Package 'multifluo'

July 12, 2018
Type Package
Title Dealing with Several Images of a Same Object Constituted ofDifferent Zones
Version 1.1
Date 2018-07-12
Author Caroline Peltier
Maintainer Caroline Peltier caroline.peltier@agrosupdijon.fr
Description Deals with several images of a same object, constituted of different zones. Each im-age constitutes a variable for a given pixel. The user can interactively select differ-ent zones of an image. Then, multivariate analysis (PCA) can be run in order to character-ize the different selected zones, according to the different im-ages. Hotelling (Hotelling, 1931, doi:10.1214/aoms/1177732979) and Srivastava (Srivas-tava, 2009, doi:10.1016/j.jmva.2006.11.002) tests can be run to detect multivariate differ-ences between the zones.
License GPL-3
Imports ellipse, imager, grDevices, graphics,stats,utils,agricolae
RoxygenNote 6.0.1
NeedsCompilation no
Repository CRAN
Date/Publication 2018-07-12 13:30:02 UTC
R topics documented:
multifluo-package 2
binning 3
calc.ell 4
count 4
create.zones 5
df.scaled 6
dfboolTest 6
dfTest 6
difftable 7
erase 8
find.colors 9
generic.plot 9
gp 10
hotelling.test 10
img 11
img.zone 11
interieur.para 12
intpca 13
lifetime 14
newgp 14
pca 15
pcapic 16
plotimage 16
plotpca. 18
plotzone 19
reshapimg 20
sri.test 21
summaryrshp 21
translation 22
zone.img 23
zone.mat 23
zones 24
Index 25
multifluo-package Dealing with Several Images of a Same Object Constituted of Different Zones

Description

Deals with several images of a same object, constituted of different zones. Each image constitutes a variable for a given pixel. The user can interactively select different zones of an image. Then, multivariate analysis (PCA) can be run in order to characterize the different selected zones, according to the different images. Hotelling (Hotelling, 1931, doi:10.1214/aoms/1177732979) and Srivastava (Srivastava, 2009, doi:10.1016/j.jmva.2006.11.002) tests can be run to detect multivariate differences between the zones.

Author(s)

Caroline Peltier
Maintainer: Caroline Peltier caroline.peltier@agrosupdijon.fr

See Also

create.zones,reshapimg,plotimage

Examples

```
data(count)
count.img=plotimage(mat=count,lim=c(0,5000))
data(df.scaled)
resPCA=pca(data=df.scaled[,-1], zone="zone",pixel="pixel")
couleurs=find.colors(rownames(resPCA$IndivCoord))
plotpca(resPCA)
```

binning
Bins the pixels

Description

Reduces the size of an image by binning the pixels.

Usage

binning(dataset, n.bin, fun = "mean")

Arguments

dataset The dataset to be binned (in a matrix form)
n.bin number of pixels to be binned (a natural number)
fun
if "mean", the value of the binned pixel is the average of the values of the initial pixels if "sum", the value of the binned pixel is the sum of the values of the initial pixels

Value

The binned dataset

Examples

```
calc.ell Calculating agreement ellipses
```


Description

calculates the coordinates of agreement ellipses

Usage

calc.ell(sup.ind, vep, axes=c $(1,2)$, conf=0.9, ell.t="bar", trt="zone", sup="pixel", calc="Chi")

Arguments

sup.ind	matrix of supplementary individuals
vep	eigenvectors
axes	selected axes (as a vector)
conf	confidence interval
ell.t	"barycentric" or "individual"
trt	name of trt
sup	name of the individuals around a same trt
calc	"Chi","F" or "SAS"

count count

Description

Spermatozoa bulls were labelled with a fluorescence probe (Laurdan) and then observed with a microscop and its related software Symphotime. Three data were recorded per pixels: the counts of photons (indicating the number of photons perceived on this pixel after simulation), the lifetime of fluorescence (indicating the time of first perceived photon after stimulation) and the generalized polarization (indicating a ratio between a green-light simulation and a blue-light simulation) These matrices have as many rows as observed pixels in lines, and as many columns as observed pixels in columns. This specific data represents the count of photons per pixel.

Usage
 data("count")

Format

A data frame with 203 lines on the following 204 columns.

See Also

gp,lifetime

Examples

```
data(count)
```


Creating a list of consecutive zones of images

Description

Creates a list of consecutive zones of images, interactively (by pointing directely control points on an image) or manually (by entering coordinates of control points). The control points can describe either a rectangle (two diagonal points), a parallelogram(three consecutive points representing an angle of the parallelogram) or a circle (center of the circle, then a point of the circle).

Usage

create.zones(img=NULL, shape="rect", n. zones=NULL, interact=TRUE, pts=NULL, name. zones=NULL)

Arguments

img	img is an image (cimg type) from imager stemming from "plot.image"
shape	When "rect", the shape would be a rectangle: the selection tool is a rectangle by clicking and maintaining the mouse on the screen. When "para", the shape would be a parallelogram: the selection tool is the consecutive input of three points of one angle of the parallelogram. When "circle", the selection tool is the consecutive input of the center of the circle and one point on the circle. When "various" and interactive, the user is asked for the shape on the next selection.
n. zones	number of zones to be input if TRUE, the interactive tool is launched to determine the control points of the different zones. If FALSE, these control points are defined in pts
pts	matrix of points corresponding to the selected zones
name.zones	if not NULL, corresponds to the names of the zones to select.

Value

A list containing as many component as the number of zones. Each component is also a list containing : the matrix of control points (pts),the name of the selected zone (name) and the name of the selected shape (shape) If "rect is chosen", pts contains the two points of the diagonal of the rectangle, If "para" is chosen, pts to the three points of the selected angle of the parallelogram If "circle" is chosen, pts contains the center of the circle and one point in the circle

See Also

plotzone, plotimage

Examples

```
data(zone.mat)
zones=create.zones(pts=zone.mat,shape="para",interact=FALSE)
data(count)
    img=plotimage(count,lim=c(1000,4000),m=count>1000)
    zonesRect=create.zones(img, shape="rect",n.zones=3)
    zonesPara=create.zones(img, shape="para",n.zones=3)
    zonesCircle=create.zones(img, shape="circle",n.zones=3)
    zonesVarious=create.zones(img, shape="various", n.zones=3)
```

 df.scaled df.scaled

Description

Example of data.frame required for the PCA (see pca)

Examples

data(df.scaled)
\#\# maybe str(df.scaled) ; plot(df.scaled) ...

```
dfboolTest dfboolTest
```


Description

Reshaped dataset with the boolean option (return.bool=TRUE)
dfTest dfTest

Description

reshaped dataframe with lifetime maximised at 8
difftable Table of multivariate differences

Description

Built a table crossing modalities of a trestmanet variable about multivariate differences

Usage

difftable(mat, vep=NULL, axes=c (1, 2), var.col=NULL, trt="zone", test="hotelling")

Arguments

mat	the matrix must have one column named as trt, and
vep	when vep is not NULL, a preliminary operation multiplies mat [,var.col] by the vep matrix (useful to do the test only on the first principal components of mat). axes vep can contain all eigenvectors. If it is the case, axes allows the user to select only some eigenvectors (1:2 for the first two eigenvectors, 1:5 for the first five eigenvectors...) var.col indicates the number of columns of the numerical variables. If NULL, all columns but trt are selected.
trt	name of the column
"hotelling" or "sri". Indicates the type of test to detect multivariate differences.	
"hotelling" is the usual hotelling T2 test whereas "sri" corresponds to the Sri-	
vastava's Test, allowing a test of differences even if there is more variables than	
observations.	

Value

A table containing the p -values is returned.

See Also

hotelling.test, sri.test

Examples

```
data(df.scaled)
difftable(df.scaled[,-5],trt="zone")
```

erase Eraser

Description

Suppresses a zone (determined on an image) from a given selection stemming from a zone image

Usage

erase(zone.img, img, interact = TRUE, shape = "rect", pts = NULL)

Arguments

zone.img	the zone image to be modified
img	the image on which the zone to suppress is selected
interact	if TRUE, the zone is determined interactively. Else pts is used as a matrix of
control points (see create.zones)	
shape	"rect", "para" or "circle"
pts	Matrix containing the control points (see create.zones)

Value

returned a zone image without the selected zone

See Also

img.zone,plotimage

Examples

```
data(zone.img)
plotimage(zone.img,z=TRUE)
data(img)
zone.img2=erase(zone.img,img,interact=TRUE, shape="rect")
plotimage(zone.img2,z=TRUE)
```

find.colors find.colors

Description

Finds different colors for a corresponding to the first character of each value of a vector.

Usage

find.colors(vect, color = NULL)

Arguments

$$
\begin{array}{ll}
\text { vect } & \text { the vector to find colors for. } \\
\text { color } & \text { can be a vector of colors (with the same size as the number of groups), if NULL, } \\
\text { rainbow scale is chosen }
\end{array}
$$

Value

vector of colors related to vect

Examples

```
find.colors(c("V1", "V3", "R22"))
```

```
generic.plot generic.plot
```


Description

Plots

Usage

generic.plot(type = "R", width = 7, height = 7, name = "output", CALLFUN = NULL)

Arguments

type "R", "png" ...
width width of the file
height height of the file
name name of the file
CALLFUN function to plot

Description

Spermatozoa bulls were labelled with a fluorescence probe (Laurdan) and then observed with a microscop and its related software Symphotime. Three data were recorded per pixels: the counts of photons (indicating the number of photons perceived on this pixel after simulation), the lifetime of fluorescence (indicating the time of first perceived photon after stimulation) and the generalized polarization (indicating a ratio between a green-light simulation and a blue-light simulation) These matrices have as many rows as observed pixels in lines, and as many columns as observed pixels in columns. This specific data represents the Generalized polarization data

Usage

```
    data("gp")
```


See Also

count,lifetime

Examples

data(gp)

Description

Tests multivariate differences between two samples with Hotelling's T2 Test

Usage

hotelling.test(matx, maty)

Arguments

matx \quad First sample (matrix with observations as lines and variables as columns)
maty \quad Second sample (matrix with observations as lines and variables as columns)

Value

Returns a list containing the stat and the p-value

References

Hotelling, H. (1931). "The generalization of Student's ratio." Annals of Mathematical Statistics 2. (3): 360378

See Also

difftable,sri.test

Examples

A=matrix(rnorm(13.15) ,13,15)
$B=$ matrix $(r \operatorname{norm}(13.15), 13,15)$
hotelling.test(A, B)

```
img img
```


Description

An example of image based on the data(count)

Examples

data(img)

Description

Converts a zone object (point list) into a matrix : each pixel is attributed to a zone. This matrix can also be plotted with plotimage. This matrix is to be related to the other image matrices, for example in the reshapimg function, to be used in pca.

Usage

img.zone(zone, d=NULL, mask=NULL, edge.only=NULL, wo.edge=NULL, graph=FALSE, img=NULL, lim=30)

Arguments

zone	A zone created with create.zones
d	dimension of the matrix to create
mask	boolean matrice can be specified here
edge.only	if TRUE, only the edges of the images are kept. They are defined with "limit" for their width. This requires that the parameter img is fulfilled
wo.edge	if TRUE, the edges of the images are removed. They are defined with "limit" for their width.This requires that the parameter img is fulfilled
img	image on which the edges are selected
graph	if TRUE, the selected edges are plotted
lim	sensitivity of the scale detection

Value

Zone object (with control points) is given as a matrix /image

See Also

create.zones, plotzone,reshapimg,erase,plotimage

Examples

```
data(zones)
data(count)
zone.imgRect=img.zone(zone=zones,d=dim(count))
plotimage(mat=zone.imgRect,z=T)
```

```
interieur.para interieur.para
```


Description

Detects if a point is inside a given paralellogram

Usage

interieur.para(x, y, xOrigine, yOrigine, $x A, y A, x B=N A, y B=N A$, shape = "para")

Arguments

$x B \quad$ abscisse of the other summit of the parallelogram linked to the origine
$y B \quad$ ordinate of the other summit of the parallelogram linked to the origine
shape "para"

X
y
xOrigine
yOrigine
xA
yA
abcisse of the point to test
ordinate of the point to test
abscisse of a summit of the parallelogram (origin)
ordinate of a summit of the parallelogram (origin)
abscisse of a summit of the parallelogram linked to the origine
ordinate of a summit of the parallelogram linked to the origine
intpca internal pca

Description

runs pca

Usage

intpca(vars, ind, map="b", si=NULL, ic=NULL, sic=NULL, ell=NULL, seg=NULL, epd=NULL , $x=" ", y=" ")$

Arguments

vars	variables
ind	individuals
map	if "bil", biplot is plotted with supplementary individuals projected, and labels of supplementary individuals are written if "bip", biplot is plotted with supplemen- tary individuals projected, and points of supplementary individuals are plotted if "b", biplot is plotted if "til", two-way pca is plotted with supplementary indi- viduals projected, and labels of supplementary individuals are written if "tip", two-way pca is plotted with supplementary individuals projected, and la points of supplementary individuals are plotted if "t", two-way pca is plotted
si	supplementary individuals ic sic
color of individuals	
ell	color of supplementary individuals
seg	TRar" or "ind" or "none"
epd	TRUE or FALSE expand
x	x label

lifetime lifetime

Description

Spermatozoa bulls were labelled with a fluorescence probe (Laurdan) and then observed with a microscop and its related software Symphotime. Three data were recorded per pixels: the counts of photons (indicating the number of photons perceived on this pixel after simulation), the lifetime of fluorescence (indicating the time of first perceived photon after stimulation) and the generalized polarization (indicating a ratio between a green-light simulation and a blue-light simulation) These matrices have as many rows as observed pixels in lines, and as many columns as observed pixels in columns. This specific data represents the lifetime data

Usage

data("lifetime")

See Also

gp,count

Examples

```
data(lifetime)
```

newgp Translated Generalized Polarization Data

Description

This matrix represents the translated gp data

See Also

gp

Examples

```
data(newgp)
```

```
pca pca
```


Description

Calculates Principal Component Analysis with agreement ellipses

Usage

pca(data, zone = "zone", pixel = NULL)

Arguments

data	should contain a column named as zone, and another named pixel
zone	name of the column containing the zone
pixel	name of the column containing the pixel name (required when ellipses, individ- ual projections or tests are asked in the PCA)

Value

A list containing
B
IndSup supplementary individuals
EingenVectors eigen vectors obtained by the PCA
EingenValues eigen values obtained by the PCA
IndivCoord coordinates of the individuals (here, zone means)
VarCoord coordinates of the variables
NbdimSig number of significant dimensions

References

Peltier, C., Visalli, M. and Schlich, P. (2015), Canonical Variate Analysis of Sensory Profiling Data. J Sens Stud, 30: 316 328. doi:10.1111/joss. 12160

See Also

plotpca reshapimg

Examples

```
data(df.scaled)
resPCA=pca(data=df.scaled[,-1], zone="zone",pixel="pixel")
```

pcapic Pictures from the first component of PCA

Description

This function returns a picture where each pixel value corresponds to its coordinate on the first component of PCA (not scaled)

Usage

pcapic(dfbool, $d=c(203,204), \lim =N U L L)$

Arguments

dfbool result from reshapimg, with return.bool=TRUE
d d is the final size of the image. It has to correspond to the initial images taken to run the reshapimg
lim limit of the colorscale

Value

Returns the resulted matrix with dimensions, and plots the image with pca.

See Also

reshapimg

Examples

```
data(dfboolTest)
pcapic(dfbool=dfboolTest,lim=c(-1,1))
```

 plotimage Plotting an image

Description

Plots an image with its colorscale.

Usage

plotimage(mat, lim=NULL, $n c=1000, m=N U L L, z=F A L S E, a d d=F A L S E, c o l s=" r a i n b o w ", l c=c(0,0.7), p=" l ")$

Arguments

mat matrix representing the image. Thus, a numerous matrix with 256 rows and 256 columns will represent an image with $256 * 256$ pixels. The colour of each pixel will be determined thanks to the value of the related pixel in the matrix, and the values of the limit scales.
$\lim \quad$ minimum and maximum value for the color scale. $\operatorname{Ex}: \lim =c(0,10)$
nc number of colors
m boolean matrix with the same size than mat, selecting pixels which will plotted (TRUE) or not (FALSE) (mask)

Z
add when TRUE, the graph is drawn over the existing graph. If FALSE, a new graph is plotted.
cols "rainbow" by default, but other scales are also available : ""gray.scale","cm.colors","topo.colors","terrainc These scales correspond to the usual colors scales in R.
lc $\quad c(0,0.7)$ by default. Parameter corresponding to the start color and the end color in the rainbow scale, a number in $[0,1]$ (start in rainbow function)
$\mathrm{p} \quad$ Further parameters to plot. if "n", nothing more is plotted, if "a", axes are plotted, if " 1 ", color legend is plotted, if "al" axes and color legend are plotted. If " d " is added to this parameter (giving "ad","ld","ald" or "nd", no smoothing of the pixel is computed (discrete)

Value

Returns the created image as a cimg (type cimg from the imager package)

Examples

```
data(lifetime)
data(count)
data(gp)
count.img=plotimage(mat=count,lim=c(0,5000))
# with m
count.img=plotimage(mat=count,lim=c(1000,4000),m=count>1000)
plotimage(mat=lifetime,lim=c(2.8,3.5))
gp.img=plotimage(mat=gp,lim=c(-0.2,0.8))
#add
resT=plotimage(mat=lifetime,lim=c(2.8,3.5),m=count>1000)
resGP=plotimage(mat=gp,lim=c(2.8,3.5),add=TRUE)
```


Description

Plots the Principal Component Analysis from the pca function, and custumizes the output with

Usage

plotpca(x,map="b", n="a", l=0.05, col=NULL, calc="Chi", epd=NULL, et="bar", dif="n", dax="all")

Arguments

X
map
n

1
et "bar" for the confidence ellipses around the product means "ind" for the representation of a proportion of 1-alpha of the panelist scores
col select the colors of the different individuals
calc
epd
dif if " n ", no tests are run if " h ", hotelling test is run to detect differences between zones. if "hc", the p-value is corrected with the bonferroni Correction (1 is divided by $\mathrm{k}(\mathrm{k}+1)$ / where k is the number of zones) if " s ", srivastava test is run
to detect differences between zones. if "sc", the p -value is corrected with the vided by $\mathrm{k}(\mathrm{k}+1)$ / where k is the number of zones) if " s ", srivastava test is run
to detect differences between zones. if " sc ", the p -value is corrected with the bonferroni Correction (1 is divided by $\mathrm{k}(\mathrm{k}+1)$ / where k is the number of zones) When a test is run, zones not significantly difference are related by a segment
dax
results of pca
if "bil", biplot is plotted with supplementary individuals projected, and labels of supplementary individuals are written if "bip", biplot is plotted with supplementary individuals projected, and points of supplementary individuals are plotted if "b", biplot is plotted if "til", two-way pca is plotted with supplementary individuals projected, and labels of supplementary individuals are written if "tip", two-way pca is plotted with supplementary individuals projected, and la points of supplementary individuals are plotted if "t", two-way pca is plotted
number of axes to plot. By default, "a", which calculates an automatic theoretical number of dimensions (when the contribution of loadings is higher than 1)
by default 0.05 . Risk to be taken in the agreement ellipses
"Chi", "F" or "Sas". Indicates the type of ellipse to be calculated.
when a biplot is chosen, the arrows can be oversized. if "all", the test is run on all the Principal Components. If "sig", it is done only on the significant Principal Components. dax can also be a vector determining the index of Principal Component to be chosen for the test (ex dax $=\mathrm{c}(1,2)$).

Examples

```
data(df.scaled)
resPCA=pca(data=df.scaled[,-1], zone="zone",pixel="pixel")
couleurs=find.colors(rownames(resPCA$IndivCoord))
plotpca(x=resPCA)
```

plotzone Plotting the different selected zones on an image

Description

plots the different selected zones on an image

Usage

plotzone(zone, name = FALSE, dim.img=NULL, $\mathrm{d}=200$, cex=1, col="black", main="Zone", lwd=1)

Arguments

zone	zone stemming from create.zones
name	if TRUE, the zone names are written above the zones
dim.img	dimensions of the image were the zones are drawn
d	the distance between the zone and the text is given in a portion of the image (divided by 200 by default)
cex	size of the text (by.default 1)
col	color of the zones and the text
main	main Title
lwd	width of the lines

See Also

create.zones; img.zone

Examples

```
data(zones)
plotzone(zones)
```

```
reshapimg Reshape image matrices as one sigle dataframe (useful to pca, for
example)
```


Description

Reshapes a list of (numeric) image matrices, and a zone matrix related to one set of images, in order to obtain a dataframe, with each line corresponding to one pixel and each matrix corresponding to one single column.

Usage

reshapimg(zone.img,list.img,list.bool=NULL, reduction=TRUE, return.bool=FALSE, name.img=NULL)

Arguments

zone.img	result of img.zone
list.img	list of images to be compared
list.bool	potential list of boolean matrices reflecting conditions of the analysis. Each pixel which does not respect at least one of the boolean conditions will be removed from the resulting dataset.
reduction	if TRUE, each column of the related datafraime (corresponding to each numeric image matrix) is centered and reduced,else, it is only centered
return.bool	if TRUE, a list containing the resulting data (data) and the boolean matrix of the treated pixels (boolean) is returned
name.img	vector containing the names of the successive images of list.img which are going to be the names of the column of the resulting dataset)

Value

The resulting data contains one column containing the zone, and then as many columns as components in list.img. The names of columns can correspond to the name.img vector (default), or to the names of the matrices in list.mat, else it will be Var1, Var2,...

See Also

img.zone,pca,create.zones,summaryrshp

Examples

```
data(count)
data(newgp)
data(lifetime)
data(zone.img)
df37A=reshapimg(zone.img,list(count,lifetime,newgp),name.img=c("Count","Lifetime","GP"))
```

```
    sri.test Srivastava's Test
```


Description

Tests multivariate differences between two samples with Srivastava's Test

Usage

sri.test(matx, maty)

Arguments

matx	First sample (with observations as lines and variables as columns)
maty	Second sample (with observations as lines and variables as columns). matx and maty have to have the same number of variables.

Value

a list containing the p -value and the statistique (corresponding to T 1 in the Srivastava's paper)

References

M. S. Srivastava and M. Du. A test for the mean vector with fewer observations than the dimension.Journal of Multivariate Analysis , 99(3):386 402, Mar. 2008.

See Also

difftable,hotelling.test

Examples

```
A=matrix(rnorm(13.15),13,15)
B=matrix(rnorm(13.15),13,15)
sri.test(A,B)
```

```
summaryrshp Summarizing reshaped data
```


Description

Gives natural statistics (number of observations, average, standard deviations) for each variable and each zones. ANOVA of the model "variable~zone" is run, and difference tests are computed to find groups.

Usage

summaryrshp(rshp, test = "hsd", p.adj = "none", alpha = 0.05)

Arguments

rshp	data resulting from reshapimg
test	"lsd" (corresponding to Least Significant Difference) or "hsd" (corresponding to the Tukey Test)
p.adj	LSD.test parameter to adjust the p-value for the multiple comparison alpha
Threshold of significance for determining the gorups	

Value

Returns a list containing, for each variable: the results of the ANOVA; the summary of the variable; and the usual statistics by zones (n ,average, sd,group)

See Also

reshapimg

Examples

```
data(df.scaled)
```

summaryrshp(df.scaled)

```
translation Translation of the data
```


Description

Sometimes, a slight shift exists between two images of the same sample. This function allows them to be superimposed. The shift can be determined with a vector by entering its coordinates; or interactively by clicking on a specific point on a first image, and its corresponding point on the second image)

Usage

translation(dtt, dtc=NULL, x, y, interact="none", dtt.lim=NULL, dtc. lim=NULL, $n . \operatorname{around=c(5,5))~}$

Arguments

$\mathrm{dtt} \quad$ image matrix (for $512 * 512$ image, the dimensions of this matrix are $512 * 512$) to translate
dtc potential image matrix (for $512 * 512$ image, the dimensions of this matrix are $512 * 512$) on which the dtt is superimposed
x
If interactive is FALSE, abscisse of vector of translation

y	If interactive is FALSE, ordinate of vector of translation
interact	if TRUE, dtt is displayed as an image, and the user has to select one point on it. Then, dtc is displayed as an image and the user has to select the related same point on it.
dtt.lim	limits of the scale of dtt (to change when the image is not contrasted enough to detect specific points)
dtc.lim	limits of the scale of dtc (to change when the image is not contrasted enough to detect specific points)
n. around	Tests every translation in a neighborhood of n.around[1] in x and n.around[2] of y (clicked by the user), and select the translation that maximizes the number of not TRUE common to dtc and dtt. It requires that both dtc and dtt are boolean matrices.

Value

The function returns a list containing the translated data ("data") and the vector of translation ("translation")

Examples

```
data(gp)
data(count)
GP37Anew=translation(dtt=gp,dtc=count,interact=TRUE,dtt.lim=c(-0.4,0.8), dtc.lim=c(1000,4000))
GP37Anew=translation(gp,x=7,y=-3)$data
```

zone.img Zone image

Description

Example of image zone stemming from zones

Examples

data(zone.img)
zone.mat Zones as matrix

Description

Example of zones as a matrix

Examples

data(zone.mat)

Description

Example of control points for zones

Usage

data("zones")

Examples

data(zones)

Index

```
*Topic \textasciitildekwd1
    pca, 15
*Topic \textasciitildekwd2
    pca, 15
*Topic datasets
    count, 4
    df.scaled, 6
    gp, 10
    lifetime, 14
    zone.mat, 23
*Topic package
    multifluo-package, 2
binning, 3
calc.ell,4
count, 4, 10, 14
create.zones, 2, 5, 8, 12, 19, 20
df.scaled,6
dfboolTest, 6
dfTest, 6
difftable, 7, 11,21
erase, 8, 12
find.colors,9
generic.plot, }
gp, 5, 10, 14
hotelling.test, 7, 10, 21
img, 11
img.zone, 8, 11, 17, 19, 20
interieur.para, 12
intpca,13
lifetime, 5, 10,14
multifluo(multifluo-package), 2
*Topic \textasciitildekwd1
pca, 15
*Topic \textasciitildekwd2
pca, 15
*Topic datasets
count, 4
df.scaled, 6
gp, 10
lifetime, 14
zone.mat, 23
\(*\) Topic package
multifluo-package, 2
binning, 3
calc.ell, 4
count, 4, 10, 14
create.zones, \(2,5,8,12,19,20\)
df.scaled, 6
dfboolTest, 6
dfTest, 6
difftable, 7, 11, 21
erase, 8,12
find.colors, 9
generic.plot, 9
gp, 5, 10, 14
hotelling.test, 7, 10, 21
img, 11
img.zone, 8, 11, 17, 19, 20
interieur.para, 12
intpca, 13
lifetime, 5, 10, 14
multifluo (multifluo-package), 2
```

multifluo-package, 2
newgp, 14
pca, $6,11,15,18,20$
pcapic, 16
plotimage, 2, 6, 8, 11, 12, 16
plotpca, 15, 18
plotzone, 6, 12, 19
reshapimg, $2,11,12,15,16,20,22$
sri.test, 7, 11, 21
summaryrshp, 20, 21
translation, 22
zone.img, 23
zone.mat, 23
zones, 23, 24

