
The neldermead Package - version 1.0-11

Sébastien Bihorel

February 12, 2018

neldermead is a R port of a module originally developped for Scilab version 5.2.1 by Michael
Baudin (INRIA - DIGITEO). Information about this software can be found at www.scilab.org.
The following documentation as well as the content of the functions .Rd files are adaptations of the
documentation provided with the original Scilab neldermead module.

neldermead currently does not include any adaptation of the Scilab ’nmplot’ function series that
is available in the original neldermead module.

1 Overview

1.1 Description

The goal of this toolbox is to provide several direct search optimization algorithms based on the
simplex method. The optimization problem to solve is the minimization of a cost function, with
bounds and nonlinear constraints.

minf(x)
li ≤ xi ≤ hi, i = 1, n
gj(x) ≥ 0, j = 0, nbineq

where f is the cost function, x is the vector of parameter estimates, l and h are vectors of
lower and upper bounds for the parameter estimates, n is the number of parameters and nbineq the
number of inequality constraints g(x).

The provided algorithms are direct search algorithms, i.e. algorithms which do not use the
derivative of the cost function. They are based on the update of a simplex, which is a set of
k ≥ n+ 1 vertices, where each vertex is associated with one point and one function value.

The following algorithms are available:

� The fixed shape simplex method of Spendley, Hext and Himsworth: this algorithm solves an
unconstrained optimization problem with a fixed shape simplex made of k = n+ 1 vertices.

� The variable shape simplex method of Nelder and Mead: this algorithm solves an unconstrained
optimization problem with a variable shape simplex made of k = n+ 1 vertices [3].

� Box’s complex method: this algorithm solves an constrained optimization problem with a
variable shape simplex made of an arbitrary k number of vertices (k = 2n is recommended by
Box).

1

www.scilab.org

1.2 Basic object

The basic object used by the neldermead package to store the configuration settings and the history
of an optimization is a ’neldermead’ object, i.e. a list typically created by neldermead and having
a strictly defined structure (see ?neldermead for more details).

1.3 The cost function

The function element of the neldermead object allows to configure the cost function. The cost
function is used to compute the objective function value f. If the nbineqconst element of the nel-
dermead object is configured to a non-zero value, the cost function must also compute the value of
the nonlinear, positive, inequality constraints c. The cost function can also take as input/output an
additional argument, if the costfargument element is configured. The function should be defined
as described in vignette('optimbase',package='optimbase'):

costf <- function(x, index, fmsfundata){

Define f and c here

return(list(f, g=NULL, c, gc=NULL, index=index,

this=list(costfargument = fmsfundata)))

}

where

x: is the current point, as a column vector,

index: (optional), an integer representing the value to compute, and

fmsfundata: an user-provided input/output argument.

f: the value of the objective function (a scalar),

g: typically the gradient of the objective function in the context of the optimbase functions; must
be set to NULL as the Nelder-Mead is not gradient-based,

c: the vector of values of non-linear, positive, inequality constraints,

gc: typically the gradient of the constraints in the context of the optimbase functions; must be set
to NULL as the Nelder-Mead is not gradient-based,

this: must be set to list(costfargument = fmsfundata).

The index input parameter tells the cost function what to return as output arguments (as de-
scribed in vignette('optimbase',package='optimbase'). It has the following meaning:

index = 2: compute f,

index = 5: compute c,

index = 6: compute f and c

2

The fmsdata argument is both input and output. This feature may be used in the situation
where the cost function has to update its environment from call to call. Its simplest use is to count
the number of calls to the cost function, but this feature is already available directly. Consider
the more practical situation where the optimization requires the execution of an underlying Newton
method (a chemical solver for example). This Newton method requires an initial guess x0. If the
initial guess for this underlying Newton method is kept constant, the Newton method may have
problems to converge when the current optimization point get far away from the its initial point. If
a costfargument element is defined in the neldermead object, it can be passed to the cost function
as the fmsdata argument. In this case, the initial guess for the Newton method can be updated so
that it gets the value of the previous call. This way, the Newton method will have less problems to
converge and the cost function evaluation may be faster.

We now present how the feature works. Everytime the cost function is called back, the costfargument
element is passed to the cost function as an input argument. If the cost function modifies its content
in the output argument, the content of the costfargument element is updated accordingly. Once the
optimization is performed, the user may call the neldermead.get function and get back an updated
costfargument content.

1.4 The output function

The outputcommand element of the neldermead object allows to configure a command which is called
back at the start of the optimization, at each iteration and at the end of the optimization. The out-
put function must be defined as follows:

outputcmd <- function(state, data, myobj)

where

state: is a string representing the current state of the algorithm. Available values are ’init’, ’iter’,
and ’done’,

data: a list containing at least the following entries:

x: the current optimum,

fval: the current function value,

iteration: the current iteration index,

funccount: the number of function evaluations,

simplex: the current simplex,

step: the previous step in the algorithm. The following values are available: ’init’, ’done’, ’re-
flection’, ’expansion’, ’insidecontraction’, ’outsidecontraction’, ’reflectionnext’, and ’shrink’,

myobj: a user-defined parameter. This input parameter is defined with the outputcommandarg

element of the neldermead object.

The output function may be used when debugging the specialized optimization algorithm, so
that a verbose logging is produced. It may also be used to write one or several report files in a
specialized format (ASCII, LATEX, Excel, etc...). The user-defined parameter may be used in that
case to store file names or logging options.

The data list argument may contain more fields than the current presented ones. These addi-
tionnal fields may contain values which are specific to the specialized algorithm, such as the simplex
in a Nelder-Mead method, the gradient of the cost function in a BFGS method, etc...

3

1.5 Termination

The current package takes into account several generic termination criteria. The following termina-
tion criteria are enabled by default:

� maxiter,

� maxfunevals,

� tolxmethod,

� tolsimplexizemethod.

The neldermead.termination function uses a set of rules to compute if the termination occurs
and sets optimization status to one of the following: ’continue’, ’maxiter’, ’maxfunevals’, ’tolf’, ’tolx’,
’tolsize’, ’tolsizedeltafv’, ’kelleystagnation’, ’tolboxf’ or ’tolvariance’. The value of the status may
also be a user-defined string, in the case where a user-defined termination function has been set.

The following set of rules is examined in this order.

� By default, the status is ’continue’ and the terminate flag is FALSE.

� The number of iterations is examined and compared to the maxiter element of the neldermead
object: if iterations ≥ maxiter, then the status is set to ’maxiter’ and terminate is set to
TRUE.

� The number of function evaluations is examined and compared to the maxfunevals elements:
if funevals ≥ maxfunevals, then the status is set to ’maxfuneval’ and terminate is set to
TRUE.

� The tolerance on function value is examined depending on the value of the tolfunmethod.

FALSE: then the criteria is just ignored,

TRUE: if |currentfopt| < tolfunrelative · |previousfopt| + tolfunabsolute, then
the status is set to ’tolf’ and terminate is set to TRUE.

The relative termination criteria on the function value works well if the function value at
optimum is near zero. In that case, the function value at initial guess fx0 may be used as
previousfopt. This criteria is sensitive to the tolfunrelative and tolfunabsolute elements.
The absolute termination criteria on the function value works if the user has an accurate idea
of the optimum function value.

� The tolerance on x is examined depending on the value of the tolxmethod element.

FALSE: then the criteria is just ignored,

TRUE: if norm(currentxopt - previousxopt) < tolxrelative · norm(currentxopt) + tolxabsolute,
then the status is set to ’tolx’ and terminate is set to TRUE.

This criteria is sensitive to the tolxrelative and tolxabsolute elements. The relative ter-
mination criteria on x works well if x at optimum is different from zero. In that case, the
condition measures the distance between two iterates. The absolute termination criteria on x
works if the user has an accurate idea of the scale of the optimum x. If the optimum x is near
0, the relative tolerance will not work and the absolute tolerance is more appropriate.

4

� The tolerance on simplex size is examined depending on the value of the tolsimplexizemethod
element.

FALSE: then the criteria is just ignored,

TRUE: if ssize < tolsimplexizerelative · simplexsize0 + tolsimplexizeabsolute,
where simplexsize0 is the size of the simplex at iteration 0, then the status is set to
’tolsize’ and terminate is set to TRUE.

The size of the simplex is computed from the ’sigmaplus’ method of the optimsimplex package.
This criteria is sensitive to the tolsimplexizeabsolute and the tolsimplexizerelative

elements.

� The absolute tolerance on simplex size and absolute difference of function value is examined
depending on the value of the tolssizedeltafvmethod element.

FALSE: then the criteria is just ignored,

TRUE: if both the following conditions ssize < tolsimplexizeabsolute and shiftfv < toldeltafv

are true where ssize is the current simplex size and shiftfv is the absolute value of the
difference of function value between the highest and lowest vertices, then the status is set
to ’tolsizedeltafv’ and terminate is set to TRUE.

� The stagnation condition based on Kelley sufficient decrease condition is examined depending
on the value of the kelleystagnationflag element.

FALSE: then the criteria is just ignored,

TRUE: if newfvmean ≤ oldfvmean - alpha · t(sg) · sg where newfvmean (resp. oldfvmean)
is the function value average in the current iteration (resp. in the previous iteration), then
the status is set to ’kelleystagnation’ and terminate is set to TRUE. Here, alpha is a non-
dimensional coefficient and sg is the simplex gradient.

� The termination condition suggested by Box is examined depending on the value of the
boxtermination element.

FALSE: then the criteria is just ignored,

TRUE: if both the following conditions shiftfv < boxtolf and boxkount == boxnbmatch

are true, where shiftfv is the difference of function value between the best and worst
vertices, and boxkount is the number of consecutive iterations where this criteria is met,
then the status is set to ’tolboxf’ and terminate is set to TRUE. Here, the boxtolf

parameter is the value associated with the boxtolf element of the neldermead object and
is a user-defined absolute tolerance on the function value. The boxnbmatch parameter
is the value associated with the boxnbmatch element and is the user-defined number of
consecutive match.

� The termination condition based on the variance of the function values in the simplex is
examined depending on the value of the tolvarianceflag element.

FALSE: then the criteria is just ignored,

TRUE: if var < tolrelativevariance · variancesimplex0 + tolabsolutevariance, where
var is the variance of the function values in the simplex, then the status is set to
’tolvariance’ and terminate is set to TRUE. Here, the tolrelativevariance parame-
ter is the value associated with the tolrelativevariance element of the neldermead

5

object and is a user-defined relative tolerance on the variance of the function values. The
tolabsolutevariance parameter is the value associated with the tolabsolutevariance
element and is the user-defined absolute tolerance of the variance of the function values.

� The user-defined termination condition is examined depending on the value of the myterminateflag
element.

FALSE: then the criteria is just ignored,

TRUE: if the term boolean output argument returned by the termination function is TRUE,
then the status is set to the user-defined status and terminate is set to TRUE.

1.6 Kelley’s stagnation detection

The stagnation detection criteria suggested by Kelley is based on a sufficient decrease condition,
which requires a parameter alpha > 0 to be defined [1]. The kelleynormalizationflag element of
the neldermead object allows to configure the method to use to compute this alpha parameter. Two
methods are available, where each method corresponds to a different paper by Kelley:

constant: in ’Detection and Remediation of Stagnation in the Nelder-Mead Algorithm Using a
Sufficient Decrease Condition’, Kelley uses a constant alpha, with the suggested value 1.e-4,
which is the typical choice for line search method.

normalized: in ’Iterative Methods for Optimization’, Kelley uses a normalized alpha, computed
from the following formula: alpha = alpha0 · sigma0 / nsg, where sigma0 is the size of the
initial simplex and nsg is the norm of the simplex gradient for the initial guess point.

1.7 O’Neill’s factorial optimality test

In ’Algorithm AS47 - Function minimization using a simplex procedure’, O’Neill presents a fortran
77 implementation of the simplex method [5]. A factorial test is used to check if the computed
optimum point is a local minimum. If the restartdetection element of the neldermead object is
set to ’oneill’, that factorial test is used to see if a restart should be performed.

1.8 Implementation notes of the method of Spendley et al.

The original paper may be implemented with several variations, which might lead to different results
[6]. This section defines what algorithmic choices have been used in the present package.

The paper states the following rules.

� ’Rule 1. Ascertain the lowest reading y, of yi ... yk+1 Complete a new simplex Sp by excluding
the point Vp corresponding to y, and replacing it by V* defined as above.’

� ’Rule 2. If a result has occurred in (k + 1) successive simplexes, and is not then eliminated by
application of Rule 1, do not move in the direction indicated by Rule 1, or at all, but discard
the result and replace it by a new observation at the same point.’

� ’Rule 3. If y is the lowest reading in So , and if the next observation made, y* , is the lowest
reading in the new simplex S , do not apply Rule 1 and return to So from Sp . Move out of S,
by rejecting the second lowest reading (which is also the second lowest reading in So).’

We implement the following ’rules’ of the Spendley et al. method:

6

� Rule 1 is strictly applied, but the reflection is done by reflection of the high point, since we
minimize a function instead of maximizing it, like Spendley.

� Rule 2 is NOT implemented, as we expect that the function evaluation is not subject to errors.

� Rule 3 is applied, i.e. reflection with respect to next to the high point. The original paper does
not mention any shrink step. When the original algorithm cannot improve the function value
with reflection steps, the basic algorithm stops. In order to make the current implementation
of practical value, a shrink step is included, with shrinkage factor sigma. This perfectly fits into
to the spirit of the original paper. Notice that the shrink step makes the rule #3 (reflection
with respect to next-to-worst vertex) unnecessary. Indeed, the minimum required steps are
the reflection and shrinkage. Nevertheless, the rule #3 has been kept in order to make the
algorithm as close as it can be to the original.

1.9 Implementation notes on the method of Nelder and Mead

The purpose of this section is to analyse the current implementation of Nelder-Mead’s algorithm.
The algorithm that we use is described in ’Iterative Methods for Optimization’ by Kelley.

The original paper uses a ’greedy’ expansion, in which the expansion point is accepted whatever
its function value. The current implementation, as most implementations, uses the expansion point
only if it improves over the reflection point, that is,

� if fe<fr, then the expansion point is accepted,

� if not, the reflection point is accepted.

The termination criteria suggested by Nelder and Mead is based on an absolute tolerance on the
standard deviation of the function values in the simplex. We provide this original termination criteria
with the tolvarianceflag element of the neldermead object, which is disabled by default.

1.10 Box’s complex algorithm implementation notes

In this section, we analyse the current implementation of Box’s complex method [4]. The initial
simplex can be computed as in Box’s paper, but this may not be safe. In his paper, Box suggests
that if a vertex of the initial simplex does not satisfy the non linear constraints, then it should be
’moved halfway toward the centroid of those points already selected’. This behaviour is available
when the scalingsimplex0 element of the neldermead object is set to ’tocenter’. It may happen,
as suggested by Guin [2], that the centroid is not feasible if the constraints are not convex. In this
case, the initial simplex cannot be computed. This is why we provide the ’tox0’ option, which allows
to compute the initial simplex by scaling toward the initial guess, which is always feasible.

In Box’s paper, the scaling into the non linear constraints is performed ’toward’ the centroid,
that is, by using a scaling factor equal to 0.5. This default scaling factor might be sub-optimal in
certain situations. This is why we provide the boxineqscaling element, which allows to configure
the scaling factor.

In Box’s paper, whether we are concerned with the initial simplex or with the simplex at a given
iteration, the scaling for the non linear constraints is performed without end. This is because Box’s
hypothesis is that ’ultimately, a satisfactory point will be found’. As suggested by Guin, if the
process fails, the algorithm goes into an infinite loop. In order to avoid this, we perform the scaling
until a minimum scaling value is reached, as defined by the guinalphamin element.

We have taken into account the comments by Guin, but it should be emphasized that the current
implementation is still as close as possible to Box’s algorithm and is not Guin’s algorithm. More

7

precisely, during the iterations, the scaling for the non linear constraints is still performed toward
the centroid, be it feasible or not.

1.11 User-defined algorithm

The mymethod element of the neldemead object allows to configure a user-defined simplex-based al-
gorithm. The reason for this option is that many simplex-based variants of Nelder-Mead’s algorithm
have been developped over the years, with specific goals. While it is not possible to provide them all,
it is very convenient to use the current structure without being forced to make many developments.

The value of the mymethod element is expected to be a R function with the following structure:

> myalgorithm <- function(this){

+ ...

+ return(this)

+ }

where this is the current neldermead object.
In order to use the user-defined algorithm, the method element must be set to ’mine’. In this

case, the component performs the optimization exactly as if the user-defined algorithm was provided
by the component.

The user interested in that feature may use the internal scripts provided in the distribution as
templates and tune his own algorithm from that point. There is of course no warranty that the
user-defined algorithm improves on the standard algorithm, so that users use this feature at their
own risks.

1.12 User-defined termination

Many termination criteria are found in the literature. Users who aim at reproducing the results
exhibited in a particular paper may find that that none of the provided termination criteria match
the one which is used in the paper. It may also happen that the provided termination criteria are
not suitable for the specific test case. In those situation the myterminate element of the neldermead
object allows to configure a user-defined termination function. The value of the myterminate element
is expected to be a R function with the following structure:

> mystoppingrule <- function(this , simplex){

+ ...

+ return(list(this=this,terminate=terminate,status=status))

+ }

where this is the current neldermead object and simplex is the current simplex. The terminate

output argument is a logical flag which is FALSE if the algorithm must continue and TRUE if the
algorithm must stop. The status output argument is a string which is associated with the current
termination criteria.

In order to enable the use of the user-defined termination function, the value of the myterminateflag
element must be set to TRUE in the neldermead object. At each iteration, if the myterminateflag

element has been set to TRUE, the user-defined termination is called. If the terminate output ar-
gument is TRUE, then the algorithm is stopped. In that case, the value of the status element of
the neldermead.get function output is the value of the status output argument of the user-defined
termination function.

8

2 Specialized functions

2.1 fminsearch

The fminsearch function is based on a specialized use of the more general neldermead function
bundle and searches for the unconstrained minimum of a given cost function. This function corre-
sponds to the Matlab (or Scilab) fminsearch function. In the context of fminsearch, the function to
be minimized is not a cost function as described in Section 1.3 but an objective function (returning
a numeric scalar). Additional information and examples are available in ?fminsearch from a R
environment.

2.2 Direct grid search

Direct grid search, performed by fmin.gridsearch, is a functionality added to the original Scilab
neldermead module and constitutes another specialized use of the neldermead package. This func-
tion allows to explore the search space of an optimization problem around the initial point x0. This
optimization problem is defined by an objective function, like for fminsearch, and not a cost func-
tion. fmin.gridsearch automatically creates a grid of search points selected around the initial point
and evaluates the objective function at each point. The boundaries of the grid are set either by a vec-
tor of parameter-specific lower and upper limits, or by a vector of factors α as follows:[x0/α, x0×α].
The number npts of points evaluated for each parameter (or dimension of the optimization problem)
can also be defined. The total number of points in the grid is therefore nptsn. At the end of the
search, fmin.gridsearch returns a table sorted by value of the objective function. The feasibility
of the objective function is also determined at each point, as fmin.gridsearch is a wrapper around
optimbase.gridsearch which assesses the feasbility of a cost function in addition to calculating its
value at each particular search point. Because fmin.gridsearch does not accept constraints, the ob-
jective function should always be feasible. Additional information is available in ?fmin.gridsearch

from a R environment.

3 Examples

We present in this section basic examples illustrating the use of neldermead functions to optimize
unconstrained or constrained systems. More complex examples are described in a Scilab-based
document written by Michael Baudin and available at http://forge.scilab.org/index.php/p/

docneldermead/. Because the R port of the Scilab neldermead module is almost literal, the user
should be able to reproduce the described examples in R with minimal adaptations.

3.1 Example 1: Basic use

In the following example, we solve a simple quadratic test case. We begin by defining the cost
function, which takes 3 input arguments and returns the value of the objective function as the f

element of a list. The standard starting point [-1.2 1.0] is used. neldermead creates a new neldermead
object. Then we use neldermead.set to configure the parameters of the problem. We use all default
settings and perform the search for the optimum. neldermead.get is finally used to retrieve the
optimum parameters.

> quadratic <- function(x=NULL,index=NULL,fmsfundata=NULL){

+ return(list(f=x[1]^2 + x[2]^2,

+ g=c(),

9

http://forge.scilab.org/index.php/p/docneldermead/
http://forge.scilab.org/index.php/p/docneldermead/

+ c=c(),

+ gc=c(),

+ index=index,

+ this=list(costfargument=fmsfundata)))

+ }

> x0 <- transpose(c(1.0,1.0))

> nm <- neldermead()

> nm <- neldermead.set(nm,'numberofvariables',2)

> nm <- neldermead.set(nm,'function',quadratic)

> nm <- neldermead.set(nm,'x0',x0)

> nm <- neldermead.search(nm)

> summary(nm)

Number of Estimated Variable(s): 2

Estimated Variable(s):

Initial Final

1 1 -1.010582e-08

2 1 -1.768891e-07

Cost Function:

function(x=NULL,index=NULL,fmsfundata=NULL){

return(list(f=x[1]^2 + x[2]^2,

g=c(),

c=c(),

gc=c(),

index=index,

this=list(costfargument=fmsfundata)))

}

<bytecode: 0x7005318>

Cost Function Argument(s):

[1] ""

Optimization:

- Status: "maxfuneval"

- Initial Cost Function Value: 2.000000

- Final Cost Function Value: 0.000000

- Number of Iterations (max): 52 (100)

- Number of Function Evaluations (max): 100 (100)

Simplex Information:

- Simplex at Initial Point:

Dimension: n=2

Number of vertices: nbve=3

Vertex #1/3 : fv=2.000000e+00, x=1.000000e+00 1.000000e+00

Vertex #2/3 : fv=5.000000e+00, x=2.000000e+00 1.000000e+00

Vertex #3/3 : fv=5.000000e+00, x=1.000000e+00 2.000000e+00

10

- Simplex at Optimal Point:

Dimension: n=2

Number of vertices: nbve=3

Vertex #1/3 : fv=3.139189e-14, x=-1.010582e-08 -1.768891e-07

Vertex #2/3 : fv=1.290894e-13, x=-3.557479e-07 5.032676e-08

Vertex #3/3 : fv=1.601186e-13, x=2.637847e-07 3.008924e-07

3.2 Example 2: Customized use

In the following example, we solve the Rosenbrock test case. We begin by defining the Rosenbrock
function, which takes 3 input arguments and returns the value of the objective function. The
standard starting point [-1.2 1.0] is used. neldermead creates a new neldermead object. Then we
use neldermead.set to configure the parameters of the problem. The initial simplex is computed
from the axes and the single length 1.0 (this is the default, but is explicitely written here as an
example). The variable simplex algorithm by Nelder and Mead is used, which corresponds to the
-method ’variable’ option. neldermead.search performs the search for the minimum. Once the
minimum is found, we represent part of the search space using the contour function (this is possible
since our problem involves only 2 parameters) and we superimpose the starting point (in red), the
optimisation path (in bleu), and the optimum (in green) to the plot. The history of the optimisation
can be retrieved (using neldermead.get) because the ’storehistory’ option was set to TRUE.

> rosenbrock <- function(x=NULL,index=NULL,fmsfundata=NULL){

+ return(list(f=100*(x[2]-x[1]^2)^2+(1-x[1])^2,

+ g=c(),

+ c=c(),

+ gc=c(),

+ index=index,

+ this=list(costfargument=fmsfundata)))

+ }

> x0 <- transpose(c(-1.2,1.0))

> nm <- neldermead()

> nm <- neldermead.set(nm,'numberofvariables',2)

> nm <- neldermead.set(nm,'function',rosenbrock)

> nm <- neldermead.set(nm,'x0',x0)

> nm <- neldermead.set(nm,'maxiter',200)

> nm <- neldermead.set(nm,'maxfunevals',300)

> nm <- neldermead.set(nm,'tolfunrelative',10*.Machine$double.eps)

> nm <- neldermead.set(nm,'tolxrelative',10*.Machine$double.eps)

> nm <- neldermead.set(nm,'simplex0method','axes')

> nm <- neldermead.set(nm,'simplex0length',1.0)

> nm <- neldermead.set(nm,'method','variable')

> nm <- neldermead.set(nm,'verbose',FALSE)

> nm <- neldermead.set(nm,'storehistory',TRUE)

> nm <- neldermead.set(nm,'verbosetermination',FALSE)

> nm <- neldermead.search(nm)

> xmin <- ymin <- -2.0

> xmax <- ymax <- 2.0

> nx <- ny <- 100

11

> stepy <- stepx <- (xmax - xmin)/nx

> ydata <- xdata <- seq(xmin,xmax,stepx)

> zdata <- apply(expand.grid(xdata,ydata),1,

+ function(x) neldermead.function(nm,transpose(x)))

> zdata <- matrix(zdata,ncol=length(ydata))

> optimpath <- matrix(unlist((neldermead.get(nm,'historyxopt'))),

+ nrow=2)

> optimpath <- data.frame(x=optimpath[1,],y=optimpath[2,])

> contour(xdata,ydata,zdata,levels=c(1,10,100,500,1000,2000))

> par(new=TRUE,ann=TRUE)

> plot(c(x0[1],optimpath$x[158]), c(x0[2],optimpath$y[158]),

+ col=c('red','green'),pch=16,xlab='x[1]',ylab='x[2]',

+ xlim=c(xmin,xmax),ylim=c(ymin,ymax))

> par(new=TRUE,ann=FALSE)

> plot(optimpath$x,optimpath$y,col='blue',type='l',

+ xlim=c(xmin,xmax),ylim=c(ymin,ymax))

 1

 10

 10

 100

 100

 500 5
00

 1000 1
00

0

 2000

 2
00

0

−2 −1 0 1 2

−
2

−
1

0
1

2

● ●

−2 −1 0 1 2

−
2

−
1

0
1

2

x[1]

x[
2]

−2 −1 0 1 2

−
2

−
1

0
1

2

Setting the ’verbose’ element of the neldermead object to 1 allows to get detailed information
about the current optimization process. The following is a sample output for an optimization based
on the Nelder and Mead variable-shape simplex algorithm. Only the output corresponding to the

12

iteration #156 is displayed. In order to display specific outputs (or to create specific output files
and graphics), the ’outputcommand’ option should be used.

===

Iteration \#156 (total = 156)

Function Eval \#298

Xopt: 0.99999999999991 0.999999999999816

Fopt: 8.997809e-27

DeltaFv: 4.492261e-26

Center: 1.00000000000003 1.00000000000007

Size: 4.814034e-13

Vertex \#2/3 : fv=2.649074e-26, x=1.000000e+00 1.000000e+00

Vertex \#3/3 : fv=5.392042e-26, x=1.000000e+00 1.000000e+00

Reflect

xbar=1.00000000000001 1.00000000000003

Function Evaluation \#299 at [0.99999999999996]

Function Evaluation \#299 at [0.999999999999907]

xr=[0.99999999999996 0.999999999999907], f(xr)=0.000000

> Perform reflection

Sort

3.3 Example 3: Optimization with bound constraints

In the following example, we solve a simple quadratic test case used in Example 1 but in the
case where bounds are set for parameter estimates. We begin by defining the cost function, which
takes 3 input arguments and returns the value of the objective function as the f element of a list.
The starting point [1.2 1.9] is used. neldermead creates a new neldermead object. Then we use
neldermead.set to configure the parameters of the problem including the lower -boundsmin and
upper -boundsmax bounds. The initial simplex is computed from boxnbpoints random points within
the bounds. The variable simplex algorithm by Box is used, which corresponds to the -method ’box’
option. neldermead.search finally performs the search for the minimum.

> quadratic <- function(x=NULL,index=NULL,fmsfundata=NULL){

+ return(list(f=x[1]^2 + x[2]^2,

+ g=c(),

+ c=c(),

+ gc=c(),

+ index=index,

+ this=list(costfargument=fmsfundata)))

+ }

> set.seed(0)

> x0 <- transpose(c(1.2,1.9))

> nm <- neldermead()

> nm <- neldermead.set(nm,'numberofvariables',2)

> nm <- neldermead.set(nm,'function',quadratic)

> nm <- neldermead.set(nm,'x0',x0)

> nm <- neldermead.set(nm,'verbose',FALSE)

> nm <- neldermead.set(nm,'storehistory',TRUE)

> nm <- neldermead.set(nm,'verbosetermination',FALSE)

13

> nm <- neldermead.set(nm,'method','box')

> nm <- neldermead.set(nm,'boundsmin',c(1,1))

> nm <- neldermead.set(nm,'boundsmax',c(2,2))

> nm <- neldermead.search(nm)

> summary(nm)

Number of Estimated Variable(s): 2

Estimated Variable(s):

Initial Final Lower bound Upper bound

1 1.2 1.000001 1 2

2 1.9 1.000001 1 2

Cost Function:

function(x=NULL,index=NULL,fmsfundata=NULL){

return(list(f=x[1]^2 + x[2]^2,

g=c(),

c=c(),

gc=c(),

index=index,

this=list(costfargument=fmsfundata)))

}

<bytecode: 0x6fb0c78>

Cost Function Argument(s):

[1] ""

Optimization:

- Status: "maxfuneval"

- Initial Cost Function Value: 5.050000

- Final Cost Function Value: 2.000004

- Number of Iterations (max): 90 (100)

- Number of Function Evaluations (max): 100 (100)

Simplex Information:

- Simplex at Initial Point:

Dimension: n=2

Number of vertices: nbve=3

Vertex #1/3 : fv=5.050000e+00, x=1.200000e+00 1.900000e+00

Vertex #2/3 : fv=7.610000e+00, x=2.000000e+00 1.900000e+00

Vertex #3/3 : fv=5.440000e+00, x=1.200000e+00 2.000000e+00

- Simplex at Optimal Point:

Dimension: n=2

Number of vertices: nbve=3

Vertex #1/3 : fv=2.000004e+00, x=1.000001e+00 1.000001e+00

Vertex #2/3 : fv=2.000004e+00, x=1.000001e+00 1.000001e+00

Vertex #3/3 : fv=2.000004e+00, x=1.000001e+00 1.000001e+00

14

3.4 Example 4: Optimization with nonlinear inequality constraints

In the following example, we solve Michalewicz’s G6 test problem using Box’s methods [7] 1. This
problem consists in minimizing: G6(x) = (x1 − 10)3 + (x2 − 20)3, given the nonlinear constraints:

c1 : (x1 − 5)2 + (x2 − 5)2 − 100 ≥ 0
c2 : −(x1 − 6)2 − (x2 − 5)2 + 82.81 ≥ 0

and bounds: 13 ≤ x1 ≤ 100, 0 ≤ x2 ≤ 100.
We begin by defining the michalewicz function, which takes 3 input arguments and return the

value of the objective function and the constraint evaluations as the f and c elements of a list.
neldermead creates a new neldermead object. Then we use neldermead.set to configure the pa-
rameters of the problem, including the lower -boundsmin and upper -boundsmax bounds. The initial
simplex is computed from boxnbpoints random points within the bounds. The variable simplex al-
gorithm by Box is used, which corresponds to the -method ’box’ option. neldermead.search finally
performs the search for the minimum. The starting point ([15 4.99]) like all the vertices of the
optimization simplex must be feasible, i.e. they must satisfy all constraints and bounds. Constraints
are enforced by ensuring that all arguments of c in the cost function output are positive or null.
Note that the boundaries were set to stricter ranges to limit the sensitivity of the solution to the
initial guesses.

> michalewicz <- function(x=NULL,index=NULL,fmsfundata=NULL){

+ f <- c()

+ c <- c()

+ if (index == 2 | index ==6)

+ f <- (x[1]-10)^3+(x[2]-20)^3

+

+ if (index == 5 | index ==6)

+ c <- c((x[1]-5)^2+(x[2]-5)^2 -100,

+ 82.81-((x[1]-6)^2+(x[2]-5)^2))

+ varargout <- list(f=f,

+ g=c(),

+ c=c,

+ gc=c(),

+ index=index,

+ this=list(costfargument=fmsfundata))

+ return(varargout)

+ }

> set.seed(0)

> x0 <- transpose(c(15,4.99))

> nm <- neldermead()

> nm <- neldermead.set(nm,'numberofvariables',2)

> nm <- neldermead.set(nm,'nbineqconst',2)

> nm <- neldermead.set(nm,'function',michalewicz)

> nm <- neldermead.set(nm,'x0',x0)

> nm <- neldermead.set(nm,'maxiter',300)

> nm <- neldermead.set(nm,'maxfunevals',1000)

> nm <- neldermead.set(nm,'simplex0method','randbounds')

> nm <- neldermead.set(nm,'boxnbpoints',3)

> nm <- neldermead.set(nm,'storehistory',TRUE)

1Example suggested by Pascal Grandeau

15

> nm <- neldermead.set(nm,'method','box')

> nm <- neldermead.set(nm,'boundsmin',c(13,0))

> nm <- neldermead.set(nm,'boundsmax',c(20,10))

> nm <- neldermead.search(nm)

> summary(nm)

Number of Estimated Variable(s): 2

Estimated Variable(s):

Initial Final Lower bound Upper bound

1 15.00 14.0950000 13 20

2 4.99 0.8429608 0 10

Number of Inequality Contraints: 2

Cost Function:

function(x=NULL,index=NULL,fmsfundata=NULL){

f <- c()

c <- c()

if (index == 2 | index ==6)

f <- (x[1]-10)^3+(x[2]-20)^3

if (index == 5 | index ==6)

c <- c((x[1]-5)^2+(x[2]-5)^2 -100,

82.81-((x[1]-6)^2+(x[2]-5)^2))

varargout <- list(f=f,

g=c(),

c=c,

gc=c(),

index=index,

this=list(costfargument=fmsfundata))

return(varargout)

}

<bytecode: 0x7135ba0>

Cost Function Argument(s):

[1] ""

Optimization:

- Status: "impossibleimprovement"

- Initial Cost Function Value: -3256.754501

- Final Cost Function Value: -6961.813876

- Number of Iterations (max): 236 (300)

- Number of Function Evaluations (max): 794 (1000)

Simplex Information:

- Simplex at Initial Point:

Dimension: n=2

16

Number of vertices: nbve=3

Vertex #1/3 : fv=-3.256755e+03, x=1.500000e+01 4.990000e+00

Vertex #2/3 : fv=-3.276394e+03, x=1.506683e+01 4.953517e+00

Vertex #3/3 : fv=-3.188984e+03, x=1.507561e+01 5.082317e+00

- Simplex at Optimal Point:

Dimension: n=2

Number of vertices: nbve=3

Vertex #1/3 : fv=-6.961814e+03, x=1.409500e+01 8.429608e-01

Vertex #2/3 : fv=-6.961814e+03, x=1.409500e+01 8.429608e-01

Vertex #3/3 : fv=-6.961814e+03, x=1.409500e+01 8.429608e-01

3.5 Example 5: Passing data to the cost function

In the following example, we use a simple example to illustrate how to pass user-defined arguments
to a user-defined cost function. We try to find the mean and standard deviation of some normally
distributed data using maximum likelihood (actually a modifed negative log-likelihood approach) 2.

We begin by defining the negLL function, which takes 3 input arguments and return the value
of the objective function. The random dataset is then generated and stored in the list fmsdundata.
neldermead creates a new neldermead object. Then we use neldermead.set to configure the pa-
rameters of the problem, including costfargument, set to fmsdundata, and the lower -boundsmin

and upper -boundsmax bounds (the standard deviations has to be positive). The variable simplex
algorithm by Box is used. neldermead.search finally performs the search for the minimum.

> negLL <- function(x=NULL, index=NULL, fmsfundata=NULL){

+ mn <- x[1]

+ sdv <- x[2]

+ out <- -sum(dnorm(fmsfundata$data, mean=mn, sd=sdv, log=TRUE))

+

+ return(list(f = out,

+ index = index,

+ this=list(costfargument=fmsfundata)))

+ }

> set.seed(12345)

> fmsfundata <- structure(

+ list(data=rnorm(500,mean=50,sd=2)),

+ class='optimbase.functionargs')

> x0 <- transpose(c(45,3))

> nm <- neldermead()

> nm <- neldermead.set(nm,'numberofvariables',2)

> nm <- neldermead.set(nm,'function',negLL)

> nm <- neldermead.set(nm,'x0',x0)

> nm <- neldermead.set(nm,'costfargument',fmsfundata)

> nm <- neldermead.set(nm,'maxiter',500)

> nm <- neldermead.set(nm,'maxfunevals',1500)

> nm <- neldermead.set(nm,'method','box')

> nm <- neldermead.set(nm,'storehistory',TRUE)

2Example suggested by Mark Taper

17

> nm <- neldermead.set(nm,'boundsmin',c(-100, 0))

> nm <- neldermead.set(nm,'boundsmax',c(100, 100))

> nm <- neldermead.search(this=nm)

> summary(nm)

Number of Estimated Variable(s): 2

Estimated Variable(s):

Initial Final Lower bound Upper bound

1 45 50.164922 -100 100

2 3 1.978316 0 100

Cost Function:

function(x=NULL, index=NULL, fmsfundata=NULL){

mn <- x[1]

sdv <- x[2]

out <- -sum(dnorm(fmsfundata$data, mean=mn, sd=sdv, log=TRUE))

return(list(f = out,

index = index,

this=list(costfargument=fmsfundata)))

}

<bytecode: 0x6abbf90>

Cost Function Argument(s):

$data

[1] 51.17106 51.41893 49.78139 49.09301 51.21177 46.36409 51.26020

[8] 49.44763 49.43168 48.16136 49.76750 53.63462 50.74126 51.04043

[15] 48.49894 51.63380 48.22728 49.33684 52.24143 50.59745 51.55924

[22] 52.91157 48.71134 46.89373 46.80458 53.61020 49.03671 51.24076

[29] 51.22425 49.67538 51.62375 54.39367 54.09838 53.26489 50.50854

[36] 50.98238 49.35183 46.67590 53.53547 50.05160 52.25702 45.23928

[43] 47.87947 51.87428 51.70890 52.92146 47.17380 51.13481 51.16638

[50] 47.38640 48.91923 53.89539 50.10718 50.70333 48.65805 50.55591

[57] 51.38234 51.64759 54.29013 45.30611 50.29918 47.31494 51.10661

[64] 53.17993 48.82624 46.33525 51.77628 53.18698 51.03371 47.40866

[71] 50.10923 48.43070 47.90129 54.66102 52.80541 51.88520 51.65252

[78] 48.37692 50.95250 52.04252 51.29077 52.08629 49.39126 54.95422

[85] 51.94244 53.73420 51.34408 49.38409 51.07305 51.64974 48.07220

[92] 48.28983 53.77389 49.21636 48.03873 51.37466 48.98991 54.31544

[99] 48.80040 48.61091 50.44785 47.68755 50.84484 47.35049 50.28217

[106] 48.92790 49.37679 53.11222 49.10393 50.64225 47.53966 47.35188

[113] 52.52248 52.63846 49.83849 48.98982 49.89569 51.25772 54.36000

[120] 49.86197 53.08973 52.64290 50.64430 53.06191 49.15752 47.68236

[127] 46.30926 52.31465 45.75290 47.60794 53.28438 51.76731 51.04975

[134] 47.63068 55.31158 47.90417 47.97775 51.33784 50.25835 49.15485

[141] 47.71947 47.41257 48.81060 46.99837 50.03171 51.08034 46.90542

[148] 51.69931 51.79203 50.27738 46.76134 51.09680 50.39056 48.38700

[155] 49.78275 49.49811 53.39869 49.31140 50.13554 48.69886 49.02472

18

[162] 50.60630 49.51605 49.03653 48.01639 49.43870 51.26603 47.52036

[169] 53.52863 49.95264 50.39984 52.69439 50.07215 51.64916 46.59466

[176] 50.96190 54.96710 50.80273 50.43035 46.36858 48.17652 49.90191

[183] 49.18923 52.26076 51.63093 50.15284 52.90749 50.74824 49.65819

[190] 48.99557 51.08704 48.98963 51.57359 50.60190 52.62045 51.59687

[197] 51.70172 49.11286 49.10645 50.02661 47.12771 48.74148 50.48704

[204] 52.11672 51.66270 50.21042 46.51657 51.29049 50.19421 49.84653

[211] 51.98390 48.28150 49.43684 54.13249 48.77689 50.63123 51.32059

[218] 46.55560 45.73075 50.13789 51.73564 45.41991 49.69962 49.46244

[225] 53.58266 51.34454 49.58140 50.02437 53.06823 50.15458 50.15688

[232] 48.44148 50.33312 50.53065 51.78156 49.06422 51.51675 48.71653

[239] 51.25534 50.49666 48.59985 48.86520 49.47721 47.87223 49.78726

[246] 51.54221 55.49481 49.83213 51.08714 51.50572 48.38265 52.00224

[253] 50.91211 47.13150 49.46939 51.28354 49.16996 49.08085 48.41501

[260] 47.68292 51.42178 52.53520 49.71370 48.96994 52.96578 49.67482

[267] 50.08342 50.96608 47.63975 48.67285 48.73070 48.59607 51.15370

[274] 45.77384 50.52182 52.29425 50.02959 49.37652 48.08761 50.94683

[281] 46.97227 50.32856 48.25827 53.18666 51.29320 50.71474 50.20479

[288] 48.64947 51.94417 51.51174 49.14343 48.57215 49.61923 50.79973

[295] 48.04431 50.36747 45.69938 48.75407 48.46912 50.92862 51.04456

[302] 50.01959 49.11895 52.39898 49.76506 50.07642 52.38961 50.68792

[309] 49.34185 53.34172 48.16388 49.82439 52.64059 53.46157 54.32519

[316] 49.36854 48.84981 47.18729 54.53572 48.45829 50.76063 51.21027

[323] 52.03935 50.94989 45.62811 51.86638 50.95087 50.78056 48.54534

[330] 51.97311 52.84797 50.96946 50.69847 51.72025 50.80922 50.73409

[337] 46.96160 53.09961 50.99976 50.92175 54.15342 49.38470 51.90474

[344] 51.06558 49.80890 49.71587 47.63395 51.09064 44.83629 51.55780

[351] 50.58588 49.82658 47.06728 47.83364 52.11547 49.27936 50.70119

[358] 50.05652 50.94610 48.16169 49.24835 46.37433 50.57720 49.62075

[365] 50.03572 51.30086 50.62051 53.33671 51.34523 49.44496 49.70795

[372] 53.40286 50.94272 51.16340 51.33204 48.44220 52.32665 46.07091

[379] 51.53834 54.51954 49.04546 49.79484 50.73739 48.92913 51.01320

[386] 49.69889 51.80849 54.48407 47.60975 49.16295 51.59650 50.99634

[393] 50.23912 49.26559 50.52466 50.52541 51.28148 50.61418 49.93374

[400] 47.25050 51.25593 50.00429 50.56876 47.99644 48.76556 51.65639

[407] 49.83036 49.13056 47.59033 47.95863 48.05754 49.67817 52.40937

[414] 50.13349 48.23508 49.96016 50.65603 48.13874 47.73717 52.17246

[421] 51.02848 50.58634 48.87469 50.41429 52.45615 49.13997 52.66382

[428] 48.47347 52.46464 51.21812 48.35492 49.90470 50.34136 47.54986

[435] 50.77467 50.98134 54.47825 51.78442 51.59787 53.87089 50.78850

[442] 51.26504 50.20518 52.02042 52.42936 51.00174 48.18106 45.60558

[449] 50.87709 47.94117 51.42616 52.05654 48.85873 49.13198 52.01063

[456] 52.40709 52.99237 49.68680 48.12794 50.70508 47.42762 49.45495

[463] 50.31383 48.23637 49.75620 48.28950 47.98854 48.17210 45.84353

[470] 49.71871 52.59928 49.94126 45.52676 51.09006 51.66168 49.00484

[477] 48.79795 48.97560 49.99014 49.80570 49.95193 49.74522 49.73623

[484] 50.90748 47.18733 50.42186 51.50467 50.27676 50.31936 50.45687

[491] 47.67443 51.70932 49.51581 45.96801 49.54462 50.44834 48.52635

19

[498] 48.30658 49.77708 49.37680

attr(,"class")

[1] "optimbase.functionargs"

Optimization:

- Status: "impossibleimprovement"

- Initial Cost Function Value: 1858.501814

- Final Cost Function Value: 1050.592365

- Number of Iterations (max): 137 (500)

- Number of Function Evaluations (max): 268 (1500)

Simplex Information:

- Simplex at Initial Point:

Dimension: n=2

Number of vertices: nbve=3

Vertex #1/3 : fv=1.858502e+03, x=4.500000e+01 3.000000e+00

Vertex #2/3 : fv=1.599340e+03, x=4.600000e+01 3.000000e+00

Vertex #3/3 : fv=1.630588e+03, x=4.500000e+01 4.000000e+00

- Simplex at Optimal Point:

Dimension: n=2

Number of vertices: nbve=3

Vertex #1/3 : fv=1.050592e+03, x=5.016492e+01 1.978316e+00

Vertex #2/3 : fv=1.050592e+03, x=5.016492e+01 1.978316e+00

Vertex #3/3 : fv=1.050592e+03, x=5.016492e+01 1.978316e+00

3.6 Example 6: Direct grid search

In the following example, we use the Rosenbrock test case introduced as Example 2 to illustrate the
direct grid search capacity of neldermead. We begin by defining the Rosenbrock function, which
takes only one input argument and returns the value of the objective function. We request 6 points
per dimension of the problem and set the range of search around the standard starting point [-1.2
1.0] by providing limits. fmin.gridsearch performs the search and return a table sorted by value
of the cost function.

> rosenbrock <- function(x=NULL){

+ f <- 100*(x[2]-x[1]^2)^2+(1-x[1])^2

+ }

> x0 <- c(-1.2,1.0)

> npts <- 6

> xmin <- c(-2,-2)

> xmax <- c(2,2)

> grid <- fmin.gridsearch(fun=rosenbrock,x0=x0,xmin=xmin,xmax=xmax,npts=npts,alpha=alpha)

The grid contains 30 unique combinations.

Evaluating combination number: 1/30

Evaluating combination number: 2/30

20

Evaluating combination number: 3/30

Evaluating combination number: 4/30

Evaluating combination number: 5/30

Evaluating combination number: 6/30

Evaluating combination number: 7/30

Evaluating combination number: 8/30

Evaluating combination number: 9/30

Evaluating combination number: 10/30

Evaluating combination number: 11/30

Evaluating combination number: 12/30

Evaluating combination number: 13/30

Evaluating combination number: 14/30

Evaluating combination number: 15/30

Evaluating combination number: 16/30

Evaluating combination number: 17/30

Evaluating combination number: 18/30

Evaluating combination number: 19/30

Evaluating combination number: 20/30

Evaluating combination number: 21/30

Evaluating combination number: 22/30

Evaluating combination number: 23/30

Evaluating combination number: 24/30

Evaluating combination number: 25/30

Evaluating combination number: 26/30

Evaluating combination number: 27/30

Evaluating combination number: 28/30

Evaluating combination number: 29/30

Evaluating combination number: 30/30

> grid

x1 x2 f feasible

22 1.0 1 0.0 1

15 0.0 0 1.0 1

20 -1.0 1 4.0 1

24 -1.2 1 24.2 1

30 -1.2 2 36.2 1

16 1.0 0 100.0 1

28 1.0 2 100.0 1

9 0.0 -1 101.0 1

21 0.0 1 101.0 1

14 -1.0 0 104.0 1

26 -1.0 2 104.0 1

18 -1.2 0 212.2 1

10 1.0 -1 400.0 1

3 0.0 -2 401.0 1

27 0.0 2 401.0 1

29 2.0 2 401.0 1

8 -1.0 -1 404.0 1

21

25 -2.0 2 409.0 1

12 -1.2 -1 600.2 1

4 1.0 -2 900.0 1

23 2.0 1 901.0 1

2 -1.0 -2 904.0 1

19 -2.0 1 909.0 1

6 -1.2 -2 1188.2 1

17 2.0 0 1601.0 1

13 -2.0 0 1609.0 1

11 2.0 -1 2501.0 1

7 -2.0 -1 2509.0 1

5 2.0 -2 3601.0 1

1 -2.0 -2 3609.0 1

4 References

[1] C.T. Kelley. Iterative Methods for Optimization. SIAM Frontiers in Applied Mathematics,
Philadelphia, PA, 1999.

[2] J.A. Guin. Discussion and correspondence: modification of the complex method of constrained
optimization. The Computer Journal, 10(4):416–417, 1968.

[3] J.A. Nelder and R. Mead. A Simplex Method for Function Minimization. The Computer Journal,
7(4):308–313, 1965.

[4] M.J. Box. A New Method of Constrained Optimization and a Comparison With Other Methods.
The Computer Journal, 1(8):42–52, 1965.

[5] R. O’Neill. Algorithm AS47 - Function minimization using a simplex procedure. Applied Statis-
tics, 20:338–345, 1971.

[6] W. Spendley and G.R. Hext and F.R. Himsworth. Sequential Application of Simplex Designs in
Optimisation and Evolutionary Operation. Technometrics, 4:441–461, 1962.

[7] Z. Michalewicz and D.B. Fogel. How to solve it: modern heuristics, chapter Constraint-handling
techniques, pages 231–270. Springer, 2004.

5 Dependencies of fminsearch

We illustrate in the figures below the network of functions of the neldermead, optimbase, and
optimsimplex packages that are called from the fminsearch functions. This large network is broken
down in 6 plots, which are shown in the order functions are called. Green boxes represent functions
that are not expanded on a given plot but on a previous or later one.

22

n
e
ld

e
rm

e
a
d

o
p

ti
m

g
e
t

n
e
ld

e
rm

e
a
d

.s
e
t

n
e
ld

e
rm

e
a
d

.s
e
a
rc

h

n
e
ld

e
rm

e
a
d

.g
e
t

o
p

ti
m

si
m

p
le

x

o
p

ti
m

si
m

p
le

x
.c

o
m

p
u

te
fv

o
p

ti
m

si
m

p
le

x
.c

o
m

p
so

m
e
fv

n
e
ld

e
rm

e
a
d

.c
o
st

f

co
st

.t
ra

n
sp

o
se

x

o
p

ti
m

b
a
se

.f
u
n

ct
io

n
o
p

ti
m

b
a
se

.l
o
g

fm
in

se
a
rc

h
.f

u
n
ct

io
n

fu
n
 a

rg
u
m

e
n
t

o
f

fm
in

se
a
rc

h

o
p

ti
m

b
a
se

o
p

ti
m

se
t

o
p

ti
m

se
t.

m
e
th

o
d

fm
in

se
a
rc

h

o
p

ti
m

b
a
se

.s
e
t

o
p

ti
m

b
a
se

.g
e
t

o
p

ti
m

si
m

p
le

x
.g

ra
d

ie
n

tf
v

o
p

ti
m

si
m

p
le

x
.s

iz
e

o
p

ti
m

si
m

p
le

x
.g

ra
d

ce
n
te

r

o
p

ti
m

si
m

p
le

x
.g

ra
d

fo
rw

a
rd

o
p

ti
m

si
m

p
le

x
.r

e
fl
e
ct

o
p

ti
m

si
m

p
le

x
.d

ir
m

a
t

o
p

ti
m

si
m

p
le

x
.d

e
lt

a
fv

Fu
n
ct

io
n
s

D
u
p

lic
a
te

d
 f

u
n

ct
io

n
s

Fu
n
ct

io
n
 n

e
tw

o
rk

 e
x
p

a
n
d

e
d

 i
n
 o

th
e
r

p
lo

t(
s)

U
se

r-
d

e
fi
n
e
d

 f
u

n
ct

io
n
s

Fo
rk

D
ir

e
ct

 f
u
n

ct
io

n
 c

a
ll

Figure 1: fminsearch function network (1/6)

23

optimsimplex

optimsimplex.computefv optimsimplex.compsomefv neldermead.costf

cost.transposex

optimbase.function

optimbase.log

fminsearch.function
fun argument of

fminsearch

optimsimplex.gradientfv

optimsimplex.size

optimsimplex.gradcenter

optimsimplex.gradforward

optimsimplex.reflect

optimsimplex.dirmat

optimsimplex.deltafv

optimbase.checkcostneldermead.startupneldermead.search

optimbase.get optimbase.hasbounds

optimbase.checkbounds

optimbase.hasnlcons

optimbase.isfeasible

neldermead.log

neldermead.scaletox0

optimbase.checkshape

optimsimplex.getnbve

optimbase.get

optimsimplex.getx

scaleinconstrains optimbase.hasbounds

optimbase.proj2bnds

optimbase.isinnonlincons

optimsimplex.setve

optimsimplex.xbar

neldermead.scaletocenter

optimsimplex.destroy

optimsimplex.getfv

optimbase.set

neldermead.termstartup

optimsimplex.fvvariance

optimbase.outstruct

optimbase.outpoutcmd fminsearch.outputfun

neldermead.outpoutcmd

OutputFcn item in the options
argument for fminsearch

Functions

Duplicated functions

Function network expanded in other plot(s)

User-defined functions

Fork

Direct function call

Figure 2: fminsearch function network (2/6)

24

o
p
ti

m
b
a
se

.l
o
g

fm
in

se
a
rc

h
.f

u
n
ct

io
n

fu
n
 a

rg
u
m

e
n
t

o
f

fm
in

se
a
rc

h

n
e
ld

e
rm

e
a
d
.i
st

o
re

st
a
rt

n
e
ld

e
rm

e
a
d
.a

u
to

st
a
rt

n
e
ld

e
rm

e
a
d
.s

e
a
rc

h

o
p
ti

m
b
a
se

.g
e
t

n
e
ld

e
rm

e
a
d
.u

p
d
a
te

im
p

n
e
ld

e
rm

e
a
d
.l
o
g

n
e
ld

e
rm

e
a
d
.i
sr

ke
lle

y

o
p
ti

m
si

m
p
le

x
.g

e
tn

b
v
e

o
p
ti

m
si

m
p
le

x
.t

o
st

ri
n
g

o
p
ti

m
b
a
se

.h
a
sb

o
u
n
d
s

o
p
ti

m
b
a
se

.h
a
sn

lc
o
n
s

o
p
ti

m
b
a
se

.p
ro

j2
b
n
d
s

o
p
ti

m
b
a
se

.i
si

n
n

o
n
lin

co
n
s

o
p
ti

m
si

m
p
le

x
.s

e
tv

e

sc
a
le

in
co

n
st

ra
in

s

o
p
ti

m
b
a
se

.o
u
ts

tr
u
ct

o
p
ti

m
b
a
se

.o
u
tp

o
u

tc
m

d
fm

in
se

a
rc

h
.o

u
tp

u
tf

u
n

n
e
ld

e
rm

e
a
d
.o

u
tp

o
u

tc
m

d

O
u
tp

u
tF

cn
 i
te

m
 i
n
 t

h
e
 o

p
ti

o
n
s

a
rg

u
m

e
n
t

fo
r

fm
in

se
a
rc

h

n
e
ld

e
rm

e
a
d
.i
sr

o
n
e
ill

o
p
ti

m
b
a
se

.g
e
t

o
p
ti

m
b
a
se

.s
e
t

o
p
ti

m
si

m
p
le

x

o
p
ti

m
si

m
p
le

x
.d

e
st

ro
y

o
p
ti

m
b
a
se

.h
a
sb

o
u
n
d
s

o
p
ti

m
b
a
se

.f
u
n

ct
io

n

o
p
ti

m
si

m
p
le

x
.g

e
tx

o
p
ti

m
si

m
p
le

x
.s

iz
e

o
p
ti

m
si

m
p
le

x
.s

o
rt

o
p
ti

m
b
a
se

.g
e
t

o
p
ti

m
b
a
se

.l
o
g

o
p
ti

m
si

m
p
le

x

Fu
n
ct

io
n
s

D
u
p
lic

a
te

d
 f

u
n

ct
io

n
s

Fu
n
ct

io
n
 n

e
tw

o
rk

 e
x
p
a
n
d
e
d
 i
n
 o

th
e
r

p
lo

t(
s)

U
se

r-
d
e
fi
n
e
d
 f

u
n
ct

io
n
s

Fo
rk

D
ir

e
ct

 f
u
n

ct
io

n
 c

a
ll

Figure 3: fminsearch function network (3/6)

25

n
e
ld

e
rm

e
a
d
.a

lg
o

n
e
ld

e
rm

e
a
d
.fi

xe
d

o
p
ti

m
b
a
se

.h
a
sn

lc
o
n
s

th
is

$
m

e
th

o
d

n
e
ld

e
rm

e
a
d
.b

ox
o
p
ti

m
b
a
se

.l
o
g

o
p
ti

m
b
a
se

.o
u
ts

tr
u
ct

o
p
ti

m
si

m
p
le

x
.x

b
a
r

n
e
ld

e
rm

e
a
d
.s

to
re

h
is

to
ry

n
e
ld

e
rm

e
a
d
.o

u
tp

u
tc

m
d

n
e
ld

e
rm

e
a
d
.i
n
te

rp
o
la

te

n
e
ld

e
rm

e
a
d
.t

e
rm

in
a
ti

o
n

o
p
ti

m
b
a
se

.g
e
t

o
p
ti

m
si

m
p
le

x
.s

o
rt

n
e
ld

e
rm

e
a
d
.l
o
g

n
e
ld

e
rm

e
a
d
.v

a
ri

a
b
le

o
p
ti

m
si

m
p
le

x
.c

e
n

te
r

o
p
ti

m
si

m
p
le

x
.f

v
m

e
a
n

o
p
ti

m
b
a
se

.i
n
cr

it
e
r

o
p
ti

m
si

m
p
le

x
.g

e
tx

o
p
ti

m
si

m
p
le

x
.g

e
tf

v

o
p
ti

m
si

m
p
le

x
.g

e
ta

llx

o
p
ti

m
si

m
p
le

x
.d

e
lt

a
fv

m
a
x

o
p
ti

m
si

m
p
le

x
.s

iz
e

o
p
ti

m
si

m
p
le

x
.t

o
st

ri
n
g

o
p
ti

m
si

m
p
le

x
.s

e
tv

e

o
p
ti

m
si

m
p
le

x
.s

h
ri

n
k

o
p
ti

m
b
a
se

.s
e
t

o
p
ti

m
b
a
se

.h
is

ts
e
t

o
p
ti

m
b
a
se

.o
u
tp

u
tc

m
d

o
p
ti

m
b
a
se

.t
e
rm

in
a
te

o
p
ti

m
b
a
se

.g
ra

d
ie

n
tf

v

C
u
st

o
m

 t
e
rm

in
a
ti

o
n

fm
in

se
a
rc

h
.o

u
tp

u
tf

u
n

o
p
ti

m
b
a
se

.s
to

p
lo

g

o
p
ti

m
si

m
p
le

x
.g

ra
d
ce

n
te

r

o
p
ti

m
si

m
p
le

x
.g

ra
d
fo

rw
a
rd

O
u
tp

u
tF

cn
 i
te

m
 i
n
 t

h
e
 o

p
ti

o
n
s

a
rg

u
m

e
n
t

fo
r

fm
in

se
a
rc

h

o
p
ti

m
si

m
p
le

x
.r

e
fl
e
ct

o
p
ti

m
si

m
p
le

x
.d

ir
m

a
t

o
p
ti

m
si

m
p
le

x
.d

e
lt

a
fv

o
p
ti

m
si

m
p
le

x
.c

o
m

p
so

m
e
fv

o
p
ti

m
si

m
p
le

x

n
e
ld

e
rm

e
a
d
.c

o
st

f

co
st

.t
ra

n
sp

o
se

x

o
p
ti

m
b
a
se

.f
u
n

ct
io

n
o
p
ti

m
b
a
se

.l
o
g

fm
in

se
a
rc

h
.f

u
n
ct

io
n

fu
n
 a

rg
u
m

e
n
t

o
f

fm
in

se
a
rc

h

Fu
n
ct

io
n
s

D
u
p
lic

a
te

d
 f

u
n

ct
io

n
s

Fu
n
ct

io
n
 n

e
tw

o
rk

 e
x
p
a
n
d
e
d
 i
n
 o

th
e
r

p
lo

t(
s)

U
se

r-
d
e
fi
n
e
d
 f

u
n
ct

io
n
s

Fo
rk

D
ir

e
ct

 f
u
n

ct
io

n
 c

a
ll

Figure 4: fminsearch function network (4/6)

26

n
e
ld

e
rm

e
a
d

.a
lg

o

n
e
ld

e
rm

e
a
d

.fi
xe

d

o
p

ti
m

b
a
se

.h
a
sc

o
n
st

ra
in

ts

th
is

$
m

e
th

o
d

n
e
ld

e
rm

e
a
d

.b
ox

o
p

ti
m

b
a
se

.l
o
g

o
p
ti

m
b

a
se

.o
u
ts

tr
u
ct

o
p

ti
m

si
m

p
le

x
.x

b
a
r

n
e
ld

e
rm

e
a
d

.s
to

re
h
is

to
ry

n
e
ld

e
rm

e
a
d

.o
u
tp

u
tc

m
d

n
e
ld

e
rm

e
a
d

.i
n
te

rp
o
la

te

n
e
ld

e
rm

e
a
d

.t
e
rm

in
a
ti

o
n

o
p
ti

m
b

a
se

.g
e
t

o
p

ti
m

si
m

p
le

x
.s

o
rt

n
e
ld

e
rm

e
a
d
.l
o
g

n
e
ld

e
rm

e
a
d

.v
a
ri

a
b
le

o
p
ti

m
si

m
p

le
x
.c

e
n

te
r

o
p

ti
m

si
m

p
le

x
.f

v
m

e
a
n

o
p

ti
m

b
a
se

.i
n
cr

it
e
r

o
p
ti

m
si

m
p

le
x
.g

e
tx

o
p

ti
m

si
m

p
le

x
.g

e
tf

v

o
p

ti
m

si
m

p
le

x
.g

e
ta

llx

o
p
ti

m
si

m
p

le
x
.d

e
lt

a
fv

m
a
x

o
p

ti
m

si
m

p
le

x
.s

iz
e

o
p

ti
m

si
m

p
le

x
.t

o
st

ri
n
g

o
p

ti
m

si
m

p
le

x
.s

e
tv

e

o
p

ti
m

si
m

p
le

x
.s

h
ri

n
k

o
p

ti
m

b
a
se

.h
is

ts
e
t

o
p

ti
m

b
a
se

.o
u
tp

u
tc

m
d

o
p

ti
m

b
a
se

.t
e
rm

in
a
te

o
p
ti

m
b

a
se

.g
ra

d
ie

n
tf

v

C
u
st

o
m

 t
e
rm

in
a
ti

o
n

fm
in

se
a
rc

h
.o

u
tp

u
tf

u
n

o
p

ti
m

b
a
se

.s
to

p
lo

g

o
p
ti

m
si

m
p

le
x
.g

ra
d
ce

n
te

r

o
p

ti
m

si
m

p
le

x
.g

ra
d

fo
rw

a
rd

O
u
tp

u
tF

cn
 i
te

m
 i
n
 t

h
e
 o

p
ti

o
n
s

a
rg

u
m

e
n
t

fo
r

fm
in

se
a
rc

h

o
p
ti

m
si

m
p
le

x
.r

e
fl
e
ct

o
p
ti

m
si

m
p
le

x
.d

ir
m

a
t

o
p
ti

m
si

m
p
le

x
.d

e
lt

a
fv

o
p
ti

m
si

m
p
le

x
.c

o
m

p
so

m
e
fv

o
p
ti

m
si

m
p
le

x

n
e
ld

e
rm

e
a
d

.c
o
st

f

co
st

.t
ra

n
sp

o
se

x

o
p

ti
m

b
a
se

.f
u
n

ct
io

n
o
p
ti

m
b

a
se

.l
o
g

fm
in

se
a
rc

h
.f

u
n
ct

io
n

fu
n
 a

rg
u
m

e
n
t

o
f

fm
in

se
a
rc

h

Fu
n
ct

io
n
s

D
u
p
lic

a
te

d
 f

u
n

ct
io

n
s

Fu
n
ct

io
n
 n

e
tw

o
rk

 e
x
p
a
n
d
e
d
 i
n
 o

th
e
r

p
lo

t(
s)

U
se

r-
d
e
fi
n
e
d
 f

u
n
ct

io
n
s

Fo
rk

D
ir

e
ct

 f
u
n

ct
io

n
 c

a
ll

Figure 5: fminsearch function network (5/6)

27

n
e
ld

e
rm

e
a
d

.a
lg

o

n
e
ld

e
rm

e
a
d

.fi
xe

d

o
p

ti
m

b
a
se

.h
a
sc

o
n
st

ra
in

ts

th
is

$
m

e
th

o
d

n
e
ld

e
rm

e
a
d

.b
ox

o
p

ti
m

b
a
se

.l
o
g

o
p
ti

m
b

a
se

.o
u
ts

tr
u
ct

o
p

ti
m

si
m

p
le

x
.x

b
a
r

n
e
ld

e
rm

e
a
d

.s
to

re
h
is

to
ry

n
e
ld

e
rm

e
a
d

.o
u
tp

u
tc

m
d

b
ox

lin
se

a
rc

h

n
e
ld

e
rm

e
a
d

.t
e
rm

in
a
ti

o
n

o
p
ti

m
b

a
se

.g
e
t

o
p

ti
m

si
m

p
le

x
.s

o
rt

n
e
ld

e
rm

e
a
d
.l
o
g

n
e
ld

e
rm

e
a
d

.v
a
ri

a
b
le

o
p
ti

m
si

m
p

le
x
.c

e
n

te
r

o
p

ti
m

si
m

p
le

x
.f

v
m

e
a
n

o
p

ti
m

b
a
se

.i
n
cr

it
e
r

o
p
ti

m
si

m
p

le
x
.g

e
tx

o
p

ti
m

si
m

p
le

x
.g

e
tf

v

o
p

ti
m

si
m

p
le

x
.g

e
ta

llx

o
p
ti

m
si

m
p

le
x
.d

e
lt

a
fv

m
a
x

o
p

ti
m

si
m

p
le

x
.s

iz
e

o
p

ti
m

si
m

p
le

x
.t

o
st

ri
n
g

o
p

ti
m

si
m

p
le

x
.s

e
tv

e

o
p

ti
m

b
a
se

.h
is

ts
e
t

o
p

ti
m

b
a
se

.o
u
tp

u
tc

m
d

o
p

ti
m

b
a
se

.t
e
rm

in
a
te

o
p
ti

m
b

a
se

.g
ra

d
ie

n
tf

v

C
u
st

o
m

 t
e
rm

in
a
ti

o
n

fm
in

se
a
rc

h
.o

u
tp

u
tf

u
n

o
p

ti
m

b
a
se

.s
to

p
lo

g

o
p
ti

m
si

m
p

le
x
.g

ra
d
ce

n
te

r

o
p

ti
m

si
m

p
le

x
.g

ra
d

fo
rw

a
rd

O
u
tp

u
tF

cn
 i
te

m
 i
n
 t

h
e
 o

p
ti

o
n
s

a
rg

u
m

e
n
t

fo
r

fm
in

se
a
rc

h

o
p
ti

m
si

m
p
le

x
.r

e
fl
e
ct

o
p
ti

m
si

m
p
le

x
.d

ir
m

a
t

o
p
ti

m
si

m
p
le

x
.d

e
lt

a
fv

o
p
ti

m
si

m
p
le

x
.c

o
m

p
so

m
e
fv

o
p
ti

m
si

m
p
le

x

n
e
ld

e
rm

e
a
d

.c
o
st

f

co
st

.t
ra

n
sp

o
se

x

o
p

ti
m

b
a
se

.f
u
n

ct
io

n
o
p
ti

m
b

a
se

.l
o
g

fm
in

se
a
rc

h
.f

u
n
ct

io
n

fu
n
 a

rg
u
m

e
n
t

o
f

fm
in

se
a
rc

h

o
p

ti
m

si
m

p
le

x
.g

e
tn

b
v
e

o
p

ti
m

b
a
se

.h
a
sb

o
u
n
d

s

o
p
ti

m
b

a
se

.s
e
t

n
e
ld

e
rm

e
a
d

.i
n
te

rp
o
la

te

o
p

ti
m

b
a
se

.h
a
sn

lc
o
n
s

o
p
ti

m
b

a
se

.g
e
t

o
p

ti
m

b
a
se

.i
sn

o
n

lin
co

n
s

o
p

ti
m

b
a
se

.g
e
t

Fu
n
ct

io
n
s

D
u
p
lic

a
te

d
 f

u
n

ct
io

n
s

Fu
n
ct

io
n
 n

e
tw

o
rk

 e
x
p
a
n
d
e
d
 i
n
 o

th
e
r

p
lo

t(
s)

U
se

r-
d
e
fi
n
e
d
 f

u
n
ct

io
n
s

Fo
rk

D
ir

e
ct

 f
u
n

ct
io

n
 c

a
ll

Figure 6: fminsearch function network (6/6)

28

6 Help on neldermead functions

neldermead-package R port of the Scilab neldermead module

Description

The goal of this package is to provide a Nelder-Mead direct search optimization method. That
Nelder-Mead algorithm may be used in the following optimization context:

� there is no need to provide the derivatives of the objective function,

� the number of parameters is small (up to 10-20),

� there are bounds and/or non linear constraints.

Design

This package provides the following components:

� neldermead provides various Nelder-Mead variants and manages for Nelder-Mead specific
settings, such as the method to compute the initial simplex, the specific termination criteria,

� fminsearch provides a simplified Nelder-Mead algorithm. Specific termination criteria,
initial simplex and auxiliary settings are automatically configured.

� fminbnd provides a simplified Box algorithm, ie the equivalent of fminsearch for uncon-
strained search.

� optimset, optimget provide commands to emulate their Scilab counterparts.

� optimplotfunccount, optimplotx and optimplotfval provide plotting features for the
fminsearch function (Not implemented yet).

� nmplot provides a high-level component which provides directly output pictures for Nelder-
Mead algorithm. (Not implemented yet).

The current component is based on the following packages

� optimbase: provides an abstract class for a general optimization component, including
the number of variables, the minimum and maximum bounds, the number of non linear
inequality constraints, the loggin system, various termination criteria, the cost function,
etc...

� optimsimplex: provides a class to manage a simplex made of an arbitrary number of ver-
tices, including the computation of a simplex by various methods (axes, regular, Pfeffer’s,
randomized bounds), the computation of the size by various methods (diameter, sigma+,
sigma-, etc...),

Features

The following is a list of features the Nelder-Mead prototype algorithm currently provides:

� Provides 3 algorithms, including

– the fixed shape algorithm of Spendley et al.,

– the variable shape algorithm of Nelder and Mead,

29

– Box’s ’complex’ algorithm managing bounds and nonlinear inequality constraints based
on arbitrary number of vertices in the simplex.

� Manage various simplex initializations:

– initial simplex given by user,

– initial simplex computed with a length and along the coordinate axes,

– initial regular simplex computed with formula of Spendley et al.,

– initial simplex computed by a small perturbation around the initial guess point.

� Manage cost function:

– optional additional argument,

– direct communication of the task to perform: cost function or inequality constraints.

� Manage various termination criteria, including maximum number of iterations, tolerance
on function value (relative or absolute):

– tolerance on x (relative or absolute),

– tolerance on standard deviation of function value (original termination criteria in Box
1965),

– maximum number of evaluations of cost function,

– absolute or relative simplex size.

� Manage the history of the convergence, including:

– history of function values,

– history of optimum point,

– history of simplices,

– history of termination criteria.

� Provide a plot command which allows to graphically see the history of the simplices toward
the optimum (Not yet implemented).

� Provide query features for the status of the optimization process: number of iterations,
number of function evaluations, status of execution, function value at initial point, function
value at optimal point, etc...

� Kelley restart based on simplex gradient.

� O’Neill restart based on factorial search around optimum.

Details

Package: neldermead
Type: Package
Version: 1.0-11
Date: 2018-02-12
License: CeCILL-2
LazyLoad: yes

See vignette('neldermead',package='neldermead') for more information.

30

Author(s)

Author of Scilab neldermead module: Michael Baudin (INRIA - Digiteo)

Author of R adaptation: Sebastien Bihorel (<sb.pmlab@gmail.com>)

References

’Sequential Application of Simplex Designs in Optimisation and Evolutionary Operation’, Spend-
ley, W. and Hext, G. R. and Himsworth, F. R., American Statistical Association and American
Society for Quality, 1962

’A Simplex Method for Function Minimization’, Nelder, J. A. and Mead, R., The Computer
Journal, 1965

’A New Method of Constrained Optimization and a Comparison With Other Methods’, M. J.
Box, The Computer Journal 1965 8(1):42-52, 1965 by British Computer Society

’Discussion and correspondence: modification of the complex method of constrained optimiza-
tion’, J. A. Guin, The Computer Journal, 1968

’Detection and Remediation of Stagnation in the Nelder–Mead Algorithm Using a Sufficient
Decrease Condition’, Kelley C. T., SIAM J. on Optimization, 1999

’Iterative Methods for Optimization’, C. T. Kelley, SIAM Frontiers in Applied Mathematics,
1999

’Algorithm AS47 - Function minimization using a simplex procedure’, O’Neill, R., Applied
Statistics, 1971

See Also

optimbase optimsimplex

costf.transposex Cost Function Call

Description

Call the cost function after transposition of the value of the point estimate x, so that the input
row vector, given by optimsimplex, is transposed into a column vector as required by the cost
function.

Usage

costf.transposex(x = NULL, this = NULL)

Arguments

x The point estimate provide as a row matrix.

this A neldermead object.

31

Value

Return the value of the cost function (called by neldermead.costf.)

Author(s)

Author of Scilab neldermead module: Michael Baudin (INRIA - Digiteo)

Author of R adaptation: Sebastien Bihorel (<sb.pmlab@gmail.com>)

See Also

neldermead.costf

fmin.gridsearch Grid evaluation of an unconstrained cost function

Description

Evaluate an unconstrained cost function on a grid of points around a given initial point estimate.

Usage

fmin.gridsearch(fun = NULL, x0 = NULL, xmin = NULL,

xmax = NULL, npts = 3, alpha = 10)

Arguments

fun An unconstrained cost function returning a numeric scalar, similar to those
used in the fminsearch function.

x0 The initial point estimate, provided as a numeric vector.

xmin Optional: a vector of lower bounds.

xmax Optional: a vector of upper bounds.

npts An integer scalar greater than 2, indicating the number of evaluation points
will be used on each dimension to build the search grid.

alpha A vector of numbers greater than 1, which give the factor(s) used to calculate
the evaluation range of each dimension of the search grid (see Details). If
alpha length is lower than that of x0, elements of alpha are recycled. If its
length is higher than that of x0, alpha is truncated.

Details

fmin.gridsearch evaluates the cost function at each point of a grid of npts^length(x0) points.
If lower (xmin) and upper (xmax) bounds are provided, the range of evaluation points is limited
by those bounds and alpha is not used. Otherwise, the range of evaluation points is defined as
[x0/alpha,x0*alpha].

The actual evaluation of the cost function is delegated to optimbase.gridsearch.

32

Value

Return a data.frame with the coordinates of the evaluation point, the value of the cost func-
tion and its feasibility. Because the cost function is unconstrained, it is always feasible. The
data.frame is ordered by feasibility and increasing value of the cost function.

Author(s)

Sebastien Bihorel (<sb.pmlab@gmail.com>)

See Also

fminsearch, optimbase.gridsearch

fminsearch.function fminsearch Cost Function Call

Description

This function calls the cost function and makes it match neldermead requirements. It is used in
the fminsearch function as the function element of the neldermead object (see ?neldermead

and ?neldermead.set).

Usage

fminsearch.function(x = NULL, index = NULL, fmsfundata = NULL)

Arguments

x A single column vector of parameter estimates.

index An integer variable set to 2, indicating that only the cost function is to be
computed by the algorithm.

fmsfundata An object of class ’optimbase.functionargs’ and with (at least) a fun element,
which contains the user-defined cost function.

Value

Returns a list with the following elements:

f The value of the cost function at the current point estimate.

index The same index variable.

this A list with a single element costargument which contains fmsfundata.

Author(s)

Author of Scilab neldermead module: Michael Baudin (INRIA - Digiteo)

Author of R adaptation: Sebastien Bihorel (<sb.pmlab@gmail.com>)

33

See Also

fminsearch, neldermead, neldermead.set,

fminbnd.outputfun fminbnd Output Function Call

Description

This function calls the output function and make it match neldermead requirements. It is used in
the fminbnd function as the outputcommand element of the neldermead object (see ?neldermead
and ?neldermead.set).

Usage

fminbnd.outputfun(state = NULL, data = NULL, fmsdata = NULL)

Arguments

state The current state of the algorithm either ’init’, ’iter’ or ’done’.

data The data at the current state. This is an object of class ’neldermead.data’, i.e.
a list with the following elements:

x The current parameter estimates.

fval The current value of the cost function.

simplex The current simplex object.

iteration The number of iterations performed.

funccount The number of function evaluations.

step The type of step in the previous iteration.

fmsdata This is an object of class ’optimbase.functionargs’ which contains specific data
of the fminbnd algorithm:

Display what to display

OutputFcn the array of output functions

PlotFcns the array of plot functions

Value

This function does not return any data, but execute the output function(s).

Author(s)

Author of Scilab neldermead module: Michael Baudin (INRIA - Digiteo)

Author of R adaptation: Sebastien Bihorel (<sb.pmlab@gmail.com>)

See Also

fminbnd, neldermead, neldermead.set,

34

fminsearch Computation of the unconstrained minimum of given function with
the Nelder-Mead algorithm.

Description

This function searches for the unconstrained minimum of a given cost function. The provided
algorithm is a direct search algorithm, i.e. an algorithm which does not use the derivative
of the cost function. It is based on the update of a simplex, which is a set of k>=n+1 ver-
tices, where each vertex is associated with one point and one function value. This algorithm
is the Nelder-Mead algorithm. This function is based on a specialized use of the more general
neldermead function bundle. Users who want to have a more flexible solution based on direct
search algorithms should consider using the neldermead functions instead of the fminsearch

function.

Usage

fminsearch(fun = NULL, x0 = NULL, options = NULL, verbose=FALSE)

Arguments

fun A cost function return a numeric scalar.

x0 A numerical vector of initial guesses (length n).

options A list of optimization options, which drives the behaviour of fminsearch.
These options must be set with the optimset function (see ?optimset) which
returns a list with the following elements:

MaxIter The maximum number of iterations. The default is 200 * n.

MaxFunEvals The maximum number of evaluations of the cost function.
The default is 200 * n.

TolFun The absolute tolerance on function value. The default value is 1.e-4.

TolX The absolute tolerance on simplex size. The default value is 1.e-4.

Display The verbose level.

OutputFcn The output function, or a list of output functions called at the
end of each iteration. The default value is NULL.

PlotFcns The plot function, or a list of plotput functions called at the end
of each iteration. The default value is empty.

verbose The verbose option, controlling the amount of messages.

Details

Termination criteria

In this section, we describe the termination criteria used by fminsearch. The criteria is based
on the following variables:

ssize the current simplex size,

35

shiftfv the absolute value of the difference of function value between the highest and lowest
vertices.

If both ssize < options$TolX and shiftfv < options$TolFun conditions are true, then the
iterations stop. The size of the simplex is computed using the ’sigmaplus’ method of the optim-
simplex package. The ’sigmamplus’ size is the maximum length of the vector from each vertex
to the first vertex. It requires one loop over the vertices of the simplex.

The initial simplex

The fminsearch algorithm uses a special initial simplex, which is an heuristic depending on the
initial guess. The strategy chosen by fminsearch corresponds to the content of simplex0method
element of the neldermead object (set to ’pfeffer’). It is applied using the content of the
simplex0deltausual (0.05) and simplex0deltazero (0.0075) elements. Pfeffer’s method is
an heuristic which is presented in ’Global Optimization Of Lennard-Jones Atomic Clusters’ by
Ellen Fan. It is due to L. Pfeffer at Stanford. See in the help of optimsimplex for more details.

The number of iterations

In this section, we present the default values for the number of iterations in fminsearch.

The options input argument is an optional list which can contain the MaxIter field, which stores
the maximum number of iterations. The default value is 200n, where n is the number of variables.
The factor 200 has not been chosen by chance, but is the result of experiments performed
against quadratic functions with increasing space dimension. This result is presented in ’Effect
of dimensionality on the Nelder-mead simplex method’ by Lixing Han and Michael Neumann.
This paper is based on Lixing Han’s PhD, ’Algorithms in Unconstrained Optimization’. The
study is based on numerical experiments with a quadratic function where the number of terms
depends on the dimension of the space (i.e. the number of variables). Their study showed that
the number of iterations required to reach the tolerance criteria is roughly 100n. Most iterations
are based on inside contractions. Since each step of the Nelder-Mead algorithm only require one
or two function evaluations, the number of required function evaluations in this experiment is
also roughly 100n.

Output and plot functions

The optimset function can be used to configure one or more output and plot functions. The
output or plot function is expected to have the following definition:

myfun <- function(x , optimValues , state)

The input arguments x, optimValues and state are described in detail in the optimset help
page. The optimValues$procedure field represents the type of step performed at the current
iteration and can be equal to one of the following strings:

� ” (the empty string),

� ’initial simplex’,

� ’expand’,

� ’reflect’,

� ’contract inside’,

� ’contract outside’.

36

Value

Return a object of class neldermead. Use the neldermead.get to extract the following element
from the returned object:

xopt The vector of n numeric values, minimizing the cost function.

fopt The minimum value of the cost function.

exitflag The flag associated with exist status of the algorithm. The following values are avail-
able:

-1 The maximum number of iterations has been reached.

0 The maximum number of function evaluations has been reached.

1 The tolerance on the simplex size and function value delta has been reached. This
signifies that the algorithm has converged, probably to a solution of the problem.

output A list which stores detailed information about the exit of the algorithm. This list
contains the following fields:

algorithm A string containing the definition of the algorithm used, i.e. ’Nelder-Mead
simplex direct search’.

funcCount The number of function evaluations.

iterations The number of iterations.

message A string containing a termination message.

Author(s)

Author of Scilab neldermead module: Michael Baudin (INRIA - Digiteo)

Author of R adaptation: Sebastien Bihorel (<sb.pmlab@gmail.com>)

References

’Sequential Application of Simplex Designs in Optimisation and Evolutionary Operation’, Spend-
ley, W. and Hext, G. R. and Himsworth, F. R., American Statistical Association and American
Society for Quality, 1962

’A Simplex Method for Function Minimization’, Nelder, J. A. and Mead, R., The Computer
Journal, 1965

’Iterative Methods for Optimization’, C. T. Kelley, SIAM Frontiers in Applied Mathematics,
1999

’Algorithm AS47 - Function minimization using a simplex procedure’, O’Neill, R., Applied
Statistics, 1971

’Effect of dimensionality on the nelder-mead simplex method’, Lixing Han and Michael Neu-
mann, Optimization Methods and Software, 21, 1, 1–16, 2006.

’Algorithms in Unconstrained Optimization’, Lixing Han, Ph.D., The University of Connecticut,
2000.

’Global Optimization Of Lennard-Jones Atomic Clusters’ Ellen Fan, Thesis, February 26, 2002,
McMaster University

See Also

optimset neldermead

37

Examples

#In the following example, we use the fminsearch function to compute the minimum

#of the Rosenbrock function. We first define the function 'banana', and then use

#the fminsearch function to search the minimum, starting with the initial guess

#(-1.2, 1.0). In this particular case, 85 iterations are performed with 159

#function evaluations

banana <- function(x){

y <- 100*(x[2]-x[1]^2)^2 + (1-x[1])^2

}

sol <- fminsearch(banana, c(-1.2,1))

sol

#In the following example, we configure the absolute tolerance on the size of

#the simplex to a larger value, so that the algorithm performs less iterations.

#Since the default value of 'TolX' for the fminsearch function is 1.e-4, we

#decide to use 1.e-2. The optimset function is used to create an optimization

#option list and the field 'TolX' is set to 1.e-2. The options list is then

#passed to the fminsearch function as the third input argument. In this

#particular case, the number of iterations is 70 with 130 function evaluations.

opt <- optimset(TolX=1.e-2)

sol <- fminsearch(banana, c(-1.2,1), opt)

sol

#In the following example, we want to produce intermediate outputs of the

#algorithm. We define the outfun function, which takes the current point x as

#input argument. The function plots the current point into the current graphic

#window with the plot function. We use the 'OutputFcn' feature of the optimset

#function and set it to the output function. Then the option list is passed

#to the fminsearch function. At each iteration, the output function is called

#back, which creates and update a plot. While this example creates a 2D plot,

#the user may customized the output function so that it writes a message in

#the console, write some data into a data file, etc... The user can distinguish

#between the output function (associated with the 'OutputFcn' option) and the

#plot function (associated with the 'PlotFcns' option). See the optimset for

#more details on this feature.

outfun <- function(x, optimValues, state){

plot(x[1],x[2],xlim=c(-1.5,1.5),ylim=c(-1.5,1.5))

par(new=TRUE)

}

opt <- optimset(OutputFcn=outfun)

sol <- fminsearch(banana, c(-1.2,1), opt)

sol

#The 'Display' option allows to get some input about the intermediate steps of

#the algorithm as well as to be warned in case of a convergence problem.

#In the following example, we present what happens in case of a convergence

#problem. We set the number of iterations to 10, instead of the default 400

#iterations. We know that 85 iterations are required to reach the convergence

#criteria. Therefore, the convergence criteria is not met and the maximum number

#of iterations is reached.

38

opt <- optimset(MaxIter=10)

sol <- fminsearch(banana, c(-1.2,1), opt)

#Since the default value of the 'Display' option is 'notify', a message is

#generated, which warns the user about a possible convergence problem. The

#previous script produces the following output.

Exiting: Maximum number of iterations has been exceeded

- increase MaxIter option.

Current function value: 4.1355598

#In the following example, we present how to display intermediate steps used by

#the algorithm. We simply set the 'Display' option to the 'iter' value. This

#option allows to see the number of function evaluations, the minimum function

#value and which type of simplex step is used for the iteration.

opt <- optimset(Display='iter')

sol <- fminsearch(banana, c(-1.2,1), opt)

sol

neldermead.algo Nelder-Mead Algorithm

Description

neldermead.algo performs an optimization without restart using the method associated with
the method element of the neldermead object; neldermead.fixed, neldermead.variable, neldermead.box,
boxlinesearch, neldermead.storehistory, neldermead.termination, and neldermead.interpolate

are utility functions for neldermead.algo.

Usage

neldermead.algo(this = NULL)

neldermead.fixed(this = NULL)

neldermead.variable(this = NULL)

neldermead.box(this = this)

boxlinesearch(this = NULL, n = NULL, xbar = NULL, xhigh = NULL, fhigh = NULL,

rho = NULL)

neldermead.storehistory(this = NULL, n = NULL, fopt = NULL, xopt = NULL,

fv = NULL, xcoords = NULL)

neldermead.termination(this = NULL, fvinitial = NULL, oldfvmean = NULL,

newfvmean = NULL, previousxopt = NULL,

currentxopt = NULL, simplex = NULL)

neldermead.interpolate(x1 = NULL, x2 = NULL, fac = NULL)

Arguments

this A neldermead object.

n Number of variables.

39

xbar The centroid.

xhigh The high point.

fhigh The value of the cost function at xhigh.

rho The reflection factor.

fopt The current value of the function at the current optimum point estimate.

xopt The current optimum point estimate.

fv The function values, with size nbve x 1.

xcoords Matrix of size n x n+1, coordinates of the n+1 vertices

fvinitial The initial cost function value.

oldfvmean The old cost function value average on the simplex.

newfvmean The new cost function value average on the simplex.

previousxopt The previous point estimate.

currentxopt The current point estimate.

simplex The simplex. The best point estimate in the simplex is expected to be stored
at 1, while the worst point estimate in the simplex is expected to be stored at
n+1.

x1 The first reference point estimate to perform the interpolation.

x2 The second reference point estimate to perform the interpolation.

fac A factor to perform the interpolation.

Details

neldermead.fixed The simplex algorithm with fixed size simplex. We implement the following
’rules’ of the method of Spendley et al.

� Rule 1 is strictly applied, but the reflection is done by reflection of the high point, since
we minimize a function instead of maximizing it, like Spendley.

� Rule 2 is NOT implemented, as we expect that the function evaluation is not subject
to errors.

� Rule 3 is applied, i.e. reflection with respect to next to high point. A shrink step is
included, with shrinkage factor sigma.

Rule 1. Ascertain the lowest reading y, of yi ... Yk+1 Complete a new simplex Sp by
excluding the point Vp corresponding to y, and replacing it by V* defined as above.

Rule 2. If a result has occurred in (k + 1) successive simplexes, and is not then eliminated
by application of Rule 1, do not move in the direction indicated by Rule 1, or at all, but
discard the result and replace it by a new observation at the same point.

Rule 3. If y is the lowest reading in So , and if the next observation made, y* , is the lowest
reading in the new simplex S , do not apply Rule 1 and return to So from Sp . Move out
of S, by rejecting the second lowest reading (which is also the second lowest reading in So).

neldermead.variable The original Nelder-Mead algorithm, with variable-size simplex.

neldermead.box The Nelder-Mead algorithm, with variable-size simplex and modifications by
Box for bounds and inequality constraints.

40

boxlinesearch Called by neldermead.box, i.e. Box’s method. Perform a line search from xbar,
on the line (xhigh,xbar). The reflected point estimate satisfies the following constraints:

� fr < fhigh

� xr satisfies the bounds constraints

� xr satisfies the nonlinear positive inequality constraints

� xr satisfies the linear positive inequality constraints

The method is based on projection and scaling toward the centroid.

neldermead.storehistory Store the optimization history into the neldermead object.

neldermead.termination Determine if the algorithm must continue or terminate. The function
uses the cost function average in the simplex instead of the best cost function value. This
is because the function average changes at each iteration. Instead, the best function value
has a step-by-step evolution and may not change between two successive iterations, leading
to a stop of the algorithm.

neldermead.interpolate Compute the point estimate xi as an interpolation between x1 and
x2, as follows: xi = (1+fac)x1 - fac*x2

Value

neldermead.fixed, neldermead.variable, and neldermead.box Return the updated nelder-
mead object, containing the optimum point estimate.

boxlinesearch Return a list with the following elements:

this The updated neldermead object.

status TRUE if the search is successful, FALSE otherwise.

xr The reflected point estimate.

fr The value of the cost function at xr.

neldermead.storehistory Return the updated neldermead object.

neldermead.termination Return a list with the following elements:

this The updated neldermead object

terminate TRUE if the algorithm terminates, FALSE if the algorithm must continue.

status The termination status: ’continue’, ’maxiter’, ’maxfuneval’, ’tolf’, ’tolx’, ’tolsize’,
’tolsizedeltafv’, ’kelleystagnation’, ’tolboxf’, ’tolvariance’ or the user-defined termina-
tion status.

neldermead.interpolate Return a new point estimate, i.e. a column vector.

Author(s)

Author of Scilab neldermead module: Michael Baudin (INRIA - Digiteo)

Author of R adaptation: Sebastien Bihorel (<sb.pmlab@gmail.com>)

41

neldermead.destroy Erase a neldermead object.

Description

neldermead.destroy calls optimbase.destroy and optimsimplex.destroy to erase the con-
tent of this$optbase and this$simplex0.

Usage

neldermead.destroy(this = NULL)

Arguments

this A neldermead object.

Value

Return an updated neldermead object.

Author(s)

Author of Scilab neldermead module: Michael Baudin (INRIA - Digiteo)

Author of R adaptation: Sebastien Bihorel (<sb.pmlab@gmail.com>)

See Also

optimbase.destroy, optimsimplex.destroy

neldermead.get Get the value for the given element

Description

Get the value for the given element in a neldermead object.

Usage

neldermead.get(this = NULL, key = NULL)

Arguments

this A neldermead object.

key The name of the key to query.

42

Value

Return the value of the list element key, or an error message if key does not exist in the
neldermead object this.

Author(s)

Author of Scilab neldermead module: Michael Baudin (INRIA - Digiteo)

Author of R adaptation: Sebastien Bihorel (<sb.pmlab@gmail.com>)

See Also

neldermead.set, optimbase.get

neldermead S3 neldermead object

Description

These functions support the S3 class ’neldermead’and are intended to either create objects of
this class or check if an object is of this class.

Usage

neldermead(optbase, method, simplex0, simplex0method,

simplex0length, simplexsize0, simplexopt, historysimplex, coords0, rho, chi,

gamma, sigma, tolfstdeviation, tolfstdeviationmethod, tolsimplexizeabsolute,

tolsimplexizerelative, tolsimplexizemethod, toldeltafv, tolssizedeltafvmethod,

simplex0deltausual, simplex0deltazero, restartsimplexmethod, restartmax,

restarteps, restartstep, restartnb, restartflag, restartdetection,

kelleystagnationflag, kelleynormalizationflag, kelleystagnationalpha0,

kelleyalpha, startupflag, boxnbpoints, boxnbpointseff, boxineqscaling,

checkcostfunction, scalingsimplex0, guinalphamin, boxboundsalpha,

boxtermination, boxtolf, boxnbmatch, boxkount, boxreflect, tolvarianceflag,

tolabsolutevariance, tolrelativevariance, variancesimplex0, mymethod,

myterminate, myterminateflag, greedy, output, exitflag)

S3 method for class 'neldermead'

print(x,verbose,...)

S3 method for class 'neldermead'

summary(object,showhistory,...)

S3 method for class 'neldermead'

is(x=NULL)

43

Arguments

optbase An object of class ’optimbase’, i.e. a list created by optimbase() and contain-
ing the following elements:

verbose The verbose option, controlling the amount of messages.

x0 The initial guess.

fx0 The value of the function for the initial guess.

xopt The optimum parameter.

fopt The optimum function value.

tolfunabsolute The absolute tolerance on function value.

tolfunrelative The relative tolerance on function value.

tolfunmethod Logical flag for the tolerance on function value in the termi-
nation criteria. This criteria is suitable for functions which minimum is
associated with a function value equal to 0.

tolxabsolute The absolute tolerance on x.

tolxrelative The relative tolerance on x.

tolxmethod Possible values: FALSE, TRUE.

funevals The number of function evaluations.

maxfunevals The maximum number of function evaluations.

maxiter The maximum number of iterations.

iterations The number of iterations.

fun The cost function.

status The status of the optimization.

historyfopt The vector to store the history for fopt. The values of the cost
function will be stored at each iteration in a new element, so the length
of historyfopt at the end of the optimization should be the number of
iterations.

historyxopt The list to store the history for xopt. The vectors of estimates
will be stored on separated levels of the list, so the length of historyfopt
at the end of the optimization should be the number of iterations.

verbosetermination The verbose option for termination criteria.

outputcommand The command called back for output.

outputcommandarg The outputcommand argument is initialized as a string.
If the user configure this element, it is expected that a matrix of values
or a list is passed so that the argument is appended to the name of the
function.

numberofvariables The number of variables to optimize.

storehistory The flag which enables/disables the storing of the history.

costfargument The costf argument is initialized as a string. If the user
configure this element, it is expected that a matrix of values or a list is
passed so that the argument is appended to the name of the function.

boundsmin Minimum bounds for the parameters.

boundsmax Maximum bounds for the parameters.

nbineqconst The number of nonlinear inequality constraints.

44

logfile The name of the log file.

logfilehandle The handle for the log file.

logstartup Set to TRUE when the logging is started up.

withderivatives Set to TRUE when the method uses derivatives.

method The name of the algorithm to use.

simplex0 An object of class ’simplex’, i.e. a list created by optimsimplex(), and con-
taining the following elements:

verbose The verbose option, controlling the amount of messages.

x The coordinates of the vertices, with size nbve x n.

n The dimension of the space.

fv The function values, with size nbve x 1.

nbve The number of vertices.
simplex0method

The method to use to compute the initial simplex.

simplex0length

The length to use when the initial simplex is computed with the ’axes’ or
’spendley’ methods.

rho The reflection coefficient. This parameter is used when the method element is
set to ’fixed’ or ’variable’.

chi The expansion coefficient. This parameter is used when the method element
is set to ’variable’.

gamma The contraction coefficient. This parameter is used when the method element
is set to ’variable’.

sigma The shrinkage coefficient. This parameter is used when the method element is
set to ’fixed’ or ’variable’.

tolfstdeviation

The tolerance for the standard deviation.
tolfstdeviationmethod

Set to FALSE.
tolsimplexizeabsolute

The absolute tolerance on the simplex size.

tolsimplexizerelative

The relative tolerance on the simplex size.

tolsimplexizemethod

Logical flag to enable/disable the tolerance on the simplex size. When this cri-
teria is enabled, the values of the tolsimplexizeabsolute and tolsimplexizerelative

elements are used in the termination criteria. The method to compute the size
is the ’sigmaplus’ method.

simplexsize0 Initial size of the simplex, for the tolerance on the simplex size.

toldeltafv The absolute tolerance on the difference between the highest and the lowest
function values.

tolssizedeltafvmethod

Logical flag to enable/disable the termination criteria based on the size of the
simplex and the difference of function value in the simplex. If this criteria is

45

triggered, the status of the optimization is set to ’tolsizedeltafv’. This termina-
tion criteria uses the values of the tolsimplexizeabsolute and toldeltafv

elements. This criteria is identical to Scilab’s fminsearch.
historysimplex

The list to store the history for simplex. The simplex will be stored on a new
level of the list at each iteration, so the length of historyfopt at the end of
the optimization should be the number of iterations.

coords0 The coordinates of the vertices of the initial simplex. If the simplex0method

element is set to ’given’, these coordinates are used to compute the initial
simplex. This matrix is expected to have shape nbve x n where nbve is the
number of vertices and n is the number of variables.

simplex0deltausual

The relative delta for non-zero parameters in ’pfeffer’ method.

simplex0deltazero

The absolute delta for non-zero parameters in ’pfeffer’ method.

simplexopt The optimum simplex, after one optimization process.

restartsimplexmethod

The method to compute the initial simplex after a restart.

restartmax The maximum number of restarts, when automatic restart is enabled via the
restartflag element.

restarteps The absolute epsilon value used to check for optimality in the factorial O’Neill
restart detection.

restartstep The absolute step length used to check for optimality in the factorial O’Neill
restart detection.

kelleystagnationflag

Logical flag to enable/disable the termination criteria using Kelley’s stagnation
detection, based on sufficient decrease condition. If this criteria is triggered,
the status of the optimization is set to ’kelleystagnation’.,

kelleynormalizationflag

Logical flag to enable/disable the normalization of the alpha coefficient in Kel-
ley’s stagnation detection, i.e. use the value of the kelleystagnationalpha0

element as is.
kelleystagnationalpha0

The parameter used in Kelley’s stagnation detection.

kelleyalpha The current value of Kelley’s alpha, after normalization, if required.

restartnb Number of restarts performed.

restartflag Logical flag to enable/disable the automatic restart of the algorithm.

restartdetection

The method to detect if the automatic restart must be performed.

startupflag Set to TRUE when the startup has been performed.

boxnbpoints The number of points in the initial simplex, when the simplex0method is set
to ’randbounds’. The value of this element is also use to update the simplex
when a restart is performed and the restartsimplexmethod element is set to
’randbounds’. The default value is so that the number of points is twice the
number of variables of the problem.

46

boxnbpointseff

The effective number of points required in the simplex for Box’s algorithm.

boxineqscaling

The scaling coefficient used to scale the trial point for function improvement
or into the constraints of Box’s algorithm.

checkcostfunction

Logical flag to enable/disable the checking of the connection of the cost func-
tion.

scalingsimplex0

The algorithm used to scale the initial simplex into the nonlinear constraints.
The following two algorithms are provided:

’tox0’ scales the vertices toward the initial guess.

’tocentroid’ scales the vertices toward the centroid, as recommended by Box.

If the centroid happens to be unfeasible, because the constraints are not con-
vex, the scaling of the initial simplex toward the centroid may fail. Since the
initial guess is always feasible, scaling toward the initial guess cannot fail.

guinalphamin The minimum value of alpha when scaling the vertices of the simplex into
nonlinear constraints in Box’s algorithm.

boxboundsalpha

The parameter used to project the vertices into the bounds in Box’s algorithm.

boxtermination

Logical flag to enable/disable Box’s termination criteria.

boxtolf The absolute tolerance on difference of function values in the simplex, sug-
gested by Box. This tolerance is used if the boxtermination element is set to
TRUE.

boxnbmatch The number of consecutive match of Box’s termination criteria.

boxkount Current number of consecutive match.

boxreflect The reflection factor in Box’s algorithm.

tolvarianceflag

Logical flag to enable/disable the termination criteria based on the variance of
the function value. If this criteria is triggered, the status of the optimization
is set to ’tolvariance’. This criteria is suggested by Nelder and Mead.

tolabsolutevariance

The absolute tolerance on the variance of the function values of the simplex.

tolrelativevariance

The relative tolerance on the variance of the function values of the simplex.

variancesimplex0

Relative tolerance on variance.

mymethod A user-derined simplex algorithm.

myterminate A user-defined terminate function.

myterminateflag

Logical flag to enable/disable the user-defined terminate function.

greedy Logical flag to enable/disable greedy Nelder-Mead.

output The command to call back for user-defined output of specialized function.

47

exitflag Logical flag to enable/disable the user-defined output of specialized function.

x An object of class ’neldermead’.

verbose A logical flag, controlling the amount of data printed.

... optional arguments to ’print’ or ’plot’ methods.

object An object of class ’neldermead’.

showhistory Optional logical flag, to define whether optimization history must be summa-
rized or not.

Value

The neldermead function returns a new object of class ’neldermead’, with the following default
content:

optbase An object of class ’optimbase’ with the following default content:

verbose Default is FALSE.

x0 Default is NULL.

fx0 Default is NULL.

xopt Default is 0.

fopt Default is 0.

tolfunabsolute Default is 0.

tolfunrelative Default is .Machine$double.eps.

tolfunmethod Default is FALSE.

tolxabsolute Default is 0.

tolxrelative Default is .Machine$double.eps.

tolxmethod Default is TRUE.

funevals Default is 0.

maxfunevals Default is 100.

maxiter Default is 100.

iterations Default is 0.

fun Default is ”.

status Default is ”.

historyfopt Default is NULL.

historyxopt Default is NULL.

verbosetermination Default is FALSE.

outputcommand Default is ”.

outputcommandarg Default is ”. If the user configures this element, it is expected to
be an object of class ’optimbase.outputargs’ or will be coerced to an object of class
’optimbase.outputargs’.

numberofvariables Default is 0.

storehistory Default is FALSE.

costfargument Default is ”. If the user configures this element, it is expected to be
an object of class ’optimbase.functionargs’ or will be coerced to an object of class
’optimbase.functionargs’.

48

boundsmin Default is NULL.

boundsmax Default is NULL.

nbineqconst Default is 0.

logfile Default is ”.

logfilehandle Default is 0.

logstartup Default is FALSE.

withderivatives Default is FALSE.

method Default is ’variable’.

simplex0 Default is an object of class ’simplex’, with the following content:

verbose Default is 0.

x Default is NULL.

n Default is 0.

fv Default is NULL.

nbve Default is 0.

simplex0method Default is ’axes’.

simplex0length Default is 1.

rho Default is 1.

chi Default is 2.

gamma Default is 0.5.

sigma Default is 0.5.

tolfstdeviation Default is 0.

tolfstdeviationmethod Default is FALSE.

tolsimplexizeabsolute Default is 0.

tolsimplexizerelative Default is .Machine$double.eps.

tolsimplexizemethod Default is FALSE.

simplexsize0 Default is 0.

toldeltafv Default is .Machine$double.eps.

tolssizedeltafvmethod Default is FALSE.

historysimplex Default is NULL.

coords0 Default is NULL.

simplex0deltausual Default is 0.05.

simplex0deltazero Default is 0.0075.

simplexopt Default is NULL.

restartsimplexmethod Default is ’oriented’.

restartmax Default is 3.

restarteps Default is .Machine$double.eps.

restartstep Default is 1.

kelleystagnationflag Default is FALSE.,

49

kelleynormalizationflag Default is TRUE, i.e. the simplex gradient of the initial simplex is
taken into account in the stagnation detection.

kelleystagnationalpha0 Default is 1.e-4.

kelleyalpha Default is 1.e-4.

restartnb Default is 0.

restartflag Default is FALSE.

restartdetection Default is ’oneill’.

startupflag Default is FALSE.

boxnbpoints Default is ’2n’.

boxnbpointseff Default is 0.

boxineqscaling Default is 0.

checkcostfunction Default is TRUE.

scalingsimplex0 Default is ’tox0’.

guinalphamin Default is 1.e-6.

boxtermination Default is FALSE.

boxtolf Default is 1.e-5.

boxnbmatch Default is 5.

boxkount Default is 0.

boxreflect Default is 1.3.

tolvarianceflag Default is FALSE.

tolabsolutevariance Default is 0.

tolrelativevariance Default is .Machine$double.eps.

variancesimplex0 Default is .Machine$double.eps.

mymethod Default is NULL.

myterminate Default is NULL.

myterminateflag Default is FALSE.

greedy Default is FALSE.

output Default is list().

exitflag Default is FALSE.

Author(s)

Author of Scilab neldermead module: Michael Baudin (INRIA - Digiteo)

Author of R adaptation: Sebastien Bihorel (<sb.pmlab@gmail.com>)

See Also

optimbase, optimsimplex

50

neldermead.restart Restart neldermead search.

Description

Update the simplex with neldermead.updatesimp and restart the search with neldermead.search.

Usage

neldermead.restart(this = NULL)

Arguments

this A neldermead object.

Value

Returns an updated neldermead object.

Author(s)

Author of Scilab neldermead module: Michael Baudin (INRIA - Digiteo)

Author of R adaptation: Sebastien Bihorel (<sb.pmlab@gmail.com>)

See Also

neldermead.updatesimp, neldermead.search,

neldermead.search Starts the optimization

Description

Performs the optimization associated with the method associated with the method element of
the neldermead object and find the optimum. If the restartflag element is enabled, automatic
restarts are performed, based on the restartdetection element.

Usage

neldermead.search(this = NULL)

Arguments

this A neldermead object.

Value

Return an updated neldermead object.

51

Author(s)

Author of Scilab neldermead module: Michael Baudin (INRIA - Digiteo)

Author of R adaptation: Sebastien Bihorel (<sb.pmlab@gmail.com>)

See Also

fminsearch, neldermead, neldermead.set,

neldermead.set Neldermead Object Configuration

Description

Configure the current neldermead object with the given value for the given key.

Usage

neldermead.set(this = NULL, key = NULL, value = NULL)

Arguments

this The current neldermead object.

key The key to configure. See details for the list of possible keys.

value The value to assign to the key.

Details

neldermead.set sets the content of the key element of the neldermead object this to value.
If key is a sub-element of this$optbase, value is assigned by optimbase.set.

The main available keys are the following:

’-verbose’ Set to 1 to enable verbose logging.

’-verbosetermination’ Set to 1 to enable verbose termination logging.

’-x0’ The initial guess, as a n x 1 column vector, where n is the number of variables.

’-maxfunevals’ The maximum number of function evaluations. If this criteria is triggered
during optimization, the status of the optimization is set to ’maxfuneval’.

’-maxiter’ The maximum number of iterations. If this criteria is triggered during optimization,
the status of the optimization is set to ’maxiter’.option

’-tolfunabsolute’ The absolute tolerance for the function value.

’-tolfunrelative’ The relative tolerance for the function value.

’-tolfunmethod’ The method used for the tolerance on function value in the termination cri-
teria. The following values are available: TRUE, FALSE. If this criteria is triggered, the
status of the optimization is set to ’tolf’.

’-tolxabsolute’ The absolute tolerance on x.

52

’-tolxrelative’ The relative tolerance on x.

’-tolxmethod’ The method used for the tolerance on x in the termination criteria. The follow-
ing values are available: TRUE, FALSE. If this criteria is triggered during optimization,
the status of the optimization is set to ’tolx’.

’-function’ The objective function, which computes the value of the cost and the non linear
constraints, if any. See vignette('neldermead',package='neldermead') for the details
of the communication between the optimization system and the cost function.

’-costfargument’ An additionnal argument, passed to the cost function.

’-outputcommand’ A command which is called back for output. See vignette('neldermead',package='neldermead')
for the details of the communication between the optimization system and the output com-
mand function.

’-outputcommandarg’ An additionnal argument, passed to the output command.option

’-numberofvariables’ The number of variables to optimize.

’-storehistory’ Set to TRUE to enable the history storing.

’-boundsmin’ The minimum bounds for the parameters.

’-boundsmax’ The maximum bounds for the parameters.

’-nbineqconst’ The number of inequality constraints.

’-method’ The name of the algorithm to use. The following methods are available:

’fixed’ the fixed simplex shape algorithm of Spendley et al. This algorithm is for uncon-
strained problems (i.e. bounds and non linear constraints are not taken into account)

’variable’ the variable simplex shape algorithm of Nelder and Mead. This algorithm is
for unconstrained problems (i.e. bounds and non linear constraints are not taken into
account)

’box’ Box’s complex algorithm. This algorithm takes into account bounds and nonlinear
inequality constraints.

’mine’ the user-defined algorithm, associated with the mymethod element. See vignette('neldermead',package='neldermead')
for details.

’-simplex0method’ The method to use to compute the initial simplex. The first vertex in the
simplex is always the initial guess associated with the x0 element. The following methods
are available:

’given’ The coordinates associated with the coords0 element are used to compute the
initial simplex, with arbitrary number of vertices. This allows the user to setup the
initial simplex by a specific method which is not provided by the current package (for
example with a simplex computed from a design of experiments). This allows also
to configure the initial simplex so that a specific behaviour of the algorithm is to be
reproduced (for example the Mac Kinnon test case). The given matrix is expected to
have nbve rows and n columns, where n is the dimension of the problem and nbve is
the number of vertices.

’axes’ The simplex is computed from the coordinate axes and the length associated with
the simplex0length element.

’spendley’ The simplex is computed so that it is regular with the length associated with
the simplex0length element (i.e. all the edges have the same length).

’pfeffer’ The simplex is computed from an heuristic, in the neighborhood of the initial
guess. This initial simplex depends on the -simplex0deltausual and -simplex0deltazero.

53

’randbounds’ The simplex is computed from the bounds and a random number. This
option is available only if bounds are available: if bounds are not available, an error
is generated. This method is usually associated with Box’s algorithm. The number of
vertices in the simplex is taken from the boxnbpoints element.

’-coords0’ The coordinates of the vertices of the initial simplex. If the simplex0method element
is set to ’given’, these coordinates are used to compute the initial simplex. This matrix is
expected to have shape nbve x n, where nbve is the number of vertices and n is the number
of variables.

’-simplex0length’ The length to use when the initial simplex is computed with the ’axes’ or
’spendley’ methods. If the initial simplex is computed from ’spendley’ method, the length
is expected to be a scalar value. If the initial simplex is computed from ’axes’ method, it
may be either a scalar value or a vector of values, of length n, where n is the number of
variables.

’-simplex0deltausual’ The relative delta for non-zero parameters in ’pfeffer’ method.

’-simplex0deltazero’ The absolute delta for non-zero parameters in ’pfeffer’ method.

’-rho’ The reflection coefficient. This parameter is used when the method element is set to
’fixed’ or ’variable’.

’-chi’ The expansion coefficient. This parameter is used when the method element is set to
’variable’.

’-gamma’ The contraction coefficient. This parameter is used when the method element is set
to ’variable’.

’-sigma’ The shrinkage coefficient. This parameter is used when the method element is set to
’fixed’ or ’variable’.

’-tolsimplexizemethod’ Set to FALSE to disable the tolerance on the simplex size. If this
criteria is triggered, the status of the optimization is set to ’tolsize’. When this criteria is
enabled, the values of the tolsimplexizeabsolute and tolsimplexizerelative elements
are used in the termination criteria. The method to compute the size is the ’sigmaplus’
method.

’-tolsimplexizeabsolute’ The absolute tolerance on the simplex size.

’-tolsimplexizerelative’ The relative tolerance on the simplex size.

’-tolssizedeltafvmethod’ Set to TRUE to enable the termination criteria based on the size of
the simplex and the difference of function value in the simplex. If this criteria is triggered,
the status of the optimization is set to ’tolsizedeltafv’. This termination criteria uses the
values of the tolsimplexizeabsolute and toldeltafv elements.option

’-toldeltafv’ The absolute tolerance on the difference between the highest and the lowest func-
tion values.

’-tolvarianceflag’ Set to TRUE to enable the termination criteria based on the variance of
the function value. If this criteria is triggered, the status of the optimization is set to
’tolvariance’. This criteria is suggested by Nelder and Mead.

’-tolabsolutevariance’ The absolute tolerance on the variance of the function values of the
simplex.

’-tolrelativevariance’ The relative tolerance on the variance of the function values of the
simplex.

54

’-kelleystagnationflag’ Set to TRUE to enable the termination criteria using Kelley’s stagna-
tion detection, based on sufficient decrease condition. If this criteria is triggered, the status
of the optimization is set to ’kelleystagnation’.

’-kelleynormalizationflag’ Set to FALSE to disable the normalization of the alpha coefficient
in Kelley’s stagnation detection, i.e. use the value of the kelleystagnationalpha0 element
as is. Default value is TRUE, i.e. the simplex gradient of the initial simplex is takeoptionn
into account in the stagnation detection.

’-kelleystagnationalpha0’ The parameter used in Kelley’s stagnation detection.

’-restartflag’ Set to TRUE to enable the automatic restart of the algorithm.

’-restartdetection’ The method to detect if the automatic restart must be performed. The
following methods are available:

’oneill’ The factorial local optimality test by O’Neill is used. If the test finds a local point
which is better than the computed optimum, a restart is performed.

’kelley’ The sufficient decrease condition by O’Neill is used. If the test finds that the
status of the optimization is ’kelleystagnation’, a restart is performed. This status
may be generated if the -kelleystagnationflag option is set to TRUE.

’-restartmax’ The maximum number of restarts, when automatic restart is enabled via the
-restartflag option.

’-restarteps’ The absolute epsilon value used to check for optimality in the factorial O’Neill
restart detection.

’-restartstep’ The absolute step length used to check for optimality in the factorial O’Neill
restart detection.

’-restartsimplexmethod’ The method to compute the initial simplex after a restart. The
following methods are available.

’given’ The coordinates associated with the coords0 element are used to compute the
initial simplex, with arbitrary number of vertices. This allow the user to setup the
initial simplex by a specific method which is not provided by the current package (for
example with a simplex computed from a design of experiments). This allows also
to configure the initial simplex so that a specific behaviour of the algorithm is to be
reproduced (for example the Mc Kinnon test case). The given matrix is expected to
have nbve rows and n columns, where n is the dimension of the problem and nbve is
the number of vertices.

’axes’ The simplex is computed from the coordinate axes and the length associated with
the -simplex0length option.

’spendley’ The simplex is computed so that it is regular with the length associated with
the -simplex0length option (i.e. all the edges have the same length).

’pfeffer’ The simplex is computed from an heuristic, in the neighborhood of the initial
guess. This initial simplex depends on the -simplex0deltausual and -simplex0deltazero.

’randbounds’ The simplex is computed from the bounds and a random number. This
option is available only if bounds are available: if bounds are not available, an error
is generated. This method is usually associated with Box’s algorithm. The number of
vertices in the simplex is taken from the -boxnbpoints option.

’oriented’ The simplex is computed so that it is oriented, as suggested by Kelley.

’-scalingsimplex0’ The algorithm used to scale the initial simplex into the nonlinear con-
straints. The following two algorithms are provided:

55

’tox0’ scales the vertices toward the initial guess.

’tocentroid’ scales the vertices toward the centroid, as recommended by Box.

If the centroid happens to be unfeasible, because the constraints are not convex, the scaling
of the initial simplex toward the centroid may fail. Since the initial guess is always feasible,
scaling toward the initial guess cannot fail.

’-boxnbpoints’ The number of points in the initial simplex, when the -simplex0method is set
to ’randbounds’. The value of this option is also use to update the simplex when a restart is
performed and the -restartsimplexmethod option is set to ’randbounds’. The default value
is so that the number of points is twice the number of variables of the problem.

’-boxineqscaling’ The scaling coefficient used to scale the trial point for function improvement
or into the constraints of Box’s algorithm.

’-guinalphamin’ The minimum value of alpha when scaling the vertices of the simplex into
nonlinear constraints in Box’s algorithm.

’-boxreflect’ The reflection factor in Box’s algorithm.

’-boxtermination’ Set to TRUE to enable Box’s termination criteria.

’-boxtolf ’ The absolute tolerance on difference of function values in the simplex, suggested by
Box. This tolerance is used if the -boxtermination element is set to TRUE.

’-boxnbmatch’ The number of consecutive match of Box’s termination criteria.

’-boxboundsalpha’ The parameter used to project the vertices into the bounds in Box’s algo-
rithm.

’-mymethod’ A user-derined simplex algorithm. See vignette('neldermead',package='neldermead')
for details.

’-myterminate’ A user-defined terminate function. See vignette('neldermead',package='neldermead')
for details.

’-myterminateflag’ Set to TRUE to enable the user-defined terminate function.

Value

An updated neldermead object.

Author(s)

Author of Scilab neldermead module: Michael Baudin (INRIA - Digiteo)

Author of R adaptation: Sebastien Bihorel (<sb.pmlab@gmail.com>)

See Also

neldermead

56

Secondary search functions

Secondary functions for neldermead.search

Description

Utility functions for neldermead.serch and dependent functions.

Usage

neldermead.startup(this = NULL)

neldermead.log(this = NULL, msg = NULL)

neldermead.scaletox0(this = NULL, simplex0 = NULL)

neldermead.scaletocenter(this = NULL, simplex0 = NULL, x0 = NULL)

neldermead.termstartup(this = NULL)

neldermead.outputcmd(this = NULL, state = NULL, simplex = NULL, step = NULL)

neldermead.autorestart(this = NULL)

neldermead.istorestart(this = NULL)

neldermead.isroneill(this = NULL)

neldermead.isrkelley(this = this)

neldermead.updatesimp(this = NULL)

scaleinconstraints(this = NULL, x = NULL, xref = NULL)

neldermead.costf(x = NULL, this = NULL)

Arguments

this A neldermead object.

msg A character string.

simplex0 The initial simplex object.

x0 A column matrix of initial parameters.

state The state of the algorithm, either ’init’, ’done’ or ’iter’.

simplex The current simplex object.

step The type of step performed during the iteration: ’init’, ’done’, ’reflection’, ’ex-
pansion’, ’insidecontraction’, ’outsidecontraction’, ’reflectionnext’ or ’shrink’.

x The point estimate to scale.

xref The reference point estimate.

Details

neldermead.startup Startup the algorithm. Compute the initial simplex, depending on the
content of the simplex0method element of the neldermead object (’given’, ’axes’, ’spendley’,
’pfeffer’ or ’randbounds’).

neldermead.log Print a message to the log file using optimbase.log.

neldermead.scaletox0 Scale the simplex into the nonlinear inequality constraints, if any. Scale
toward x0, which is feasible.

57

neldermead.scaletocenter Scale the simplex into the nonlinear inequality constraints, if any.
Scale to the centroid of the points which satisfy the constraints. This is Box’s method for
scaling. It is unsure, since the centroid of the points which satisfy the constraints may not
be feasible.

neldermead.termstartup Initialize Kelley’s stagnation detection system when normalization
is required, by computing kelleyalpha. If the simplex gradient is zero, then use alpha0 as
alpha.

neldermead.outputcmd Call the array of user-defined output functions

neldermead.autorestart Perform an optimization with automatic restart. The loop processes
for i = 1 to restartmax + 1. This is because a RE-start is performed after one simulation
has been performed, hence the ’RE’.

neldermead.istorestart Determine if the optimization is to restart using neldermead.isroneill

or neldermead.isrkelley depending on the content of the restartdetection element.

neldermead.isroneill Determine if the optimization is to restart. Use O’Neill method as a
criteria for restart. It is an axis-by-axis search for optimality.

neldermead.isrkelley Determine if the optimization is to restart. Use kelleystagnation as
a criteria for restart.

neldermead.updatesimp Update the initial simplex simplex0 for a restart.

scaleinconstraints Given a point reference to scale and a reference point which satisfies the
constraints, scale the point towards the reference point estimate until it satisfies all the
constraints.

neldermead.costf Call the cost function and return the value. This function is given to
the simplex function class as a callback. Input/Output arguments are swapped w.r.t.
optimbase.function, so that it matches the requirements of simplex methods.

Value

neldermead.startup Return an updated neldermead object this.

neldermead.log Return the neldermead object this.

neldermead.scaletox0 Return an updated simplex.

neldermead.scaletocenter Return an updated simplex.

neldermead.termstartup Return an updated neldermead object this.

neldermead.outputcmd Do not return any data, but execute the output function(s).

neldermead.autorestart Return an updated neldermead object this.

neldermead.istorestart Return a list with the following elements:

this The input neldermead object.

istorestart Set to TRUE if the optimization is to restart, to FALSE otherwise.

neldermead.isroneill Return a list with the following elements:

this The input neldermead object.

istorestart Set to TRUE if the optimization is to restart, to FALSE otherwise.

neldermead.isrkelley Return a list with the following elements:

this The input neldermead object.

58

istorestart Set to TRUE if the optimization is to restart, to FALSE otherwise.

neldermead.updatesimp Return an updated neldermead object this.

scaleinconstraints Return a list with the following elements:

this The updated neldermead object.

isscaled TRUE if the procedure has succeeded before boxnbnlloops, FALSE if it has
failed.

p The scaled parameters.

neldermead.costf Return a list with the following elements:

f The value of the cost function.

this The updated neldermead object.

Author(s)

Author of Scilab neldermead module: Michael Baudin (INRIA - Digiteo)

Author of R adaptation: Sebastien Bihorel (<sb.pmlab@gmail.com>)

optimget Queries an optimization option list

Description

This function allows to make queries on an existing optimization option list. This list must have
been created and updated by the optimset function. The optimget allows to retrieve the value
associated with a given key.

Usage

optimget(options = NULL, key = NULL, value = NULL)

Arguments

options A list created or modifies by optimset.

key A single character string, which should be the name of the field in options to
query (case insensitive).

value A default value.

Details

key is matched against the field names of options using grep and a case-insensitive regular
expression. If key is not found in options, the function returns NULL. If several matches are
found, optimget is stopped.

Value

Return options$key if key is found in options. Return value, otherwise.

59

Author(s)

Author of Scilab neldermead module: Michael Baudin (INRIA - Digiteo)

Author of R adaptation: Sebastien Bihorel (<sb.pmlab@gmail.com>)

See Also

optimset

Examples

opt <- optimset(method='fminsearch')

optimget(opt,'Display')

optimget(opt,'abc','!@')

optimset.method Default set of optimization options

Description

This function returns a default set of optimization options for defined ’methods’; optimset.method
is called by optimset when a method was provided as input. Currently, the only valid method

is ’fminsearch’.

Usage

optimset.method(method = NULL)

Arguments

method A character string.

Value

Returns a list with the following fields: Display, FunValCheck, MaxFunEvals, MaxIter, Output-
Fcn, PlotFcns, TolFun, and TolX.

Author(s)

Author of Scilab neldermead module: Michael Baudin (INRIA - Digiteo)

Author of R adaptation: Sebastien Bihorel (<sb.pmlab@gmail.com>)

See Also

optimset

Examples

optimset.method('fminsearch')

Not run: optimset.method('abc')

60

optimset Configures and returns an optimization data structure.

Description

This function creates or updates a list which can be used to modify the behaviour of optimization
methods. The goal of this function is to manage the options list with a set of fields (for example,
’MaxFunEvals’, ’MaxIter’, etc...). The user can create a new list with empty fields or create
a new structure with default fields which correspond to a particular algorithm. The user can
also configure each field and set it to a particular value. Finally, the user passes the list to an
optimization function so that the algorithm uses the options configured by the user.

Usage

optimset(method = NULL,...)

Arguments

method If provided, the method calls the optimset.method function. If the content of
method is recognized, a default set of options are returned. The only current
recognized character strings are ’fminsearch’ and ’fminbnd’.

... Additional arguments which would be included in the options output if the
method argument is not used. See Details.

Details

Most optimization algorithms require many algorithmic parameters such as the number of iter-
ations or the number of function evaluations. If these parameters are given to the optimization
function as input parameters, this forces both the user and the developer to manage many in-
put parameters. The goal of the optimset function is to simplify the management of input
arguments, by gathering all the parameters into a single list.

While the current implementation of the optimset function only supports the fminsearch and
fminbnd function, it is designed to be extended to as many optimization function as required.
Because all optimization algorithms do not require the same parameters, the data structure aims
at remaining flexible. But, most of the time, most parameters are the same from algorithm to
algorithm, for example, the tolerance parameters which drive the termination criteria are often
the same, even if the termination criteria itself is not the same.

Optimization parameters that are returned by the optimset function and that can be defined
in ... are the following:

Display The verbose level. The default value is ’notify’. The following is a list of available
verbose levels.

’off’ The algorithm displays no message at all.

’notify’ The algorithm displays message if the termination criteria is not reached at the
end of the optimization. This may happen if the maximum number or iterations
of the maximum number of function evaluations is reached and warns the user of a
convergence problem.

61

’final’ The algorithm displays a message at the end of the optimization, showing the num-
ber of iterations, the number of function evaluations and the status of the optimization.
This option includes the messages generated by the ’notify’ option i.e. warns in case
of a convergence problem.

’iter’ The algorithm displays a one-line message at each iteration. This option includes the
messages generated by the ’notify’ option i.e. warns in case of a convergence problem.
It also includes the message generated by the ’final’ option.

FunValCheck A logical flag to enable the checking of function values.

MaxFunEvals The maximum number of evaluations of the cost function.

MaxIter The maximum number of iterations.

OutputFcn A function which is called at each iteration to print out intermediate state of the
optimization algorithm (for example into a log file).

PlotFcns A function which is called at each iteration to plot the intermediate state of the
optimization algorithm (for example into a 2D graphic).

TolFun The absolute tolerance on function value.

TolX The absolute tolerance on the variable x.

nbMatch Specific to Box method: the number of consecutive times the TolFun criteria must
be met to terminate the optimization.

boundsAlpha Specific to Box method: the parameter used to project the vertices into the
bounds in Box’s algorithm

boxScaling Specific to Box method: the scaling coefficient used to scale the trial point for
function improvement or into the constraints of Box’s algorithm

alphaMin Specific to Box method: the minimum value of alpha when scaling the vertices of
the simplex into nonlinear constraints in Box’s algorithm

Output and plot functions The ’OutputFcn’ and ’PlotFcns’ options accept as argument a func-
tion (or a list of functions). In the client optimization algorithm, this output or plot function is
called back once per iteration. It can be used by the user to display a message in the console,
write into a file, etc... The output or plot function is expected to have the following definition:

myfun <- function(x, optimValues, state)

where the input parameters are:

x The current point estimate.

optimValues A list which contains the following fields:

funccount The number of function evaluations.

fval The best function value.

iteration The current iteration number.

procedure The type of step performed. This string depends on the specific algorithm (see
fminsearch for details).

state the state of the algorithm. The following states are available:

’init’ when the algorithm is initializing,

’iter’ when the algorithm is performing iterations,

’done’ when the algorithm is terminated.

62

Value

Return a list with the following fields: Display, FunValCheck, MaxFunEvals, MaxIter, Output-
Fcn, PlotFcns, TolFun, TolX, nbMatch, boundsAlpha, boxScaling, and alphaMin.

Author(s)

Author of Scilab neldermead module: Michael Baudin (INRIA - Digiteo)

Author of R adaptation: Sebastien Bihorel (<sb.pmlab@gmail.com>)

See Also

optimset.method,fminsearch, fminbnd

Examples

optimset()

optimset(Display='iter')

optimset(method='fminbnd')

7 CeCILL FREE SOFTWARE LICENSE AGREEMENT

Notice

This Agreement is a Free Software license agreement that is the result

of discussions between its authors in order to ensure compliance with

the two main principles guiding its drafting:

* firstly, compliance with the principles governing the distribution

of Free Software: access to source code, broad rights granted to

users,

* secondly, the election of a governing law, French law, with which

it is conformant, both as regards the law of torts and

intellectual property law, and the protection that it offers to

both authors and holders of the economic rights over software.

The authors of the CeCILL (for Ce[a] C[nrs] I[nria] L[ogiciel] L[ibre])

license are:

Commissariat a l'Energie Atomique - CEA, a public scientific, technical

and industrial research establishment, having its principal place of

business at 25 rue Leblanc, immeuble Le Ponant D, 75015 Paris, France.

Centre National de la Recherche Scientifique - CNRS, a public scientific

and technological establishment, having its principal place of business

at 3 rue Michel-Ange, 75794 Paris cedex 16, France.

Institut National de Recherche en Informatique et en Automatique -

INRIA, a public scientific and technological establishment, having its

63

principal place of business at Domaine de Voluceau, Rocquencourt, BP

105, 78153 Le Chesnay cedex, France.

Preamble

The purpose of this Free Software license agreement is to grant users

the right to modify and redistribute the software governed by this

license within the framework of an open source distribution model.

The exercising of these rights is conditional upon certain obligations

for users so as to preserve this status for all subsequent redistributions.

In consideration of access to the source code and the rights to copy,

modify and redistribute granted by the license, users are provided only

with a limited warranty and the software's author, the holder of the

economic rights, and the successive licensors only have limited liability.

In this respect, the risks associated with loading, using, modifying

and/or developing or reproducing the software by the user are brought to

the user's attention, given its Free Software status, which may make it

complicated to use, with the result that its use is reserved for

developers and experienced professionals having in-depth computer

knowledge. Users are therefore encouraged to load and test the

suitability of the software as regards their requirements in conditions

enabling the security of their systems and/or data to be ensured and,

more generally, to use and operate it in the same conditions of

security. This Agreement may be freely reproduced and published,

provided it is not altered, and that no provisions are either added or

removed herefrom.

This Agreement may apply to any or all software for which the holder of

the economic rights decides to submit the use thereof to its provisions.

Article 1 - DEFINITIONS

For the purpose of this Agreement, when the following expressions

commence with a capital letter, they shall have the following meaning:

Agreement: means this license agreement, and its possible subsequent

versions and annexes.

Software: means the software in its Object Code and/or Source Code form

and, where applicable, its documentation, "as is" when the Licensee

accepts the Agreement.

Initial Software: means the Software in its Source Code and possibly its

64

Object Code form and, where applicable, its documentation, "as is" when

it is first distributed under the terms and conditions of the Agreement.

Modified Software: means the Software modified by at least one

Contribution.

Source Code: means all the Software's instructions and program lines to

which access is required so as to modify the Software.

Object Code: means the binary files originating from the compilation of

the Source Code.

Holder: means the holder(s) of the economic rights over the Initial

Software.

Licensee: means the Software user(s) having accepted the Agreement.

Contributor: means a Licensee having made at least one Contribution.

Licensor: means the Holder, or any other individual or legal entity, who

distributes the Software under the Agreement.

Contribution: means any or all modifications, corrections, translations,

adaptations and/or new functions integrated into the Software by any or

all Contributors, as well as any or all Internal Modules.

Module: means a set of sources files including their documentation that

enables supplementary functions or services in addition to those offered

by the Software.

External Module: means any or all Modules, not derived from the

Software, so that this Module and the Software run in separate address

spaces, with one calling the other when they are run.

Internal Module: means any or all Module, connected to the Software so

that they both execute in the same address space.

GNU GPL: means the GNU General Public License version 2 or any

subsequent version, as published by the Free Software Foundation Inc.

Parties: mean both the Licensee and the Licensor.

These expressions may be used both in singular and plural form.

Article 2 - PURPOSE

The purpose of the Agreement is the grant by the Licensor to the

65

Licensee of a non-exclusive, transferable and worldwide license for the

Software as set forth in Article 5 hereinafter for the whole term of the

protection granted by the rights over said Software.

Article 3 - ACCEPTANCE

3.1 The Licensee shall be deemed as having accepted the terms and

conditions of this Agreement upon the occurrence of the first of the

following events:

* (i) loading the Software by any or all means, notably, by

downloading from a remote server, or by loading from a physical

medium;

* (ii) the first time the Licensee exercises any of the rights

granted hereunder.

3.2 One copy of the Agreement, containing a notice relating to the

characteristics of the Software, to the limited warranty, and to the

fact that its use is restricted to experienced users has been provided

to the Licensee prior to its acceptance as set forth in Article 3.1

hereinabove, and the Licensee hereby acknowledges that it has read and

understood it.

Article 4 - EFFECTIVE DATE AND TERM

4.1 EFFECTIVE DATE

The Agreement shall become effective on the date when it is accepted by

the Licensee as set forth in Article 3.1.

4.2 TERM

The Agreement shall remain in force for the entire legal term of

protection of the economic rights over the Software.

Article 5 - SCOPE OF RIGHTS GRANTED

The Licensor hereby grants to the Licensee, who accepts, the following

rights over the Software for any or all use, and for the term of the

Agreement, on the basis of the terms and conditions set forth hereinafter.

Besides, if the Licensor owns or comes to own one or more patents

protecting all or part of the functions of the Software or of its

66

components, the Licensor undertakes not to enforce the rights granted by

these patents against successive Licensees using, exploiting or

modifying the Software. If these patents are transferred, the Licensor

undertakes to have the transferees subscribe to the obligations set

forth in this paragraph.

5.1 RIGHT OF USE

The Licensee is authorized to use the Software, without any limitation

as to its fields of application, with it being hereinafter specified

that this comprises:

1. permanent or temporary reproduction of all or part of the Software

by any or all means and in any or all form.

2. loading, displaying, running, or storing the Software on any or

all medium.

3. entitlement to observe, study or test its operation so as to

determine the ideas and principles behind any or all constituent

elements of said Software. This shall apply when the Licensee

carries out any or all loading, displaying, running, transmission

or storage operation as regards the Software, that it is entitled

to carry out hereunder.

5.2 ENTITLEMENT TO MAKE CONTRIBUTIONS

The right to make Contributions includes the right to translate, adapt,

arrange, or make any or all modifications to the Software, and the right

to reproduce the resulting software.

The Licensee is authorized to make any or all Contributions to the

Software provided that it includes an explicit notice that it is the

author of said Contribution and indicates the date of the creation thereof.

5.3 RIGHT OF DISTRIBUTION

In particular, the right of distribution includes the right to publish,

transmit and communicate the Software to the general public on any or

all medium, and by any or all means, and the right to market, either in

consideration of a fee, or free of charge, one or more copies of the

Software by any means.

The Licensee is further authorized to distribute copies of the modified

or unmodified Software to third parties according to the terms and

67

conditions set forth hereinafter.

5.3.1 DISTRIBUTION OF SOFTWARE WITHOUT MODIFICATION

The Licensee is authorized to distribute true copies of the Software in

Source Code or Object Code form, provided that said distribution

complies with all the provisions of the Agreement and is accompanied by:

1. a copy of the Agreement,

2. a notice relating to the limitation of both the Licensor's

warranty and liability as set forth in Articles 8 and 9,

and that, in the event that only the Object Code of the Software is

redistributed, the Licensee allows future Licensees unhindered access to

the full Source Code of the Software by indicating how to access it, it

being understood that the additional cost of acquiring the Source Code

shall not exceed the cost of transferring the data.

5.3.2 DISTRIBUTION OF MODIFIED SOFTWARE

When the Licensee makes a Contribution to the Software, the terms and

conditions for the distribution of the resulting Modified Software

become subject to all the provisions of this Agreement.

The Licensee is authorized to distribute the Modified Software, in

source code or object code form, provided that said distribution

complies with all the provisions of the Agreement and is accompanied by:

1. a copy of the Agreement,

2. a notice relating to the limitation of both the Licensor's

warranty and liability as set forth in Articles 8 and 9,

and that, in the event that only the object code of the Modified

Software is redistributed, the Licensee allows future Licensees

unhindered access to the full source code of the Modified Software by

indicating how to access it, it being understood that the additional

cost of acquiring the source code shall not exceed the cost of

transferring the data.

5.3.3 DISTRIBUTION OF EXTERNAL MODULES

When the Licensee has developed an External Module, the terms and

conditions of this Agreement do not apply to said External Module, that

68

may be distributed under a separate license agreement.

5.3.4 COMPATIBILITY WITH THE GNU GPL

The Licensee can include a code that is subject to the provisions of one

of the versions of the GNU GPL in the Modified or unmodified Software,

and distribute that entire code under the terms of the same version of

the GNU GPL.

The Licensee can include the Modified or unmodified Software in a code

that is subject to the provisions of one of the versions of the GNU GPL,

and distribute that entire code under the terms of the same version of

the GNU GPL.

Article 6 - INTELLECTUAL PROPERTY

6.1 OVER THE INITIAL SOFTWARE

The Holder owns the economic rights over the Initial Software. Any or

all use of the Initial Software is subject to compliance with the terms

and conditions under which the Holder has elected to distribute its work

and no one shall be entitled to modify the terms and conditions for the

distribution of said Initial Software.

The Holder undertakes that the Initial Software will remain ruled at

least by this Agreement, for the duration set forth in Article 4.2.

6.2 OVER THE CONTRIBUTIONS

The Licensee who develops a Contribution is the owner of the

intellectual property rights over this Contribution as defined by

applicable law.

6.3 OVER THE EXTERNAL MODULES

The Licensee who develops an External Module is the owner of the

intellectual property rights over this External Module as defined by

applicable law and is free to choose the type of agreement that shall

govern its distribution.

6.4 JOINT PROVISIONS

69

The Licensee expressly undertakes:

1. not to remove, or modify, in any manner, the intellectual property

notices attached to the Software;

2. to reproduce said notices, in an identical manner, in the copies

of the Software modified or not.

The Licensee undertakes not to directly or indirectly infringe the

intellectual property rights of the Holder and/or Contributors on the

Software and to take, where applicable, vis-a-vis its staff, any and all

measures required to ensure respect of said intellectual property rights

of the Holder and/or Contributors.

Article 7 - RELATED SERVICES

7.1 Under no circumstances shall the Agreement oblige the Licensor to

provide technical assistance or maintenance services for the Software.

However, the Licensor is entitled to offer this type of services. The

terms and conditions of such technical assistance, and/or such

maintenance, shall be set forth in a separate instrument. Only the

Licensor offering said maintenance and/or technical assistance services

shall incur liability therefor.

7.2 Similarly, any Licensor is entitled to offer to its licensees, under

its sole responsibility, a warranty, that shall only be binding upon

itself, for the redistribution of the Software and/or the Modified

Software, under terms and conditions that it is free to decide. Said

warranty, and the financial terms and conditions of its application,

shall be subject of a separate instrument executed between the Licensor

and the Licensee.

Article 8 - LIABILITY

8.1 Subject to the provisions of Article 8.2, the Licensee shall be

entitled to claim compensation for any direct loss it may have suffered

from the Software as a result of a fault on the part of the relevant

Licensor, subject to providing evidence thereof.

8.2 The Licensor's liability is limited to the commitments made under

this Agreement and shall not be incurred as a result of in particular:

(i) loss due the Licensee's total or partial failure to fulfill its

obligations, (ii) direct or consequential loss that is suffered by the

Licensee due to the use or performance of the Software, and (iii) more

generally, any consequential loss. In particular the Parties expressly

70

agree that any or all pecuniary or business loss (i.e. loss of data,

loss of profits, operating loss, loss of customers or orders,

opportunity cost, any disturbance to business activities) or any or all

legal proceedings instituted against the Licensee by a third party,

shall constitute consequential loss and shall not provide entitlement to

any or all compensation from the Licensor.

Article 9 - WARRANTY

9.1 The Licensee acknowledges that the scientific and technical

state-of-the-art when the Software was distributed did not enable all

possible uses to be tested and verified, nor for the presence of

possible defects to be detected. In this respect, the Licensee's

attention has been drawn to the risks associated with loading, using,

modifying and/or developing and reproducing the Software which are

reserved for experienced users.

The Licensee shall be responsible for verifying, by any or all means,

the suitability of the product for its requirements, its good working

order, and for ensuring that it shall not cause damage to either persons

or properties.

9.2 The Licensor hereby represents, in good faith, that it is entitled

to grant all the rights over the Software (including in particular the

rights set forth in Article 5).

9.3 The Licensee acknowledges that the Software is supplied "as is" by

the Licensor without any other express or tacit warranty, other than

that provided for in Article 9.2 and, in particular, without any warranty

as to its commercial value, its secured, safe, innovative or relevant

nature.

Specifically, the Licensor does not warrant that the Software is free

from any error, that it will operate without interruption, that it will

be compatible with the Licensee's own equipment and software

configuration, nor that it will meet the Licensee's requirements.

9.4 The Licensor does not either expressly or tacitly warrant that the

Software does not infringe any third party intellectual property right

relating to a patent, software or any other property right. Therefore,

the Licensor disclaims any and all liability towards the Licensee

arising out of any or all proceedings for infringement that may be

instituted in respect of the use, modification and redistribution of the

Software. Nevertheless, should such proceedings be instituted against

the Licensee, the Licensor shall provide it with technical and legal

assistance for its defense. Such technical and legal assistance shall be

decided on a case-by-case basis between the relevant Licensor and the

71

Licensee pursuant to a memorandum of understanding. The Licensor

disclaims any and all liability as regards the Licensee's use of the

name of the Software. No warranty is given as regards the existence of

prior rights over the name of the Software or as regards the existence

of a trademark.

Article 10 - TERMINATION

10.1 In the event of a breach by the Licensee of its obligations

hereunder, the Licensor may automatically terminate this Agreement

thirty (30) days after notice has been sent to the Licensee and has

remained ineffective.

10.2 A Licensee whose Agreement is terminated shall no longer be

authorized to use, modify or distribute the Software. However, any

licenses that it may have granted prior to termination of the Agreement

shall remain valid subject to their having been granted in compliance

with the terms and conditions hereof.

Article 11 - MISCELLANEOUS

11.1 EXCUSABLE EVENTS

Neither Party shall be liable for any or all delay, or failure to

perform the Agreement, that may be attributable to an event of force

majeure, an act of God or an outside cause, such as defective

functioning or interruptions of the electricity or telecommunications

networks, network paralysis following a virus attack, intervention by

government authorities, natural disasters, water damage, earthquakes,

fire, explosions, strikes and labor unrest, war, etc.

11.2 Any failure by either Party, on one or more occasions, to invoke

one or more of the provisions hereof, shall under no circumstances be

interpreted as being a waiver by the interested Party of its right to

invoke said provision(s) subsequently.

11.3 The Agreement cancels and replaces any or all previous agreements,

whether written or oral, between the Parties and having the same

purpose, and constitutes the entirety of the agreement between said

Parties concerning said purpose. No supplement or modification to the

terms and conditions hereof shall be effective as between the Parties

unless it is made in writing and signed by their duly authorized

representatives.

11.4 In the event that one or more of the provisions hereof were to

72

conflict with a current or future applicable act or legislative text,

said act or legislative text shall prevail, and the Parties shall make

the necessary amendments so as to comply with said act or legislative

text. All other provisions shall remain effective. Similarly, invalidity

of a provision of the Agreement, for any reason whatsoever, shall not

cause the Agreement as a whole to be invalid.

11.5 LANGUAGE

The Agreement is drafted in both French and English and both versions

are deemed authentic.

Article 12 - NEW VERSIONS OF THE AGREEMENT

12.1 Any person is authorized to duplicate and distribute copies of this

Agreement.

12.2 So as to ensure coherence, the wording of this Agreement is

protected and may only be modified by the authors of the License, who

reserve the right to periodically publish updates or new versions of the

Agreement, each with a separate number. These subsequent versions may

address new issues encountered by Free Software.

12.3 Any Software distributed under a given version of the Agreement may

only be subsequently distributed under the same version of the Agreement

or a subsequent version, subject to the provisions of Article 5.3.4.

Article 13 - GOVERNING LAW AND JURISDICTION

13.1 The Agreement is governed by French law. The Parties agree to

endeavor to seek an amicable solution to any disagreements or disputes

that may arise during the performance of the Agreement.

13.2 Failing an amicable solution within two (2) months as from their

occurrence, and unless emergency proceedings are necessary, the

disagreements or disputes shall be referred to the Paris Courts having

jurisdiction, by the more diligent Party.

Version 2.0 dated 2006-09-05.

73

	Overview
	Description
	Basic object
	The cost function
	The output function
	Termination
	Kelley's stagnation detection
	O'Neill's factorial optimality test
	Implementation notes of the method of Spendley et al.
	Implementation notes on the method of Nelder and Mead
	Box's complex algorithm implementation notes
	User-defined algorithm
	User-defined termination

	Specialized functions
	fminsearch
	Direct grid search

	Examples
	Example 1: Basic use
	Example 2: Customized use
	Example 3: Optimization with bound constraints
	Example 4: Optimization with nonlinear inequality constraints
	Example 5: Passing data to the cost function
	Example 6: Direct grid search

	References
	Dependencies of fminsearch
	Help on neldermead functions
	neldermead-package
	costf.transposex
	fmin.gridsearch
	fminsearch.function
	fminbnd.outputfun
	fminsearch
	neldermead.algo
	neldermead.destroy
	neldermead.get
	neldermead
	neldermead.restart
	neldermead.search
	neldermead.set
	Secondary search functions
	optimget
	optimset.method
	optimset

	CeCILL FREE SOFTWARE LICENSE AGREEMENT

