Package 'netdep'

July 10, 2018

Type Package

Title Testing for Network Dependence

Version 0.1.0
Maintainer Youjin Lee <ylee160@jhu.edu></ylee160@jhu.edu>
Imports stats, igraph, igraphdata, MASS, mvrtn
Suggests knitr, testthat
Description When network dependence is present, that is when social relations can engender dependence in the outcome of interest, treating such observations as independent results in invalid, anti-conservative statistical inference. We propose a test of independence among observations sampled from a single network <arxiv:1710.03296>.</arxiv:1710.03296>
License GPL (>= 3) file LICENSE
Encoding UTF-8
LazyData true
RoxygenNote 6.0.1
VignetteBuilder knitr
NeedsCompilation no
Author Youjin Lee [aut, cre], Elizabeth Ogburn [aut]
Repository CRAN
Date/Publication 2018-07-10 16:00:07 UTC
R topics documented:
latent.netdep
make.permute.moran
make.permute.Phi 4 MoranI 5
peer.process
phi.moment
phi.stat
snowball.sampling

2 latent.netdep

Index 9

latent.netdep Generate latent variable dependent network.

Description

Generate latent variable dependent network.

Usage

```
latent.netdep(n.node, rho = 0.3, dep.factor = 1, dep.range = c(-5, 5))
```

Arguments

Value

an undirected and binary igraph object G having both Y and U as nodal attributes.

V(G)\$outcome one-dimensional continuous observations.

V(G)\$latent one-dimensional continuous latent variable dependent on V(G)\$Y through rho.

```
library(netdep)
library(MASS)
library(mvrtn)
library(igraph)
G = latent.netdep(n.node = 100, rho = 0.5, dep.factor = 1)
```

make.permute.moran 3

make.permute.moran

Permutation Test of Moran's I

Description

Permutation Test of Moran's I

Usage

```
make.permute.moran(A, Y, np = 100)
```

Arguments

Α [1	Х	n]	adjacency	matrix	or	general	relational	weight	matrix	of	which A	ij
-----	---	---	----	-----------	--------	----	---------	------------	--------	--------	----	---------	----

indicates relationship from i to j.

Y a vector of n continuous or binary, one-dimensional observations.

np the number of permutation samples.

Value

moran a standardized Moran's I statistic.

pval.z p-value of a standardized Moran's I statistic assuming asymptotic normality.

pval.permute p-value of a standardized Moran's I statistic using np independent permutation

samples.

Author(s)

Youjin Lee

```
library(netdep)
library(igraph)
library(igraphdata)
data(karate)
A = as.matrix(get.adjacency(karate, attr= "weight", sparse = TRUE)) # weighted adjacency matrix
Y = V(karate)$Faction
result = make.permute.moran(A, Y, np = 100)
```

4 make.permute.Phi

make.permute.Phi Perm	utation Test of Φ
-----------------------	------------------------

Description

This function prints out the network dependence test results for categorical observations.

Usage

```
make.permute.Phi(A, Y, np)
```

Arguments

A	[n x n] adjacency matrix or general relational weight matrix of which A_ij indicates relationship from i to j .
Υ	a vector of n continuous or binary, one-dimensional observations.
np	the number of permutation samples.

Value

```
phi a standardized \Phi statistic.

pval.z p-value of a standardized \Phi statistic assuming asymptotic normality.

pval.permute p-value of a standardized \Phi statistic using np independent permutation samples.
```

Author(s)

Youjin Lee

```
library(netdep)
library(igraph)
library(igraphdata)
data(UKfaculty)
A = as.matrix(get.adjacency(UKfaculty, attr= "weight", sparse = TRUE)) # weighted adjacency matrix
Y = V(UKfaculty)$Group
result = make.permute.Phi(A, Y, np = 50)
```

MoranI 5

Description

This function calculates Moran's I statistic given adjacency matrix and outcome. The statistic can be used for testing network dependence.

Usage

```
MoranI(A, Y)
```

Arguments

A $[n \times n]$ adjacency matrix or general relational weight matrix of which $A_i j$

indicates relationship from i to j.

Y a vector of n continuous or binary, one-dimensional observations.

Value

moran a standardized Moran's *I* statistic.

Author(s)

Youjin Lee

|--|

Description

Generate time-evolving outcomes where outcomes at time t of i depends on outcomes of i's adjacent peers at time t-1.

Usage

```
peer.process(A, max.time = 3, mprob = 0.5, epsilon = 0.3)
```

6 phi.moment

Arguments

Value

a list of time-evolving outcomes from time0 to time(max.time).

Examples

```
library(netdep)
library(igraph)
library(stats)
G = latent.netdep(n.node = 100, rho = 0.2)
A = as.matrix(get.adjacency(G))
outcomes = peer.process(A, max.time = 3, mprob = 0.3, epsilon = 0.5)
```

phi.moment

Calculate Φ statistic

Description

This is an auxiliary function to calculate non-standardized Φ statistic and its first and second moment.

Usage

```
phi.moment(A, Y)
```

Arguments

A [n x n] adjacency matrix or general relational weight matrix of which $A_i j$ indicates relationship from i to j.

Y a vector of *n* nominal or binary, one-dimensional observations.

phi.stat 7

Value

rawphi Non-standardized Φ statistic.

m1.rawphi the first (permutation) moment of rawphi.

m2.rawphi the second (permutation) moment of rawphi.

Author(s)

Youjin Lee

phi.stat

Standardized Φ statistic

Description

A test statistic of Φ is to test network dependence in categorical observations.

Usage

```
phi.stat(A, Y)
```

Arguments

A [n x n] adjacency matrix or general relational weight matrix of which $A_i j$

indicates relationship from i to j.

Y a vector of n nominal or binary, one-dimensional observations.

Value

phi a standardized Φ statistic.

Author(s)

Youjin Lee

8 snowball.sampling

g Snowball sampling

Description

Sampling from one graph to its induced subgraph depending on network structure.

Usage

```
snowball.sampling(G, samn)
```

Arguments

G an igraph object.

samn is a size of snowball sample that will be samples from G.

Value

subG an induced subgraph of G sampled using snowball sampling.

ind a set of index of samples.

```
library(netdep)
library(igraph)
G = latent.netdep(n.node = 200, rho = 0.2, dep.factor = -3, dep.range = c(-10, 0))
subG = snowball.sampling(G, 100)
```

Index

```
latent.netdep, 2
make.permute.moran, 3
make.permute.Phi, 4
MoranI, 5
peer.process, 5
phi.moment, 6
phi.stat, 7
snowball.sampling, 8
```