakeDynEdgelist, fakeEdgelist, fakesurveyDyn,
fakesurvey, kfamilyDiffNet, kfamily, medInnovationsDiffNet, medInnovations

diffusionMap Creates a heatmap based on a graph layout and a vertex attribute

Description

Using bi-dimensional kernel smoothers, creates a heatmap based on a graph layout and colored
accordingly to x. This visualization technique is intended to be used with large graphs.

https://doi.org/10.1086/228667
https://doi.org/10.1080/0022250X.1983.9989941
https://doi.org/10.1177/0049124193022001006
https://doi.org/10.1287/mksc.1100.0615
https://doi.org/10.1287/mksc.1100.0615
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Usage

diffusionMap(graph, ...)

diffmap(graph, ...)

## Default S3 method:
diffusionMap(
graph,
x,
x.adj = round_to_seq,
layout = NULL,
jitter.args = list(),
kde2d.args = list(n = 100),
sharp.criter = function(x, w) { wvar(x, w) > (max(x, na.rm = TRUE) - min(x, na.rm

= TRUE))^2/12 },
...

)

## S3 method for class 'diffnet'
diffusionMap(graph, slice = nslices(graph), ...)

## S3 method for class 'diffnet_diffmap'
image(x, ...)

## S3 method for class 'diffnet_diffmap'
print(x, ...)

## S3 method for class 'diffnet_diffmap'
plot(x, y = NULL, ...)

Arguments

graph A square matrix of size n× n.

... Arguments passed to method.

x An vector of length n. Usually a toa vector.

x.adj Function to adjust x. If not NULL then it is applied to x at the beginning (see
details).

layout Either a n× 2 matrix of coordinates or a layout function applied to graph (must
return coordinates).

jitter.args A list including arguments to be passed to jitter.

kde2d.args A list including arguments to be passed to kde2d.

sharp.criter A function choose whether to apply a weighted mean for each cell, or randomize
over the values present in that cell (see details).

slice Integer scalar. Slice of the network to be used as baseline for drawing the graph.

y Ignored.
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Details

The image is created using the function kde2d from the MASS package. The complete algorithm
follows:

1. x is coerced into integer and the range is adjusted to start from 1. NA are replaced by zero.

2. If no layout is passed, layout is computed using layout_nicely from igraph
3. Then, a kde2d map is computed for each level of x. The resulting matrices are added up as a

weighted sum. This only holds if at the cell level the function sharp.criter returns FALSE.

4. The jitter function is applied to the repeated coordinates.

5. 2D kernel is computed using kde2d over the coordinates.

The function sharp.criter must take two values, a vector of levels and a vector of weights. It
must return a logical scalar with value equal to TRUE when a randomization at the cell level must be
done, in which case the final value of the cell is chosen using sample(x,1,prob=w).

The resulting matrix can be passed to image or similar.

The argument x.adj uses by default the function round_to_seq which basically maps x to a fix
length sequence of numbers such that x.adj(x) resembles an integer sequence.

Value

A list of class diffnet_diffmap

coords A matrix of size n× 2 of vertices coordinates.

map Output from kde2d. This is a list with 3 elements, vectors x, y and matrix z of
size n× n (passed via kde2d.args).

h Bandwidth passed to kde2d.

Author(s)

George G. Vega Yon

References

Vega Yon, George G., and Valente, Thomas W., Visualizing Large Annotated Networks as Heatmaps
using Weighted Averages based on Kernel Smoothers (Working paper).

See Also

Other visualizations: dgr(), drawColorKey(), grid_distribution(), hazard_rate(), plot_adopters(),
plot_diffnet2(), plot_diffnet(), plot_infectsuscep(), plot_threshold(), rescale_vertex_igraph()

Examples

# Example with a random graph --------------------------------------------------

set.seed(1231)
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# Random scale-free diffusion network
x <- rdiffnet(500, 4, seed.graph="scale-free", seed.p.adopt = .025,

rewire = FALSE, seed.nodes = "central",
rgraph.arg=list(self=FALSE, m=4),
threshold.dist = function(id) runif(1,.2,.4))

# Diffusion map (no random toa)
dm0 <- diffusionMap(x, kde2d.args=list(n=150, h=.5), layout=igraph::layout_with_fr)

# Random
diffnet.toa(x) <- sample(x$toa, size = nnodes(x))

# Diffusion map (random toa)
dm1 <- diffusionMap(x, layout = dm0$coords, kde2d.args=list(n=150, h=.5))

oldpar <- par(no.readonly = TRUE)
col <- colorRampPalette(blues9)(100)
par(mfrow=c(1,2), oma=c(1,0,0,0))
image(dm0, col=col, main="Non-random Times of Adoption\nAdoption from the core.")
image(dm1, col=col, main="Random Times of Adoption")
par(mfrow=c(1,1))
mtext("Both networks have the same distribution on times of adoption", 1,

outer = TRUE)
par(oldpar)

# Example with Brazilian Farmers --------------------------------------------
dn <- brfarmersDiffNet

# Setting last TOA as NA
diffnet.toa(dn)[dn$toa == max(dn$toa)] <-

NA

# Coordinates
coords <- sna::gplot.layout.fruchtermanreingold(

as.matrix(dn$graph[[1]]), layout.par=NULL
)

# Plotting diffusion
plot_diffnet2(dn, layout=coords, vertex.size = 300)

# Adding diffusion map
out <- diffusionMap(dn, layout=coords, kde2d.args=list(n=100, h=50))
col <- adjustcolor(colorRampPalette(c("white","lightblue", "yellow", "red"))(100),.5)
with(out$map, .filled.contour(x,y,z,pretty(range(z), 100),col))

drawColorKey Draw a color key in the current device

Description

Draw a color key in the current device
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Usage

drawColorKey(
x,
tick.marks = pretty_within(x),
labels = tick.marks,
main = NULL,
key.pos = c(0.925, 0.975, 0.05, 0.95),
pos = 2,
nlevels = length(tick.marks),
color.palette = viridisLite::viridis(nlevels),
tick.width = c(0.01, 0.0075),
add.box = TRUE,
na.col = NULL,
na.height = 0.1,
na.lab = "n/a",
...

)

Arguments

x A numeric vector with the data (it is used to extract the range).

tick.marks A numeric vector indicating the levels to be included in the axis.

labels Character vector. When provided, specifies using different labels for the tick
marks than those provided by tick.marjks.

main Character scalar. Title of the key.

key.pos A numeric vector of length 4 with relative coordinates of the key (as % of the
plotting area, see par("usr"))

pos Integer scalar. Position of the axis as in text.

nlevels Integer scalar. Number of levels (colors) to include in the color key.

color.palette Color palette of length(nlevels).

tick.width Numeric vector of length 2 indicating the length of the inner and outer tick marks
as percentage of the axis.

add.box Logical scalar. When TRUE adds a box around the key.

na.col Character scalar. If specified, adds an aditional box indicating the NA color.

na.height Numeric scalar. Relative height of the NA box. Only use if na.col is not NULL.

na.lab Character scalar. Label of the NA block. Only use if na.col is not NULL.

... Further arguments to be passed to rect

Value

Invisible NULL.

Author(s)

George G. Vega Yon
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See Also

Other visualizations: dgr(), diffusionMap(), grid_distribution(), hazard_rate(), plot_adopters(),
plot_diffnet2(), plot_diffnet(), plot_infectsuscep(), plot_threshold(), rescale_vertex_igraph()

Examples

set.seed(166)
x <- rnorm(100)
col <- colorRamp(c("lightblue", "yellow", "red"))((x - min(x))/(max(x) - min(x)))
col <- rgb(col, maxColorValue = 255)
plot(x, col=col, pch=19)
drawColorKey(x, nlevels = 100, border="transparent",
main="Key\nLike A\nBoss")

edgelist_to_adjmat Conversion between adjacency matrix and edgelist

Description

Generates adjacency matrix from an edgelist and vice versa.

Usage

edgelist_to_adjmat(
edgelist,
w = NULL,
t0 = NULL,
t1 = NULL,
t = NULL,
simplify = TRUE,
undirected = getOption("diffnet.undirected"),
self = getOption("diffnet.self"),
multiple = getOption("diffnet.multiple"),
keep.isolates = TRUE,
recode.ids = TRUE

)

adjmat_to_edgelist(
graph,
undirected = getOption("diffnet.undirected", FALSE),
keep.isolates = getOption("diffnet.keep.isolates", TRUE)

)

Arguments

edgelist Two column matrix/data.frame in the form of ego -source- and alter -target- (see
details).
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w Numeric vector. Strength of ties (optional).

t0 Integer vector. Starting time of the ties (optional).

t1 Integer vector. Finishing time of the ties (optional).

t Integer scalar. Repeat the network t times (if no t0,t1 are provided).

simplify Logical scalar. When TRUE and times=NULL it will return an adjacency matrix,
otherwise an array of adjacency matrices. (see details).

undirected Logical scalar. When TRUE only the lower triangle of the adjacency matrix will
considered (faster).

self Logical scalar. When TRUE autolinks (loops, self edges) are allowed (see de-
tails).

multiple Logical scalar. When TRUE allows multiple edges.

keep.isolates Logical scalar. When FALSE, rows with NA/NULL values (isolated vertices un-
less have autolink) will be droped (see details).

recode.ids Logical scalar. When TRUE ids are recoded using as.factor (see details).

graph Any class of accepted graph format (see netdiffuseR-graphs).

Details

When converting from edglist to adjmat the function will recode the edgelist before starting. The
user can keep track after the recording by checking the resulting adjacency matrices’ row.names.
In the case that the user decides skipping the recoding (because wants to keep vertices index num-
bers, implying that the resulting graph will have isolated vertices), he can override this by setting
recode.ids=FALSE (see example).

When multiple edges are included, multiple=TRUE,each vertex between {i, j} will be counted as
many times it appears in the edgelist. So if a vertex {i, j} appears 2 times, the adjacency matrix
element (i,j) will be 2.

Edges with incomplete information (missing data on w or times) are not included on the graph.
Incomplete cases are tagged using complete.cases and can be retrieved by the user by accessing
the attribute incomplete.

Were the case that either ego or alter are missing (i.e. NA values), the function will either way
include the non-missing vertex. See below for an example of this.

The function performs several checks before starting to create the adjacency matrix. These are:

• Dimensions of the inputs, such as number of columns and length of vectors

• Having complete cases. If anly edge has a non-numeric value such as NAs or NULL in either
times or w, it will be removed. A full list of such edges can be retrieved from the attribute
incomplete

• Nodes and times ids coding

recode.ids=FALSE is useful when the vertices ids have already been coded. For example, after hav-
ing use adjmat_to_edgelist, ids are correctly encoded, so when going back (using edgelist_to_adjmat)
recode.ids should be FALSE.
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Value

In the case of edgelist_to_adjmat either an adjacency matrix (if times is NULL) or an array of
these (if times is not null). For adjmat_to_edgelist the output is an edgelist with the following
columns:

ego Origin of the tie.

alter Target of the tie.

value Value in the adjacency matrix.

time Either a 1 (if the network is static) or the time stamp of the tie.

Author(s)

George G. Vega Yon & Thomas W. Valente

See Also

Other data management functions: diffnet-class, egonet_attrs(), isolated(), survey_to_diffnet()

Examples

# Base data
set.seed(123)
n <- 5
edgelist <- rgraph_er(n, as.edgelist=TRUE, p=.2)[,c("ego","alter")]
times <- sample.int(3, nrow(edgelist), replace=TRUE)
w <- abs(rnorm(nrow(edgelist)))

# Simple example
edgelist_to_adjmat(edgelist)
edgelist_to_adjmat(edgelist, undirected = TRUE)

# Using w
edgelist_to_adjmat(edgelist, w)
edgelist_to_adjmat(edgelist, w, undirected = TRUE)

# Using times
edgelist_to_adjmat(edgelist, t0 = times)
edgelist_to_adjmat(edgelist, t0 = times, undirected = TRUE)

# Using times and w
edgelist_to_adjmat(edgelist, t0 = times, w = w)
edgelist_to_adjmat(edgelist, t0 = times, undirected = TRUE, w = w)

# Not recoding ----------------------------------------------------
# Notice that vertices 3, 4 and 5 are not present in this graph.
graph <- matrix(c(
1,2,6,
6,6,7

), ncol=2)

# Generates an adjmat of size 4 x 4



edges_coords 49

edgelist_to_adjmat(graph)

# Generates an adjmat of size 7 x 7
edgelist_to_adjmat(graph, recode.ids=FALSE)

# Dynamic with spells -------------------------------------------------------
edgelist <- rbind(

c(1,2,NA,1990),
c(2,3,NA,1991),
c(3,4,1991,1992),
c(4,1,1992,1993),
c(1,2,1993,1993)

)

graph <- edgelist_to_adjmat(edgelist[,1:2], t0=edgelist[,3], t1=edgelist[,4])

# Creating a diffnet object with it so we can apply the plot_diffnet function
diffnet <- as_diffnet(graph, toa=1:4)
plot_diffnet(diffnet, label=rownames(diffnet))

# Missing alter in the edgelist ---------------------------------------------
data(fakeEdgelist)

# Notice that edge 202 is isolated
fakeEdgelist

# The function still includes vertex 202
edgelist_to_adjmat(fakeEdgelist[,1:2])

edgelist

edges_coords Compute ego/alter edge coordinates considering alter’s size and as-
pect ratio

Description

Given a graph, vertices’ positions and sizes, calculates the absolute positions of the endpoints of the
edges considering the plot’s aspect ratio.

Usage

edges_coords(
graph,
toa,
x,
y,
vertex_cex,
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undirected = TRUE,
no_contemporary = TRUE,
dev = as.numeric(c()),
ran = as.numeric(c()),
curved = as.logical(c())

)

Arguments

graph A square matrix of size n. Adjacency matrix.

toa Integer vector of size n. Times of adoption.

x Numeric vector of size n. x-coordinta of vertices.

y Numeric vector of size n. y-coordinta of vertices.

vertex_cex Numeric vector of size n. Vertices’ sizes in terms of the x-axis (see symbols).

undirected Logical scalar. Whether the graph is undirected or not.
no_contemporary

Logical scalar. Whether to return (compute) edges’ coordiantes for vertices with
the same time of adoption (see details).

dev Numeric vector of size 2. Height and width of the device (see details).

ran Numeric vector of size 2. Range of the x and y axis (see details).

curved Logical vector.

Details

In order to make the plot’s visualization more appealing, this function provides a straight forward
way of computing the tips of the edges considering the aspect ratio of the axes range. In particular,
the following corrections are made at the moment of calculating the egdes coords:

• Instead of using the actual distance between ego and alter, a relative one is calculated as
follows

d′ =
[
(x0 − x1)2 + (y′0 − y′1)2

] 1
2

where y′i = yi × max x−min x
max y−min y

• Then, for the relative elevation angle, alpha, the relative distance d′ is used, α′ = arccos ((x0 − x1)/d′)

• Finally, the edge’s endpoint’s (alter) coordinates are computed as follows:

x′1 = x1 + cos(α′)× v1

y′1 = y1 −+ sin(α′)× v1 ×
max y −min y

maxx−minx

Where v1 is alter’s size in terms of the x-axis, and the sign of the second term in y′1 is negative
iff y0 < y1.

The same process (with sign inverted) is applied to the edge starting piont. The resulting values,
x′1, y

′
1 can be used with the function arrows. This is the workhorse function used in plot_threshold.
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The dev argument provides a reference to rescale the plot accordingly to the device, and former,
considering the size of the margins as well (this can be easily fetched via par("pin"), plot area in
inches).

On the other hand, ran provides a reference for the adjustment according to the range of the data,
this is range(x)[2] -range(x)[1] and range(y)[2] -range(y)[1] respectively.

Value

A numeric matrix of size m× 5 with the following columns:

x0, y0 Edge origin

x1, y1 Edge target

alpha Relative angle between (x0,y0) and (x1,y1) in terms of radians

With m as the number of resulting edges.

Examples

# --------------------------------------------------------------------------
data(medInnovationsDiffNet)
library(sna)

# Computing coordinates
set.seed(79)
coords <- sna::gplot(as.matrix(medInnovationsDiffNet$graph[[1]]))

# Getting edge coordinates
vcex <- rep(1.5, nnodes(medInnovationsDiffNet))
ecoords <- edges_coords(

medInnovationsDiffNet$graph[[1]],
diffnet.toa(medInnovationsDiffNet),
x = coords[,1], y = coords[,2],
vertex_cex = vcex,
dev = par("pin")
)

ecoords <- as.data.frame(ecoords)

# Plotting
symbols(coords[,1], coords[,2], circles=vcex,

inches=FALSE, xaxs="i", yaxs="i")

with(ecoords, arrows(x0,y0,x1,y1, length=.1))
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egonet_attrs Retrieve alter’s attributes (network effects)

Description

For a given set of vertices V, retrieves each vertex’s alter’s attributes. This function enables users
to calculate exposure on variables other than the attribute that is diffusing. Further, it enables
the specification of alternative functions to use to characterize ego’s personal network including
calculating the mean, maximum, minimum, median, or sum of the alters’ attributes. These measures
may be static or dynamic over the interval of diffusion and they may be binary or valued.

Usage

egonet_attrs(
graph,
attrs,
V = NULL,
direction = "outgoing",
fun = function(x) x,
as.df = FALSE,
self = getOption("diffnet.self"),
valued = getOption("diffnet.valued"),
...

)

Arguments

graph Any class of accepted graph format (see netdiffuseR-graphs).

attrs If graph is static, Numeric matrix with n rows, otherwise a list of numeric
matrices with n rows.

V Integer vector. Set of vertices from which the attributes will be retrieved.

direction Character scalar. Either "outgoing", "incoming".

fun Function. Applied to each

as.df Logical scalar. When TRUE returns a data.frame instead of a list (see details).

self Logical scalar. When TRUE autolinks (loops, self edges) are allowed (see de-
tails).

valued Logical scalar. When TRUE weights will be considered. Otherwise non-zero
values will be replaced by ones.

... Further arguments to be passed to fun.

Details

By indexing inner/outer edges, this function retrieves ego network attributes for all v ∈ V , which
by default is the complete set of vertices in the graph.
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When as.df=TRUE the function returns a data.frame of size (|V | × T )× k where T is the number
of time periods and k is the number of columns generated by the function.

The function can be used to create network effects as those in the RSiena package. The difference
here is that the definition of the statistic directly relies on the user. For example, in the RSiena
package, the dyadic covariate effect 37. covariate (centered) main effect (X)

si37(x) =
∑
j

xij(wij − w̄)

Which, having a diffnet object with attributes named x and w, can be calculated as

egonet_attrs(diffnet, as.df=TRUE, fun=function(dat) {
sum(dat[, "x"]*(dat[, "w"] - mean(dat[, "w"])))
})

Furthermore, we could use the median centered instead, for example

egonet_attrs(diffnet, as.df=TRUE, fun=function(dat) {
sum(dat[, "x"]*(dat[, "w"] - median(dat[, "w"])))
})

Where for each i, dat will be a matrix with as many rows as individuals in his egonetwork. Such
matrix holds the column names of the attributes in the network.

When self = TRUE, it will include ego’s attributes, regardless the network has loops or not.

Value

A list with ego alters’s attributes. By default, if the graph is static, the output is a list of length
length(V) with matrices having the following columns:

value Either the corresponding value of the tie.

id Alter’s id

... Further attributes contained in attrs

On the other hand, if graph is dynamic, the output is list of length T of lists of length length(V)
with data frames having the following columns:

value The corresponding value of the adjacency matrix.

id Alter’s id

per Time id

... Further attributes contained in attrs

Author(s)

George G. Vega Yon
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See Also

Other data management functions: diffnet-class, edgelist_to_adjmat(), isolated(), survey_to_diffnet()

Examples

# Simple example with diffnet -----------------------------------------------
set.seed(1001)
diffnet <- rdiffnet(150, 5, seed.graph="small-world")

# Adding attributes
indeg <- dgr(diffnet, cmode="indegree")
head(indeg)
diffnet[["indegree"]] <- indeg

# Retrieving egonet's attributes (vertices 1 and 20)
egonet_attrs(diffnet, V=c(1,20))

# Example with a static network ---------------------------------------------

set.seed(1231)
n <- 20
net <- rgraph_ws(n = n, k = 4, p = .5)
someattr <- matrix(rnorm(n * 2), ncol= 2, dimnames = list(NULL, c("a", "b")))

# Maximum of -a- in ego network
ans <- egonet_attrs(net, someattr, fun = function(x) max(x[,"a"]))
ans

# checking it worked, taking a look at node 1, 2, and 3
max(someattr[which(net[1,] == 1),"a"]) == ans[1] # TRUE
max(someattr[which(net[2,] == 1),"a"]) == ans[2] # TRUE
max(someattr[which(net[3,] == 1),"a"]) == ans[3] # TRUE

ego_variance Computes variance of Y at ego level

Description

Computes variance of Y at ego level

Usage

ego_variance(graph, Y, funname, all = FALSE)
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Arguments

graph A matrix of size n× n of class dgCMatrix.

Y A numeric vector of length n.

funname Character scalar. Comparison to make (see vertex_covariate_compare).

all Logical scalar. When FALSE (default) fi is mean at ego level. Otherwise is fix
for all i (see details).

Details

For each vertex i the variance is computed as follows

(
∑
j

aij)
−1
∑
j

aij [f(yi, yj)− fi]2

Where aij is the ij-th element of graph, f is the function specified in funname, and, if all=FALSE
fi =

∑
j aijf(yi, yj)

2/
∑
j aij , otherwise fi = fj = 1

n2

∑
i,j f(yi, yj)

This is an auxiliary function for struct_test. The idea is to compute an adjusted measure of
disimilarity between vertices, so the closest in terms of f is i to its neighbors, the smaller the
relative variance.

Value

A numeric vector of length n.

See Also

struct_test

Other statistics: bass, classify_adopters(), cumulative_adopt_count(), dgr(), exposure(),
hazard_rate(), infection(), moran(), struct_equiv(), threshold(), vertex_covariate_dist()

exposure Ego exposure

Description

Calculates exposure to adoption over time via multiple different types of weight matrices. The
basic model is exposure to adoption by immediate neighbors (outdegree) at the time period prior to
ego’s adoption. This exposure can also be based on (1) incoming ties, (2) structural equivalence,
(3) indirect ties, (4) attribute weighted (5) network-metric weighted (e.g., central nodes have more
influence), and attribute-weighted (e.g., based on homophily or tie strength).
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Usage

exposure(
graph,
cumadopt,
attrs = NULL,
alt.graph = NULL,
outgoing = getOption("diffnet.outgoing", TRUE),
valued = getOption("diffnet.valued", FALSE),
normalized = TRUE,
groupvar = NULL,
self = getOption("diffnet.self"),
lags = 0L,
...

)

Arguments

graph A dynamic graph (see netdiffuseR-graphs).

cumadopt n× T matrix. Cumulative adoption matrix obtained from toa_mat

attrs Either a character scalar (if graph is diffnet), or a numeric matrix of size n×T .
Weighting for each time, period (see details).

alt.graph Either a graph that should be used instead of graph, or "se" (see details).

outgoing Logical scalar. When TRUE, computed using outgoing ties.

valued Logical scalar. When TRUE weights will be considered. Otherwise non-zero
values will be replaced by ones.

normalized Logical scalar. When TRUE, the exposure will be between zero and one (see
details).

groupvar Passed to struct_equiv.

self Logical scalar. When TRUE autolinks (loops, self edges) are allowed (see de-
tails).

lags Integer scalar. When different from 0, the resulting exposure matrix will be the
lagged exposure as specified (see examples).

... Further arguments passed to struct_equiv (only used when alt.graph="se").

Details

Exposure is calculated as follows:

Et = (St × [xt ◦At]) /(St × xt)

Where St is the graph in time t, xt is an attribute vector of size n at time t, At is the t-th column of
the cumulative adopters matrix (a vector of length n with ati = 1 if i has adopted at or prior to t),
◦ is the kronecker product (element-wise), and × is the matrix product.

By default the graph used for this calculation, S, is the social network. Alternatively, in the case of
diffnet objects, the user can provide an alternative graph using alt.graph. An example of this
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would be using 1/SE, the element-wise inverse of the structural equivalence matrix (see example
below). Furthermore, if alt.graph="se", the inverse of the structural equivalence is computed via
struct_equiv and used instead of the provided graph. Notice that when using a valued graph the
option valued should be equal to TRUE, this check is run automatically when running the model
using structural equivalence.

If the alt.graph is static, then the function will warn about it and will recycle the graph to compute
exposure at each time point.

An important remark is that when calculating structural equivalence the function assumes that
this is to be done to the entire graph regardless of disconnected communities (as in the case of
the medical innovations data set). Hence, structural equivalence for individuals for two different
communites may not be zero. If the user wants to calculate structural equivalence separately by
community, he should create different diffnet objects and do so (see example below). Alternatively,
for the case of diffnet objects, by using the option groupvar (see struct_equiv), the user can
provide the function with the name of a grouping variable–which should one in the set of static
vertex attributes–so that the algorithm is done by group (or community) instead of in an aggregated
way.

If the user does not specifies a particular weighting attribute in attrs, the function sets this as a
matrix of ones. Otherwise the function will return an attribute weighted exposure. When graph is of
class diffnet, attrs can be a character scalar specifying the name of any of the graph’s attributes,
both dynamic and static. See the examples section for a demonstration using degree.

When outgoing=FALSE, S is replaced by its transposed, so in the case of a social network exposure
will be computed based on the incoming ties.

If normalize=FALSE then denominator, St × xt, is not included. This can be useful when, for
example, exposure needs to be computed as a count instead of a proportion. A good example of this
can be found at the examples section of the function rdiffnet.

Value

A matrix of size n× T with exposure for each node.

Author(s)

George G. Vega Yon & Thomas W. Valente

References

Burt, R. S. (1987). "Social Contagion and Innovation: Cohesion versus Structural Equivalence".
American Journal of Sociology, 92(6), 1287. doi: 10.1086/228667

Valente, T. W. (1995). "Network models of the diffusion of innovations" (2nd ed.). Cresskill N.J.:
Hampton Press.

See Also

Other statistics: bass, classify_adopters(), cumulative_adopt_count(), dgr(), ego_variance(),
hazard_rate(), infection(), moran(), struct_equiv(), threshold(), vertex_covariate_dist()

https://doi.org/10.1086/228667
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Examples

# Calculating lagged exposure -----------------------------------------------

set.seed(8)
graph <- rdiffnet(20, 4)

expo0 <- exposure(graph)
expo1 <- exposure(graph, lags = 1)

# These should be equivalent
stopifnot(all(expo0[, -4] == expo1[, -1])) # No stop!

# Calculating the exposure based on Structural Equivalence ------------------
set.seed(113132)
graph <- rdiffnet(100, 4)

SE <- lapply(struct_equiv(graph), "[[", "SE")
SE <- lapply(SE, function(x) {

x <- 1/x
x[!is.finite(x)] <- 0
x

})

# These three lines are equivalent to:
expo_se2 <- exposure(graph, alt.graph="se", valued=TRUE)
# Notice that we are setting valued=TRUE, but this is not necesary since when
# alt.graph = "se" the function checks this to be setted equal to TRUE

# Weighted Exposure using degree --------------------------------------------
eDE <- exposure(graph, attrs=dgr(graph))

# Which is equivalent to
graph[["deg"]] <- dgr(graph)
eDE2 <- exposure(graph, attrs="deg")

# Comparing using incoming edges -------------------------------------------
eIN <- exposure(graph, outgoing=FALSE)

# Structral equivalence for different communities ---------------------------
data(medInnovationsDiffNet)

# Only using 4 time slides, this is for convenience
medInnovationsDiffNet <- medInnovationsDiffNet[, , 1:4]

# METHOD 1: Using the c.diffnet method:

# Creating subsets by city
cities <- unique(medInnovationsDiffNet[["city"]])

diffnet <- medInnovationsDiffNet[medInnovationsDiffNet[["city"]] == cities[1]]
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diffnet[["expo_se"]] <- exposure(diffnet, alt.graph="se", valued=TRUE)

for (v in cities[-1]) {
diffnet_v <- medInnovationsDiffNet[medInnovationsDiffNet[["city"]] == v]
diffnet_v[["expo_se"]] <- exposure(diffnet_v, alt.graph="se", valued=TRUE)
diffnet <- c(diffnet, diffnet_v)

}

# We can set the original order (just in case) of the data
diffnet <- diffnet[medInnovationsDiffNet$meta$ids]
diffnet

# Checking everything is equal
test <- summary(medInnovationsDiffNet, no.print=TRUE) ==

summary(diffnet, no.print=TRUE)

stopifnot(all(test[!is.na(test)]))

# METHOD 2: Using the 'groupvar' argument
# Further, we can compare this with using the groupvar
diffnet[["expo_se2"]] <- exposure(diffnet, alt.graph="se",

groupvar="city", valued=TRUE)

# These should be equivalent
test <- diffnet[["expo_se", as.df=TRUE]] == diffnet[["expo_se2", as.df=TRUE]]
stopifnot(all(test[!is.na(test)]))

# METHOD 3: Computing exposure, rbind and then adding it to the diffnet object
expo_se3 <- NULL
for (v in unique(cities))

expo_se3 <- rbind(
expo_se3,
exposure(

diffnet[diffnet[["city"]] == v],
alt.graph = "se", valued=TRUE

))

# Just to make sure, we sort the rows
expo_se3 <- expo_se3[diffnet$meta$ids,]

diffnet[["expo_se3"]] <- expo_se3

test <- diffnet[["expo_se", as.df=TRUE]] == diffnet[["expo_se3", as.df=TRUE]]
stopifnot(all(test[!is.na(test)]))

# METHOD 4: Using the groupvar in struct_equiv
se <- struct_equiv(diffnet, groupvar="city")
se <- lapply(se, "[[", "SE")
se <- lapply(se, function(x) {

x <- 1/x
x[!is.finite(x)] <- 0
x
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})

diffnet[["expo_se4"]] <- exposure(diffnet, alt.graph=se, valued=TRUE)

test <- diffnet[["expo_se", as.df=TRUE]] == diffnet[["expo_se4", as.df=TRUE]]
stopifnot(all(test[!is.na(test)]))

fakeDynEdgelist Fake dynamic edgelist

Description

A data frame used for examples in reading edgelist format networks. This edgelist can be merged
with the dataset fakesurveyDyn.

Format

A data frame with 22 rows and 4 variables

ego Nominating individual

alter Nominated individual

value Strength of the tie

time Integer with the time of the spell

Author(s)

George G. Vega Yon

Source

Generated for the package

See Also

Other diffusion datasets: brfarmersDiffNet, brfarmers, diffusion-data, fakeEdgelist, fakesurveyDyn,
fakesurvey, kfamilyDiffNet, kfamily, medInnovationsDiffNet, medInnovations
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fakeEdgelist Fake static edgelist

Description

A data frame used for examples in reading edgelist format networks. This edgelist can be merged
with the dataset fakesurvey.

Format

A data frame with 11 rows and 3 variables

ego Nominating individual

alter Nominated individual

value Strength of the tie

Author(s)

George G. Vega Yon

Source

Generated for the package

See Also

Other diffusion datasets: brfarmersDiffNet, brfarmers, diffusion-data, fakeDynEdgelist,
fakesurveyDyn, fakesurvey, kfamilyDiffNet, kfamily, medInnovationsDiffNet, medInnovations

fakesurvey Fake survey data

Description

This data frame is used to ilustrate some of the functions of the package, in particular, the survey_to_diffnet
function. This dataset can be merged with the fakeEdgelist.

Format

A data frame with 9 rows and 9 variables

id Unique id at group level

toa Time of adoption

group Group id

net1 Network nomination 1
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net2 Network nomination 2

net3 Network nomination 3

age Age of the respondent

gender Gende of the respondent

note Descroption of the respondent

Author(s)

George G. Vega Yon

Source

Generated for the package.

See Also

Other diffusion datasets: brfarmersDiffNet, brfarmers, diffusion-data, fakeDynEdgelist,
fakeEdgelist, fakesurveyDyn, kfamilyDiffNet, kfamily, medInnovationsDiffNet, medInnovations

fakesurveyDyn Fake longitudinal survey data

Description

This data frame is used to ilustrate some of the functions of the package, in particular, the survey_to_diffnet
function. This dataset can be merged with the fakeDynEdgelist.

Format

A data frame with 18 rows and 10 variables

id Unique id at group level

toa Time of adoption

group Group id

net1 Network nomination 1

net2 Network nomination 2

net3 Network nomination 3

age Age of the respondent

gender Gende of the respondent

note Descroption of the respondent

time Timing of the wave

Author(s)

George G. Vega Yon
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Source

Generated for the package.

See Also

Other diffusion datasets: brfarmersDiffNet, brfarmers, diffusion-data, fakeDynEdgelist,
fakeEdgelist, fakesurvey, kfamilyDiffNet, kfamily, medInnovationsDiffNet, medInnovations

grid_distribution Distribution over a grid

Description

Distribution of pairs over a grid of fix size.

Usage

grid_distribution(x, y, nlevels = 100L)

Arguments

x Numeric vector of size n

y Numeric vector of size n

nlevels Integer scalar. Number of bins to return

Details

This function ment for internal use only.

Value

Returns a list with three elements

x Numeric vector of size nlevels with the class marks for x

y Numeric vector of size nlevels with the class marks for y

z Numeric matrix of size nlevels by nlevels with the distribution of the ele-
ments in terms of frequency

Examples

# Generating random vectors of size 100
x <- rnorm(100)
y <- rnorm(100)

# Calculating distribution
grid_distribution(x,y,20)
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See Also

Used by plot_infectsuscep

Other visualizations: dgr(), diffusionMap(), drawColorKey(), hazard_rate(), plot_adopters(),
plot_diffnet2(), plot_diffnet(), plot_infectsuscep(), plot_threshold(), rescale_vertex_igraph()

hazard_rate Network Hazard Rate

Description

The hazard rate is the instantaneous probability of adoption at each time representing the likelihood
members will adopt at that time (Allison 1984). The shape of the hazard rate indicates the pattern of
new adopters over time. Rapid diffusion with convex cumulative adoption curves will have hazard
functions that peak early and decay over time whereas slow concave cumulative adoption curves
will have hazard functions that are low early and rise over time. Smooth hazard curves indicate
constant adoption whereas those that oscillate indicate variability in adoption behavior over time.

Usage

hazard_rate(obj, no.plot = FALSE, include.grid = TRUE, ...)

plot_hazard(x, ...)

## S3 method for class 'diffnet_hr'
plot(
x,
y = NULL,
main = "Hazard Rate",
xlab = "Time",
ylab = "Hazard Rate",
type = "b",
include.grid = TRUE,
bg = "lightblue",
pch = 21,
add = FALSE,
ylim = c(0, 1),
...

)

Arguments

obj A n × T matrix (Cumulative adoption matrix obtained from toa_mat) or a
diffnet object.

no.plot Logical scalar. When TRUE, suppress plotting (only returns hazard rates).

include.grid Logical scalar. When TRUE includes a grid on the plot.

... further arguments to be passed to the method.
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x An object of class diffnet_hr.

y ignored.

main Character scalar. Title of the plot

xlab Character scalar. x-axis label.

ylab Character scalar. y-axis label.

type Character scalar. See par.

bg Character scalar. Color of the points.

pch Integer scalar. See par.

add Logical scalar. When TRUE it adds the hazard rate to the current plot.

ylim Numeric vector. See plot.

Details

This function computes hazard rate, plots it and returns the hazard rate vector invisible (so is not
printed on the console). For t > 1, hazard rate is calculated as

qt − qt−1
n− qt−1

where qi is the number of adopters in time t, and n is the number of vertices in the graph.

In survival analysis, hazard rate is defined formally as

λ(t) = lim
h→+0

F (t+ h)− F (t)

h

1

1− F (t)

Then, by approximating h = 1, we can rewrite the equation as

λ(t) =
F (t+ 1)− F (t)

1− F (t)

Furthermore, we can estimate F (t), the probability of not having adopted the innovation in time t,
as the proportion of adopters in that time, this is F (t) ∼ qt/n, so now we have

λ(t) =
qt+1/n− qt/n

1− qt/n
=
qt+1 − qt
n− qt

As showed above.

The plot_hazard function is an alias for the plot.diffnet_hr method.

Value

A row vector of size T with hazard rates for t > 1 of class diffnet_hr. The class of the object is
only used by the S3 plot method.



66 igraph

Author(s)

George G. Vega Yon & Thomas W. Valente

References

Allison, P. (1984). Event history analysis regression for longitudinal event data. Beverly Hills: Sage
Publications.

Wooldridge, J. M. (2010). Econometric Analysis of Cross Section and Panel Data (2nd ed.). Cam-
bridge: MIT Press.

See Also

Other statistics: bass, classify_adopters(), cumulative_adopt_count(), dgr(), ego_variance(),
exposure(), infection(), moran(), struct_equiv(), threshold(), vertex_covariate_dist()

Other visualizations: dgr(), diffusionMap(), drawColorKey(), grid_distribution(), plot_adopters(),
plot_diffnet2(), plot_diffnet(), plot_infectsuscep(), plot_threshold(), rescale_vertex_igraph()

Examples

# Creating a random vector of times of adoption
toa <- sample(2000:2005, 20, TRUE)

# Computing cumulative adoption matrix
cumadopt <- toa_mat(toa)$cumadopt

# Visualizing the hazard rate
hazard_rate(cumadopt)

igraph Coercion between graph classes

Description

Coercion between graph classes

Usage

diffnet_to_igraph(graph, slices = 1:nslices(graph))

igraph_to_diffnet(
graph = NULL,
graph.list = NULL,
toavar,
t0 = NULL,
t1 = NULL,
...

)
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Arguments

graph Either a diffnet or igraph graph object.

slices An integer vector indicating the slices to subset.

graph.list A list of igraph objects.

toavar Character scalar. Name of the attribute that holds the times of adoption.

t0 Integer scalar. Passed to new_diffnet.

t1 Integer scalar. Passed to new_diffnet.

... Further arguments passed to as_diffnet.

Value

Either a list of length(slices) igraph (diffnet_to_igraph), or a diffnet object (igraph_to_diffnet)
objects.

See Also

Other Foreign: network, read_pajek(), read_ucinet_head()

Examples

# Reading the medical innovation data into igraph --------------------------
x <- diffnet_to_igraph(medInnovationsDiffNet[,,1:4])

# Fetching the times of adoption
igraph::vertex_attr(x[[1]], "toa")

infection Susceptibility and Infection

Description

Calculates infectiousness and susceptibility for each node in the graph

Usage

infection(
graph,
toa,
t0 = NULL,
normalize = TRUE,
K = 1L,
r = 0.5,
expdiscount = FALSE,
valued = getOption("diffnet.valued", FALSE),
outgoing = getOption("diffnet.outgoing", TRUE)

)
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susceptibility(
graph,
toa,
t0 = NULL,
normalize = TRUE,
K = 1L,
r = 0.5,
expdiscount = FALSE,
valued = getOption("diffnet.valued", FALSE),
outgoing = getOption("diffnet.outgoing", TRUE)

)

Arguments

graph A dynamic graph (see netdiffuseR-graphs).

toa Integer vector of length n with the times of adoption.

t0 Integer scalar. See toa_mat.

normalize Logical. Whether or not to normalize the outcome

K Integer scalar. Number of time periods to consider

r Numeric scalar. Discount rate used when expdiscount=TRUE

expdiscount Logical scalar. When TRUE, exponential discount rate is used (see details).

valued Logical scalar. When TRUE weights will be considered. Otherwise non-zero
values will be replaced by ones.

outgoing Logical scalar. When TRUE, computed using outgoing ties.

Details

Normalization, normalize=TRUE, is applied by dividing the resulting number from the infectious-
ness/susceptibility stat by the number of individuals who adopted the innovation at time t.

Given that node i adopted the innovation in time t, its Susceptibility is calculated as follows

Si =

∑K
k=1

∑n
j=1 xij(t−k+1)zj(t−k) × 1

wk∑K
k=1

∑n
j=1 xij(t−k+1)zj(1≤t≤t−k) × 1

wk

for i, j = 1, . . . , n i 6= j

where xij(t−k+1) is 1 whenever there’s a link from i to j at time t − k + 1, zj(t−k) is 1 whenever
individual j adopted the innovation at time t − k, zj(1≤t≤t−k) is 1 whenever j had adopted the
innovation up to t− k, and wk is the discount rate used (see below).

Similarly, infectiousness is calculated as follows

Ii =

∑K
k=1

∑n
j=1 xji(t+k−1)zj(t+k) ×

1
wk∑K

k=1

∑n
j=1 xji(t+k−1)zj(t+k≤t≤T ) × 1

wk

for i, j = 1, . . . , n i 6= j

It is worth noticing that, as we can see in the formulas, while susceptibility is from alter to ego,
infection is from ego to alter.
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When outgoing=FALSE the algorithms are based on incoming edges, this is the adjacency matrices
are transposed swapping the indexes (i, j) by (j, i). This can be useful for some users.

Finally, by default both are normalized by the number of individuals who adopted the innovation in
time t− k. Thus, the resulting formulas, when normalize=TRUE, can be rewritten as

S′i =
Si∑K

k=1

∑n
j=1 zj(t−k) ×

1
wk

I ′i =
Ii∑K

k=1

∑n
j=1 zj(t−k) ×

1
wk

For more details on these measurements, please refer to the vignette titled Time Discounted Infection
and Susceptibility.

Value

A numeric column vector (matrix) of size n with either infection/susceptibility rates.

Discount rate

Discount rate,wk in the formulas above, can be either exponential or linear. When expdiscount=TRUE,
wk = (1 + r)k−1, otherwise it will be wk = k.

Note that when K = 1, the above formulas are equal to the ones presented in Valente et al. (2015).

Author(s)

George G. Vega Yon

References

Thomas W. Valente, Stephanie R. Dyal, Kar-Hai Chu, Heather Wipfli, Kayo Fujimoto Diffusion of
innovations theory applied to global tobacco control treaty ratification, Social Science & Medicine,
Volume 145, November 2015, Pages 89-97, ISSN 0277-9536 doi: 10.1016/j.socscimed.2015.10.001

Myers, D. J. (2000). The Diffusion of Collective Violence: Infectiousness, Susceptibility, and Mass
Media Networks. American Journal of Sociology, 106(1), 173–208. doi: 10.1086/303110

See Also

The user can visualize the distribution of both statistics by using the function plot_infectsuscep

Other statistics: bass, classify_adopters(), cumulative_adopt_count(), dgr(), ego_variance(),
exposure(), hazard_rate(), moran(), struct_equiv(), threshold(), vertex_covariate_dist()

Examples

# Creating a random dynamic graph
set.seed(943)
graph <- rgraph_er(n=100, t=10)
toa <- sample.int(10, 100, TRUE)

# Computing infection and susceptibility (K=1)
infection(graph, toa)

https://doi.org/10.1016/j.socscimed.2015.10.001
https://doi.org/10.1086/303110
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susceptibility(graph, toa)

# Now with K=4
infection(graph, toa, K=4)
susceptibility(graph, toa, K=4)

isolated Find and remove isolated vertices

Description

Find and remove unconnected vertices from the graph.

Usage

isolated(
graph,
undirected = getOption("diffnet.undirected", FALSE),
self = getOption("diffnet.self", FALSE)

)

drop_isolated(
graph,
undirected = getOption("diffnet.undirected", FALSE),
self = getOption("diffnet.self", FALSE)

)

Arguments

graph Any class of accepted graph format (see netdiffuseR-graphs).

undirected Logical scalar. When TRUE only the lower triangle of the adjacency matrix will
considered (faster).

self Logical scalar. When TRUE autolinks (loops, self edges) are allowed (see de-
tails).

Value

When graph is an adjacency matrix:

isolated an matrix of size n× 1 with 1’s where a node is isolated

drop_isolated a modified graph excluding isolated vertices.

Otherwise, when graph is a list

isolated an matrix of size n× T with 1’s where a node is isolated

drop_isolated a modified graph excluding isolated vertices.
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Author(s)

George G. Vega Yon

See Also

Other data management functions: diffnet-class, edgelist_to_adjmat(), egonet_attrs(),
survey_to_diffnet()

Examples

# Generating random graph
set.seed(123)
adjmat <- rgraph_er()

# Making nodes 1 and 4 isolated
adjmat[c(1,4),] <- 0
adjmat[,c(1,4)] <- 0
adjmat

# Finding isolated nodes
iso <- isolated(adjmat)
iso

# Removing isolated nodes
drop_isolated(adjmat)

# Now with a dynamic graph
graph <- rgraph_er(n=10, t=3)

# Making 1 and 5 isolated
graph <- lapply(graph, "[<-", i=c(1,5), j=1:10, value=0)
graph <- lapply(graph, "[<-", i=1:10, j=c(1,5), value=0)
graph

isolated(graph)
drop_isolated(graph)

kfamily Korean Family Planning

Description

From Valente (1995) “Scholars at Seoul National University’s School of Public Health (Park, Chung,
Han & Lee, 1974) collected data on the adoption of family planning methods among all married
women of child-bearing age 25 in Korea villages in 1973 (N = 1,047).”
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Format

A data frame with 1,047 rows and 432 columns:

village Village of residence

id Respondent ID number

recno1 Card number NA

studno1 Study number NA

area1 Village of residence

id1 Respondent ID number

nmage1 Number males age 0

nmage2 Number males age 0-4

nmage3 Number males age 5-9

nmage4 Number males age 10-14

nmage5 Number males age 15-19

nmage6 Number males age 20-24

nmage7 Number males age 25-29

nmage8 Number males age 30-34

nmage9 Number males age 35-39

nmage10 Number males age 40-44

nmage11 Number males age 45-49

nmage12 Number males age 50-54

nmage13 Number males age 55-59

nmage14 Number males age 60-64

nmage15 Number males age 65-69

nmage16 Number males age 70-74

nmage17 Number males age 75-79

nmage18 Number males age 80+

nfage1 Number females age 0

nfage2 Number females age 0-4

nfage3 Number females age 5-9

nfage4 Number females age 10-14

nfage5 Number females age 15-19

nfage6 Number females age 20-24

nfage7 Number females age 25-29

nfage8 Number females age 30-34

nfage9 Number females age 35-39

nfage10 Number females age 40-44

nfage11 Number females age 45-49
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nfage12 Number females age 50-54

nfage13 Number females age 55-59

nfage14 Number females age 60-64

nfage15 Number females age 65-69

nfage16 Number females age 70-74

nfage17 Number females age 75-79

nfage18 Number females age 80+

pregs total pregnancies

pregs1 number normal deliveries

pregs2 number of induced abortions

pregs3 number of spontaneous abortions

pregs4 number of still births

pregs5 number of deaths after live birth

pregs6 currently pregnant

sons number of sons

daughts number of daughters

planning Ever heard of FP or birth control

loop1 Awareness of Loop

loop2 Detailed knowledge of Loop

loop3 Attitudes toward Loop

loop4 Knowledge of Loop used by neighbors

loop5 Knowledge of place of service for Loop

pill1 Awareness of Pill

pill2 Detailed knowledge of Pill

pill3 Attitudes toward Pill

pill4 Knowledge of Pill used by neighbors

pill5 Knowledge of place of service for Pill

vase1 Awareness of Vasectomy

vase2 Detailed knowledge of Vasectomy

vase3 Attitudes toward Vasectomy

vase4 Knowledge of Vasectomy used by neighbors

vase5 Knowledge of place of service for Vasectomy

cond1 Awareness of Condoms

cond2 Detailed knowledge Condoms

cond3 Attitudes toward Condoms

cond4 Knowledge of Condoms used by neighbors

cond5 Knowledge of place of service for Condoms
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rhyt1 Awareness of Rhythm

rhyt2 Detailed knowledge Rhythm

rhyt3 Attitudes toward Rhythm

rhyt4 Knowledge of Rhythm used by neighbors

bbt1 Awareness of Basic Body Temperature

bbt2 Detailed knowledge Basic Body Temperature

bbt3 Attitudes toward BBT

recno2 Record Number NA

studno2 Study Number NA

area2 village number

id2 id number

bbt4 Knowledge of BBT used by neighbors

diap1 Awareness of Diaphragm

diap2 Detailed knowledge Diaphragm

diap3 Attitudes toward Diaphragm

diap4 Knowledge of Diaphragm used by neighbors

with1 Awareness of Withdrawal

with2 Detailed knowledge Withdrawal

with3 Attitudes toward Withdrawal

with4 Knowledge of Withdrawal used by neighbors

tuba1 Awareness of Tubal Ligation

tuba2 Detailed knowledge TL

tuba3 Attitudes toward TL

tuba4 Knowledge of TL used by neighbors

fp1 Experience with an FP practice

fp2 Reasons for not practicing

fp3 What would you do if problem was solved

fp4 Any other reason for not practicing

fp5 Reasons for practicing

fp6 time between decision and adoption

fp7 reasons for time lag

fp8 Ever discontinued practicing

fp9 Reasons for discontinuing

fp10 Attitude toward FP

child1 Ideal number of sons

child2 Ideal number of daughters

child3 Ideal number of children regardless of sex
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child4 what do if kept having girls

comop1 Spousal communication on # of children

comop2 Spousal communication on FP

comop3 Consensus on opinion between couple

comop4 What was the difference

comop5 Opinion on who should practice

comop6 Different opinions on who should practice

comop7 Who should make final decision

comop8 Residence in old age

net11 Neighbors talk to about FP- 1

net12 Neighbors talk to about FP- 2

net13 Neighbors talk to about FP- 3

net14 Neighbors talk to about FP- 4

net15 Neighbors talk to about FP- 5

famawe1 Family members of FP Practice

famawe2 Parents awareness of FP Practice

famawe3 How did parents-in-law become aware

famawe4 How did parents become aware

famawe5 How did husband become aware

advic1 Advice given to neighbors where to go

advic2 Advice given on method

advic3 Ever met persons who give advice on FP

advic4 Credibility of person advising on FP

advic5 Counter advice given to others

rumor1 Rumors on Loop

rumor2 Rumors on Pill

rumor3 Rumors on Vasectomy

rumor4 Rumors on Condom

rumor5 Rumors on Tuballigation

media1 Possession of Radio

media2 Possession of TV

media3 Subscription to Newspaper

media4 Subscription to Happy Home

media5 Subscription to other magazine

media6 Radio exposure to FP

media7 TV exposure to FP

media8 Daily paper exposure to FP
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media9 Happy Home exposure to FP

media10 Magazine exposure to FP

media11 Movie or slide exposure to FP

media12 Poster exposure to FP

media13 Pamphlet exposure to FP

media14 FP Meeting exposure to FP

recno3 Record number NA

studno3 Study number NA

area3 village

id3 id

media15 Public lecture exposure to FP

media16 Mobile van exposure to FP

media17 Neighbors exposure to FP

media18 Workers home visiting exposure to FP

media19 Husband exposure to FP

club1 Awareness of clubs in community

club2 Membership in club

club3 Reasons for not becoming a member

club4 Feeling of necessity of club

club5 Visit of mobile van to area

club6 Service received from van

club7 Decision-making on FP on # children

club8 Decision-making on important goods

club9 Decision-making on childrens discipline

club10 Decision making on purchase wife clothes

net21 Closest neighbor most frequently met

n1adv Advice received from neighbor 1

n1prac practice of FP by neighbor 1

net22 Closest neighbor person 2

n2adv Advice received from neighbor 2

n2prac Practice of FP by neighbor 2

net23 Closest neighbor person 3

n3adv Advice received from neighbor 3

n3prac Practice of FP by neighbor 3

net24 Closest neighbor 4

n4adv Advice received from neighbor 4

n4prac Practice of FP by neighbor 4
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net25 Closest neighbor 5

n5adv Advice received from neighbor 5

n5prac Practice of FP by neighbor 5

stand Standard living of above neighbors

educ Education level of named neighbors

net31 Advice on FP sought from 1

net32 Advice on FP sought from 2

net33 Advice on FP sought from 3

net34 Advice on FP sought from 4

net35 Advice on FP sought from 5

net41 Information provided on FP by 1

net42 Information provided on FP by 1

net43 Information provided on FP by 1

net44 Information provided on FP by 1

net45 Information provided on FP by 1

net51 Seek advice on induced abortion 1

net52 Seek advice on induced abortion 2

net53 Seek advice on induced abortion 3

net54 Seek advice on induced abortion 4

net55 Seek advice on induced abortion 5

age Age of respondent

agemar Age at first marriage

recno4 Rec no NA

studno4 Study no NA

area4 village

id4 id

net61 Advice on health sought from 1

net62 Advice on health sought from 2

net63 Advice on health sought from 3

net64 Advice on health sought from 4

net65 Advice on health sought from 5

net71 Advice on purchase of goods 1

net72 Advice on purchase of goods 2

net73 Advice on purchase of goods 3

net74 Advice on purchase of goods 4

net75 Advice on purchase of goods 5

net81 Advice on childrens education 1
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net82 Advice on childrens education 2

net83 Advice on childrens education 3

net84 Advice on childrens education 4

net85 Advice on childrens education 5

rfampl1 Advice on FP sought by 1

rfampl2 Advice on FP sought by 2

rfampl3 Advice on FP sought by 3

rfampl4 Advice on FP sought by 4

rfampl5 Advice on FP sought by 5

rfampll Leadership score - indegree FP

rabort1 Advice on abortion sought by 1

rabort2 Advice on abortion sought by 2

rabort3 Advice on abortion sought by 3

rabort4 Advice on abortion sought by 4

rabort5 Advice on abortion sought by 5

rabortl Leadership score - indegree abortion

rhealth1 Advice on health sought by 1

rhealth2 Advice on health sought by

rhealth3 Advice on health sought by

rhealth4 Advice on health sought by

rhealth5 Advice on health sought by

rhealthl Leadership score - indegree health

recno5 rec no NA

studno5 study no NA

area5 village

id5 id

rgoods1 Advice on purchases sought by 1

rgoods2 Advice on purchases sought by 2

rgoods3 Advice on purchases sought by 3

rgoods4 Advice on purchases sought by 4

rgoods5 Advice on purchases sought by 5

rgoodsl Leadership score - indegree purchases

reduc1 Advice on education sought by 1

reduc2 Advice on education sought by 2

reduc3 Advice on education sought by 3

reduc4 Advice on education sought by 4

reduc5 Advice on education sought by 5
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reducl Leadership score - indegree education

hub1 Husbands friend 1

hub2 Husbands friend 2

hub3 Husbands friend 3

hub4 Husbands friend 4

hub5 Husbands friend 5

hubed Husbands education

wifeed Wifes education

wiferel Wifes religion

hubocc Husbands occupation

wifeocc Wifes occupation

know1 Can you insert a loop yourself

know2 Can you remove it alone

know3 Can a man use a loop

know4 How long can a loop be used

know5 Which doctor

know6 Doctor or nurse

know7 Oral pill method

know8 Can men take pills

know9 Long term use

know10 Time required for vasectomy

know11 Does vasectomy = castration

know12 Can any doctor do vasectomies

pref1 Who prefer use: Husband or wife

pref2 Reasons for preferring FP practice by wife

pref3 Reasons for preferring FP practice by husband

ageend Ideal age to end childbearing

cfp Current status of FP

cfatt1 Husbands attitude

cfatt2 In-laws attitude

cfatt3 Own parents attitude

cbyr Start of period from year

cbmnth Start of period from month

ceyr End of period year

cemnth End of period month

clngth Length of period

cawe1 FP contact
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cawe2 Awareness of contraceptive method at the time

cawe3 Awareness of service site

cawe4 Credibiilty

recno6 rec no NA

studno6 study no NA

area6 village

id6 id

fpt1 FP Status time 1

fatt1t1 Husbands attitude T1

fatt2t1 In-laws attitude T1

fatt3t1 Own parents attitude T1

byrt1 Start of Time 1 from year

lngtht1 Length of Time 1

awe1t1 FP Contact Time 1

awe2t1 Methods known at Time 1

awe3t1 Knowledge of service sites Time 1

awe4t1 Credibility of service site Time 1

fpt2 FP Status time 2

fatt1t2 Husbands attitude T2

fatt2t2 In-laws attitude T2

fatt3t2 Own parents attitude T2

byrt2 Start of Time 2 from year

lngtht2 Length of Time 2

awe1t2 FP Contact Time 2

awe2t2 Methods known at Time 2

awe3t2 Knowledge of service sites Time 2

awe4t2 Credibility of service site Time 2

fpt3 FP Status time 3

fatt1t3 Husbands attitude T3

fatt2t3 In-laws attitude T3

fatt3t3 Own parents attitude T3

byrt3 Start of Time 3 from year

lngtht3 Length of Time 3

awe1t3 FP Contact Time 3

awe2t3 Methods known at Time 3

awe3t3 Knowledge of service sites Time 3

awe4t3 Credibility of service site Time 3
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fpt4 FP Status time 4

fatt1t4 Husbands attitude T4

fatt2t4 In-laws attitude T4

fatt3t4 Own parents attitude T4

byrt4 Start of Time 4 from year

lngtht4 Length of Time 4

awe1t4 FP Contact Time 4

awe2t4 Methods known at Time 4

awe3t4 Knowledge of service sites Time 4

awe4t4 Credibility of service site Time 4

fpt5 FP Status time 5

fatt1t5 Husbands attitude T5

fatt2t5 In-laws attitude T5

fatt3t5 Own parents attitude T5

byrt5 Start of Time 5 from year

lngtht5 Length of Time 5

awe1t5 FP Contact Time 5

awe2t5 Methods known at Time 5

awe3t5 Knowledge of service sites Time 5

awe4t5 Credibility of service site Time 5

fpt6 FP Status time 6

fatt1t6 Husbands attitude T6

fatt2t6 In-laws attitude T6

fatt3t6 Own parents attitude T6

byrt6 Start of Time 6 from year

lngtht6 Length of Time 6

awe1t6 FP Contact Time 6

awe2t6 Methods known at Time 6

awe3t6 Knowledge of service sites Time 6

awe4t6 Credibility of service site Time 6

recno7 rec no NA

studno7 study no NA

area7 village

id7 id

fpt7 FP Status time 7

fatt1t7 Husbands attitude T7

fatt2t7 In-laws attitude T7
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fatt3t7 Own parents attitude T7

byrt7 Start of Time 7 from year

lngtht7 Length of Time 7

awe1t7 FP Contact Time 7

awe2t7 Methods known at Time 7

awe3t7 Knowledge of service sites Time 7

awe4t7 Credibility of service site Time 7

fpt8 FP Status time 8

fatt1t8 Husbands attitude T8

fatt2t8 In-laws attitude T8

fatt3t8 Own parents attitude T8

byrt8 Start of Time 8 from year

lngtht8 Length of Time 8

awe1t8 FP Contact Time 8

awe2t8 Methods known at Time 8

awe3t8 Knowledge of service sites Time 8

awe4t8 Credibility of service site Time 8

fpt9 FP Status time 9

fatt1t9 Husbands attitude T9

fatt2t9 In-laws attitude T9

fatt3t9 Own parents attitude T9

byrt9 Start of Time 9 from year

lngtht9 Length of Time 9

awe1t9 FP Contact Time 9

awe2t9 Methods known at Time 9

awe3t9 Knowledge of service sites Time 9

awe4t9 Credibility of service site Time 9

fpt10 FP Status time 10

fatt1t10 Husbands attitude T10

fatt2t10 In-laws attitude T10

fatt3t10 Own parents attitude T10

byrt10 Start of Time 10 from year

lngtht10 Length of Time 10

awe1t10 FP Contact Time 10

awe2t10 Methods known at Time 10

awe3t10 Knowledge of service sites Time 10

awe4t10 Credibility of service site Time 10
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fpt11 FP Status time 11

fatt1t11 Husbands attitude T11

fatt2t11 In-laws attitude T11

fatt3t11 Own parents attitude T11

byrt11 Start of Time 11 from year

lngtht11 Length of Time 11

awe1t11 FP Contact Time 11

awe2t11 Methods known at Time 11

awe3t11 Knowledge of service sites Time 11

awe4t11 Credibility of service site Time 11

fpt12 FP Status time 12

fatt1t12 Husbands attitude T12

fatt2t12 In-laws attitude T12

fatt3t12 Own parents attitude T12

byrt12 Start of Time 12 from year

lngtht12 Length of Time 12

awe1t12 FP Contact Time 12

awe2t12 Methods known at Time 12

awe3t12 Knowledge of service sites Time 12

awe4t12 Credibility of service site Time 12

ado adopt times years converted to 1=63

ado1
ado2
ado3
commun Village number

toa Time of Adoption

study Study (for when multiple diff studies used)

Details

The dataset has 1,047 respondents (women) from 25 communities. Collected during 1973 it spans
11 years of data.

Source

The Korean Family Planning data were stored on a Vax tape that Rogers had given to Marc Gra-
novetter who then gave it to his colleague Roland Soong (see Granovetter & Soong, 1983). Gra-
novetter instructed Song to send the tape to me and I had it loaded on the Vax machine at USC
in 1990 and was able to download the data to a PC. The first two datasets were acquired for my
dissertation (Valente, 1991) and the third added as I completed my book on Network Models of the
Diffusion of Innovations (Valente, 1995; also see Valente, 2005).
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References

Everett M. Rogers, & Kincaid, D. L. (1981). Communication Networks: Toward a New Paradigm
for Research. (C. Macmillan, Ed.). New York; London: Free Press.

Valente, T. W. (1995). Network models of the diffusion of innovations (2nd ed.). Cresskill N.J.:
Hampton Press.

See Also

Other diffusion datasets: brfarmersDiffNet, brfarmers, diffusion-data, fakeDynEdgelist,
fakeEdgelist, fakesurveyDyn, fakesurvey, kfamilyDiffNet, medInnovationsDiffNet, medInnovations

kfamilyDiffNet diffnet version of the Korean Family Planning data

Description

A directed dynamic graph with 1,047 vertices and 11 time periods. The attributes in the graph are
static and described in kfamily.

Format

A diffnet class object.

See Also

Other diffusion datasets: brfarmersDiffNet, brfarmers, diffusion-data, fakeDynEdgelist,
fakeEdgelist, fakesurveyDyn, fakesurvey, kfamily, medInnovationsDiffNet, medInnovations

matrix_compare Non-zero element-wise comparison between two sparse matrices

Description

Taking advantage of matrix sparseness, the function only evaluates fun between pairs of elements
of A and B where either A or B have non-zero values. This can be helpful to implement other binary
operators between sparse matrices that may not be implemented in the Matrix package.

Usage

matrix_compare(A, B, fun)

compare_matrix(A, B, fun)
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Arguments

A A matrix of size n*m of class dgCMatrix.

B A matrix of size n*m of class dgCMatrix.

fun A function that receives 2 arguments and returns a scalar.

Details

Instead of comparing element by element, the function loops through each matrix non-zero ele-
ments to make the comparisons, which in the case of sparse matrices can be more efficient (faster).
Algorithmically it can be described as follows:

# Matrix initialization
init ans[n,m];

# Looping through non-zero elements of A
for e_A in E_A:

ans[e_A] = fun(A[e_A], B[e_A])

# Looping through non-zero elements of B and applying the function
# in e_B only if it was not applied while looping in E_A.
for e_B in E_B:
if (ans[e_B] == Empty)
ans[e_B] = fun(A[e_B], B[e_B])

compare_matrix is just an alias for matrix_compare.

Value

An object of class dgCMatrix of size n*m.

See Also

Other dyadic-level comparison functions: vertex_covariate_compare(), vertex_covariate_dist()

Examples

# These two should yield the same results -----------------------------------

# Creating two random matrices
set.seed(89)
A <- rgraph_ba(t = 9, m = 4)
B <- rgraph_ba(t = 9, m = 4)
A;B

# Comparing
ans0 <- matrix_compare(A,B, function(a,b) (a+b)/2)

ans1 <- matrix(0, ncol=10, nrow=10)
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for (i in 1:10)
for (j in 1:10)
ans1[i,j] <- mean(c(A[i,j], B[i,j]))

# Are these equal?
all(ans0[] == ans1[]) # Should yield TRUE

medInnovations Medical Innovation

Description

From Valente (1995) “Coleman, Katz and Menzel from Columbia University’s Bureau of Ap-
plied Research studied the adoption of tetracycline by physiciams in four Illinois communities in
1954.[...] Tetracycline was a powerful and useful antibiotic just introduced in the mid-1950s”

Format

A data frame with 125 rows and 59 columns:

city city id

id sequential respondent id

detail detail man

meet meetings, lectures, hospitals

coll colleagues

attend attend professional meets

proage professional age

length lenght of reside in community

here only practice here

science science versus patients

position position in home base

journ2 journal subscriptions

paadico Percent alter adoption date imp

ado adoption month 1 to 18

thresh threshold

ctl corrected tl tl-exp level

catbak category 1-init 2-marg 3-low tl

sourinfo source of information

origid original respondent id

adopt adoption date 1= 11/53

recon reconstructed med innov
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date date became aware

info information source

most most important info source

journ journals

drug drug houses

net1_1 advisor nomination1

net1_2 advisor nomination2

net1_3 advisor nomination3

net2_1 discuss nomination1

net2_2 discuss nomination2

net2_3 discuss nomination3

net3_1 friends nomination1

net3_2 friends nomination2

net3_3 friends nomination3

nojourn number of pro journals receive

free free time companions

social med discussions during social

club club membership

friends friends are doctors

young young patients

nonpoor nonpoverty patients

office office visits

house house calls

tend tendency to prescribe drugs

reltend relative tendency to prescribe

perc perceived drug competition

proximty physical proximity to other doc

home home base hospital affiliation

special specialty

belief belief in science

proage2 profesional age 2

presc prescription prone

detail2 contact with detail man

dichot dichotomous personal preference

expect adoption month expected

recall recalls adopting

commun Number of community

toa Time of Adoption

study Number of study in Valente (1995)
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Details

The collected dataset has 125 respondents (doctors), and spans 17 months of data collected in 1955.
Time of adoption of non-adopters has been set to month 18 (see the manual entry titled Difussion
Network Datasets).

Source

The Medical Innovation data were stored in file cabinets in a basement building at Columbia Uni-
versity. Ron Burt (1987) acquired an NSF grant to develop network diffusion models and retrieve
the original surveys and enter them into a database. He distributed copies of the data on diskette
and sent one to me, Tom Valente, and I imported onto a PC environment.

References

Coleman, J., Katz, E., & Menzel, H. (1966). Medical innovation: A diffusion study (2nd ed.). New
York: Bobbs-Merrill

Valente, T. W. (1995). Network models of the diffusion of innovations (2nd ed.). Cresskill N.J.:
Hampton Press.

See Also

Other diffusion datasets: brfarmersDiffNet, brfarmers, diffusion-data, fakeDynEdgelist,
fakeEdgelist, fakesurveyDyn, fakesurvey, kfamilyDiffNet, kfamily, medInnovationsDiffNet

medInnovationsDiffNet diffnet version of the Medical Innovation data

Description

A directed dynamic graph with 125 vertices and 18 time periods. The attributes in the graph are
static and described in medInnovations.

Format

A diffnet class object.

See Also

Other diffusion datasets: brfarmersDiffNet, brfarmers, diffusion-data, fakeDynEdgelist,
fakeEdgelist, fakesurveyDyn, fakesurvey, kfamilyDiffNet, kfamily, medInnovations
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mentor_matching Optimal Leader/Mentor Matching

Description

Implementes the algorithm described in Valente and Davis (1999)

Usage

mentor_matching(
graph,
n,
cmode = "indegree",
lead.ties.method = "average",
geodist.args = list()

)

leader_matching(
graph,
n,
cmode = "indegree",
lead.ties.method = "average",
geodist.args = list()

)

## S3 method for class 'diffnet_mentor'
plot(
x,
y = NULL,
vertex.size = "degree",
minmax.relative.size = getOption("diffnet.minmax.relative.size", c(0.01, 0.04)),
lead.cols = grDevices::topo.colors(attr(x, "nleaders")),
vshapes = c(Leader = "square", Follower = "circle"),
add.legend = TRUE,
main = "Mentoring Network",
...

)

Arguments

graph Any class of accepted graph format (see netdiffuseR-graphs).

n Number of leaders

cmode Passed to dgr.
lead.ties.method

Passed to rank

geodist.args Passed to approx_geodesic.
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x An object of class diffnet_mentor.

y Ignored.

vertex.size Either a numeric scalar or vector of size n, or any of the following values: "in-
degree", "degree", or "outdegree" (see details).

minmax.relative.size

Passed to rescale_vertex_igraph.

lead.cols Character vector of length attr(x,"nleaders"). Colors to be applied to each
group. (see details)

vshapes Character scalar of length 2. Shapes to identify leaders (mentors) and followers
respectively.

add.legend Logical scalar. When TRUE generates a legend to distinguish between leaders
and followers.

main Character scalar. Passed to title

... Further arguments passed to plot.igraph

Details

The algorithm works as follows:

1. Find the top n individuals ranking them by dgr(graph,cmode). The rank is computed by the
function rank. Denote this set M.

2. Compute the geodesic matrix.

3. For each v in V do:

(a) Find the mentor m in M such that is closest to v

(b) Were there a tie, choose the mentor that minimizes the average path length from v’s direct
neighbors to m.

(c) If there are no paths to any member of M, or all have the same average path length to v’s
neighbors, then assign one randomly.

Plotting is done via the function plot.igraph.

When vertex.size is either of "degree", "indegree", or "outdegree", vertex.size will be
replace with dgr(.,cmode = ) so that the vertex size reflects the desired degree.

The argument minmax.relative.size is passed to rescale_vertex_igraph which adjusts vertex.size
so that the largest and smallest vertices have a relative size of minmax.relative.size[2] and
minmax.relative.size[1] respectively with respect to the x-axis.

Value

An object of class diffnet_mentor and data.frame with the following columns:

name Character. Labels of the vertices

degree Numeric. Degree of each vertex in the graph

iselader Logical. TRUE when the vertex was picked as a leader.

match Character. The corresponding matched leader.
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The object also contains the following attributes:

nleaders Integer scalar. The resulting number of leaders (could be greater than n)

.

graph The original graph used to run the algorithm.

References

Valente, T. W., & Davis, R. L. (1999). Accelerating the Diffusion of Innovations Using Opinion
Leaders. The ANNALS of the American Academy of Political and Social Science, 566(1), 55–67.
doi: 10.1177/000271629956600105

Examples

# A simple example ----------------------------------------------------------
set.seed(1231)
graph <- rgraph_ws(n=50, k = 4, p = .5)

# Looking for 3 mentors
ans <- mentor_matching(graph, n = 3)

head(ans)
table(ans$match) # We actually got 9 b/c of ties

# Visualizing the mentor network
plot(ans)

moran Computes Moran’s I correlation index

Description

Natively built for computing Moran’s I on dgCMatrix objects, this routine allows computing the I
on large sparse matrices (graphs). Part of its implementation was based on ape::Moran.I, which
computes the I for dense matrices.

Usage

moran(x, w, normalize.w = TRUE, alternative = "two.sided")

Arguments

x Numeric vector of size n.
w Numeric matrix of size n×n. Weights. It can be either a object of class matrix

or dgCMatrix from the Matrix package.
normalize.w Logical scalar. When TRUE normalizes rowsums to one (or zero).
alternative Character String. Specifies the alternative hypothesis that is tested against the

null of no autocorrelation; must be of one "two.sided", "less", or "greater".

https://doi.org/10.1177/000271629956600105
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Details

In the case that the vector x is close to constant (degenerate random variable), the statistic becomes
irrelevant, and furthermore, the standard error tends to be undefined (NaN).

Value

A list of class diffnet_moran with the following elements:

observed Numeric scalar. Observed correlation index.

expected Numeric scalar. Expected correlation index equal to −1/(N − 1).

sd Numeric scalar. Standard error under the null.

p.value Numeric scalar. p-value of the specified alternative.

Author(s)

George G. Vega Yon

References

Moran’s I. (2015, September 3). In Wikipedia, The Free Encyclopedia. Retrieved 06:23, December
22, 2015, from https://en.wikipedia.org/w/index.php?title=Moran%27s_I&oldid=679297766

See Also

Other statistics: bass, classify_adopters(), cumulative_adopt_count(), dgr(), ego_variance(),
exposure(), hazard_rate(), infection(), struct_equiv(), threshold(), vertex_covariate_dist()

Other Functions for inference: bootnet(), struct_test()

Examples

if (require("ape")) {

# Generating a small random graph
set.seed(123)
graph <- rgraph_ba(t = 4)
w <- approx_geodesic(graph)
x <- rnorm(5)

# Computing Moran's I
moran(x, w)

# Comparing with the ape's package version
ape::Moran.I(x, as.matrix(w))

}

https://en.wikipedia.org/w/index.php?title=Moran%27s_I&oldid=679297766
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netdiffuseR netdiffuseR

Description

Statistical analysis, visualization and simulation of diffusion and contagion processes on networks.
The package implements algorithms for calculating stats such as innovation threshold levels, in-
fectiousness (contagion) and susceptibility, and hazard rates as presented in Burt (1987), Valente
(1995), and Myers (2000) (among others).

You can access to the project website at https://github.com/USCCANA/netdiffuseR

Details

Analysis of Diffusion and Contagion Processes on Networks

Acknowledgements

netdiffuseR was created with the support of grant R01 CA157577 from the National Cancer Insti-
tute/National Institutes of Health.

Workshops and Tutorials

Online you can find several learning resources:

• Sunbelt 2016 https://github.com/USCCANA/netdiffuser-sunbelt2016

• NASN 2017 https://github.com/USCCANA/netdiffuser-nasn2017

• Sunbelt 2018 https://github.com/USCCANA/netdiffuser-sunbelt2018

Author(s)

George G. Vega Yon & Thomas W. Valente

netdiffuseR-graphs Network data formats

Description

List of accepted graph formats

https://github.com/USCCANA/netdiffuseR
https://github.com/USCCANA/netdiffuser-sunbelt2016
https://github.com/USCCANA/netdiffuser-nasn2017
https://github.com/USCCANA/netdiffuser-sunbelt2018
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Details

The netdiffuseR package can handle different types of graph objects. Two general classes are
defined across the package’s functions: static graphs, and dynamic graphs.

• In the case of static graphs, these are represented as adjacency matrices of size n×n and can
be either matrix (dense matrices) or dgCMatrix (sparse matrix from the Matrix package).
While most of the package functions are defined for both classes, the default output graph is
sparse, i.e. dgCMatrix.

• With respect to dynamic graphs, these are represented by either a diffnet object, an array
of size n × n × T , or a list of size T with sparse matrices (class dgCMatrix) of size n × n.
Just like the static graph case, while most of the functions accept both graph types, the default
output is dgCMatrix.

diffnet objects

In the case of diffnet-class objects, the following arguments can be omitted when calling fuictions
suitable for graph objects:

• toa: Time of Adoption vector

• adopt: Adoption Matrix

• cumadopt: Cumulative Adoption Matrix

• undirected: Whether the graph is directed or not

Objects’ names

When possible, netdiffuseR will try to reuse graphs dimensional names, this is, rownames, colnames,
dimnames and names (in the case of dynamic graphs as lists). Otherwise, when no names are pro-
vided, these will be created from scratch.

Author(s)

George G. Vega Yon

netdiffuseR-options netdiffuseR default options

Description

netdiffuseR default options

Details

Set of default options used by the package. These can be retrieved via getOption using the prefix
diffnet (see examples)
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Value

The full list of options follows:

undirected FALSE

self FALSE

multiple FALSE

tol 1e-8 (used for package testing)

valued FALSE

outgoing TRUE

keep.isolates TRUE
minmax.relative.size

c(0.025,0.05)

Author(s)

George G. Vega Yon

Examples

getOption("diffnet.undirected")
getOption("diffnet.multiple")
getOption("diffnet.self")

netmatch Matching Estimators with Network Data

Description

WARNING: This function is still in development and has not been tested throughly. Follow-
ing Aral et al. (2009), netmatch computes matching estimators for network data. The function
netmatch_prepare, which prepares the data to be used with matchit from the MatchIt package,
is called by netmatch.

Usage

netmatch_prepare(
dat,
graph,
timevar,
depvar,
covariates,
treat_thr = rep(1L, length(graph)),
adopt_thr = rep(1L, length(graph)),
expo_pcent = FALSE,
expo_lag = 0L
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)

netmatch(
dat,
graph,
timevar,
depvar,
covariates,
treat_thr = rep(1L, length(graph)),
adopt_thr = rep(1L, length(graph)),
expo_pcent = FALSE,
expo_lag = 0L,
...

)

Arguments

dat data.frame with dynamic data. Must be of nrow(dat)==nslices(graph)*nnodes(graph).

graph List with sparse matrices.

timevar Character scalar. Name of time variable

depvar Character scalar. Name of the dependent variable

covariates Character vector. Name(s) of the control variable(s).

treat_thr Either a numeric scalar or vector of length nslices(graph). Sets the threshold
of exposure at which it is considered that an observation is treated.

adopt_thr Either a numeric scalar or vector of length nslices(graph). Sets the threshold
of depvar at which it is considered that an observation has adopted a behavior.

expo_pcent Logical scalar. When TRUE, exposure is computed non-normalized (so it is a
count rather than a percentage).

expo_lag Integer scalar. Number of lags to consider when computing exposure. expo_lag=1
defines exposure in T considering behavior and network at T-1.

... Further arguments to be passed to matchit.

Details

In Aral et al. (2009), the matching estimator is used as a response to the fact that the observed
network is homophilous. Essentially, using exposure as a treatment indicator, which is known to be
endogenous, we can apply the same principle of matching estimators in which, after controlling for
characteristics (covariates), individuals from the treated group (exposed to some behavior) can be
compared to individuals from the control group (not exposed to that behavior), as the only difference
between the two is the exposure.

As pointed out in King & Nielsen (2015), it is suggested that, contrary to what Aral et al. (2009),
the matching is not performed over propensity score since it is know that the later can increase im-
balances in the data and thus obtaining exactly the opposed outcome that matching based estimators
pursue.

A couple of good references for matching estimators are Imbens and Wooldridge (2009), and
Sekhon (2008).
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Value

In the case of netmatch_prepare

dat A data.frame with the original data (covariates), plus the following new vari-
ables: treat, adopt, exposure.

match_model A formula to be passed to netmatch

netmatch returns the following:

fATT A numeric vector of lengthN1 (number of treated used in the matching process).
Treatment effects on the treated at the individual level

match_obj The output from matchit.

Author(s)

George G. Vega Yon

References

Aral, S., Muchnik, L., & Sundararajan, A. (2009). Distinguishing influence-based contagion from
homophily-driven diffusion in dynamic networks. Proceedings of the National Academy of Sci-
ences of the United States of America, 106(51), 21544–21549. doi: 10.1073/pnas.0908800106

Imbens, G. W., & Wooldridge, J. M. (2009). Recent Developments in the Econometrics of Program
Evaluation. Journal of Economic Literature, 47(1), 5–86. doi: 10.1257/jel.47.1.5

King, G., & Nielsen, R. (2015). Why Propensity Scores Should Not Be Used for.

Sekhon, J. S. (2008). The Neyman-Rubin Model of Causal Inference and Estimation Via Matching
Methods. The Oxford Handbook of Political Methodology. doi: 10.1093/oxfordhb/9780199286546.003.0011

network Coercion between diffnet, network and networkDynamic

Description

Coercion between diffnet, network and networkDynamic

Usage

diffnet_to_network(graph, slices = 1:nslices(graph), ...)

diffnet_to_networkDynamic(
graph,
slices = 1:nslices(graph),
diffnet2net.args = list(),
netdyn.args = list()

)

https://doi.org/10.1073/pnas.0908800106
https://doi.org/10.1257/jel.47.1.5
https://doi.org/10.1093/oxfordhb/9780199286546.003.0011
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networkDynamic_to_diffnet(graph, toavar)

network_to_diffnet(
graph = NULL,
graph.list = NULL,
toavar,
t0 = NULL,
t1 = NULL

)

Arguments

graph An object of class diffnet

slices An integer vector indicating the slices to subset

... Further arguments passed to networkDynamic

diffnet2net.args

List of arguments passed to diffnet_to_network.

netdyn.args List of arguments passed to networkDynamic

toavar Character scalar. Name of the vertex attribute that holds the times of adoption.

graph.list A list of network objects.

t0 Integer scalar. Passed to new_diffnet.

t1 Integer scalar. Passed to new_diffnet.

Details

diffnet_to_networkDynamic calls diffnet_to_network and uses the output to call networkDynamic,
passing the resulting list of network objects as network.list (see networkDynamic).

By default, diffnet_to_networkDynamic passes net.obs.period as

net.obs.period = list(
observations = list(range(graph$meta$pers)),
mode="discrete",
time.increment = 1,
time.unit = "step"

)

By default, networkDynamic_to_diffnet uses the first slice as reference for vertex attributes and
times of adoption.

By default, network_to_diffnet uses the first element of graph (a list) as reference for vertex
attributes and times of adoption.

Value

diffnet_to_network returns a list of length length(slices) in which each element is a network
object corresponding a slice of the graph (diffnet object). The attributes list will include toa
(time of adoption).

An object of class networkDynamic.
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Caveats

Since diffnet does not support edges attributes, these will be lost when converting from network-
type objects. The same applies to network attributes.

See Also

Other Foreign: igraph, read_pajek(), read_ucinet_head()

Examples

# Cohersing a diffnet to a list of networks ---------------------------------
set.seed(1)
ans <- diffnet_to_network(rdiffnet(20, 2))
ans

# and back
network_to_diffnet(graph.list = ans, toavar="toa")

# If it was static, we can use -graph- instead
network_to_diffnet(ans[[1]], toavar="toa")

# A random diffusion network ------------------------------------------------
set.seed(87)
dn <- rdiffnet(50, 4)
ans <- diffnet_to_networkDynamic(dn)

# and back
networkDynamic_to_diffnet(ans, toavar = "toa")

nvertices Count the number of vertices/edges/slices in a graph

Description

Count the number of vertices/edges/slices in a graph

Usage

nvertices(graph)

nnodes(graph)

nedges(graph)

nlinks(graph)

nslices(graph)
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Arguments

graph Any class of accepted graph format (see netdiffuseR-graphs).

Details

nnodes and nlinks are just aliases for nvertices and nedges respectively.

Value

For nvertices and nslices, an integer scalar equal to the number of vertices and slices in the
graph. Otherwise, from nedges, either a list of size t with the counts of edges (non-zero elements
in the adjacency matrices) at each time period, or, when graph is static, a single scalar with such
number.

Examples

# Creating a dynamic graph (we will use this for all the classes) -----------
set.seed(13133)
diffnet <- rdiffnet(100, 4)

# Lets use the first time period as a static graph
graph_mat <- diffnet$graph[[1]]
graph_dgCMatrix <- methods::as(graph_mat, "dgCMatrix")

# Now lets generate the other dynamic graphs
graph_list <- diffnet$graph
graph_array <- as.array(diffnet) # using the as.array method for diffnet objects

# Now we can compare vertices counts
nvertices(diffnet)
nvertices(graph_list)
nvertices(graph_array)

nvertices(graph_mat)
nvertices(graph_dgCMatrix)

# ... and edges count
nedges(diffnet)
nedges(graph_list)
nedges(graph_array)

nedges(graph_mat)
nedges(graph_dgCMatrix)

permute_graph Permute the values of a matrix
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Description

permute_graph Shuffles the values of a matrix either considering loops and multiple links (which
are processed as cell values different than 1/0). rewire_qap generates a new graph graph′ that is
isomorphic to graph.

Usage

permute_graph(graph, self = FALSE, multiple = FALSE)

rewire_permute(graph, self = FALSE, multiple = FALSE)

rewire_qap(graph)

Arguments

graph Any class of accepted graph format (see netdiffuseR-graphs).

self Logical scalar. When TRUE autolinks (loops, self edges) are allowed (see de-
tails).

multiple Logical scalar. When TRUE allows multiple edges.

Value

A permuted version of graph.

Author(s)

George G. Vega Yon

References

Anderson, B. S., Butts, C., & Carley, K. (1999). The interaction of size and density with graph-level
indices. Social Networks, 21(3), 239–267. doi: 10.1016/S03788733(99)000118

Mantel, N. (1967). The detection of disease clustering and a generalized regression approach.
Cancer Research, 27(2), 209–20. http://cancerres.aacrjournals.org/content/27/2_Part_
1/209

See Also

This function can be used as null distribution in struct_test

Other simulation functions: rdiffnet(), rewire_graph(), rgraph_ba(), rgraph_er(), rgraph_ws(),
ring_lattice()

Examples

# Simple example ------------------------------------------------------------
set.seed(1231)
g <- rgraph_ba(t=9)
g

https://doi.org/10.1016/S0378-8733(99)00011-8
http://cancerres.aacrjournals.org/content/27/2_Part_1/209
http://cancerres.aacrjournals.org/content/27/2_Part_1/209
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# These preserve the density
permute_graph(g)
permute_graph(g)

# These are isomorphic to g
rewire_qap(g)
rewire_qap(g)

plot.diffnet S3 plotting method for diffnet objects.

Description

S3 plotting method for diffnet objects.

Usage

## S3 method for class 'diffnet'
plot(
x,
y = NULL,
t = 1,
vertex.color = c(adopt = "steelblue", noadopt = "white"),
vertex.size = "degree",
main = "Diffusion network in time %d",
minmax.relative.size = getOption("diffnet.minmax.relative.size", c(0.01, 0.04)),
...

)

Arguments

x An object of class diffnet

y Ignored.

t Integer scalar indicating the time slice to plot.

vertex.color Character scalar/vector. Color of the vertices.

vertex.size Either a numeric scalar or vector of size n, or any of the following values: "in-
degree", "degree", or "outdegree" (see details).

main Character. A title template to be passed to sprintf.

minmax.relative.size

Passed to rescale_vertex_igraph.

... Further arguments passed to plot.igraph.
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Details

Plotting is done via the function plot.igraph.

When vertex.size is either of "degree", "indegree", or "outdegree", vertex.size will be
replace with dgr(.,cmode = ) so that the vertex size reflects the desired degree.

The argument minmax.relative.size is passed to rescale_vertex_igraph which adjusts vertex.size
so that the largest and smallest vertices have a relative size of minmax.relative.size[2] and
minmax.relative.size[1] respectively with respect to the x-axis.

Value

A matrix with the coordinates of the vertices.

Author(s)

George G. Vega Yon

See Also

Other diffnet methods: %*%(), as.array.diffnet(), c.diffnet(), diffnet-arithmetic, diffnet-class,
diffnet_index, summary.diffnet()

Examples

data(medInnovationsDiffNet)
plot(medInnovationsDiffNet)

plot_adopters Visualize adopters and cumulative adopters

Description

Visualize adopters and cumulative adopters

Usage

plot_adopters(
obj,
freq = FALSE,
what = c("adopt", "cumadopt"),
add = FALSE,
include.legend = TRUE,
include.grid = TRUE,
pch = c(21, 24),
type = c("b", "b"),
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ylim = if (!freq) c(0, 1) else NULL,
lty = c(1, 1),
col = c("black", "black"),
bg = c("tomato", "gray"),
xlab = "Time",
ylab = ifelse(freq, "Frequency", "Proportion"),
main = "Adopters and Cumulative Adopters",
...

)

Arguments

obj Either a diffnet object or a cumulative a doption matrix.

freq Logical scalar. When TRUE frequencies are plotted instead of proportions.

what Character vector of length 2. What to plot.

add Logical scalar. When TRUE lines and dots are added to the current graph.

include.legend Logical scalar. When TRUE a legend of the graph is plotted.

include.grid Logical scalar. When TRUE, the grid of the graph is drawn

pch Integer vector of length 2. See matplot.

type Character vector of length 2. See matplot.

ylim Numeric vector of length 2. Sets the plotting limit for the y-axis.

lty Numeric vector of length 2. See matplot.

col Character vector of length 2. See matplot.

bg Character vector of length 2. See matplot.

xlab Character scalar. Name of the x-axis.

ylab Character scalar. Name of the y-axis.

main Character scalar. Title of the plot

... Further arguments passed to matplot.

Value

A matrix as described in cumulative_adopt_count.

Author(s)

George G. Vega Yon

See Also

Other visualizations: dgr(), diffusionMap(), drawColorKey(), grid_distribution(), hazard_rate(),
plot_diffnet2(), plot_diffnet(), plot_infectsuscep(), plot_threshold(), rescale_vertex_igraph()
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Examples

# Generating a random diffnet -----------------------------------------------
set.seed(821)
diffnet <- rdiffnet(100, 5, seed.graph="small-world", seed.nodes="central")

plot_adopters(diffnet)

# Alternatively, we can use a TOA Matrix
toa <- sample(c(NA, 2010L,2015L), 20, TRUE)
mat <- toa_mat(toa)
plot_adopters(mat$cumadopt)

plot_diffnet Plot the diffusion process

Description

Creates a colored network plot showing the structure of the graph through time (one network plot
for each time period) and the set of adopter and non-adopters in the network.

Usage

plot_diffnet(...)

## S3 method for class 'diffnet'
plot_diffnet(graph, ...)

## Default S3 method:
plot_diffnet(
graph,
cumadopt,
slices = NULL,
vertex.color = c("white", "tomato", "steelblue"),
vertex.shape = c("square", "circle", "circle"),
vertex.size = "degree",
mfrow.par = NULL,
main = c("Network in period %s", "Diffusion Network"),
legend.args = list(),
minmax.relative.size = getOption("diffnet.minmax.relative.size", c(0.01, 0.04)),
background = NULL,
...

)

Arguments

... Further arguments to be passed to plot.igraph.

graph A dynamic graph (see netdiffuseR-graphs).
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cumadopt n× T matrix.

slices Integer vector. Indicates what slices to plot. By default all are plotted.

vertex.color A character vector of size 3 with colors names.

vertex.shape A character vector of size 3 with shape names.

vertex.size Either a numeric scalar or vector of size n, or any of the following values: "in-
degree", "degree", or "outdegree" (see details).

mfrow.par Vector of size 2 with number of rows and columns to be passed to par.

main Character scalar. A title template to be passed to sprintf.

legend.args List of arguments to be passed to legend.
minmax.relative.size

Passed to rescale_vertex_igraph.

background Either a function to be called before plotting each slice, a color to specify the
backgroupd color, or NULL (in which case nothing is done).

Details

Plotting is done via the function plot.igraph.

When vertex.size is either of "degree", "indegree", or "outdegree", vertex.size will be
replace with dgr(.,cmode = ) so that the vertex size reflects the desired degree.

The argument minmax.relative.size is passed to rescale_vertex_igraph which adjusts vertex.size
so that the largest and smallest vertices have a relative size of minmax.relative.size[2] and
minmax.relative.size[1] respectively with respect to the x-axis.

Plotting is done via the function plot.igraph.

In order to center the attention on the diffusion process itself, the positions of each vertex are
computed only once by aggregating the networks through time, this is, instead of computing the
layout for each time t, the function creates a new graph accumulating links through time.

The mfrow.par sets how to arrange the plots on the device. If T = 5 and mfrow.par=c(2,3), the
first three networks will be in the top of the device and the last two in the bottom.

The argument vertex.color contains the colors of non-adopters, new-adopters, and adopters re-
spectively. The new adopters (default color "tomato") have a different color that the adopters when
the graph is at their time of adoption, hence, when the graph been plotted is in t = 2 and toa = 2
the vertex will be plotted in red.

legend.args has the following default parameter:

x "bottom"
legend c("Non adopters", "New adopters","Adopters")
pch sapply(vertex.shape, switch, circle = 21, square = 22, 21)
bty "n"
horiz TRUE

Value

Calculated coordinates for the grouped graph (invisible).
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Author(s)

George G. Vega Yon

See Also

Other visualizations: dgr(), diffusionMap(), drawColorKey(), grid_distribution(), hazard_rate(),
plot_adopters(), plot_diffnet2(), plot_infectsuscep(), plot_threshold(), rescale_vertex_igraph()

Examples

# Generating a random graph
set.seed(1234)
n <- 6
nper <- 5
graph <- rgraph_er(n,nper, p=.3, undirected = FALSE)
toa <- sample(2000:(2000+nper-1), n, TRUE)
adopt <- toa_mat(toa)

plot_diffnet(graph, adopt$cumadopt)

plot_diffnet2 Another way of visualizing diffusion

Description

Another way of visualizing diffusion

Usage

plot_diffnet2(graph, ...)

## S3 method for class 'diffnet'
plot_diffnet2(graph, toa, slice = nslices(graph), ...)

## Default S3 method:
plot_diffnet2(
graph,
toa,
pers = min(toa, na.rm = TRUE):max(toa, na.rm = TRUE),
color.ramp = grDevices::colorRamp(viridisLite::magma(20)),
layout = NULL,
key.width = 0.1,
key.args = list(),
main = "Diffusion dynamics",
add.map = NULL,
diffmap.args = list(kde2d.args = list(n = 100)),
diffmap.alpha = 0.5,
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include.white = "first",
vertex.size = "degree",
minmax.relative.size = getOption("diffnet.minmax.relative.size", c(0.01, 0.04)),
no.graph = FALSE,
...

)

Arguments

graph Any class of accepted graph format (see netdiffuseR-graphs).

... Further arguments passed to plot.igraph.

toa Integer vector of length n with the times of adoption.

slice Integer scalar. Number of slice to use as baseline for drawing the graph.

pers Integer vector of length T indicating the time periods of the data.

color.ramp A function as returned by colorRamp.

layout Passed to plot.igraph.

key.width Numeric scalar. Sets the proportion of the plot (x-axis) that the key uses.

key.args List. Further arguments to be passed to drawColorKey.

main Character scalar. Title of the graph.

add.map Character scalar. When "first" plots a diffusionMap before the graph itself.
If "last" then it adds it at the end. When NULL adds nothing.

diffmap.args List. If add.map=TRUE, arguments passed to diffusionMap.

diffmap.alpha Numeric scalar between [0,1]. Alpha level for the map.

include.white Character scalar. Includes white in the color palette used in the map. When
include.white=NULL then it won’t include it.

vertex.size Either a numeric scalar or vector of size n, or any of the following values: "in-
degree", "degree", or "outdegree" (see details).

minmax.relative.size

Passed to rescale_vertex_igraph.

no.graph Logical scala. When TRUE the graph is not drawn. This only makes sense when
the option add.map is active.

Details

Plotting is done via the function plot.igraph.

When vertex.size is either of "degree", "indegree", or "outdegree", vertex.size will be
replace with dgr(.,cmode = ) so that the vertex size reflects the desired degree.

The argument minmax.relative.size is passed to rescale_vertex_igraph which adjusts vertex.size
so that the largest and smallest vertices have a relative size of minmax.relative.size[2] and
minmax.relative.size[1] respectively with respect to the x-axis.

If key.width<=0 then no key is created.

By defult, the function passes the following values to plot.igraph:
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• vertex.label equals to ""

• vertex.frame.color equals to "white"

• add equals to TRUE

• rescale equals to FALSE

• vertex.size equals to rescale.fun(vertex.size)

Value

A list with the following elements

layout A numeric matrix with vertex coordinates.

vertex.color A character vector with computed colors for each vertex.

vertex.label The value passed to plot_diffnet2.

vertex.shape A character vector with assigned shapes.

vertex.size A numeric vector with vertices sizes

diffmap If add.map=TRUE, the returned values from diffmap

Author(s)

George G. Vega Yon

See Also

Other visualizations: dgr(), diffusionMap(), drawColorKey(), grid_distribution(), hazard_rate(),
plot_adopters(), plot_diffnet(), plot_infectsuscep(), plot_threshold(), rescale_vertex_igraph()

plot_infectsuscep Plot distribution of infect/suscep

Description

After calculating infectiousness and susceptibility of each individual on the network, it creates an
nlevels by nlevels matrix indicating the number of individuals that lie within each cell, and draws
a heatmap.

Usage

plot_infectsuscep(
graph,
toa,
t0 = NULL,
normalize = TRUE,
K = 1L,
r = 0.5,
expdiscount = FALSE,
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bins = 20,
nlevels = round(bins/2),
h = NULL,
logscale = TRUE,
main = "Distribution of Infectiousness and\nSusceptibility",
xlab = "Infectiousness of ego",
ylab = "Susceptibility of ego",
sub = ifelse(logscale, "(in log-scale)", NA),
color.palette = function(n) viridisLite::viridis(n),
include.grid = TRUE,
exclude.zeros = FALSE,
valued = getOption("diffnet.valued", FALSE),
...

)

Arguments

graph A dynamic graph (see netdiffuseR-graphs).

toa Integer vector of length n with the times of adoption.

t0 Integer scalar. See toa_mat.

normalize Logical scalar. Passed to infection/susceptibility.

K Integer scalar. Passed to infection/susceptibility.

r Numeric scalar. Passed to infection/susceptibility.

expdiscount Logical scalar. Passed to infection/susceptibility.

bins Integer scalar. Size of the grid (n).

nlevels Integer scalar. Number of levels to plot (see filled.contour).

h Numeric vector of length 2. Passed to kde2d in the MASS package.

logscale Logical scalar. When TRUE the axis of the plot will be presented in log-scale.

main Character scalar. Title of the graph.

xlab Character scalar. Title of the x-axis.

ylab Character scalar. Title of the y-axis.

sub Character scalar. Subtitle of the graph.

color.palette a color palette function to be used to assign colors in the plot (see filled.contour).

include.grid Logical scalar. When TRUE, the grid of the graph is drawn.

exclude.zeros Logical scalar. When TRUE, observations with zero values

valued Logical scalar. When FALSE non-zero values in the adjmat are set to one. in
infect or suscept are excluded from the graph. This is done explicitly when
logscale=TRUE.

... Additional parameters to be passed to filled.contour.
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Details

This plotting function was inspired by Aral, S., & Walker, D. (2012).

By default the function will try to apply a kernel smooth function via kde2d. If not possible (because
not enought data points), then the user should try changing the parameter h or set it equal to zero.

toa is passed to infection/susceptibility.

Value

A list with three elements:

infect A numeric vector of size n with infectiousness levels

suscep A numeric vector of size n with susceptibility levels

coords A list containing the class marks and counts used to draw the plot via filled.contour
(see grid_distribution)

complete A logical vector with TRUE when the case was included in the plot. (this is
relevant whenever logscale=TRUE)

Author(s)

George G. Vega Yon

References

Aral, S., & Walker, D. (2012). "Identifying Influential and Susceptible Members of Social Net-
works". Science, 337(6092), 337–341. doi: 10.1126/science.1215842

See Also

Infectiousness and susceptibility are computed via infection and susceptibility.

Other visualizations: dgr(), diffusionMap(), drawColorKey(), grid_distribution(), hazard_rate(),
plot_adopters(), plot_diffnet2(), plot_diffnet(), plot_threshold(), rescale_vertex_igraph()

Examples

# Generating a random graph -------------------------------------------------
set.seed(1234)
n <- 100
nper <- 20
graph <- rgraph_er(n,nper, p=.2, undirected = FALSE)
toa <- sample(1:(1+nper-1), n, TRUE)

# Visualizing distribution of suscep/infect
out <- plot_infectsuscep(graph, toa, K=3, logscale = FALSE)

https://doi.org/10.1126/science.1215842
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plot_threshold Threshold levels through time

Description

Draws a graph where the coordinates are given by time of adoption, x-axis, and threshold level,
y-axis.

Usage

plot_threshold(graph, expo, ...)

## S3 method for class 'diffnet'
plot_threshold(graph, expo, ...)

## S3 method for class 'array'
plot_threshold(graph, expo, ...)

## Default S3 method:
plot_threshold(
graph,
expo,
toa,
include_censored = FALSE,
t0 = min(toa, na.rm = TRUE),
attrs = NULL,
undirected = getOption("diffnet.undirected"),
no.contemporary = TRUE,
main = "Time of Adoption by\nNetwork Threshold",
xlab = "Time",
ylab = "Threshold",
vertex.size = "degree",
vertex.color = NULL,
vertex.label = "",
vertex.label.pos = NULL,
vertex.label.cex = 1,
vertex.label.adj = c(0.5, 0.5),
vertex.label.color = NULL,
vertex.sides = 40L,
vertex.rot = 0,
edge.width = 2,
edge.color = NULL,
arrow.width = NULL,
arrow.length = NULL,
arrow.color = NULL,
include.grid = FALSE,
vertex.frame.color = NULL,
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bty = "n",
jitter.factor = c(1, 1),
jitter.amount = c(0.25, 0.025),
xlim = NULL,
ylim = NULL,
edge.curved = NULL,
background = NULL,
...

)

Arguments

graph A dynamic graph (see netdiffuseR-graphs).

expo n× T matrix. Esposure to the innovation obtained from exposure

... Additional arguments passed to plot.

toa Integer vector of length n with the times of adoption.
include_censored

Logical scalar. Passed to threshold.

t0 Integer scalar. Passed to threshold.

attrs Passed to exposure (via threshold).

undirected Logical scalar. When TRUE only the lower triangle of the adjacency matrix will
considered (faster).

no.contemporary

Logical scalar. When TRUE, edges for vertices with the same toa won’t be
plotted.

main Character scalar. Title of the plot.

xlab Character scalar. x-axis label.

ylab Character scalar. y-axis label.

vertex.size Numeric vector of size n. Relative size of the vertices.

vertex.color Either a vector of size n or a scalar indicating colors of the vertices.

vertex.label Character vector of size n. Labels of the vertices.
vertex.label.pos

Integer value to be passed to text via pos.
vertex.label.cex

Either a numeric scalar or vector of size n. Passed to text.
vertex.label.adj

Passed to text.
vertex.label.color

Passed to text.

vertex.sides Either a vector of size n or a scalar indicating the number of sides of each vertex
(see details).

vertex.rot Either a vector of size n or a scalar indicating the rotation in radians of each
vertex (see details).
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edge.width Numeric. Width of the edges.

edge.color Character. Color of the edges.

arrow.width Numeric value to be passed to arrows.

arrow.length Numeric value to be passed to arrows.

arrow.color Color.

include.grid Logical. When TRUE, the grid of the graph is drawn.
vertex.frame.color

Either a vector of size n or a scalar indicating colors of vertices’ borders.

bty See par.

jitter.factor Numeric vector of size 2 (for x and y) passed to jitter.

jitter.amount Numeric vector of size 2 (for x and y) passed to jitter.

xlim Passed to plot.

ylim Passed to plot.

edge.curved Logical scalar. When curved, generates curved edges.

background TBD

Details

When vertex.label=NULL the function uses vertices ids as labels. By default vertex.label=""
plots no labels.

Vertices are drawn using an internal function for generating polygons. Polygons are inscribed in a
circle of radius vertex.size, and can be rotated using vertex.rot. The number of sides of each
polygon is set via vertex.sides.

Author(s)

George G. Vega Yon

See Also

Use threshold to retrieve the corresponding threshold obtained returned by exposure.

Other visualizations: dgr(), diffusionMap(), drawColorKey(), grid_distribution(), hazard_rate(),
plot_adopters(), plot_diffnet2(), plot_diffnet(), plot_infectsuscep(), rescale_vertex_igraph()

Examples

# Generating a random graph
set.seed(1234)
n <- 6
nper <- 5
graph <- rgraph_er(n,nper, p=.3, undirected = FALSE)
toa <- sample(2000:(2000+nper-1), n, TRUE)
adopt <- toa_mat(toa)

# Computing exposure
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expos <- exposure(graph, adopt$cumadopt)

plot_threshold(graph, expos, toa)

# Calculating degree (for sizing the vertices)
plot_threshold(graph, expos, toa, vertex.size = "indegree")

pretty_within Pretty numbers within a range.

Description

A wrapper for pretty.

Usage

pretty_within(x, min.n = 5, xrange = range(x, na.rm = TRUE), ...)

Arguments

x Numeric vector passed to pretty.

min.n Integer scalar passed to pretty.

xrange Numeric vector of length 2. Indicates the range in which the output vector
should lie on.

... Further arguments passed to the method.

The only difference with pretty is that this function subsets the resulting vector
as

tick[(tick >= xrange[1]) & (tick <= xrange[2])]

Examples

# Simple example ------------------------------------------------------------
set.seed(3331)
x <- runif(10)
pretty(x)
pretty_within(x)
range(x)
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rdiffnet Random diffnet network

Description

Simulates a diffusion network by creating a random dynamic network and adoption threshold levels.

Usage

rdiffnet_multiple(R, statistic, ..., ncpus = 1L, cl = NULL)

rdiffnet(
n,
t,
seed.nodes = "random",
seed.p.adopt = 0.05,
seed.graph = "scale-free",
rgraph.args = list(),
rewire = TRUE,
rewire.args = list(),
threshold.dist = runif(n),
exposure.args = list(),
name = "A diffusion network",
behavior = "Random contagion",
stop.no.diff = TRUE

)

Arguments

R Integer scalar. Number of simulations to be done.

statistic A Function to be applied to each simulated diffusion network.

... Further arguments to be passed to rdiffnet.

ncpus Integer scalar. Number of processors to be used (see details).

cl An object of class c("SOCKcluster","cluster") (see details).

n Integer scalar. Number of vertices.

t Integer scalar. Time length.

seed.nodes Either a character scalar or a vector. Type of seed nodes (see details).

seed.p.adopt Numeric scalar. Proportion of early adopters.

seed.graph Baseline graph used for the simulation (see details).

rgraph.args List. Arguments to be passed to rgraph.

rewire Logical scalar. When TRUE, network slices are generated by rewiring (see
rewire_graph).

rewire.args List. Arguments to be passed to rewire_graph.
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threshold.dist Either a function to be applied via sapply, a numeric scalar, or a vector/matrix
with n elements. Sets the adoption threshold for each node.

exposure.args List. Arguments to be passed to exposure.
name Character scalar. Passed to as_diffnet.
behavior Character scalar. Passed to as_diffnet.
stop.no.diff Logical scalar. When TRUE, the function will return with error if there was no

diffusion. Otherwise it throws a warning.

Details

Instead of randomizing whether an individual adopts the innovation or not, this toy model random-
izes threshold levels, seed adopters and network structure, so an individual adopts the innovation in
time T iff his exposure is above or equal to his threshold. The simulation is done in the following
steps:

1. Using seed.graph, a baseline graph is created.
2. Given the baseline graph, the set of initial adopters is defined using seed.nodes.
3. Afterwards, if rewire=TRUE t− 1 slices of the network are created by iteratively rewiring the

baseline graph.
4. The threshold.dist function is applied to each node in the graph.
5. Simulation starts at t = 2 assigning adopters in each time period accordingly to each vertex’s

threshold and exposure.

When seed.nodes is a character scalar it can be "marginal", "central" or "random", So each
of these values sets the initial adopters using the vertices with lowest degree, with highest degree
or completely randomly. The number of early adoptes is set as seed.p.adopt * n. Please note that
when marginal nodes are set as seed it may be the case that no diffusion process is attained as the
chosen set of first adopters can be isolated. Any other case will be considered as an index (via [<-
methods), hence the user can manually set the set of initial adopters, for example if the user sets
seed.nodes=c(1,4,7) then nodes 1, 4 and 7 will be selected as initial adopters.
The argument seed.graph can be either a function that generates a graph (Any class of accepted
graph format (see netdiffuseR-graphs)), a graph itself or a character scalar in which the user
sets the algorithm used to generate the first network (network in t=1), this can be either "scale-
free" (Barabasi-Albert model using the rgraph_ba function, the default), "bernoulli" (Erdos-
Renyi model using the rgraph_er function), or "small-world" (Watts-Strogatz model using the
rgraph_ws function). The list rgraph.args passes arguments to the chosen algorithm.
When rewire=TRUE, the networks that follow t=1 will be generated using the rewire_graph func-
tion as G(t) = R(G(t− 1)), where R is the rewiring algorithm.
If a function, the argument threshold.dist sets the threshold for each vertex in the graph. It is
applied using sapply as follows

sapply(1:n, threshold.dist)

By default sets the threshold to be random for each node in the graph.
If seed.graph is provided, no random graph is generated and the simulation is applied using that
graph instead.
rewire.args has the following default options:
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p .1
undirected getOption("diffnet.undirected", FALSE)
self getOption("diffnet.self", FALSE)

exposure.args has the following default options:

outgoing TRUE
valued getOption("diffnet.valued", FALSE)
normalized TRUE

The function rdiffnet_multiple is a wrapper of rdiffnet wich allows simulating multiple dif-
fusion networks with the same parameters and apply the same function to all of them. This function
is designed to allow the user to perform larger simulation studies in which the distribution of a
particular statistic is observed.

When cl is provided, then simulations are done via parSapply. If ncpus is greater than 1, then
the function creates a cluster via makeCluster which is stopped (removed) once the process is
complete.

Value

A random diffnet class object.

rdiffnet_multiple returns either a vector or an array depending on what statistic is (see
sapply and parSapply).

Author(s)

George G. Vega Yon

See Also

Other simulation functions: permute_graph(), rewire_graph(), rgraph_ba(), rgraph_er(),
rgraph_ws(), ring_lattice()

Examples

# Asimple example -----------------------------------------------------------
set.seed(123)
z <- rdiffnet(100,10)
z
summary(z)

# A more complex example: Adopt if at least one neighbor has adopted --------
y <- rdiffnet(100, 10, threshold.dist=function(x) 1,

exposure.args=list(valued=FALSE, normalized=FALSE))

# Re thinking the Adoption of Tetracycline ----------------------------------
newMI <- rdiffnet(seed.graph = medInnovationsDiffNet$graph,
threshold.dist = threshold(medInnovationsDiffNet), rewire=FALSE)
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# Simulation study comparing the diffusion with diff sets of seed nodes -----

# Random seed nodes
set.seed(1)
ans0 <- rdiffnet_multiple(R=50, statistic=function(x) sum(!is.na(x$toa)),

n = 100, t = 4, seed.nodes = "random", stop.no.diff=FALSE)

# Central seed nodes
set.seed(1)
ans1 <- rdiffnet_multiple(R=50, statistic=function(x) sum(!is.na(x$toa)),

n = 100, t = 4, seed.nodes = "central", stop.no.diff=FALSE)

boxplot(cbind(Random = ans0, Central = ans1), main="Number of adopters")

read_pajek Read foreign graph formats

Description

Reading pajek and Ucinet files, this function returns weighted edgelists in the form of data frames
including a data frame of the vertices. (function on development)

Usage

read_pajek(x)

read_ml(x)

Arguments

x Character scalar. Path to the file to be imported.

Details

Since .net files allow working with multi-relational networks (more than one class of edge), the
function returns lists of edges and edgeslist with the corresponding tag on the .net file. For example,
if the .net file contains

*Arcslist :9 "SAMPPR"
...
*Arcslist :10 "SAMNPR"

The output will include data frames of edgelists with those tags.
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Value

In the case of read_pajek, a list with three elements

vertices A data frame with n rows and two columns: id and label

edges If not null, a list of data frames with three columns: ego, alter, w (weight)

edgelist If not null, a list of data frame with three columns: ego, alter, w (weight)

For read_ml, a list with two elements:

adjmat An array with the graph

meta A list with metadata

Author(s)

George G. Vega Yon

Source

From the pajek manual http://mrvar.fdv.uni-lj.si/pajek/pajekman.pdf

See Also

Other Foreign: igraph, network, read_ucinet_head()

Examples

# From .net: Sampson monastery data from UCINET dataset ---------------------

# Reading the arcs/edges format
path <- system.file("extdata", "SAMPSON.NET", package = "netdiffuseR")
SAMPSON <- read_pajek(path)

# Reading the arcslist/edgelist format
path <- system.file("extdata", "SAMPSONL.NET", package = "netdiffuseR")
SAMPSONL <- read_pajek(path)

# From DL (UCINET): Sampson monastery data (again) --------------------------
path <- system.file("extdata", "SAMPSON.DAT", package = "netdiffuseR")
SAMPSONL <- read_ml(path)

http://mrvar.fdv.uni-lj.si/pajek/pajekman.pdf
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read_ucinet_head Reads UCINET files

Description

Reads UCINET files

Read UCINET files (binary)

Usage

read_ucinet_head(f)

read_ucinet(f, echo = FALSE)

Arguments

f Character scalar. Name of the header file. e.g. mydata.##h.

echo Logical scalar. When TRUE shows a message.

Value

An array including dimnames (if there are) and the following attributes:

headerversion Character scalar

year Integer. Year the file was created

month Integer. Month of the year the file was created.

day Integer. Day of the month the file was created.

dow Integer. Day of the week the file was created.

labtype

infile.dt Character scalar. Type of data of the array.

dim Integer vector. Dimensions of the array.

tit Character scalar. Title of the file.

haslab Logical vector. Whether each dim has a label.

See Also

Other Foreign: igraph, network, read_pajek()
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recode Recodes an edgelist such that ids go from 1 to n

Description

Recodes an edgelist such that ids go from 1 to n

Usage

recode(data, ...)

## S3 method for class 'data.frame'
recode(data, ...)

## S3 method for class 'matrix'
recode(data, ...)

Arguments

data Edgelist as either a matrix or dataframe with ego and alter

... Further arguments for the method (ignored)

Details

Required for using most of the package’s functions, as ids are used as a reference for accessing
elements in adjacency matrices.

Value

A recoded edgelist as a two-column matrix/data.frame depending on the class of data. The output
includes an attribute called "recode" which contains a two column data.frame providing a mapping
between the previous code and the new code (see the examples)

Author(s)

George G. Vega Yon

See Also

edgelist_to_adjmat

Examples

# Simple example ------------------------------------------------------------
edgelist <- cbind(c(1,1,3,6),c(4,3,200,1))
edgelist
recoded_edgelist <- recode(edgelist)
recoded_edgelist
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# Retrieving the "recode" attribute
attr(recoded_edgelist, "recode")

rescale_vertex_igraph Rescale vertex size to be used in plot.igraph.

Description

This function rescales a vertex size before passing it to plot.igraph so that the resulting vertices
have the desired size relative to the x-axis.

Usage

rescale_vertex_igraph(
vertex.size,
par.usr = par("usr"),
minmax.relative.size = getOption("diffnet.minmax.relative.size", c(0.01, 0.04)),
adjust = 200

)

igraph_vertex_rescale(
vertex.size,
par.usr = par("usr"),
minmax.relative.size = getOption("diffnet.minmax.relative.size", c(0.01, 0.04)),
adjust = 200

)

vertex_rescale_igraph(
vertex.size,
par.usr = par("usr"),
minmax.relative.size = getOption("diffnet.minmax.relative.size", c(0.01, 0.04)),
adjust = 200

)

Arguments

vertex.size Numeric vector of unscaled vertices’ sizes. This is unit-free.

par.usr Integer vector of length 4 with the coordinates of plotting region. by default uses
par("usr").

minmax.relative.size

A numeric vector of length 2. Represents the desired min and max vertex sizes
relative to the x-axis in terms of percentage (see details).

adjust Numeric scalar. Adjustment made to the resulting adjusted size (see details).
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Details

minmax.relative.size limits the minimum and maximum size that a vertex can take in the plot
relative to the x-axis scale. The values for the x-axis scale are by default retrieved by accessing to
par("usr"). By default the vertex are rescaled to be at least 1% of the size of the plotting region
and no more than 5% of the plotting region, minmax.relative.size=c(.01,.05).

The default value for adjust is taken from igraph version 1.0.1. In particular, the function
igraph:::.igraph.shape.circle.plot, in which before passing the vertex.size to the func-
tion symbols, the vertex size is reduced by 200.

The rescaling is as follows:

v′ =
v − v
v̄ − v

× (s̄− s) + s

Where v is the vertex size, v̄ and v are the max and min values of v respectively, and s̄ and s are the
max and min size that vertices take in terms of minmax.relative.size and par.usr. The adjusted
value v′ is then multiplied by adjust.

igraph_vertex_rescale and vertex_rescale_igraph are aliases.

Value

An integer vector of the same length as vertex.size with rescaled values.

Author(s)

George G. Vega Yon

See Also

Other visualizations: dgr(), diffusionMap(), drawColorKey(), grid_distribution(), hazard_rate(),
plot_adopters(), plot_diffnet2(), plot_diffnet(), plot_infectsuscep(), plot_threshold()

Examples

library(igraph)

# Random graph and coordinates
set.seed(2134)
g <- barabasi.game(10)
coords <- layout_nicely(g)

# Random size and figures
size <- runif(10)
size <- cbind(size, size)
shap <- sample(c("circle", "square"),10,TRUE)

# Plotting
oldpar <- par(no.readonly = TRUE)
par(mfrow=c(2,2), mai=rep(.5,4))
for (i in seq(1, 1000, length.out = 4)) {

# New plot-window
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plot.new()
plot.window(xlim=range(coords[,1]*i), ylim=range(coords[,2]*i))

# plotting graph
plot(g, layout=coords*i, add=TRUE, rescale=FALSE,

vertex.shape = shap,
vertex.size = rescale_vertex_igraph(size) # HERE WE RESCALE!

)

# Adding some axis
axis(1, lwd=0, lwd.ticks = 1)
axis(2, lwd=0, lwd.ticks = 1)
box()

}

par(oldpar)

rewire_graph Graph rewiring algorithms

Description

Changes the structure of a graph by altering ties.

Usage

rewire_graph(
graph,
p,
algorithm = "endpoints",
both.ends = FALSE,
self = FALSE,
multiple = FALSE,
undirected = getOption("diffnet.undirected"),
pr.change = ifelse(self, 0.5, 1),
copy.first = TRUE,
althexagons = FALSE

)

Arguments

graph Any class of accepted graph format (see netdiffuseR-graphs).

p Either a [0,1] vector with rewiring probabilities (algorithm="endpoints"), or
an integer vector with number of iterations (algorithm="swap").

algorithm Character scalar. Either "swap", "endpoints", or "qap" (see rewire_qap).

both.ends Logical scalar. When TRUE rewires both ends.
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self Logical scalar. When TRUE, allows loops (self edges).

multiple Logical scalar. When TRUE allows multiple edges.

undirected Logical scalar. When TRUE only the lower triangle of the adjacency matrix will
considered (faster).

pr.change Numeric scalar. Probability ([0,1]) of doing a rewire (see details).

copy.first Logical scalar. When TRUE and graph is dynamic uses the first slice as a baseline
for the rest of slices (see details).

althexagons Logical scalar. When TRUE uses the compact alternating hexagons algorithm
(currently ignored [on development]).

Details

The algorithm "qap" is described in rewire_qap, and only uses graph from the arguments (since
it is simply relabelling the graph).

In the case of "swap" and "endpoints", both algorithms are implemented sequentially, this is, edge-
wise checking self edges and multiple edges over the changing graph; in other words, at step m (in
which either a new endpoint or edge is chosen, depending on the algorithm), the algorithms verify
whether the proposed change creates either multiple edges or self edges using the resulting graph at
step m− 1.

The main difference between the two algorithms is that the "swap" algorithm preserves the degree
sequence of the graph and "endpoints" does not. The "swap" algorithm is specially useful to asses
the non-randomness of a graph’s structural properties, furthermore it is this algorithm the one used
in the struct_test routine implemented in netdiffuseR.

Rewiring assumes a weighted network, hence G(i, j) = k = G(i′, j′), where i′, j′ are the new end
points of the edge and k may not be equal to one.

In the case of dynamic graphs, when copy.first=TRUE, after rewiring the first slice–t = 1–the rest
of slices are generated by rewiring the rewired version of the first slice. Formally:

G(t)′ =

{
R(G(t)) if t = 1
R(G(1)′) otherwise

WhereG(t) is the t-th slice,G(t)′ is the t-th rewired slice, andR is the rewiring function. Otherwise,
copy.first=FALSE (default), The rewiring function is simply G(t)′ = R(G(t)).

The following sections describe the way both algorithms were implemented.

Swap algorithm

The "swap" algorithm chooses randomly two edges (a, b) and (c, d) and swaps the ’right’ endpoint
of boths such that we get (a, d) and (c, b) (considering self and multiple edges).

Following Milo et al. (2004) testing procedure, the algorithm shows to be well behaved in terms of
been unbiased, so after each iteration each possible structure of the graph has the same probability
of been generated. The algorithm has been implemented as follows:

Let E be the set of edges of the graph G. For i = 1 to p, do:

1. With probability 1-pr.change got to the last step.
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2. Choose e0 = (a, b) from E. If !self & a == b then go to the last step.

3. Choose e1 = (c, d) from E. If !self & c == d then go to the last step.

4. Define e0′ = (a, d) and e1′ = (c, b). If !multiple & [G[e0']!= 0 | G[e1'] != 0] then go to
the last step.(*)

5. Define v0 = G[e0] and v1 = G[e1], set G[e0] = 0 and G[e1] = 0 (and the same to the
diagonally opposed coordinates in the case of undirected graphs)

6. Set G[e0′] = v0 and G[e1′] = v1 (and so with the diagonally opposed coordinates in the case
of undirected graphs).

7. Next i.

(*) When althexagons=TRUE, the algorithm changes and applies what Rao et al. (1996) describe
as Compact Alternating Hexagons. This modification assures the algorithm to be able to achieve any
structure. The algorithm consists on doing the following swapping: (i1i2, i1i3, i2i3, i2i1, i3i1, i3i2)
with values (1, 0, 1, 0, 1, 0) respectively with i1! = i2! = i3. See the examples and references.

In Milo et al. (2004) is suggested that in order for the rewired graph to be independent from the orig-
inal one researchers usually iterate around nlinks(graph)*100 times, so p=nlinks(graph)*100.
On the other hand in Ray et al (2012) it is shown that in order to achive such it is needed to perform
nlinks(graph)*log(1/eps), where eps∼1e-7, in other words, around nlinks(graph)*16. We
set the default to be 20.

In the case of Markov chains, the variable pr.change allows making the algorithm aperiodic.
This is relevant only if the probability self-loop to a particular state is null, for example, if we
set self=TRUE and muliple=TRUE, then in every step the algorithm will be able to change the state.
For more details see Stanton and Pinar (2012) [p. 3.5:9].

Endpoints algorithm

This reconnect either one or both of the endpoints of the edge randomly. As a big difference with
the swap algorithm is that this does not preserves the degree sequence of the graph (at most the
outgoing degree sequence). The algorithm is implemented as follows:

Let G be the baseline graph and G′ be a copy of it. Then, For l = 1 to |E| do:

1. Pick the l-th edge from E, define it as e = (i, j).

2. Draw r from U(0, 1), if r > p go to the last step.

3. If !undirected & i < j go to the last step.

4. Randomly select a vertex j′ (and i′ if both_ends==TRUE). And define e′ = (i, j′) (or e′ =
(i′, j′) if both_ends==TRUE).

5. If !self & i==j’ (or if both_ends==TRUE & i'==j') go to the last step.

6. If !multiple & G'[e']!= 0 then go to the last step.

7. Define v = G[e], set G′[e] = 0 and G′[e′] = v (and the same to the diagonally opposed
coordinates in the case of undirected graphs).

8. Next l.

The endpoints algorithm is used by default in rdiffnet and used to be the default in struct_test
(now swap is the default).
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Author(s)

George G. Vega Yon

References

Watts, D. J., & Strogatz, S. H. (1998). Collectivedynamics of "small-world" networks. Nature,
393(6684), 440–442. doi: 10.1038/30918
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ation of random graphs with prescribed degree sequences. Arxiv Preprint condmat0312028, cond-
mat/0, 1–4. Retrieved from http://arxiv.org/abs/cond-mat/0312028

Ray, J., Pinar, A., and Seshadhri, C. (2012). Are we there yet? When to stop a Markov chain while
generating random graphs. pages 1–21.
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Generating Random Graphs. In A. Bonato & J. Janssen (Eds.), Algorithms and Models for the Web
Graph (Vol. 7323, pp. 153–164). Berlin, Heidelberg: Springer Berlin Heidelberg. doi: 10.1007/
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distribution. Journal of Experimental Algorithmics, 17(1), 3.1. doi: 10.1145/2133803.2330086

See Also

Other simulation functions: permute_graph(), rdiffnet(), rgraph_ba(), rgraph_er(), rgraph_ws(),
ring_lattice()

Examples

# Checking the consistency of the "swap" ------------------------------------

# A graph with known structure (see Milo 2004)
n <- 5
x <- matrix(0, ncol=n, nrow=n)
x <- as(x, "dgCMatrix")
x[1,c(-1,-n)] <- 1
x[c(-1,-n),n] <- 1

x

# Simulations (increase the number for more precision)
set.seed(8612)
nsim <- 1e4
w <- sapply(seq_len(nsim), function(y) {
# Creating the new graph
g <- rewire_graph(x,p=nlinks(x)*100, algorithm = "swap")

# Categorizing (tag of the generated structure)
paste0(as.vector(g), collapse="")

})

https://doi.org/10.1038/30918
http://arxiv.org/abs/cond-mat/0312028
https://doi.org/10.1007/978-3-642-30541-2
https://doi.org/10.1007/978-3-642-30541-2
https://doi.org/10.1145/2133803.2330086
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# Counting
coded <- as.integer(as.factor(w))

plot(table(coded)/nsim*100, type="p", ylab="Frequency %", xlab="Class of graph", pch=3,
main="Distribution of classes generated by rewiring")

# Marking the original structure
baseline <- paste0(as.vector(x), collapse="")
points(x=7,y=table(as.factor(w))[baseline]/nsim*100, pch=3, col="red")

rgraph_ba Scale-free and Homophilic Random Networks

Description

Generates a scale-free random graph based on Bollabas et al. (2001), also know as Linearized
Chord Diagram (LCD) which has nice mathematical propoerties. And also scale-free homophilic
networks when an vertex attribute eta is passed.

Usage

rgraph_ba(m0 = 1L, m = 1L, t = 10L, graph = NULL, self = TRUE, eta = NULL)

Arguments

m0 Integer scalar. Number of initial vertices in the graph.

m Integer scalar. Number of new edges per vertex added.

t Integer scalar. Number of time periods (steps).

graph Any class of accepted graph format (see netdiffuseR-graphs).

self Logical scalar. When TRUE autolinks (loops, self edges) are allowed (see de-
tails).

eta Numeric vector of length t+m0. When specified, it generates a scale-free ho-
mophilic network (see details).

Details

Based on Ballobás et al. (2001) creates a directed random graph of size t + m0. A big difference with
B-A model is that this allows for loops (self/auto edges) and further multiple links, nevertheless, as
t increases, the number of such cases reduces.

By default, the degree of the first m0 vertices is set to be 2 (loops). When m>1, as described in the
paper, each new link from the new vertex is added one at a time “counting ‘outward half’ of the
edge being added as already contributing to the degrees”.

When self=FALSE, the generated graph is created without autolinks. This means that at the begin-
ning, if the number of links equals zero, all vertices have the same probability of receiving a new
link.
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When eta is passed, it implements the model specified in De Almeida et al. (2013), a scale-free
homophilic network. To do so eta is rescaled to be between 0 and 1 and the probability that the
node i links to node j is as follows:

(1−Aij)kj∑
j(1−Aij)kj

Where Aij = |ηi − ηj | and kj is the degree of the j-th vertex.

Value

If graph is not provided, a static graph, otherwise an expanded graph (t aditional vertices) of the
same class as graph.

The resulting graph will have graph$meta$undirected = FALSE if it is of class diffnet and
attr(graph,"undirected")=FALSE otherwise.

Author(s)

George G. Vega Yon

References

Bollobás, B´., Riordan, O., Spencer, J., & Tusnády, G. (2001). The degree sequence of a scale-free
random graph process. Random Structures & Algorithms, 18(3), 279–290. doi: 10.1002/rsa.1009

Albert-László Barabási, & Albert, R. (1999). Emergence of Scaling in Random Networks. Science,
286(5439), 509–512. doi: 10.1126/science.286.5439.509

Albert-László Barabási. (2016). Network Science: (1st ed.). Cambridge University Press. Re-
trieved from http://barabasi.com/book/network-science

De Almeida, M. L., Mendes, G. A., Madras Viswanathan, G., & Da Silva, L. R. (2013). Scale-free
homophilic network. European Physical Journal B, 86(2). doi: 10.1140/epjb/e201230802x

See Also

Other simulation functions: permute_graph(), rdiffnet(), rewire_graph(), rgraph_er(),
rgraph_ws(), ring_lattice()

Examples

# Using another graph as a base graph ---------------------------------------
graph <- rgraph_ba()
graph

graph <- rgraph_ba(graph=graph)

# Generating a scale-free homophilic graph (no loops) -----------------------
set.seed(112)
eta <- rep(c(1,1,1,1,2,2,2,2), 20)
ans <- rgraph_ba(t=length(eta) - 1, m=3, self=FALSE, eta=eta)

https://doi.org/10.1002/rsa.1009
https://doi.org/10.1126/science.286.5439.509
http://barabasi.com/book/network-science
https://doi.org/10.1140/epjb/e2012-30802-x
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# Converting it to igraph (so we can plot it)
ig <- igraph::graph_from_adjacency_matrix(ans)

# Neat plot showing the output
oldpar <- par(no.readonly = TRUE)
par(mfrow=c(1,2))
plot(ig, vertex.color=c("red","blue")[factor(eta)], vertex.label=NA,

vertex.size=5, main="Scale-free homophilic graph")
suppressWarnings(plot(dgr(ans), main="Degree distribution"))
par(oldpar)

rgraph_er Erdos-Renyi model

Description

Generates a bernoulli random graph.

Usage

rgraph_er(
n = 10,
t = 1,
p = 0.01,
undirected = getOption("diffnet.undirected"),
weighted = FALSE,
self = getOption("diffnet.self"),
as.edgelist = FALSE

)

Arguments

n Integer. Number of vertices

t Integer. Number of time periods

p Double. Probability of a link between ego and alter.

undirected Logical scalar. Whether the graph is undirected or not.

weighted Logical. Whether the graph is weighted or not.

self Logical. Whether it includes self-edges.

as.edgelist Logical. When TRUE the graph is presented as an edgelist instead of an adja-
cency matrix.
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Details

For each pair of nodes {i, j}, an edge is created with probability p, this is, Pr{Linki − j} =
Pr{x < p}, where x is drawn from a Uniform(0, 1).

When weighted=TRUE, the strength of ties is given by the random draw x used to compare against
p, hence, if x < p then the strength will be set to x.

In the case of dynamic graphs, the algorithm is repeated t times, so the networks are uncorrelated.

Value

A graph represented by an adjacency matrix (if t=1), or an array of adjacency matrices (if t>1).

Note

The resulting adjacency matrix is store as a dense matrix, not as a sparse matrix, hence the user
should be careful when choosing the size of the network.

Author(s)

George G. Vega Yon

References

Barabasi, Albert-Laszlo. "Network science book" Retrieved November 1 (2015) http://barabasi.
com/book/network-science.

See Also

Other simulation functions: permute_graph(), rdiffnet(), rewire_graph(), rgraph_ba(),
rgraph_ws(), ring_lattice()

Examples

# Setting the seed
set.seed(13)

# Generating an directed graph
rgraph_er(undirected=FALSE, p = 0.1)

# Comparing P(tie)
x <- rgraph_er(1000, p=.1)
sum(x)/length(x)

# Several period random gram
rgraph_er(t=5)

http://barabasi.com/book/network-science
http://barabasi.com/book/network-science
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rgraph_ws Watts-Strogatz model

Description

Generates a small-world random graph.

Usage

rgraph_ws(
n,
k,
p,
both.ends = FALSE,
self = FALSE,
multiple = FALSE,
undirected = FALSE

)

Arguments

n Integer scalar. Set the size of the graph.

k Integer scalar. Set the initial degree of the ring (must be less than n).

p Numeric scalar/vector of length T . Set the probability of changing an edge.

both.ends Logical scalar. When TRUE rewires both ends.

self Logical scalar. When TRUE, allows loops (self edges).

multiple Logical scalar. When TRUE allows multiple edges.

undirected Logical scalar. Passed to ring_lattice

Details

Implemented as in Watts and Strogatz (1998). Starts from an undirected ring with n vertices all
with degree k (so it must be an even number), and then rewire each edge by setting the endpoint
(so now you treat it as a digraph) randomly any vertex in N \ i avoiding multiple links (by default)
using the rewiring algorithm described on the paper.

Value

A random graph of size n × n following the small-world model. The resulting graph will have
attr(graph,"undirected")=FALSE.

Author(s)

George G. Vega Yon
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References

Watts, D. J., & Strogatz, S. H. (1998). Collective dynamics of "small-world" networks. Nature,
393(6684), 440–2. doi: 10.1038/30918

Newman, M. E. J. (2003). The Structure and Function of Complex Networks. SIAM Review, 45(2),
167–256. doi: 10.1137/S003614450342480

See Also

Other simulation functions: permute_graph(), rdiffnet(), rewire_graph(), rgraph_ba(),
rgraph_er(), ring_lattice()

Examples

library(igraph)
set.seed(7123)
x0 <- graph_from_adjacency_matrix(rgraph_ws(10,2, 0))
x1 <- graph_from_adjacency_matrix(rgraph_ws(10,2, .3))
x2 <- graph_from_adjacency_matrix(rgraph_ws(10,2, 1))

oldpar <- par(no.readonly=TRUE)
par(mfrow=c(1,3))
plot(x0, layout=layout_in_circle, edge.curved=TRUE, main="Regular")
plot(x1, layout=layout_in_circle, edge.curved=TRUE, main="Small-world")
plot(x2, layout=layout_in_circle, edge.curved=TRUE, main="Random")
par(oldpar)

ring_lattice Ring lattice graph

Description

Creates a ring lattice with n vertices, each one of degree (at most) k as an undirected graph. This is
the basis of rgraph_ws.

Usage

ring_lattice(n, k, undirected = FALSE)

Arguments

n Integer scalar. Size of the graph.

k Integer scalar. Out-degree of each vertex.

undirected Logical scalar. Whether the graph is undirected or not.

https://doi.org/10.1038/30918
https://doi.org/10.1137/S003614450342480
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Details

when undirected=TRUE, the degree of each node always even. So if k=3, then the degree will be 2.

Value

A sparse matrix of class dgCMatrix of size n× n.

References

Watts, D. J., & Strogatz, S. H. (1998). Collective dynamics of “small-world” networks. Nature,
393(6684), 440–2. http://doi.org/10.1038/30918

See Also

Other simulation functions: permute_graph(), rdiffnet(), rewire_graph(), rgraph_ba(),
rgraph_er(), rgraph_ws()

round_to_seq Takes a numeric vector and maps it into a finite length sequence

Description

Takes a numeric vector and maps it into a finite length sequence

Usage

round_to_seq(x, nlevels = 20, as_factor = FALSE)

Arguments

x A numeric or integer vector.
nlevels Integer scalar. Length of the sequence to be map onto.
as_factor Logical scalar. When TRUE the resulting vector is factor.

Value

A vector of length length(x) with values mapped to a sequence with nlevels unique valuess

See Also

Used in diffmap and plot_diffnet2

Examples

x <- rnorm(100)
w <- data.frame(as.integer(round_to_seq(x, as_factor = TRUE)),x)
plot(w,x)

http://doi.org/10.1038/30918
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select_egoalter Calculate the number of adoption changes between ego and alter.

Description

This function calculates the 16 possible configurations between ego and alter over two time points
in terms of their behavior and tie changes. From time one to time two, given a binary state of
behavior, ego and alter can be related in 16 different ways. The function adopt_changes is just an
alias for select_egoalter.

Usage

select_egoalter(graph, adopt, period = NULL)

adopt_changes(graph, adopt, period = NULL)

## S3 method for class 'diffnet_adoptChanges'
summary(object, ...)

Arguments

graph A dynamic graph (see netdiffuseR-graphs).

adopt n× T matrix. Cumulative adoption matrix obtained from toa_mat.

period Integer scalar. Optional to make the count for a particular period of time.

object An object of class diffnet_adoptChanges.

... Ignored.

Details

The 16 possibilities are summarized in this matrix:

Alter
t− 1 No Yes

t− 1 t No Yes No Yes
Ego No No 1 2 9 10

Yes 3 4 11 12
Yes No 5 6 13 14

Yes 7 8 15 16

The first two Yes/No columns represent Ego’s adoption of the innovation in t − 1 and t; while the
first two Yes/No rows represent Alter’s adoption of the innovation in t− 1 and t respectively. So for
example, number 4 means that while neither of the two had addopted the innovation in t − 1, both
have in t. At the same time, number 12 means that ego adopted the innovation in t, but alter had
already adopted in t− 1 (so it has it in both, t and t− 1).
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Value

An object of class diffnet_adoptChanges and data.frame with n× (T − 1) rows and 2 + 16× 3
columns. The column names are:

time Integer represting the time period

id Node id
select_a_01, . . . , select_a_16

Number of new links classified between categories 1 to 16.
select_d_01, . . . , select_d_16

Number of remove links classified between categories 1 to 16.
select_s_01, . . . , select_s_16

Number of unchanged links classified between categories 1 to 16.

Author(s)

George G. Vega Yon & Thomas W. Valente

References

Thomas W. Valente, Stephanie R. Dyal, Kar-Hai Chu, Heather Wipfli, Kayo Fujimoto, Diffusion of
innovations theory applied to global tobacco control treaty ratification, Social Science & Medicine,
Volume 145, November 2015, Pages 89-97, ISSN 0277-9536 doi: 10.1016/j.socscimed.2015.10.001

Examples

# Simple example ------------------------------------------------------------
set.seed(1312)
dn <- rdiffnet(20, 5, seed.graph="small-world")

ans <- adopt_changes(dn)
str(ans)
summary(ans)

struct_equiv Structural Equivalence

Description

Computes structural equivalence between ego and alter in a network

Usage

struct_equiv(graph, v = 1, inf.replace = 0, groupvar = NULL, ...)

## S3 method for class 'diffnet_se'
print(x, ...)

https://doi.org/10.1016/j.socscimed.2015.10.001


138 struct_equiv

Arguments

graph Any class of accepted graph format (see netdiffuseR-graphs).

v Numeric scalar. Cohesion constant (see details).

inf.replace Deprecated.

groupvar Either a character scalar (if graph is diffnet), or a vector of size n.

... Further arguments to be passed to approx_geodesic (not valid for the print
method).

x A diffnet_se class object.

Details

Structure equivalence is computed as presented in Valente (1995), and Burt (1987), in particular

SEij =
(dmaxi − dji)v∑n
k 6=i(dmaxi − dki)v

with the summation over k 6= i, and dji, Eucledian distance in terms of geodesics, is defined as

dji =

[
(zji − zij)2 +

n∑
k

(zjk − zik)2 +

n∑
k

(zki − zkj)2
] 1

2

with zij as the geodesic (shortest path) from i to j, and dmaxi equal to largest Euclidean distance
between i and any other vertex in the network. All summations are made over k 6∈ {i, j}
Here, the value of v is interpreted as cohesion level. The higher its value, the higher will be the
influence that the closests alters will have over ego (see Burt’s paper in the reference).

Structural equivalence can be computed either for the entire graph or by groups of vertices. When,
for example, the user knows before hand that the vertices are distributed accross separated commu-
nities, he can make this explicit to the function and provide a groupvar variable that accounts for
this. Hence, when groupvar is not NULL the algorithm will compute structural equivalence within
communities as marked by groupvar.

Value

If graph is a static graph, a list with the following elements:

SE Matrix of size n× n with Structural equivalence

d Matrix of size n× n Euclidean distances

gdist Matrix of size n× n Normalized geodesic distance

In the case of dynamic graph, is a list of size t in which each element contains a list as described
before. When groupvar is specified, the resulting matrices will be of class dgCMatrix, otherwise
will be of class matrix.

Author(s)

George G. Vega Yon & Thomas W. Valente
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References

Burt, R. S. (1987). "Social Contagion and Innovation: Cohesion versus Structural Equivalence".
American Journal of Sociology, 92(6), 1287–1335. doi: 10.1086/228667

Valente, T. W. (1995). "Network models of the diffusion of innovations" (2nd ed.). Cresskill N.J.:
Hampton Press.

See Also

Other statistics: bass, classify_adopters(), cumulative_adopt_count(), dgr(), ego_variance(),
exposure(), hazard_rate(), infection(), moran(), threshold(), vertex_covariate_dist()

Examples

# Computing structural equivalence for the fakedata -------------------------
data(fakesurvey)

# Coercing it into a diffnet object
fakediffnet <- survey_to_diffnet(

fakesurvey, "id", c("net1", "net2", "net3"), "toa", "group"
)

# Computing structural equivalence without specifying group
se_all <- struct_equiv(fakediffnet)

# Notice that pairs of individuals from different communities have
# non-zero values
se_all
se_all[[1]]$SE

# ... Now specifying a groupvar
se_group <- struct_equiv(fakediffnet, groupvar="group")

# Notice that pairs of individuals from different communities have
# only zero values.
se_group
se_group[[1]]$SE

struct_test Structure dependence test

Description

Test whether or not a network estimates can be considered structurally dependent, i.e. a function
of the network structure. By rewiring the graph and calculating a particular statistic t, the test
compares the observed mean of t against the empirical distribution of it obtained from rewiring the
network.

https://doi.org/10.1086/228667
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Usage

n_rewires(graph, p = c(20L, rep(0.1, nslices(graph) - 1)))

struct_test(graph, statistic, R, rewire.args = list(), ...)

## S3 method for class 'diffnet_struct_test'
c(..., recursive = FALSE)

## S3 method for class 'diffnet_struct_test'
print(x, ...)

## S3 method for class 'diffnet_struct_test'
hist(
x,
main = "Empirical Distribution of Statistic",
xlab = expression(Values ~ of ~ t),
breaks = 20,
annotated = TRUE,
b0 = expression(atop(plain("") %up% plain("")), t[0]),
b = expression(atop(plain("") %up% plain("")), t[]),
ask = TRUE,
...

)

struct_test_asymp(graph, Y, statistic_name = "distance", p = 2, ...)

Arguments

graph A diffnet graph.

p Either a Numeric scalar or vector of length nslices(graph)-1 with the number
of rewires per links.

statistic A function that returns either a scalar or a vector.

R Integer scalar. Number of repetitions.

rewire.args List. Arguments to be passed to rewire_graph

... Further arguments passed to the method (see details).

recursive Ignored

x A diffnet_struct_test class object.

main Character scalar. Title of the histogram.

xlab Character scalar. x-axis label.

breaks Passed to hist.

annotated Logical scalar. When TRUE marks the observed data average and the simulated
data average.

b0 Character scalar. When annotated=TRUE, label for the value of b0.

b Character scalar. When annotated=TRUE, label for the value of b.



struct_test 141

ask Logical scalar. When TRUE, asks the user to type <Enter> to see each plot (as
many as statistics where computed).

Y Numeric vector of length n.

statistic_name Character scalar. Name of the metric to compute. Currently this can be either
"distance",">","<","==", ">=", or "<=".

Details

struct_test computes the test by generating the null distribution using Monte Carlo simulations
(rewiring). struct_test_asymp computes the test using an asymptotic approximation. While
available, we do not recommend using the asymptotic approximation since it has not shown good
results when compared to the MC approximation. Furthermore, the asymptotic version has only
been implemented for graph as static graph.

The output from the hist method is the same as hist.default.

struct_test is a wrapper for the function boot from the boot package. Instead of resampling data–
vertices or edges–in each iteration the function rewires the original graph using rewire_graph and
applies the function defined by the user in statistic.

The default values to rewire_graph via rewire.args are:

p Number or Integer with default n_rewires(graph).
undirected Logical scalar with default getOption("diffnet.undirected", FALSE).
copy.first Logical scalar with TRUE.
algorithm Character scalar with default "swap".

In struct_test ... are passed to boot, otherwise are passed to the corresponding method (hist
for instance).

From the print method, p-value for the null of the statistic been equal between graph and its
rewired versions is computed as follows

p(τ) = 2×min (Pr(t ≤ τ),Pr(t ≥ τ))

Where Pr{·} is approximated using the Empirical Distribution Function retrieved from the simula-
tions.

For the case of the asymptotic approximation, under the null we have

√
n
(
β̂(Y,G)− µβ

)
∼d N

(
0, σ2

β

)
The test is actually on development by Vega Yon and Valente. A copy of the working paper can be
distributed upon request to <g.vegayon@gmail.com>.

The function n_rewires proposes a vector of number of rewirings that are performed in each iter-
ation.

Value

A list of class diffnet_struct_test containing the following:
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graph The graph passed to struct_test.

p.value The resulting p-value of the test (see details).

t0 The observed value of the statistic.

mean_t The average value of the statistic applied to the simulated networks.

R Number of simulations.

statistic The function statistic passed to struct_test.

boot A boot class object as return from the call to boot.

rewire.args The list rewire.args passed to struct_test.

Author(s)

George G. Vega Yon

References

Vega Yon, George G. and Valente, Thomas W. (On development).

Davidson, R., & MacKinnon, J. G. (2004). Econometric Theory and Methods. New York: Oxford
University Press.

See Also

Other Functions for inference: bootnet(), moran()

Examples

# Creating a random graph
set.seed(881)
diffnet <- rdiffnet(100, 5, seed.graph="small-world")

# Testing structure-dependency of threshold
res <- struct_test(

diffnet,
function(g) mean(threshold(g), na.rm=TRUE),
R=100

)

res
hist(res)

# Adding a legend
legend("topright", bty="n",
legend=c(
expression(t[0]:~Baseline),
expression(t:~Rewired~average)

)
)

# Concatenating results
c(res, res)
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# Running in parallel fashion
res <- struct_test(

diffnet, function(g) mean(threshold(g), na.rm=TRUE),
R=100, ncpus=2, parallel="multicore"

)

res

hist(res)

summary.diffnet Summary of diffnet objects

Description

Summary of diffnet objects

Usage

## S3 method for class 'diffnet'
summary(
object,
slices = NULL,
no.print = FALSE,
skip.moran = FALSE,
valued = getOption("diffnet.valued", FALSE),
...

)

Arguments

object An object of class diffnet.

slices Either an integer or character vector. While integer vectors are used as indexes,
character vectors are used jointly with the time period labels.

no.print Logical scalar. When TRUE suppress screen messages.

skip.moran Logical scalar. When TRUE Moran’s I is not reported (see details).

valued Logical scalar. When TRUE weights will be considered. Otherwise non-zero
values will be replaced by ones.

... Further arguments to be passed to approx_geodesic.

Details

Moran’s I is calculated over the cumulative adoption matrix using as weighting matrix the inverse
of the geodesic distance matrix. All this via moran. For each time period t, this is calculated as:

m = moran(C[,t], G^(-1))
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Where C[,t] is the t-th column of the cumulative adoption matrix, G^(-1) is the element-wise
inverse of the geodesic matrix at time t, and moran is netdiffuseR’s moran’s I routine. When
skip.moran=TRUE Moran’s I is not reported. This can be useful for both: reducing computing time
and saving memory as geodesic distance matrix can become large. Since version 1.18.0, geodesic
matrices are approximated using approx_geodesic which, as a difference from geodist from the
sna package, and distances from the igraph package returns a matrix of class dgCMatrix (more
details in approx_geodesic).

Value

A data frame with the following columns:

adopt Integer. Number of adopters at each time point.

cum_adopt Integer. Number of cumulative adopters at each time point.

cum_adopt_pcent

Numeric. Proportion of comulative adopters at each time point.

hazard Numeric. Hazard rate at each time point.

density Numeric. Density of the network at each time point.

moran_obs Numeric. Observed Moran’s I.

moran_exp Numeric. Expected Moran’s I.

moran_sd Numeric. Standard error of Moran’s I under the null.

moran_pval Numeric. P-value for the observed Moran’s I.

Author(s)

George G. Vega Yon

See Also

Other diffnet methods: %*%(), as.array.diffnet(), c.diffnet(), diffnet-arithmetic, diffnet-class,
diffnet_index, plot.diffnet()

Examples

data(medInnovationsDiffNet)
summary(medInnovationsDiffNet)
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survey_to_diffnet Convert survey-like data and edgelists to a diffnet object

Description

These convenient functions turn network nomination datasets and edgelists with vertex attributes
datasets into diffnet objects. Both work as wrappers of edgelist_to_adjmat and new_diffnet.

Usage

survey_to_diffnet(
dat,
idvar,
netvars,
toavar,
groupvar = NULL,
no.unsurveyed = TRUE,
timevar = NULL,
t = NULL,
undirected = getOption("diffnet.undirected", FALSE),
self = getOption("diffnet.self", FALSE),
multiple = getOption("diffnet.multiple", FALSE),
keep.isolates = TRUE,
recode.ids = TRUE,
warn.coercion = TRUE,
...

)

edgelist_to_diffnet(
edgelist,
w = NULL,
t0 = NULL,
t1 = NULL,
dat,
idvar,
toavar,
timevar = NULL,
undirected = getOption("diffnet.undirected", FALSE),
self = getOption("diffnet.self", FALSE),
multiple = getOption("diffnet.multiple", FALSE),
fill.missing = NULL,
keep.isolates = TRUE,
recode.ids = TRUE,
warn.coercion = TRUE

)
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Arguments

dat A data frame.

idvar Character scalar. Name of the id variable.

netvars Character vector. Names of the network nomination variables.

toavar Character scalar. Name of the time of adoption variable.

groupvar Character scalar. Name of cohort variable (e.g. city).

no.unsurveyed Logical scalar. When TRUE the nominated individuals that do not show in idvar
are set to NA (see details).

timevar Character sacalar. In the case of longitudinal data, name of the time var.

t Integer scalar. Repeat the network t times (if no t0,t1 are provided).

undirected Logical scalar. When TRUE only the lower triangle of the adjacency matrix will
considered (faster).

self Logical scalar. When TRUE autolinks (loops, self edges) are allowed (see de-
tails).

multiple Logical scalar. When TRUE allows multiple edges.

keep.isolates Logical scalar. When FALSE, rows with NA/NULL values (isolated vertices un-
less have autolink) will be droped (see details).

recode.ids Logical scalar. When TRUE ids are recoded using as.factor (see details).

warn.coercion Logical scalar. When TRUE warns coercion from numeric to integer.

... Further arguments to be passed to new_diffnet.

edgelist Two column matrix/data.frame in the form of ego -source- and alter -target- (see
details).

w Numeric vector. Strength of ties (optional).

t0 Integer vector. Starting time of the ties (optional).

t1 Integer vector. Finishing time of the ties (optional).

fill.missing Character scalar. In the case of having unmatching ids between dat and edgelist,
fills the data (see details).

Details

All of netvars, toavar and groupvar must be integers. Were these numeric they are coerced into
integers, otherwise, when neither of both, the function returns with error. idvar, on the other hand,
should only be integer when calling survey_to_diffnet, on the contrary, for edgelist_to_diffnet,
idvar may be character.

In field work it is not unusual that some respondents nominate unsurveyed individuals. In such case,
in order to exclude them from the analysis, the user can set no.unsurveyed=TRUE (the default),
telling the function to exclude such individuals from the adjacency matrix. This is done by setting
variables in netvars equal to NA when the nominated id can’t be found in idvar.

If the network nomination process was done in different groups (location for example) the sur-
vey id numbers may be define uniquely within each group but not across groups (there may be
many individuals with id=1, for example). To encompass this issue, the user can tell the function
what variable can be used to distinguish between groups through the groupvar argument. When
groupvar is provided, function redifines idvar and the variables in netvars as follows:
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dat[[idvar]] <- dat[[idvar]] + dat[[groupvar]]*z

Where z = 10^nchar(max(dat[[idvar]])).

For longitudinal data, it is assumed that the toavar holds the same information through time, this
is, time-invariable. This as the package does not yet support variable times of adoption.

The fill.missing option can take any of these three values: "edgelist", "dat", or "both". This
argument works as follows:

1. When fill.missing="edgelist" (or "both") the function will check which vertices show
in dat but do not show in edgelist. If there is any, the function will include these in edgelist
as ego to NA (so they have no link to anyone), and, if specified, will fill the t0, t1 vectors with
NAs for those cases. If w is also specified, the new vertices will be set to min(w,na.rm=TRUE).

2. When fill.missing="dat" (or "both") the function checks which vertices show in edgelist
but not in dat. If there is any, the function will include these in dat by adding one row per
individual.

Value

A diffnet object.

Author(s)

Vega Yon

See Also

fakesurvey, fakesurveyDyn

Other data management functions: diffnet-class, edgelist_to_adjmat(), egonet_attrs(),
isolated()

Examples

# Loading a fake survey (data frame)
data(fakesurvey)

# Diffnet object keeping isolated vertices ----------------------------------
dn1 <- survey_to_diffnet(fakesurvey, "id", c("net1", "net2", "net3"), "toa",

"group", keep.isolates=TRUE)

# Diffnet object NOT keeping isolated vertices
dn2 <- survey_to_diffnet(fakesurvey, "id", c("net1", "net2", "net3"), "toa",

"group", keep.isolates=FALSE)

# dn1 has an extra vertex than dn2
dn1
dn2

# Loading a longitudinal survey data (two waves) ----------------------------
data(fakesurveyDyn)
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groupvar <- "group"
x <- survey_to_diffnet(

fakesurveyDyn, "id", c("net1", "net2", "net3"), "toa", "group" ,
timevar = "time", keep.isolates = TRUE, warn.coercion=FALSE)

plot_diffnet(x, vertex.label = rownames(x))

# Reproducing medInnovationsDiffNet object ----------------------------------
data(medInnovations)

# What are the netvars
netvars <- names(medInnovations)[grepl("^net", names(medInnovations))]

medInnovationsDiffNet2 <- survey_to_diffnet(
medInnovations,
"id", netvars, "toa", "city",
warn.coercion=FALSE)

medInnovationsDiffNet2

# Comparing with the package's version
all(diffnet.toa(medInnovationsDiffNet2) == diffnet.toa(medInnovationsDiffNet)) #TRUE
all(

diffnet.attrs(medInnovationsDiffNet2, as.df = TRUE) ==
diffnet.attrs(medInnovationsDiffNet, as.df = TRUE),
na.rm=TRUE) #TRUE

threshold Retrive threshold levels from the exposure matrix

Description

Thresholds are each vertexes exposure at the time of adoption. Substantively it is the proportion of
adopters required for each ego to adopt. (see exposure).

Usage

threshold(
obj,
toa,
t0 = min(toa, na.rm = TRUE),
include_censored = FALSE,
lags = 0L,
...

)
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Arguments

obj Either a n× T matrix (eposure to the innovation obtained from exposure) or a
diffnet object.

toa Integer vector. Indicating the time of adoption of the innovation.

t0 Integer scalar. See toa_mat.
include_censored

Logical scalar. When TRUE (default), threshold

lags Integer scalar. Number of lags to consider when computing thresholds. lags=1
defines threshold as exposure at T − 1, where T is time of adoption. levels are
not reported for observations adopting in the first time period.

... Further arguments to be passed to exposure.

Details

By default exposure is not computed for vertices adopting at the first time period, include_censored=FALSE,
as estimating threshold for left censored data may yield biased outcomes.

Value

A vector of size n indicating the threshold for each node.

Author(s)

George G. Vega Yon & Thomas W. Valente

See Also

Threshold can be visualized using plot_threshold

Other statistics: bass, classify_adopters(), cumulative_adopt_count(), dgr(), ego_variance(),
exposure(), hazard_rate(), infection(), moran(), struct_equiv(), vertex_covariate_dist()

Examples

# Generating a random graph with random Times of Adoption
set.seed(783)
toa <- sample.int(4, 5, TRUE)
graph <- rgraph_er(n=5, t=max(toa) - min(toa) + 1)

# Computing exposure using Structural Equivalnece
adopt <- toa_mat(toa)
se <- struct_equiv(graph)
se <- lapply(se, function(x) methods::as((x$SE)^(-1), "dgCMatrix"))
expo <- exposure(graph, adopt$cumadopt, alt.graph=se)

# Retrieving threshold
threshold(expo, toa)

# We can do the same by creating a diffnet object
diffnet <- as_diffnet(graph, toa)
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threshold(diffnet, alt.graph=se)

toa_diff Difference in Time of Adoption (TOA) between individuals

Description

Creates n× n matrix indicating the difference in times of adoption between each pair of nodes

Usage

toa_diff(obj, t0 = NULL, labels = NULL)

Arguments

obj Either an integer vector of size n containing time of adoption of the innovation,
or a diffnet object.

t0 Integer scalar. Sets the lower bound of the time window (e.g. 1955).

labels Character vector of size n. Labels (ids) of the vertices.

Details

Each cell ij of the resulting matrix is calculated as toaj−toai, so that whenever its positive it means
that the j-th individual (alter) adopted the innovation sooner.

Value

An n × n symmetric matrix indicating the difference in times of adoption between each pair of
nodes.

Author(s)

George G. Vega Yon & Thomas W. Valente

Examples

# Generating a random vector of time
set.seed(123)
times <- sample(2000:2005, 10, TRUE)

# Computing the TOA differences
toa_diff(times)
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toa_mat Time of adoption matrix

Description

Creates two matrices recording times of adoption of the innovation. One matrix records the time
period of adoption for each node with zeros elsewhere. The second records the cumulative time of
adoption such that there are ones for the time of adoption and every time period thereafter.

Usage

toa_mat(obj, labels = NULL, t0 = NULL, t1 = NULL)

Arguments

obj Either an integer vector of size n containing time of adoption of the innovation,
or a diffnet object.

labels Character vector of size n. Labels (ids) of the vertices.

t0 Integer scalar. Sets the lower bound of the time window (e.g. 1955).

t1 Integer scalar. Sets the upper bound of the time window (e.g. 2000).

Details

In order to be able to work with time ranges other than 1, . . . , T the function receives as input
the boundary labels of the time windows through the variables t0 and t. While by default the
function assumes that the the boundaries are given by the range of the times vector, the user can
set a personalized time range exceeding the one given by the times vector. For instance, times of
adoption may range between 2001 and 2005 but the actual data, the network, is observed between
2000 and 2005 (so there is not left censoring in the data), hence, the user could write:

adopmats <- toa_mat(times, t0=2000, t1=2005)

That way the resulting cumadopt and adopt matrices would have 2005 - 2000 + 1 = 6 columns
instead of 2005 - 2001 + 1 = 5 columns, with the first column of the two matrices containing only
zeros (as the first adoption happend after the year 2000).

Value

A list of two n× T

cumadopt has 1’s for all years in which a node indicates having the innovation.

adopt has 1’s only for the year of adoption and 0 for the rest.

Author(s)

George G. Vega Yon & Thomas W. Valente
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Examples

# Random set of times of adoptions
times <- sample(c(NA, 2001:2005), 10, TRUE)

toa_mat(times)

# Now, suppose that we observe the graph from 2000 to 2006
toa_mat(times, t0=2000, t1=2006)

transformGraphBy Apply a function to a graph considering non-diagonal structural zeros

Description

When there are structural zeros given by groups, this function applies a particular transformation
function of a graph by groups returning a square matrix of the same size of the original one with
structural zeros and the function applied by INDICES.

Usage

transformGraphBy(graph, INDICES, fun = function(g, ...) g, ...)

## S3 method for class 'diffnet'
transformGraphBy(graph, INDICES, fun = function(g, ...) g, ...)

## S3 method for class 'dgCMatrix'
transformGraphBy(graph, INDICES, fun = function(g, ...) g, ...)

Arguments

graph A graph

INDICES A vector of length n.

fun A function. This function must return a matrix of class dgCMatrix with the
same dimension as dim(g).

... Further arguments passed to fun

Details

The transformation function fun must return a square matrix of size m×m, where m is the size of
the subgroup given by INDICES. See examples below
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Examples

# Rewiring a graph by community --------------------------------------------

# Two Random graphs of different size
set.seed(123)
g0 <- rgraph_ba(m=2, self=FALSE)
g1 <- rgraph_ba(m=3, t=19, self=FALSE)

# Need a place to store both networks together!
G <- methods::new(

Class = "dgCMatrix",
Dim = c(1L,1L)*(nnodes(g0) + nnodes(g1)),
p = rep(0L, (nnodes(g0) + nnodes(g1)) + 1L)
)

# Filling the matrix
G[1:nnodes(g0),1:nnodes(g0)] <- g0
G[(nnodes(g0) + 1):nnodes(G), (nnodes(g0) + 1):nnodes(G)] <- g1

# Creating an index (community)
indx <- c(rep(1, nnodes(g0)), rep(2, nnodes(g1)))

# Apply the rewiring algorithm per group
ans <- transformGraphBy(G, indx, function(g, ...) {

rewire_graph(g, 100, "swap")
})

ans

vertex_covariate_compare

Comparisons at dyadic level

Description

Comparisons at dyadic level

Usage

vertex_covariate_compare(graph, X, funname)

Arguments

graph A matrix of size n× n of class dgCMatrix.

X A numeric vector of length n.

funname Character scalar. Comparison to make (see details).
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Details

This auxiliary function takes advantage of the sparseness of graph and applies a function in the form
of funname(xi, xj) only to (i, j) that have no empty entry. In other words, applies a compares
elements of X only between vertices that have a link; making nlinks(graph) comparisons instead
of looping through n× n, which is much faster.

funname can take any of the following values: "distance", "^2" or "quaddistance", ">" or
"greater", "<" or "smaller", ">=" or "greaterequal", "<=" or "smallerequal", "==" or
"equal".

Value

A matrix dgCMatrix of size n× n with values in the form of funname(xi, xj).

See Also

Other dyadic-level comparison functions: matrix_compare(), vertex_covariate_dist()

Examples

# Basic example ------------------------------------------------------------
set.seed(1313)
G <- rgraph_ws(10, 4, .2)
x <- rnorm(10)

vertex_covariate_compare(G, x, "distance")
vertex_covariate_compare(G, x, "^2")
vertex_covariate_compare(G, x, ">=")
vertex_covariate_compare(G, x, "<=")

vertex_covariate_dist Computes covariate distance between connected vertices

Description

Computes covariate distance between connected vertices

Usage

vertex_covariate_dist(graph, X, p = 2)

vertex_mahalanobis_dist(graph, X, S)

Arguments

graph A square matrix of size n of class dgCMatrix.
X A numeric matrix of size n×K. Vertices attributes
p Numeric scalar. Norm to compute
S Square matrix of size ncol(x). Usually the var-covar matrix.
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Details

Faster than dist, these functions compute distance metrics between pairs of vertices that are con-
nected (otherwise skip).

The function vertex_covariate_dist is the simil of dist and returns p-norms (Minkowski dis-
tance). It is implemented as follows (for each pair of vertices):

Dij =

(
K∑
k=1

|Xik −Xjk|p
)1/p

if graphi,j 6= 0

In the case of mahalanobis distance, for each pair of vertex (i, j), the distance is computed as
follows:

Dij = ((Xi −Xj)× S × (Xi −Xj)
′)
1/2 if graphi,j 6= 0

Value

A matrix of size n× n of class dgCMatrix. Will be symmetric only if graph is symmetric.

Author(s)

George G. Vega Yon

References

Mahalanobis distance. (2016, September 27). In Wikipedia, The Free Encyclopedia. Retrieved
20:31, September 27, 2016, from https://en.wikipedia.org/w/index.php?title=Mahalanobis_
distance&oldid=741488252

See Also

mahalanobis in the stats package.

Other statistics: bass, classify_adopters(), cumulative_adopt_count(), dgr(), ego_variance(),
exposure(), hazard_rate(), infection(), moran(), struct_equiv(), threshold()

Other dyadic-level comparison functions: matrix_compare(), vertex_covariate_compare()

Examples

# Distance (aka p norm) -----------------------------------------------------
set.seed(123)
G <- rgraph_ws(20, 4, .1)
X <- matrix(runif(40), ncol=2)

vertex_covariate_dist(G, X)[1:5, 1:5]

# Mahalanobis distance ------------------------------------------------------
S <- var(X)

M <- vertex_mahalanobis_dist(G, X, S)

https://en.wikipedia.org/w/index.php?title=Mahalanobis_distance&oldid=741488252
https://en.wikipedia.org/w/index.php?title=Mahalanobis_distance&oldid=741488252
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# Example with diffnet objects ----------------------------------------------

data(medInnovationsDiffNet)
X <- cbind(

medInnovationsDiffNet[["proage"]],
medInnovationsDiffNet[["attend"]]

)

S <- var(X, na.rm=TRUE)
ans <- vertex_mahalanobis_dist(medInnovationsDiffNet, X, S)

weighted_var Computes weighted variance

Description

Computes weighted variance

Usage

weighted_var(x, w)

wvar(x, w)

Arguments

x A numeric vector of length n.

w A numeric vector of length n.

Details

weighted_variance implements weighted variance computation in the following form:∑
i w
′
i(xi − x̄)2

(1− n)

where w′i = wi/
∑
i wi, and x̄ =

∑
i w
′
ixi.

Value

Numeric scalar with the weighted variance.

See Also

This function is used in diffmap.
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%*% Matrix multiplication

Description

Matrix multiplication methods, including diffnet objects. This function creates a generic method
for %*% allowing for multiplying diffnet objects.

Usage

x %*% y

## Default S3 method:
x %*% y

## S3 method for class 'diffnet'
x %*% y

Arguments

x Numeric or complex matrices or vectors, or diffnet objects.

y Numeric or complex matrices or vectors, or diffnet objects.

Details

This function can be usefult to generate alternative graphs, for example, users could compute the
n-steps graph by doing net %*% net (see examples).

Value

In the case of diffnet objects performs matrix multiplication via mapply using x$graph and
y$graph as arguments, returnling a diffnet. Otherwise returns the default according to %*%.

See Also

Other diffnet methods: as.array.diffnet(), c.diffnet(), diffnet-arithmetic, diffnet-class,
diffnet_index, plot.diffnet(), summary.diffnet()

Examples

# Finding the Simmelian Ties network ----------------------------------------

# Random diffnet graph
set.seed(773)
net <- rdiffnet(100, 4, seed.graph='small-world', rgraph.args=list(k=8))
netsim <- net

# According to Dekker (2006), Simmelian ties can be computed as follows
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netsim <- net * t(net) # Keeping mutal
netsim <- netsim * (netsim %*% netsim)

# Checking out differences (netsim should have less)
nlinks(net)
nlinks(netsim)

mapply(`-`, nlinks(net), nlinks(netsim))
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