# Package 'multigraph' 

February 28, 2020
Type Package
Title Plot and Manipulate Multigraphs
Version 0.93
Depends R ( $>=3.6 .0$ ), multiplex ( $>=2.9$ )
Imports methods
Date 2020-02-28
Author Antonio Rivero Ostoic [aut, cre]
Maintainer Antonio Rivero Ostoic [multiplex@post.com](mailto:multiplex@post.com)
Description Functions to plot and manipulate multigraphs, signed and valued graphs, bipar-tite graphs, multilevel graphs, and Cayley graphs with different layout op-tions. Please note that this package still under a devel version.
URL http://github.com/mplex/multigraph/
BugReports https://github.com/mplex/multigraph/issues/
Repository CRAN
License GPL-3
NeedsCompilation no
Date/Publication 2020-02-28 16:10:05 UTC
$R$ topics documented:
multigraph-package ..... 2
bmgraph ..... 2
ccgraph ..... 5
conc ..... 8
frcd ..... 9
mlgraph ..... 10
multigraph ..... 13
stsm ..... 17
Index ..... 19

```
multigraph-package

\section*{Description}

Functions to create and manipulate multigraphs, bipartite graphs, and valued multigraphs

\section*{Details}
\begin{tabular}{ll} 
Package: & multigraph \\
Type: & Package \\
Version: & 0.93 (devel) \\
Depends: & multiplex \((>=2.9)\) \\
Date: & 28 February 2020 \\
License: & GPL-3
\end{tabular}

This package contains functions to plot diverse types of graphs representing complex network structures. For one-mode data, it is possible to depict signed and valued multigraphs, and bipartite graphs for two-mode data as well. Moreover, multilevel graphs that combine one- and two-mode network data are represented with the latest function. Finally, Cayley graphs serve to depict relations among the ties with multiple edges.
Please note that this package still under current development.

\section*{Author(s)}
J. Antonio Rivero Ostoic

Maintainer: Antonio Rivero Ostoic <multiplex @ post.com>

\section*{References}

Ostoic, J.A.R. 'Algebraic Analysis of Multiple Social Networks with multiplex.' Journal of Statistical Software, 91(11), 1-41. <doi:10.18637/jss.v092.i11>

\section*{See Also}
multiplex-package, incubs, zbind, transf
bmgraph Bipartite multigraph

\section*{Description}

A function to create and manipulate bipartite multigraphs

\section*{Usage}
bmgraph(net, layout = c("bip", "bip3", "bip3e", "bipc", "force", "rand", "circ", "stress", "CA", "circ2"), scope, coord, alpha = c(1, 1, 1), showLbs, showAtts, att = NULL, lbat = "1", main = NULL, cex.main, bg, mar, directed, valued, collRecip, cex, pos, lwd, lty, col, ecol, vcol, vcol0, asp, seed = NULL, maxiter = 100, bwd, clu, pch, rot, mirrorX, mirrorY, mirrorV, mirrorH, hds, vedist, jitter, sort, add, adc, perm, ffamily, fstyle, fsize, fcol, vclu, ...)

\section*{Arguments}
\begin{tabular}{|c|c|}
\hline net & data frame or array representing the two-mode network (see details) \\
\hline \multirow[t]{11}{*}{layout} & the visualization layout: \\
\hline & bip (default) bipartite graph \\
\hline & bip3 bipartite graph with three columns \\
\hline & bip3e bipartite graph with three columns for events \\
\hline & bipc "clustered" bipartite graph \\
\hline & force force-directed algorithm \\
\hline & rand random \\
\hline & circ circular \\
\hline & stress stress-majorization algorithm \\
\hline & CA correspondence analysis \\
\hline & circ2 two semi-circles \\
\hline scope & (optional) the scope of the graph (see details) \\
\hline coord & (optional) data frame with the coordinates of the vertices. If coordinates are given then the layout option is ignored \\
\hline alpha & vector (vertex, edge, bg) with the alpha color transparency \\
\hline showLbs & (optional and logical) whether or not show the vertex labels when dimnames available \\
\hline showAtts & (optional and logical) whether or not show the vertex attribute labels \\
\hline att & (optional) a vector or an array representing the vertex attributes \\
\hline lbat & (optional) the labels for the vertex attributes \\
\hline main & (optional) title of the plot \\
\hline cex.main & (optional) the size of the plot's title \\
\hline bg & (optional) the background color of the plot \\
\hline mar & (optional) the margins of the plot \\
\hline directed & (optional and logical) whether or not the graph is directed or undirected \\
\hline valued & (optional and logical) whether or not the graph is valued or with dichotomous data \\
\hline collRecip & (optional and logical) whether or not collapse reciprocated edges in the undirected graph \\
\hline cex & (optional) the size of the vertices \\
\hline
\end{tabular}
\begin{tabular}{|c|c|}
\hline pos & (optional) the position of the vertices' labels ( 0 means "at the center of the vertex") \\
\hline lwd & (optional) the width of the edges. Ignored if valued is set to TRUE \\
\hline lty & (optional) the shape of the edges \\
\hline col & (optional) alias for vcol \\
\hline ecol & (optional) the color of the edges \\
\hline vcol & (optional) the color of the vertices \\
\hline vcol0 & (optional) the color of the vertices' contour (only works for pch 21 through 25 \\
\hline asp & (optional) the aspect ratio of the plot \\
\hline seed & (optional) the random seed number for the vertices' initial coordinates. Ignored except for force, stress and rand \\
\hline maxiter & (optional) the maximum number of iterations in layout algorithms. Ignored except for force, stress and rand \\
\hline bwd & (optional) the width of the bundle edges. Ranges from 0 (edges collapsed) to the default 1 (depending on the vertices' size). For valued a value greater than one is possible \\
\hline clu & (optional) the clustering of the vertices (see details) \\
\hline pch & (optional) the symbol representing the vertices \\
\hline rot & (optional) clockwise rotation of the graph in degrees \\
\hline mirrorX & (optional) mirror of the X axis \\
\hline mirrorY & (optional) mirror of the Y axis \\
\hline mirrorV & same as mirrorX \\
\hline mirrorH & same as mirrorY \\
\hline hds & (optional and experimental) arcs' head scale \\
\hline vedist & (optional and experimental) a real number with vertex - edge distance \\
\hline jitter & (optional) the jitter in stress or CA \\
\hline sort & (optional and logical) sort the vertex labels \\
\hline add & (optional) add nodes to the graph's domain \\
\hline adc & (optional) add nodes to the graph's codomain \\
\hline perm & (optional) a list of vectors for the permutation of network members in both the domain and codomain \\
\hline ffamily & (optional) the font family \\
\hline fstyle & (optional) the font style \\
\hline fsize & (optional) the font size \\
\hline fcol & (optional) the font color \\
\hline vclu & (optional) a list of vectors the clustering information in both the domain and the codomain \\
\hline ... & Additional argument items (see e.g. par) \\
\hline
\end{tabular}

\section*{Details}

Bipartite graphs are visualization devices for two-mode networks. Although this type of data would typically record as a data frame, it is possible to use even three-dimensional arrays where each level corresponds to a particular type of tie. Thus the bipartite graphs, in this case, will be depicted with parallel edges. Besides, it is possible to obtain a figure of the bipartite network using the binomial approach to two-mode data and plot it with a force-directed algorithm.

\section*{Value}

A plot of the two-mode network as a bipartite graph or multigraph with a projection

\section*{Author(s)}

Antonio Rivero Ostoic

\section*{See Also}
multigraph, frcd, stsm, conc

\section*{Examples}
```


## Create the data: two binary relations among three elements

arr <- round( replace( array(runif(18), c(3,3,2)), array(runif(18),
c(3,3,2))>.5, 3 ) )

## Plot this network as Bipartite graph

bmgraph(arr)

## Now with a Force Directed algorithm

bmgraph(arr, layout = "force")

## And with a Correspondence Analysis method

bmgraph(arr, layout = "CA", asp = NA)

```
ccgraph Cayley colour graph

\section*{Description}

A function to create and manipulate bipartite Cayley colour graphs

\section*{Usage}
ccgraph(x, main \(=\) NULL, seed \(=0\), maxiter \(=100\), alpha \(=c(1,1,1)\), scope, loops, collRecip, undRecip, showLbs, cex.main, conc, coord, clu, cex, lwd, pch, lty, bwd, bwd2, att, bg, mar, pos, asp, ecol, vcol, vcol0, lbs, col, lbat, swp, swp2, scl, mirrorX, mirrorY, mirrorD, mirrorL, mirrorV, mirrorH, rot, hds, vedist, ffamily, fstyle, fsize, fcol, ...)

\section*{Arguments}

X
main
seed
maxiter
alpha
scope
loops
collRecip
undRecip
showLbs
cex.main
conc
coord
clu
cex
lwd
pch

\section*{lty}
bwd

> bwd2
att
bg
mar
pos
asp
ecol
vcol

> vcol0
lbs
col
an algebraic structure, typically a "Semigroup" object class
(optional) title of the plot
(optional) the random seed number for the vertices' initial coordinates. Ignored except for force, stress and rand
(optional) the maximum number of iterations in layout algorithms. Ignored except for force, stress and rand
vector (vertex, edge, bg) with the alpha color transparency
(optional) the scope of the graph (see details)
(optional, logical, and experimental) plot graph loops?
(optional and logical) whether or not collapse reciprocated edges in the undirected graph
(optional and logical) whether or not plot reciprocated edges as undirected
(optional and logical) whether or not show the vertex labels when dimnames available
(optional) the size of the plot's title
(optional and logical) whether the layout is concentric or not
(optional) data frame with the coordinates of the vertices. If coordinates are given then the layout option is ignored
(optional) the clustering of the vertices (see details)
(optional) the size of the vertices
(optional) the width of the edges. Ignored if valued is set to TRUE
(optional) the symbol representing the vertices
(optional) the shape of the edges
(optional) the width of the bundle edges. Ranges from 0 (edges collapsed) to the default 1 (depending on the vertices' size). For valued a value greater than one is possible
(optional) the width of the bundle loop edges.
(optional) a vector or an array representing the vertex attributes
(optional) the background color of the plot
(optional) the margins of the plot
(optional) the position of the vertices' labels (0 means "at the center of the vertex")
(optional) the aspect ratio of the plot
(optional) the color of the edges
(optional) the color of the vertices
(optional) the color of the vertices' contour (only works for pch 21 through 25
(optional) the vertex labels
(optional) alias for vcol
\begin{tabular}{ll} 
lbat & \begin{tabular}{l} 
(optional) the labels for the vertex attributes \\
(optional and logical) whether or not swap the bundle patterns
\end{tabular} \\
swp2 & \begin{tabular}{l} 
(optional and logical) whether or not swap reciprocals \\
(optional and experimental) numerical scalar (x and y) or vector (x, y) of the \\
graph's scale \\
(optional) mirror of the X axis
\end{tabular} \\
mirrorX & (optional) mirror of the Y axis \\
mirrorY & (optional) mirror reflection across diagonal Y=X \\
mirrorD & (optional) mirror reflection across diagonal Y=-X \\
mirrorL & same as mirrorX \\
mirrorV & same as mirrorY \\
mirrorH & (optional) clockwise rotation of the graph in degrees \\
rot & (optional and experimental) arcs' head scale \\
hds & (optional and experimental) a real number with vertex - edge distance \\
vedist & the font family \\
ffamily & the font style \\
fstyle & the font size \\
fsize & the font color \\
fcol & Additional argument items (see e.g. par) \\
f &
\end{tabular}

\section*{Details}

The Cayley colour graph is a graphical representation of the relationships among relations in the relational structure of a given multiplex network. Both nodes and directed edges represent string relations, and each shape (and color) corresponds to a specific generator relation of the semigroup structure.

\section*{Value}

A plot of the semigroup or group structure.

\section*{Author(s)}

Antonio Rivero Ostoic

\section*{See Also}
```

    semigroup, multigraph, frcd, conc
    ```

\section*{Examples}
```


## Create an abstract semigroup from image matrices in existing data set

data(incubD)
S <- semigroup(incubD\$IM)
\#\# plot its Cayley graph
ccgraph(S)

```
    conc Concentric layout

\section*{Description}

A function to compute the graph coordinated system with a concentric layout

\section*{Usage}
conc(net, nr, irot, inv, flip, mirror=c("N","X","Y","D","L"), ...)

\section*{Arguments}
net an array representing the network relations
\(\mathrm{nr} \quad\) a scalar with the number of radii, or a vector with the clustering of the actors.
irot a scalar or vector with the "internal rotation" for each circle from closer to the center point to further away
inv (optional and logical) should the circles be with an inverted ordering?
flip (optional and logical) should the alternating circles be flipped ?
mirror mirror transformation \(N\) identity (default)
\(X\) reflection through the vertical center line
\(Y\) reflection through the horizontal center line
\(D\) reflection across diagonal \(Y=X\)
\(L\) reflection across diagonal \(Y=-X\)
... Additional argument items

\section*{Details}

In a Euclidean plane computes the coordinated system with a concentric layout with at least two radii (unless \(n=1\) ). In case \(n r\) is not specified, approx. half of the vertices are located at one radius and half in another one.

The clustering of the actors may be used to establish the location of the vertices in different radii as a numerical, character, or a factor vector.

\section*{Value}

A data frame with a coordinated system with two columns representing the abscissa and the ordinate in a two-dimensional rectangular Cartesian coordinate system.

\section*{Author(s)}

Antonio Rivero Ostoic

\section*{See Also}
multigraph, bmgraph, frcd, stsm

\section*{Examples}
```


## Create the data: two binary relations among three elements

arr <- round( replace( array(runif(18), c(3,3,2)), array(runif(18),
c(3,3,2))>.5, 3 ) )

## Coordinates for the concentric layout with two radii

coord <- conc(arr, nr = 2)

## Plot multigraph with costumized coordenates

multigraph(arr, coord = coord)

```
frcd Force directed layout

\section*{Description}

A function to compute the graph coordinated system with a force directed layout algorithm

\section*{Usage}
frcd(net, seed \(=\) seed, maxiter, drp, scl, mov, ...)

\section*{Arguments}
net an array representing the network relations
seed (mandatory) the seed of the initial layout (see details)
maxiter (optional) the maximum number of iterations
drp (optional) for valued networks, drop values less than specified
... Additional argument items
scl (optional and experimental) numerical scalar (x and y) or vector ( \(x, y\) ) of the graph's scale
mov (optional and experimental) numerical scalar ( x and y ) or vector ( \(\mathrm{x}, \mathrm{y}\) ) to move the graph

\section*{Details}

This function is meant as an internal routine for graph visualization. However, it can be used for the coord option both in multigraph and in bmgraph where NULL in seed implies a random seed based on the clock watch of the computer.

\section*{Value}

A data frame with a coordinated system with two columns representing the abscissa and the ordinate in a two-dimensional rectangular Cartesian coordinate system.

\section*{Author(s)}

Antonio Rivero Ostoic

\section*{References}

Fruchterman, T.M.J., \& Reingold, E.M. Graph drawing by force-directed placement. SoftwarePractice \& Experience, 21(11), 1129-1164. 1991.

\section*{See Also}
multigraph, bmgraph, stsm, conc

\section*{Examples}
```


## Create the data: two binary relations among three elements

arr <- round( replace( array(runif(18), c(3,3,2)), array(runif(18),
c(3,3,2))>.5, 3 ) )

## Coordinates for the force directed layout with random start

coord <- frcd(arr, seed = NULL)

## Plot multigraph with costumized coordenates

multigraph(arr, coord = coord)

```
    mlgraph Multilevel graph

\section*{Description}

A function to create and manipulate multilevel graphs

\section*{Usage}
```

mlgraph(net, layout = c("circ", "force", "stress", "rand", "conc", "bip"), main = NULL,
seed = NULL, maxiter = 100, directed = TRUE, alpha = c(1, 1, 1), scope, collRecip,
undRecip, showLbs, showAtts, cex.main, coord, clu, cex, lwd, pch, lty, bwd, bwd2,
att, bg, mar, pos, asp, ecol, vcol, vcol0, col, lbat, swp, loops, swp2,
mirrorX, mirrorY, mirrorD, mirrorL, lbs, mirrorV, mirrorH, rot, hds, scl, vedist,
ffamily, fstyle, fsize, fcol, valued, modes, elv, lng, ...)

```

\section*{Arguments}
net
layout
seed
maxiter
directed
alpha
scope
collRecip
undRecip
showLbs
showAtts
cex.main
coord
clu
cex
lwd
pch
lty
bwd
a "Multilevel" class object or a 3D array with clustering information
the visualization layout:
circ circular
force force-directed
stress stress-majorization
rand random
conc concentric
bip as bipartite graph
main (optional) title of the plot
(optional) the random seed number for the vertices' initial coordinates. Ignored except for force, stress and rand
(optional) the maximum number of iterations in layout algorithms. Ignored except for force, stress and rand
(logical) whether or not the graph is directed or undirected vector (vertex, edge, bg) with the alpha color transparency
(optional) the scope of the graph (see details)
(optional and logical) whether or not collapse reciprocated edges in the undirected graph
(optional and logical) whether or not plot reciprocated edges as undirected
(optional and logical) whether or not show the vertex labels
(optional and logical) whether or not show the vertex attribute labels
(optional) the size of the plot's title
(optional) data frame with the coordinates of the vertices. If coordinates are given then the layout option is ignored
(optional) the clustering of the vertices (see details)
(optional) the size of the vertices
(optional) the width of the edges. Ignored if valued is set to TRUE
(optional) the symbol representing the vertices
(optional) the shape of the edges
(optional) the width of the bundle edges. Ranges from 0 (edges collapsed) to the default 1 (depending on the vertices' size). For valued a value greater than one is possible
\begin{tabular}{|c|c|}
\hline bwd2 & (optional) the width of the bundle loop edges. \\
\hline att & (optional) a vector or an array representing the vertex attributes \\
\hline bg & (optional) the background color of the plot \\
\hline mar & (optional) the margins of the plot \\
\hline pos & (optional) the position of the vertices' labels ( 0 means "at the center of the vertex") \\
\hline asp & (optional) the aspect ratio of the plot \\
\hline ecol & (optional) the color of the edges \\
\hline vcol & (optional) the color of the vertices \\
\hline vcol0 & (optional) the color of the vertices' contour (only works for pch 21 through 25 \\
\hline col & (optional) alias for vcol \\
\hline lbat & (optional) the labels for the vertex attributes \\
\hline swp & (optional and logical) whether or not swap the bundle patterns \\
\hline loops & (optional, logical, and experimental) plot graph loops? \\
\hline swp2 & (optional and logical) whether or not swap reciprocals \\
\hline mirrorX & (optional) mirror of the X axis \\
\hline mirrorY & (optional) mirror of the Y axis \\
\hline mirrorD & (optional) mirror reflection across diagonal \(\mathrm{Y}=\mathrm{X}\) \\
\hline mirrorL & (optional) mirror reflection across diagonal \(\mathrm{Y}=-\mathrm{X}\) \\
\hline lbs & (optional) the vertex labels \\
\hline mirrorV & same as mirrorX \\
\hline mirrorH & same as mirrorY \\
\hline rot & (optional) clockwise rotation of the graph in degrees \\
\hline hds & (optional and experimental) arcs' head scale \\
\hline scl & (optional and experimental) numerical scalar ( x and y ) or vector ( \(\mathrm{x}, \mathrm{y}\) ) of the graph's scale \\
\hline vedist & (optional and experimental) a real number with vertex - edge distance \\
\hline ffamily & the font family \\
\hline fstyle & the font style \\
\hline fsize & the font size \\
\hline fcol & the font color \\
\hline valued & (optional and logical) whether the graph is depicyed as valued or not \\
\hline modes & (optional) a vector indicating which matrices are domains and which codomains (works only with a "Multilevel" class object) \\
\hline elv & (experimental) control loops 1 \\
\hline lng & (experimental) control loops 2 \\
\hline \(\ldots\) & Additional argument items (see e.g. par) \\
\hline
\end{tabular}

\section*{Details}

Multilevel graphs serve to represent networks with different "levels" such as different domains in the network structure. A characteristic of multilevel networks is the existence of ties within and across domains.
Since this function can handle a large number of arguments, these can be stored as a list object that is passed through the scope option. In this case, a vector made of lists and scalars or combinations of these are accepted.

The bundle width specified by bwd and bwd2 ranges from 0 (edges collapsed) to the default 1 (depending on the vertices' size). For the valued option, a number greater than one is possible.

\section*{Value}

A plot of the multilevel graph structure for the network

\section*{Author(s)}

Antonio Rivero Ostoic

\section*{See Also}
mlvl, multigraph, bmgraph, frcd, stsm, conc

\section*{Examples}
\# create multilevel class object
\# plot the multilevel graph
```

multigraph Multigraphs and valued multigraphs

```

\section*{Description}

A function to create and manipulate multigraphs and valued multigraphs with different layout options

\section*{Usage}
multigraph(net, layout = c("circ", "force", "stress", "conc", "rand"), scope, directed = TRUE, loops, signed, valued, values, lbs, showLbs, att, lbat, showAtts, main = NULL, cex.main, col.main, font.main, coord, collRecip, undRecip, seed \(=\) NULL, maxiter \(=100\), clu, cex, cex2, pch, lwd, lty, vcol, vcol0, col, ecol, bwd, bwd2, pos, bg, bg2, asp, drp, add, swp, swp2, alpha = c(1, 1, 1, 1), rot, mirrorX, mirrorY, mirrorD, mirrorL, mirrorV, mirrorH, scl, hds, vedist, mar, ffamily, fstyle, fsize, fsize2, fcol, fcol2, lclu, ...)

\section*{Arguments}
net
layout
scope
directed
loops
signed
valued
values
lbs
showLbs
att
lbat
showAtts
main
cex.main
col.main
font.main
coord
collRecip
undRecip
seed
maxiter
clu
cex
cex2
pch
lwd
lty
an array; usually with three dimensions of stacked matrices where the multiple relations are placed.
the visualization layout:
circ circular
force force-directed
stress stress-majorization
conc concentric
rand random
(optional) the scope of the graph (see details)
(logical) whether or not the graph is directed or undirected
(optional, logical) plot graph loops?
(optional and logical) whether or not the graph is a signed structure
(optional and logical) whether the graph is depicyed as valued or not (optional and logical) print the values of the bonds in edges?
(optional) the vertices labels
(optional and logical) whether or not show the vertex labels
(optional) a vector or an array representing the vertex attributes
(optional) the labels for the vertices' attributes
(optional and logical) whether or not show the vertex attribute labels (optional) title of the plot
(optional) the size of the plot's title
(optional) the color of the plot's title
(optional) the font family of the plot's title
(optional) data frame with the coordinates of the vertices. If coordinates are given then the layout option is ignored
(optional and logical) whether or not collapse reciprocated edges in the undirected graph
(optional and logical) whether or not plot reciprocated edges as undirected
(optional) the random seed number for the vertices' initial coordinates. Ignored for circ and conc
(optional) the maximum number of iterations in layout algorithms. Only for force, stress, and rand
(optional) the clustering of the vertices (see details)
(optional) the size of the vertices
(optional) the size of the background for the values with the valued option
(optional) the symbol representing the vertices
(optional) the width of the edges. Ignored if valued is set to TRUE (optional) the shape of the edges
\begin{tabular}{|c|c|}
\hline vcol & (optional) the color of the vertices \\
\hline vcol0 & (optional) the color of the vertices' contour (only works for pch 21 through 25 \\
\hline col & (optional) alias for vcol \\
\hline ecol & (optional) the color of the edges \\
\hline bwd & (optional) the width of the bundle edges. \\
\hline bwd2 & (optional and experimental) the width of the bundle loop edges. \\
\hline pos & (optional) the position of the vertices' labels (0 means "in the middle of the vertex") \\
\hline bg & (optional) the background color of the plot \\
\hline bg2 & (optional) the background color for values \\
\hline asp & (optional) the aspect ratio of the plot \\
\hline drp & (optional) for valued networks, drop values less than the specified \\
\hline add & (optional) nodes to add to the graph \\
\hline swp & (optional and logical) whether or not swap the bundle patterns \\
\hline swp2 & (optional and logical) whether or not swap reciprocals \\
\hline alpha & (optional) vector (vertex, edge, bg) with the alpha color transparency \\
\hline rot & (optional) clockwise rotation of the graph in degrees \\
\hline mirrorX & (optional) mirror of the X axis \\
\hline mirrorY & (optional) mirror of the Y axis \\
\hline mirrorD & (optional) mirror reflection across diagonal \(\mathrm{Y}=\mathrm{X}\) \\
\hline mirrorL & (optional) mirror reflection across diagonal \(\mathrm{Y}=-\mathrm{X}\) \\
\hline mirrorV & (optional) same as mirrorX \\
\hline mirrorH & (optional) same as mirrorY \\
\hline scl & (optional and experimental) numerical scalar ( x and y ) or vector ( \(\mathrm{x}, \mathrm{y}\) ) of the graph's scale \\
\hline hds & (optional and experimental) arcs' head scale \\
\hline vedist & (optional and experimental) a real number with vertex - edge distance \\
\hline mar & (optional) the margins of the plot \\
\hline ffamily & (optional) the font family \\
\hline fstyle & (optional) the font style \\
\hline fsize & (optional) the font size \\
\hline fsize2 & (optional) the font size for values \\
\hline fcol & (optional) the font color \\
\hline fcol2 & (optional) the font color for values \\
\hline lclu & (optional, vector) the "levels" in clu (see Details) \\
\hline & (optional) Additional argument items (see e.g. par) \\
\hline
\end{tabular}

\section*{Details}

Multigraphs are graphs having parallel edges depicting different types of relations in a network. By default, a circular layout is applied where each type of tie has a distinctive shape and gray color scale. For better visualization, undirected multigraphs automatically collapse the reciprocal relations, and there as an argument to prevent this from happening. It is possible to combine the symbols and colors of vertices by assigning a class to each network member in the clustering option. Vertices can also have different sizes by specifying the argument with a vector with a length size similar to the network order.

Since this function can handle a large number of arguments, these can be stored as a list object that is passed through the scope option. In this case a vector made of lists and scalars or combinations of these is accepted.
The bundle width specified by bwd (and bwd2 for loops) ranges from 0 (edges collapsed) to the default 1 (depending on the vertices' size). For the valued option, numbers higher than one are possible.
In some cases, such as when working with dynamic networks, it is needed to specify the ordering of the "levels" of the clustering information given in clu, and this is done in argument lclu.

\section*{Value}

A plot of the network as a multigraph or a valued multigraph.

\section*{Author(s)}

Antonio Rivero Ostoic

\section*{See Also}
bmgraph, ccgraph, frcd, stsm, conc

\section*{Examples}
```


## Create the data: two binary relations among three elements

arr <- round( replace( array(runif(18), c(3,3,2)), array(runif(18),
c(3,3,2))>.5, 3 ) )

## Plot the multigraph of this network

multigraph(arr)

## Now with a force directed algorithm

multigraph(arr, layout = "force")

## As valued graph

multigraph(arr, valued = TRUE)

## As signed graph

multigraph(arr, signed = TRUE)

## With loops and a costumized vertex size

multigraph(arr, cex = 3, loops = TRUE)

```
stsm Stress majorization layout

\section*{Description}

A function to compute the graph coordinated system with a stress majorization layout algorithm

\section*{Usage}
stsm(net, seed \(=\) seed, maxiter \(=40\), drp, jitter, method, ...)

\section*{Arguments}
\begin{tabular}{ll} 
net & an array representing the network relations \\
seed & \begin{tabular}{l} 
(mandatory) the seed of the initial layout (see details) \\
maxiter \\
(optional) the maximum number of iterations
\end{tabular} \\
jitter & (optional) for valued networks, drop values less than specified \\
method & (optional) jitter in the layout \\
\(\ldots\) & (optional) initial distance method (default binary)
\end{tabular}

\section*{Details}

This function is meant as an internal routine for graph visualization. However, it can be used with the coord option both in multigraph and in bmgraph where NULL in seed implies a random seed based on the clock watch of the computer.

\section*{Value}

A data frame with a coordinated system with two columns representing the abscissa and the ordinate in a two-dimensional rectangular Cartesian coordinate system.

\section*{Author(s)}

Antonio Rivero Ostoic

\section*{References}

Gansner, E.R., Koren, Y., \& North, S. Graph drawing by stress majorization. In Graph Drawing: 12th International Symposium, gd 2004, New York, NY, USA, September 29 - October 2, 2004, revised selected papers. Berlin Heidelberg: Springer. pp. 239-250. 2005.

\section*{See Also}
multigraph, bmgraph, frcd, conc

\section*{Examples}
```


## Create the data: two binary relations among three elements

arr <- round( replace( array(runif(18), c(3,3,2)), array(runif(18),
c(3,3,2))>.5, 3 ) )

## Coordinates for the stress majorization layout with random start

coord <- stsm(arr, seed = NULL)

## Plot multigraph with costumized coordenates

multigraph(arr, coord = coord)

```

\section*{Index}
*Topic IO
multigraph-package, 2
*Topic data
multigraph-package, 2
\(*\) Topic file
multigraph-package, 2
*Topic graphics
bmgraph, 2
ccgraph, 5
conc, 8
frcd, 9
mlgraph, 10
multigraph, 13
stsm, 17
*Topic graphs
multigraph-package, 2
*Topic manip
conc, 8
frcd, 9
multigraph-package, 2
stsm, 17
*Topic math
ccgraph, 5
bmgraph, 2, 9, 10, 13, 16, 17
ccgraph, 5, 16
conc, \(5,7,8,10,13,16,17\)
frcd, \(5,7,9,9,13,16,17\)
incubs, 2
mlgraph, 10
mlvl, 13
multigraph, 5, 7, 9, 10, 13, 13, 17
multigraph-package, 2
par, 4, 7, 12, 15
semigroup, 7
stsm, 5, 9, 10, 13, 16, 17
transf, 2
zbind, 2```

