Package 'mvtnorm'

June 9, 2020
Title Multivariate Normal and t Distributions
Version 1.1-1
Date 2020-06-09
Description Computes multivariate normal and t probabilities, quantiles, random deviates and densities.
Imports stats, methods
Depends R(>= 3.5.0)
License GPL-2
URL http://mvtnorm.R-forge.R-project.org
NeedsCompilation yes
Author Alan Genz [aut], Frank Bretz [aut],
Tetsuhisa Miwa [aut], Xuefei Mi [aut], Friedrich Leisch [ctb], Fabian Scheipl [ctb],
Bjoern Bornkamp [ctb] (https://orcid.org/0000-0002-6294-8185),
Martin Maechler [ctb],
Torsten Hothorn [aut, cre] (https://orcid.org/0000-0001-8301-0471)
Maintainer Torsten Hothorn <Torsten. Hothorn@R-project.org>
Repository CRAN
Date/Publication 2020-06-09 15:50:02 UTC

R topics documented:

algorithms 2
Mvnorm 3
Mvt 4
pmvnorm 6
pmvt 9
qmvnorm 12
qmvt 14

Description

Choose between three algorithms for evaluating normal distributions and define hyper parameters.

Usage

GenzBretz(maxpts $=25000$, abseps $=0.001$, releps $=0$)
Miwa(steps = 128)
TVPACK (abseps $=1 \mathrm{e}-6$)

Arguments

maxpts maximum number of function values as integer. The internal FORTRAN code always uses a minimum number depending on the dimension. (for example 752 for three-dimensional problems).
abseps absolute error tolerance; for TVPACK only used for dimension 3.
releps relative error tolerance as double.
steps number of grid points to be evaluated.

Details

There are three algorithms available for evaluating normal probabilities: The default is the randomized Quasi-Monte-Carlo procedure by Genz $(1992,1993)$ and Genz and Bretz (2002) applicable to arbitrary covariance structures and dimensions up to 1000.
For smaller dimensions (up to 20) and non-singular covariance matrices, the algorithm by Miwa et al. (2003) can be used as well.
For two- and three-dimensional problems and semi-infinite integration region, TVPACK implements an interface to the methods described by Genz (2004).

Value

An object of class GenzBretz or Miwa defining hyper parameters.

References

Genz, A. (1992). Numerical computation of multivariate normal probabilities. Journal of Computational and Graphical Statistics, 1, 141-150.
Genz, A. (1993). Comparison of methods for the computation of multivariate normal probabilities. Computing Science and Statistics, 25, 400-405.
Genz, A. and Bretz, F. (2002), Methods for the computation of multivariate t-probabilities. Journal of Computational and Graphical Statistics, 11, 950-971.

Genz, A. (2004), Numerical computation of rectangular bivariate and trivariate normal and t-probabilities, Statistics and Computing, 14, 251-260.
Genz, A. and Bretz, F. (2009), Computation of Multivariate Normal and t Probabilities. Lecture Notes in Statistics, Vol. 195. Springer-Verlag, Heidelberg.
Miwa, A., Hayter J. and Kuriki, S. (2003). The evaluation of general non-centred orthant probabilities. Journal of the Royal Statistical Society, Ser. B, 65, 223-234.

Mi, X., Miwa, T. and Hothorn, T. (2009). mvtnorm: New numerical algorithm for multivariate normal probabilities. The R Journal 1(1): 37-39. https://journal.r-project.org/archive/ 2009-1/RJournal_2009-1_Mi+et+al.pdf

Mvnorm Multivariate Normal Density and Random Deviates

Description

These functions provide the density function and a random number generator for the multivariate normal distribution with mean equal to mean and covariance matrix sigma.

Usage

dmvnorm(x, mean $=\operatorname{rep}(0, p)$, sigma $=\operatorname{diag}(p)$, log $=$ FALSE, checkSymmetry $=$ TRUE)
rmvnorm(n, mean $=$ rep(0, nrow(sigma)), sigma $=$ diag(length(mean)),
method=c("eigen", "svd", "chol"), pre0.9_9994 = FALSE, checkSymmetry = TRUE)

Arguments

x
$n \quad$ number of observations.
mean mean vector, default is $\operatorname{rep}(0$, length $=\operatorname{ncol}(x))$.
sigma covariance matrix, default is $\operatorname{diag}(n \operatorname{col}(x))$.
$\log \quad \operatorname{logical}$; if TRUE, densities d are given as $\log (d)$.
method string specifying the matrix decomposition used to determine the matrix root of sigma. Possible methods are eigenvalue decomposition ("eigen", default), singular value decomposition ("svd"), and Cholesky decomposition ("chol"). The Cholesky is typically fastest, not by much though.
pre0.9_9994 logical; if FALSE, the output produced in mvtnorm versions up to 0.9-9993 is reproduced. In $0.9-9994$, the output is organized such that rmvnorm $(10, \ldots$) has the same first ten rows as rmvnorm $(100, \ldots)$ when called with the same seed.
checkSymmetry logical; if FALSE, skip checking whether the covariance matrix is symmetric or not. This will speed up the computation but may cause unexpected outputs when ill-behaved sigma is provided. The default value is TRUE.

Author(s)

Friedrich Leisch and Fabian Scheipl

See Also

pmvnorm, rnorm, qmvnorm

Examples

```
dmvnorm(x=c(0,0))
dmvnorm(x=c(0,0), mean=c(1,1))
sigma <- matrix(c(4, 2,2,3), ncol=2)
x <- rmvnorm(n=500, mean=c(1,2), sigma=sigma)
colMeans(x)
var(x)
x <- rmvnorm(n=500, mean=c(1,2), sigma=sigma, method="chol")
colMeans(x)
var(x)
plot(x)
```

Mvt

Description

These functions provide information about the multivariate t distribution with non-centrality parameter (or mode) delta, scale matrix sigma and degrees of freedom df. dmvt gives the density and rmvt generates random deviates.

Usage

```
    rmvt(n, sigma = diag(2), df = 1, delta = rep(0, nrow(sigma)),
        type = c("shifted", "Kshirsagar"), ...)
    dmvt(x, delta = rep(0, p), sigma = diag(p), df = 1, log = TRUE,
        type = "shifted", checkSymmetry = TRUE)
```


Arguments

x
n
delta
sigma
vector or matrix of quantiles. If x is a matrix, each row is taken to be a quantile. number of observations.
the vector of noncentrality parameters of length n, for type = "shifted" delta specifies the mode.
scale matrix, defaults to diag(ncol (x)).
df degrees of freedom. $\mathrm{df}=0$ or $\mathrm{df}=\operatorname{Inf}$ corresponds to the multivariate normal distribution.
$\log \quad \operatorname{logical}$ indicating whether densities d are given as $\log (d)$.
type type of the noncentral multivariate t distribution. type = "Kshirsagar" corresponds to formula (1.4) in Genz and Bretz (2009) (see also Chapter 5.1 in Kotz and Nadarajah (2004)). This is the noncentral t-distribution needed for calculating the power of multiple contrast tests under a normality assumption. type $=$ "shifted" corresponds to the formula right before formula (1.4) in Genz and Bretz (2009) (see also formula (1.1) in Kotz and Nadarajah (2004)). It is a location shifted version of the central t-distribution. This noncentral multivariate t distribution appears for example as the Bayesian posterior distribution for the regression coefficients in a linear regression. In the central case both types coincide. Note that the defaults differ from the default in pmvt() (for reasons of backward compatibility).
checkSymmetry logical; if FALSE, skip checking whether the covariance matrix is symmetric or not. This will speed up the computation but may cause unexpected outputs when ill-behaved sigma is provided. The default value is TRUE.
.. additional arguments to rmvnorm(), for example method.

Details

If \boldsymbol{X} denotes a random vector following a t distribution with location vector $\mathbf{0}$ and scale matrix Σ (written $X \sim t_{\nu}(\mathbf{0}, \Sigma)$), the scale matrix (the argument sigma) is not equal to the covariance matrix $\operatorname{Cov}(\boldsymbol{X})$ of \boldsymbol{X}. If the degrees of freedom ν (the argument df) is larger than 2, then $\operatorname{Cov}(\boldsymbol{X})=$ $\Sigma \nu /(\nu-2)$. Furthermore, in this case the correlation matrix $\operatorname{Cor}(\boldsymbol{X})$ equals the correlation matrix corresponding to the scale matrix Σ (which can be computed with cov2cor ()). Note that the scale matrix is sometimes referred to as "dispersion matrix"; see McNeil, Frey, Embrechts (2005, p. 74).

For type = "shifted" the density

$$
c\left(1+(x-\delta)^{\prime} S^{-1}(x-\delta) / \nu\right)^{-(\nu+m) / 2}
$$

is implemented, where

$$
c=\Gamma((\nu+m) / 2) /\left((\pi \nu)^{m / 2} \Gamma(\nu / 2)|S|^{1 / 2}\right)
$$

S is a positive definite symmetric matrix (the matrix sigma above), δ is the non-centrality vector and ν are the degrees of freedom.
$d f=0$ historically leads to the multivariate normal distribution. From a mathematical point of view, rather $\mathrm{df}=\mathrm{Inf}$ corresponds to the multivariate normal distribution. This is (now) also allowed for rmvt () and dmvt ().

Note that dmvt () has default log = TRUE, whereas dmvnorm() has default log = FALSE.

References

McNeil, A. J., Frey, R., and Embrechts, P. (2005). Quantitative Risk Management: Concepts, Techniques, Tools. Princeton University Press.

See Also

pmvt() and qmvt()

Examples

```
## basic evaluation
dmvt(x = c(0,0), sigma = diag(2))
## check behavior for df=0 and df=Inf
x <- c(1.23, 4.56)
mu <- 1:2
Sigma <- diag(2)
x0 <- dmvt(x, delta = mu, sigma = Sigma, df = 0) # default log = TRUE!
x8 <- dmvt(x, delta = mu, sigma = Sigma, df = Inf) # default log = TRUE!
xn <- dmvnorm(x, mean = mu, sigma = Sigma, log = TRUE)
stopifnot(identical(x0, x8), identical(x0, xn))
## X ~ t_3(0, diag(2))
x <- rmvt(100, sigma = diag(2), df = 3) # t_3(0, diag(2)) sample
plot(x)
## X ~ t_3(mu, Sigma)
n <- 1000
mu <- 1:2
Sigma <- matrix(c(4, 2, 2, 3), ncol=2)
set.seed(271)
x <- rep(mu, each=n) + rmvt(n, sigma=Sigma, df=3)
plot(x)
## Note that the call rmvt(n, mean=mu, sigma=Sigma, df=3) does *not*
## give a valid sample from t_3(mu, Sigma)! [and thus throws an error]
try(rmvt(n, mean=mu, sigma=Sigma, df=3))
## df=Inf correctly samples from a multivariate normal distribution
set.seed(271)
x <- rep(mu, each=n) + rmvt(n, sigma=Sigma, df=Inf)
set.seed(271)
x. <- rmvnorm(n, mean=mu, sigma=Sigma)
stopifnot(identical(x, x.))
```

pmvnorm
Multivariate Normal Distribution

Description

Computes the distribution function of the multivariate normal distribution for arbitrary limits and correlation matrices.

Usage

```
pmvnorm(lower=-Inf, upper=Inf, mean=rep(0, length(lower)),
        corr=NULL, sigma=NULL, algorithm = GenzBretz(), ...)
```


Arguments

lower	the vector of lower limits of length n.
upper	the vector of upper limits of length n.
mean	the mean vector of length n.

Details

This program involves the computation of multivariate normal probabilities with arbitrary correlation matrices. It involves both the computation of singular and nonsingular probabilities. The implemented methodology is described in Genz (1992, 1993) (for algorithm GenzBretz), in Miwa et al. (2003) for algorithm Miwa (useful up to dimension 20) and Genz (2004) for the TVPACK algorithm (which covers 2- and 3-dimensional problems for semi-infinite integration regions).

Note the default algorithm GenzBretz is randomized and hence slightly depends on .Random.seed and that both -Inf and +Inf may be specified in lower and upper. For more details see pmvt.

The multivariate normal case is treated as a special case of pmvt with $\mathrm{df}=0$ and univariate problems are passed to pnorm.

The multivariate normal density and random deviates are available using dmvnorm and rmvnorm.

Value

The evaluated distribution function is returned with attributes
error estimated absolute error and
msg status messages.

Source

http://www.sci.wsu.edu/math/faculty/genz/homepage

References

Genz, A. (1992). Numerical computation of multivariate normal probabilities. Journal of Computational and Graphical Statistics, 1, 141-150.
Genz, A. (1993). Comparison of methods for the computation of multivariate normal probabilities. Computing Science and Statistics, 25, 400-405.

Genz, A. (2004), Numerical computation of rectangular bivariate and trivariate normal and t-probabilities, Statistics and Computing, 14, 251-260.
Genz, A. and Bretz, F. (2009), Computation of Multivariate Normal and t Probabilities. Lecture Notes in Statistics, Vol. 195. Springer-Verlag, Heidelberg.

Miwa, A., Hayter J. and Kuriki, S. (2003). The evaluation of general non-centred orthant probabilities. Journal of the Royal Statistical Society, Ser. B, 65, 223-234.

See Also

qmvnorm

Examples

```
n<- 5
mean <- rep(0, 5)
lower <- rep(-1, 5)
upper <- rep(3, 5)
corr <- diag(5)
corr[lower.tri(corr)] <- 0.5
corr[upper.tri(corr)] <- 0.5
prob <- pmvnorm(lower, upper, mean, corr)
print(prob)
stopifnot(pmvnorm(lower=-Inf, upper=3, mean=0, sigma=1) == pnorm(3))
a <- pmvnorm(lower=-Inf,upper=c(.3,.5),mean=c(2,4),diag(2))
stopifnot(round}(a,16)== round(prod(pnorm(c(.3,.5),c(2,4))),16)
a <- pmvnorm(lower=-Inf,upper=c(.3,.5,1),mean=c(2,4,1),diag(3))
stopifnot(round}(a,16)== round(prod(pnorm(c(.3, .5,1),c(2,4,1))),16)
# Example from R News paper (original by Genz, 1992):
m <- 3
sigma <- diag(3)
sigma[2,1] <- 3/5
sigma[3,1] <- 1/3
sigma[3,2] <- 11/15
pmvnorm(lower=rep(-Inf, m), upper=c(1,4,2), mean=rep(0, m), corr=sigma)
# Correlation and Covariance
```

```
a <- pmvnorm(lower=-Inf, upper=c(2,2), sigma = diag(2)*2)
b <- pmvnorm(lower=-Inf, upper=c(2,2)/sqrt(2), corr=diag(2))
stopifnot(all.equal(round(a,5) , round(b, 5)))
```

```
pmvt Multivariate t Distribution
```


Description

Computes the the distribution function of the multivariate t distribution for arbitrary limits, degrees of freedom and correlation matrices based on algorithms by Genz and Bretz.

Usage

```
pmvt(lower=-Inf, upper=Inf, delta=rep(0, length(lower)),
df=1, corr=NULL, sigma=NULL, algorithm = GenzBretz(),
type = c("Kshirsagar", "shifted"), ...)
```


Arguments

lower	the vector of lower limits of length n .
upper	the vector of upper limits of length n .
delta	the vector of noncentrality parameters of length n, for type = "shifted" delta specifies the mode.
df	degree of freedom as integer. Normal probabilities are computed for $\mathrm{df}=0$.
corr	the correlation matrix of dimension n.
sigma	the scale matrix of dimension n. Either corr or sigma can be specified. If sigma is given, the problem is standardized. If neither corr nor sigma is given, the identity matrix is used for sigma.
algorithm	an object of class GenzBretz or TVPACK defining the hyper parameters of this algorithm.
type	type of the noncentral multivariate t distribution to be computed. type = "Kshirsagar" corresponds to formula (1.4) in Genz and Bretz (2009) (see also Chapter 5.1 in Kotz and Nadarajah (2004)). This is the noncentral t-distribution needed for calculating the power of multiple contrast tests under a normality assumption. type = "shifted" corresponds to the formula right before formula (1.4) in Genz and Bretz (2009) (see also formula (1.1) in Kotz and Nadarajah (2004)). It is a location shifted version of the central t-distribution. This noncentral multivariate t distribution appears for example as the Bayesian posterior distribution for the regression coefficients in a linear regression. In the central case both types coincide.
	additional parameters (currently given to GenzBretz for backward compatibility issues).

Details

This function involves the computation of central and noncentral multivariate t-probabilities with arbitrary correlation matrices. It involves both the computation of singular and nonsingular probabilities. The methodology (for default algorithm $=$ GenzBretz()) is based on randomized quasi Monte Carlo methods and described in Genz and Bretz (1999, 2002).
Because of the randomization, the result for this algorithm (slightly) depends on .Random. seed.
For 2- and 3-dimensional problems one can also use the TVPACK routines described by Genz (2004), which only handles semi-infinite integration regions (and for type = "Kshirsagar" only central problems).
For type = "Kshirsagar" and a given correlation matrix corr, for short A, say, (which has to be positive semi-definite) and degrees of freedom ν the following values are numerically evaluated

$$
I=2^{1-\nu / 2} / \Gamma(\nu / 2) \int_{0}^{\infty} s^{\nu-1} \exp \left(-s^{2} / 2\right) \Phi(s \cdot \text { lower } / \sqrt{\nu}-\delta, s \cdot \text { upper } / \sqrt{\nu}-\delta) d s
$$

where

$$
\Phi(a, b)=\left(\operatorname{det}(A)(2 \pi)^{m}\right)^{-1 / 2} \int_{a}^{b} \exp \left(-x^{\prime} A x / 2\right) d x
$$

is the multivariate normal distribution and m is the number of rows of A.
For type = "shifted", a positive definite symmetric matrix S (which might be the correlation or the scale matrix), mode (vector) δ and degrees of freedom ν the following integral is evaluated:

$$
c \int_{\text {lower }_{1}}^{\text {upper }_{1}} \ldots \int_{\text {lower }_{m}}^{\text {upper }_{m}}\left(1+(x-\delta)^{\prime} S^{-1}(x-\delta) / \nu\right)^{-(\nu+m) / 2} d x_{1} \ldots d x_{m},
$$

where

$$
c=\Gamma((\nu+m) / 2) /\left((\pi \nu)^{m / 2} \Gamma(\nu / 2)|S|^{1 / 2}\right)
$$

and m is the number of rows of S.
Note that both -Inf and +Inf may be specified in the lower and upper integral limits in order to compute one-sided probabilities.
Univariate problems are passed to pt . If $\mathrm{df}=0$, normal probabilities are returned.

Value

The evaluated distribution function is returned with attributes

error	estimated absolute error and
$m s g$	status message (a character string).

Source

http://www.sci.wsu.edu/math/faculty/genz/homepage

References

Genz, A. and Bretz, F. (1999), Numerical computation of multivariate t-probabilities with application to power calculation of multiple contrasts. Journal of Statistical Computation and Simulation, 63, 361-378.
Genz, A. and Bretz, F. (2002), Methods for the computation of multivariate t-probabilities. Journal of Computational and Graphical Statistics, 11, 950-971.

Genz, A. (2004), Numerical computation of rectangular bivariate and trivariate normal and t-probabilities, Statistics and Computing, 14, 251-260.

Genz, A. and Bretz, F. (2009), Computation of Multivariate Normal and t Probabilities. Lecture Notes in Statistics, Vol. 195. Springer-Verlag, Heidelberg.
S. Kotz and S. Nadarajah (2004), Multivariate t Distributions and Their Applications. Cambridge University Press. Cambridge.
Edwards D. and Berry, Jack J. (1987), The efficiency of simulation-based multiple comparisons. Biometrics, 43, 913-928.

See Also

qmvt

Examples

```
n <- 5
lower <- -1
upper <- 3
df <- 4
corr <- diag(5)
corr[lower.tri(corr)] <- 0.5
delta <- rep(0, 5)
prob <- pmvt(lower=lower, upper=upper, delta=delta, df=df, corr=corr)
print(prob)
pmvt(lower=-Inf, upper=3, df = 3, sigma = 1) == pt(3, 3)
# Example from R News paper (original by Edwards and Berry, 1987)
n <- c(26, 24, 20, 33, 32)
v <- diag(1/n)
df <- 130
c <- c(1,1,1,0,0,-1,0,0,1,0,0,-1,0,0,1,0,0,0,-1,-1,0,0,-1,0,0)
C <- matrix(C, ncol=5)
### scale matrix
cv <- C %*% v %*% t(C)
### correlation matrix
dv <- t(1/sqrt(diag(cv)))
cr <- cv * (t(dv) %*% dv)
delta <- rep(0,5)
myfct <- function(q, alpha) {
```

```
    lower <- rep(-q, ncol(cv))
    upper <- rep(q, ncol(cv))
    pmvt(lower=lower, upper=upper, delta=delta, df=df,
        corr=cr, abseps=0.0001) - alpha
}
### uniroot for this simple problem
round(uniroot(myfct, lower=1, upper=5, alpha=0.95)$root, 3)
# compare pmvt and pmvnorm for large df:
a <- pmvnorm(lower=-Inf, upper=1, mean=rep(0, 5), corr=diag(5))
b <- pmvt(lower=-Inf, upper=1, delta=rep(0, 5), df=300,
        corr=diag(5))
a
b
stopifnot(round(a, 2) == round(b, 2))
# correlation and scale matrix
a <- pmvt(lower=-Inf, upper=2, delta=rep(0,5), df=3,
    sigma = diag(5)*2)
b <- pmvt(lower=-Inf, upper=2/sqrt(2), delta=rep(0,5),
    df=3, corr=diag(5))
attributes(a) <- NULL
attributes(b) <- NULL
a
b
stopifnot(all.equal(round(a,3), round(b, 3)))
a <- pmvt(0, 1,df=10)
attributes(a) <- NULL
b <- pt(1, df=10) - pt(0, df=10)
stopifnot(all.equal(round(a,10), round(b, 10)))
```

qmvnorm Quantiles of the Multivariate Normal Distribution

Description

Computes the equicoordinate quantile function of the multivariate normal distribution for arbitrary correlation matrices based on inversion of pmvnorm, using a stochastic root finding algorithm described in Bornkamp (2018).

Usage

qmvnorm(p, interval $=$ NULL, tail = c("lower.tail",

```
            "upper.tail", "both.tails"), mean = 0, corr = NULL,
```

```
sigma = NULL, algorithm = GenzBretz(),
ptol = 0.001, maxiter = 500, trace = FALSE, ...)
```


Arguments

p	probability.
interval	optional, a vector containing the end-points of the interval to be searched. Does not need to contain the true quantile, just used as starting values by the rootfinder. If equal to NULL a guess is used.
tail	specifies which quantiles should be computed. lower. tail gives the quantile x for which $P[X \leq x]=p$, upper. tail gives x with $P[X>x]=p$ and both. tails leads to x with $P[-x \leq X \leq x]=p$.
mean	the mean vector of length n .
corr	the correlation matrix of dimension n .
sigma	the covariance matrix of dimension n. Either corr or sigma can be specified. If sigma is given, the problem is standardized. If neither corr nor sigma is given, the identity matrix is used for sigma.
algorithm	an object of class GenzBretz, Miwa or TVPACK specifying both the algorithm to be used as well as the associated hyper parameters.
ptol, maxiter, trace	
	Parameters passed to the stochastic root-finding algorithm. Iteration stops when the 95% confidence interval for the predicted quantile is inside [p-ptol, $p+p t o l]$. maxiter is the maximum number of iterations for the root finding algorithm. trace prints the iterations of the root finder.
	additional parameters to be passed to GenzBretz.

Details

Only equicoordinate quantiles are computed, i.e., the quantiles in each dimension coincide. The result is seed dependend.

Value

A list with two components: quantile and f.quantile give the location of the quantile and the difference between the distribution function evaluated at the quantile and p.

References

Bornkamp, B. (2018). Calculating quantiles of noisy distribution functions using local linear regressions. Computational Statistics, 33, 487-501.

See Also

pmvnorm, qmvt

Examples

```
qmvnorm(0.95, sigma = diag(2), tail = "both")
```

```
qmvt Quantiles of the Multivariate t Distribution
```


Description

Computes the equicoordinate quantile function of the multivariate t distribution for arbitrary correlation matrices based on inversion of pmvt, using a stochastic root finding algorithm described in Bornkamp (2018).

Usage

```
qmvt(p, interval = NULL, tail = c("lower.tail",
        "upper.tail", "both.tails"), df = 1, delta = 0, corr = NULL,
        sigma = NULL, algorithm = GenzBretz(),
        type = c("Kshirsagar", "shifted"),
        ptol = 0.001, maxiter = 500, trace = FALSE, ...)
```


Arguments

p	probability.
interval	optional, a vector containing the end-points of the interval to be searched. Does not need to contain the true quantile, just used as starting values by the rootfinder. If equal to NULL a guess is used.
tail	specifies which quantiles should be computed. lower.tail gives the quantile x for which $P[X \leq x]=p$, upper. tail gives x with $P[X>x]=p$ and both. tails leads to x with $P[-x \leq X \leq x]=p$.
delta	the vector of noncentrality parameters of length n, for type $=$ "shifted" delta specifies the mode.
df	degree of freedom as integer. Normal quantiles are computed for $d f=0$ or $d f=$ Inf.
corr	the correlation matrix of dimension n .
sigma	the covariance matrix of dimension n. Either corr or sigma can be specified. If sigma is given, the problem is standardized. If neither corr nor sigma is given, the identity matrix in the univariate case (so corr $=1$) is used for corr.
algorithm	an object of class GenzBretz or TVPACK defining the hyper parameters of this algorithm.
type	type of the noncentral multivariate t distribution to be computed. type = "Kshirsagar" corresponds to formula (1.4) in Genz and Bretz (2009) (see also Chapter 5.1 in Kotz and Nadarajah (2004)) and type = "shifted" corresponds to the formula before formula (1.4) in Genz and Bretz (2009) (see also formula (1.1) in Kotz and Nadarajah (2004)).
ptol, maxiter, trace	
	Parameters passed to the stochastic root-finding algorithm. Iteration stops when the 95% confidence interval for the predicted quantile is inside [p-ptol, $\mathrm{p}+\mathrm{ptol}]$. maxiter is the maximum number of iterations for the root finding algorithm. trace prints the iterations of the root finder.

... additional parameters to be passed to GenzBretz.

Details

Only equicoordinate quantiles are computed, i.e., the quantiles in each dimension coincide. The result is seed dependend.

Value

A list with two components: quantile and f.quantile give the location of the quantile and the difference between the distribution function evaluated at the quantile and p.

References

Bornkamp, B. (2018). Calculating quantiles of noisy distribution functions using local linear regressions. Computational Statistics, 33, 487-501.

See Also

pmvnorm, qmvnorm

Examples

```
## basic evaluation
qmvt(0.95, df = 16, tail = "both")
## check behavior for df=0 and df=Inf
Sigma <- diag(2)
set.seed(29)
q0 <- qmvt(0.95, sigma = Sigma, df = 0, tail = "both")$quantile
set.seed(29)
q8 <- qmvt(0.95, sigma = Sigma, df = Inf, tail = "both")$quantile
set.seed(29)
qn <- qmvnorm(0.95, sigma = Sigma, tail = "both")$quantile
stopifnot(identical(q0, q8),
    isTRUE(all.equal(q0, qn, tol = (.Machine$double.eps)^(1/3))))
## if neither sigma nor corr are provided, corr = 1 is used internally
df <- 0
set.seed(29)
qt95 <- qmvt(0.95, df = df, tail = "both")$quantile
set.seed(29)
qt95.c <- qmvt(0.95, df = df, corr = 1, tail = "both")$quantile
set.seed(29)
qt95.s <- qmvt(0.95, df = df, sigma = 1, tail = "both")$quantile
stopifnot(identical(qt95, qt95.c),
    identical(qt95, qt95.s))
df <- 4
set.seed(29)
qt95 <- qmvt(0.95, df = df, tail = "both")$quantile
set.seed(29)
```

qt95.c <- qmvt(0.95, df = df, corr = 1, tail = "both")\$quantile set.seed(29)
qt95.s <- qmvt(0.95, df = df, sigma = 1, tail = "both") \$quantile stopifnot(identical(qt95, qt95.c),
identical(qt95, qt95.s))

Index

*Topic distribution

algorithms, 2
Mvnorm, 3
Mvt, 4
pmvnorm, 6
pmvt, 9
qmvnorm, 12
qmvt, 14
*Topic multivariate
Mvnorm, 3
Mvt, 4
.Random. seed, 7, 10
algorithms, 2
character, 10
cov2cor, 5
dmvnorm, 5, 7
dmvnorm (Mvnorm), 3
dmvt (Mvt), 4
GenzBretz, 7, 9, 13-15
GenzBretz (algorithms), 2
logical, 5
Miwa, 7, 13
Miwa (algorithms), 2
Mvnorm, 3
Mvt, 4
pmvnorm, 4, 6, 12, 13, 15
pmvt, 5-7, 9, 14
pnorm, 7
pt, 10
qmvnorm, 4, 8, 12, 15
qmvt, $6,11,13,14$
rmvnorm, 5, 7
rmvnorm (Mvnorm), 3
rmvt (Mvt), 4
rnorm, 4
TVPACK, 7, 9, 10, 13, 14
TVPACK (algorithms), 2

