
Package ‘msm’
December 16, 2019

Version 1.6.8

Date 2019-12-16

Title Multi-State Markov and Hidden Markov Models in Continuous Time

Author Christopher Jackson <chris.jackson@mrc-bsu.cam.ac.uk>

Maintainer Christopher Jackson <chris.jackson@mrc-bsu.cam.ac.uk>

Description Functions for fitting continuous-time Markov and hidden
Markov multi-state models to longitudinal data. Designed for
processes observed at arbitrary times in continuous time (panel data)
but some other observation schemes are supported. Both Markov
transition rates and the hidden Markov output process can be modelled
in terms of covariates, which may be constant or piecewise-constant
in time.

License GPL (>= 2)

Imports survival,mvtnorm,expm

Suggests mstate,minqa,doParallel,foreach,numDeriv,testthat,flexsurv

URL https://github.com/chjackson/msm

BugReports https://github.com/chjackson/msm/issues

LazyData yes

NeedsCompilation yes

Repository CRAN

Date/Publication 2019-12-16 15:30:02 UTC

R topics documented:
2phase . 3
aneur . 5
boot.msm . 6
bos . 9
cav . 10
cmodel.object . 11

1

https://github.com/chjackson/msm
https://github.com/chjackson/msm/issues

2 R topics documented:

coef.msm . 11
crudeinits.msm . 12
deltamethod . 13
draic.msm . 15
ecmodel.object . 18
efpt.msm . 18
ematrix.msm . 21
emodel.object . 22
fev . 23
hazard.msm . 24
hmm-dists . 25
hmmMV . 28
hmodel.object . 30
logLik.msm . 32
lrtest.msm . 33
MatrixExp . 33
medists . 35
model.frame.msm . 37
msm . 39
msm.form.qoutput . 52
msm.object . 53
msm.summary . 55
msm2Surv . 56
odds.msm . 58
paramdata.object . 59
pearson.msm . 61
pexp . 65
phasemeans.msm . 66
plot.msm . 67
plot.prevalence.msm . 68
plot.survfit.msm . 70
plotprog.msm . 72
pmatrix.msm . 73
pmatrix.piecewise.msm . 75
pnext.msm . 77
ppass.msm . 79
prevalence.msm . 81
print.msm . 84
printold.msm . 85
psor . 86
qcmodel.object . 87
qgeneric . 88
qmatrix.msm . 89
qmodel.object . 91
qratio.msm . 92
recreate.olddata . 93
scoreresid.msm . 94
sim.msm . 95

2phase 3

simfitted.msm . 96
simmulti.msm . 97
sojourn.msm . 99
statetable.msm . 101
surface.msm . 102
tnorm . 103
totlos.msm . 105
transient.msm . 108
updatepars.msm . 109
viterbi.msm . 109

Index 111

2phase Coxian phase-type distribution with two phases

Description

Density, distribution, quantile functions and other utilities for the Coxian phase-type distribution
with two phases.

Usage

d2phase(x, l1, mu1, mu2, log=FALSE)
p2phase(q, l1, mu1, mu2, lower.tail=TRUE, log.p=FALSE)
q2phase(p, l1, mu1, mu2, lower.tail=TRUE, log.p=FALSE)
r2phase(n, l1, mu1, mu2)
h2phase(x, l1, mu1, mu2, log=FALSE)

Arguments

x,q vector of quantiles.

p vector of probabilities.

n number of observations. If length(n) > 1, the length is taken to be the number
required.

l1 Intensity for transition between phase 1 and phase 2.

mu1 Intensity for transition from phase 1 to exit.

mu2 Intensity for transition from phase 2 to exit.

log logical; if TRUE, return log density or log hazard.

log.p logical; if TRUE, probabilities p are given as log(p).

lower.tail logical; if TRUE (default), probabilities are P[X <= x], otherwise, P[X > x].

4 2phase

Details

This is the distribution of the time to reach state 3 in a continuous-time Markov model with three
states and transitions permitted from state 1 to state 2 (with intensity λ1) state 1 to state 3 (intensity
µ1) and state 2 to state 3 (intensity µ2). States 1 and 2 are the two "phases" and state 3 is the "exit"
state.

The density is

f(t|λ1, µ1) = e−(λ1+µ1)t(µ1 + (λ1 + µ1)λ1t)

if λ1 + µ1 = µ2, and

f(t|λ1, µ1, µ2) =
(λ1 + µ1)e−(λ1+µ1)t(µ2 − µ1) + µ2λ1e

−µ2t

λ1 + µ1 − µ2

otherwise. The distribution function is

F (t|λ1, µ1) = 1− e−(λ1+µ1)t(1 + λ1t)

if λ1 + µ1 = µ2, and

F (t|λ1, µ1, µ2) = 1− e−(λ1+µ1)t(µ2 − µ1) + λ1e
−µ2t

λ1 + µ1 − µ2

otherwise. Quantiles are calculated by numerically inverting the distribution function.

The mean is (1 + λ1/µ2)/(λ1 + µ1).

The variance is (2 + 2λ1(λ1 + µ1 + µ2)/µ2
2 − (1 + λ1/µ2)2)/(λ1 + µ1)2.

If µ1 = µ2 it reduces to an exponential distribution with rate µ1, and the parameter λ1 is redundant.
Or also if λ1 = 0.

The hazard at x = 0 is µ1, and smoothly increasing if µ1 < µ2. If λ1 + µ1 ≥ µ2 it increases to
an asymptote of µ2, and if λ1 + µ1 ≤ µ2 it increases to an asymptote of λ1 + µ1. The hazard is
decreasing if µ1 > µ2, to an asymptote of µ2.

Value

d2phase gives the density, p2phase gives the distribution function, q2phase gives the quantile
function, r2phase generates random deviates, and h2phase gives the hazard.

Alternative parameterisation

An individual following this distribution can be seen as coming from a mixture of two populations:

1) "short stayers" whose mean sojourn time is M1 = 1/(λ1 + µ1) and sojourn distribution is
exponential with rate λ1 + µ1.

2) "long stayers" whose mean sojourn time M2 = 1/(λ1 + µ1) + 1/µ2 and sojourn distribution is
the sum of two exponentials with rate λ1 +µ1 and µ2 respectively. The individual is a "long stayer"
with probability p = λ1/(λ1 + µ1).

aneur 5

Thus a two-phase distribution can be more intuitively parameterised by the short and long stay
means M1 < M2 and the long stay probability p. Given these parameters, the transition intensities
are λ1 = p/M1, µ1 = (1 − p)/M1, and µ2 = 1/(M2 −M1). This can be useful for choosing
intuitively reasonable initial values for procedures to fit these models to data.

The hazard is increasing at least if M2 < 2M1, and also only if (M2 − 2M1)/(M2 −M1) < p.

For increasing hazards with λ1 + µ1 ≤ µ2, the maximum hazard ratio between any time t and time
0 is 1/(1− p).

For increasing hazards with λ1 +µ1 ≥ µ2, the maximum hazard ratio is M1/((1− p)(M2−M1)).
This is the minimum hazard ratio for decreasing hazards.

General phase-type distributions

This is a special case of the n-phase Coxian phase-type distribution, which in turn is a special
case of the (general) phase-type distribution. The actuar R package implements a general n-phase
distribution defined by the time to absorption of a general continuous-time Markov chain with a
single absorbing state, where the process starts in one of the transient states with a given probability.

Author(s)

C. H. Jackson <chris.jackson@mrc-bsu.cam.ac.uk>

References

C. Dutang, V. Goulet and M. Pigeon (2008). actuar: An R Package for Actuarial Science. Journal
of Statistical Software, vol. 25, no. 7, 1-37. URL http://www.jstatsoft.org/v25/i07

aneur Aortic aneurysm progression data

Description

This dataset contains longitudinal measurements of grades of aortic aneurysms, measured by ultra-
sound examination of the diameter of the aorta.

Usage

aneur

Format

A data frame containing 4337 rows, with each row corresponding to an ultrasound scan from one
of 838 men over 65 years of age.

ptnum (numeric) Patient identification number
age (numeric) Recipient age at examination (years)

diam (numeric) Aortic diameter
state (numeric) State of aneurysm.

6 boot.msm

The states represent successive degrees of aneurysm severity, as indicated by the aortic diameter.

State 1 Aneurysm-free < 30 cm
State 2 Mild aneurysm 30-44 cm
State 3 Moderate aneurysm 45-54 cm
State 4 Severe aneurysm > 55 cm

683 of these men were aneurysm-free at age 65 and were re-screened every two years. The remain-
ing men were aneurysmal at entry and had successive screens with frequency depending on the state
of the aneurysm. Severe aneurysms are repaired by surgery.

Source

The Chichester, U.K. randomised controlled trial of screening for abdominal aortic aneurysms by
ultrasonography.

References

Jackson, C.H., Sharples, L.D., Thompson, S.G. and Duffy, S.W. and Couto, E. Multi-state Markov
models for disease progression with classification error. The Statistician, 52(2): 193–209 (2003)

Couto, E. and Duffy, S. W. and Ashton, H. A. and Walker, N. M. and Myles, J. P. and Scott, R.
A. P. and Thompson, S. G. (2002) Probabilities of progression of aortic aneurysms: estimates and
implications for screening policy Journal of Medical Screening 9(1):40–42

boot.msm Bootstrap resampling for multi-state models

Description

Draw a number of bootstrap resamples, refit a msm model to the resamples, and calculate statistics
on the refitted models.

Usage

boot.msm(x, stat=pmatrix.msm, B=1000, file=NULL, cores=NULL)

Arguments

x A fitted msm model, as output by msm.

stat A function to call on each refitted msm model. By default this is pmatrix.msm,
returning the transition probability matrix in one time unit. If NULL then no
function is computed.

B Number of bootstrap resamples.

boot.msm 7

file Name of a file in which to save partial results after each replicate. This is
saved using save and can be restored using load, producing an object called
boot.list containing the partial results. Not supported when using parallel
processing.

cores Number of processor cores to use for parallel processing. Requires the doPar-
allel package to be installed. If not specified, parallel processing is not used. If
cores is set to the string "default", the default methods of makeCluster (on
Windows) or registerDoParallel (on Unix-like) are used.

Details

The bootstrap datasets are computed by resampling independent transitions between pairs of states
(for non-hidden models without censoring), or independent individual series (for hidden models or
models with censoring). Therefore this approach doesn’t work if, for example, the data for a HMM
consist of a series of observations from just one individual, and is inaccurate for small numbers of
independent transitions or individuals.

Confidence intervals or standard errors for the corresponding statistic can be calculated by sum-
marising the returned list of B replicated outputs. This is currently implemented for most the out-
put functions qmatrix.msm, ematrix.msm, qratio.msm, pmatrix.msm, pmatrix.piecewise.msm,
totlos.msm and prevalence.msm. For other outputs, users will have to write their own code to
summarise the output of boot.msm.

Most of msm’s output functions present confidence intervals based on asymptotic standard errors
calculated from the Hessian. These are expected to be underestimates of the true standard errors
(Cramer-Rao lower bound). Some of these functions use a further approximation, the delta method
(see deltamethod) to obtain standard errors of transformed parameters. Bootstrapping should give
a more accurate estimate of the uncertainty.

An alternative method which is less accurate though faster than bootstrapping, but more accurate
than the delta method, is to draw a sample from the asymptotic multivariate normal distribution im-
plied by the maximum likelihood estimates (and covariance matrix), and summarise the transformed
estimates. See pmatrix.msm.

All objects used in the original call to msm which produced x, such as the qmatrix, should be in
the working environment, or else boot.msm will produce an “object not found” error. This enables
boot.msm to refit the original model to the replicate datasets. However there is currently a limitation.
In the original call to msm, the "formula" argument should be specified directly, as, for example,

msm(state ~ time,data = ...)

and not, for example,

form = data$state ~ data$time

msm(formula=form,data = ...)

otherwise boot.msm will be unable to draw the replicate datasets.

boot.msm will also fail with an incomprehensible error if the original call to msm used a used-
defined object whose name is the same as a built-in R object, or an object in any other loaded
package. For example, if you have called a Q matrix q, when q() is the built-in function for
quitting R.

If stat is NULL, then B different msm model objects will be stored in memory. This is unadvisable,
as msm objects tend to be large, since they contain the original data used for the msm fit, so this will
be wasteful of memory.

8 boot.msm

To specify more than one statistic, write a function consisting of a list of different function calls, for
example,

stat = function(x) list (pmatrix.msm(x,t=1),pmatrix.msm(x,t=2))

Value

A list with B components, containing the result of calling function stat on each of the refitted
models. If stat is NULL, then each component just contains the refitted model. If one of the B
model fits was unsuccessful and resulted in an error, then the corresponding list component will
contain the error message.

Author(s)

C.H.Jackson <chris.jackson@mrc-bsu.cam.ac.uk>

References

Efron, B. and Tibshirani, R.J. (1993) An Introduction to the Bootstrap, Chapman and Hall.

See Also

qmatrix.msm, qratio.msm, sojourn.msm, ematrix.msm, pmatrix.msm, pmatrix.piecewise.msm,
totlos.msm, prevalence.msm.

Examples

Not run:
Psoriatic arthritis example
data(psor)
psor.q <- rbind(c(0,0.1,0,0),c(0,0,0.1,0),c(0,0,0,0.1),c(0,0,0,0))
psor.msm <- msm(state ~ months, subject=ptnum, data=psor, qmatrix =
psor.q, covariates = ~ollwsdrt+hieffusn,
constraint = list(hieffusn=c(1,1,1),ollwsdrt=c(1,1,2)),
control = list(REPORT=1,trace=2), method="BFGS")

Bootstrap the baseline transition intensity matrix. This will take a long time.
q.list <- boot.msm(psor.msm, function(x)x$Qmatrices$baseline)
Manipulate the resulting list of matrices to calculate bootstrap standard errors.
apply(array(unlist(q.list), dim=c(4,4,5)), c(1,2), sd)
Similarly calculate a bootstrap 95% confidence interval
apply(array(unlist(q.list), dim=c(4,4,5)), c(1,2),

function(x)quantile(x, c(0.025, 0.975)))
Bootstrap standard errors are larger than the asymptotic standard
errors calculated from the Hessian
psor.msm$QmatricesSE$baseline

End(Not run)

bos 9

bos Bronchiolitis obliterans syndrome after lung transplants

Description

A dataset containing histories of bronchiolitis obliterans syndrome (BOS) from lung transplant
recipients. BOS is a chronic decline in lung function, often observed after lung transplantation. The
condition is classified into four stages of severity: none, mild, moderate and severe.

Usage

bos

Format

A data frame containing 638 rows, grouped by patient, including histories of 204 patients. The
first observation for each patient is defined to be stage 1, no BOS, at six months after transplant.
Subsequent observations denote the entry times into stages 2, 3, 4, representing mild, moderate and
severe BOS respectively, and stage 5, representing death.

ptnum (numeric) Patient identification number
time (numeric) Months after transplant
state (numeric) BOS state entered at this time

Details

The entry time of each patient into each stage of BOS was estimated by clinicians, based on their
history of lung function measurements and acute rejection and infection episodes. BOS is only
assumed to occur beyond six months after transplant. In the first six months the function of each
patient’s new lung stabilises. Subsequently BOS is diagnosed by comparing the lung function
against the "baseline" value.

The objects bos3 and bos4 contain the same data, but with mild/moderate/severe combined, and
moderate/severe combined, to give 3 and 4-state representations respectively.

Source

Papworth Hospital, U.K.

References

Heng. D. et al. (1998). Bronchiolitis Obliterans Syndrome: Incidence, Natural History, Prognosis,
and Risk Factors. Journal of Heart and Lung Transplantation 17(12)1255–1263.

10 cav

cav Heart transplant monitoring data

Description

A series of approximately yearly angiographic examinations of heart transplant recipients. The state
at each time is a grade of cardiac allograft vasculopathy (CAV), a deterioration of the arterial walls.

Usage

cav

Format

A data frame containing 2846 rows. There are 622 patients, the rows are grouped by patient number
and ordered by years after transplant, with each row representing an examination and containing
additional covariates.

PTNUM (numeric) Patient identification number
age (numeric) Recipient age at examination (years)

years (numeric) Examination time (years after transplant)
dage (numeric) Age of heart donor (years)
sex (numeric) sex (0=male, 1=female)

pdiag (factor) Primary diagnosis (reason for transplant)
IHD=ischaemic heart disease, IDC=idiopathic dilated cardiomyopathy.

cumrej (numeric) Cumulative number of acute rejection episodes
state (numeric) State at the examination.

State 1 represents no CAV, state 2 is mild/moderate CAV
and state 3 is severe CAV. State 4 indicates death.

firstobs (numeric) 0 = record represents an angiogram or date of death.
1 = record represents transplant (patient’s first observation)

statemax (numeric) Maximum observed state so far for this patient (added in version 1.5.1)

Source

Papworth Hospital, U.K.

References

Sharples, L.D. and Jackson, C.H. and Parameshwar, J. and Wallwork, J. and Large, S.R. (2003). Di-
agnostic accuracy of coronary angiopathy and risk factors for post-heart-transplant cardiac allograft
vasculopathy. Transplantation 76(4):679-82

cmodel.object 11

cmodel.object Developer documentation: censoring model object

Description

A list giving information about censored states, their labels in the data and what true states they
represent.

Value

ncens The number of distinct values used for censored observations in the state data
supplied to msm.

censor A vector of length ncens, giving the labels used for censored states in the data.

states A vector obtained by unlist()ing a list with ncens elements, each giving the
set of true states that an observation with this label could be.

index Index into states for the first state corresponding to each censor, plus an extra
length(states)+1.

See Also

msm.object.

coef.msm Extract model coefficients

Description

Extract the estimated log transition intensities and the corresponding linear effects of each covariate.

Usage

S3 method for class 'msm'
coef(object, ...)

Arguments

object A fitted multi-state model object, as returned by msm.

... (unused) further arguments passed to or from other methods.

12 crudeinits.msm

Value

If there is no misclassification, coef.msm returns a list of matrices. The first component, labelled
logbaseline, is a matrix containing the estimated transition intensities on the log scale with any
covariates fixed at their means in the data. Each remaining component is a matrix giving the linear
effects of the labelled covariate on the matrix of log intensities.

For misclassification models, coef.msm returns a list of lists. The first component, Qmatrices, is a
list of matrices as described in the previous paragraph. The additional component Ematrices is a
list of similar format containing the logit-misclassification probabilities and any estimated covariate
effects.

Author(s)

C. H. Jackson <chris.jackson@mrc-bsu.cam.ac.uk>

See Also

msm

crudeinits.msm Calculate crude initial values for transition intensities

Description

Calculates crude initial values for transition intensities by assuming that the data represent the exact
transition times of the Markov process.

Usage

crudeinits.msm(formula, subject, qmatrix, data=NULL, censor=NULL, censor.states=NULL)

Arguments

formula A formula giving the vectors containing the observed states and the correspond-
ing observation times. For example,
state ~ time

Observed states should be in the set 1,...,n, where n is the number of states.
Note hidden Markov models are not supported by this function.

subject Vector of subject identification numbers for the data specified by formula. If
missing, then all observations are assumed to be on the same subject. These
must be sorted so that all observations on the same subject are adjacent.

qmatrix Matrix of indicators for the allowed transitions. An initial value will be esti-
mated for each value of qmatrix that is greater than zero. Transitions are taken
as disallowed for each entry of qmatrix that is 0.

data An optional data frame in which the variables represented by subject and
state can be found.

deltamethod 13

censor A state, or vector of states, which indicates censoring. See msm.

censor.states Specifies the underlying states which censored observations can represent. See
msm.

Details

Suppose we want a crude estimate of the transition intensity qrs from state r to state s. If we observe
nrs transitions from state r to state s, and a total of nr transitions from state r, then qrs/qrr can be
estimated by nrs/nr. Then, given a total of Tr years spent in state r, the mean sojourn time 1/qrr
can be estimated as Tr/nr. Thus, nrs/Tr is a crude estimate of qrs.

If the data do represent the exact transition times of the Markov process, then these are the exact
maximum likelihood estimates.

Observed transitions which are incompatible with the given qmatrix are ignored. Censored states
are ignored.

Value

The estimated transition intensity matrix. This can be used as the qmatrix argument to msm.

Author(s)

C. H. Jackson <chris.jackson@mrc-bsu.cam.ac.uk>

See Also

statetable.msm

Examples

data(cav)
twoway4.q <- rbind(c(-0.5, 0.25, 0, 0.25), c(0.166, -0.498, 0.166, 0.166),
c(0, 0.25, -0.5, 0.25), c(0, 0, 0, 0))
statetable.msm(state, PTNUM, data=cav)
crudeinits.msm(state ~ years, PTNUM, data=cav, qmatrix=twoway4.q)

deltamethod The delta method

Description

Delta method for approximating the standard error of a transformation g(X) of a random variable
X = (x1, x2, . . .), given estimates of the mean and covariance matrix of X .

Usage

deltamethod(g, mean, cov, ses=TRUE)

14 deltamethod

Arguments

g A formula representing the transformation. The variables must be labelled x1,x2,...
For example,
~ 1 / (x1 + x2)

If the transformation returns a vector, then a list of formulae representing (g1, g2, . . .)
can be provided, for example
list(~ x1 + x2,~ x1 / (x1 + x2))

mean The estimated mean of X

cov The estimated covariance matrix of X

ses If TRUE, then the standard errors of g1(X), g2(X), . . . are returned. Otherwise
the covariance matrix of g(X) is returned.

Details

The delta method expands a differentiable function of a random variable about its mean, usually
with a first-order Taylor approximation, and then takes the variance. For example, an approximation
to the covariance matrix of g(X) is given by

Cov(g(X)) = g′(µ)Cov(X)[g′(µ)]T

where µ is an estimate of the mean of X . This function uses symbolic differentiation via deriv.

A limitation of this function is that variables created by the user are not visible within the formula
g. To work around this, it is necessary to build the formula as a string, using functions such as
sprintf, then to convert the string to a formula using as.formula. See the example below.

If you can spare the computational time, bootstrapping is a more accurate method of calculating
confidence intervals or standard errors for transformations of parameters. See boot.msm. Simu-
lation from the asymptotic distribution of the MLEs (see e.g. Mandel 2013) is also a convenient
alternative.

Value

A vector containing the standard errors of g1(X), g2(X), . . . or a matrix containing the covariance
of g(X).

Author(s)

C. H. Jackson <chris.jackson@mrc-bsu.cam.ac.uk>

References

Oehlert, G. W. (1992) A note on the delta method. American Statistician 46(1).

Mandel, M. (2013) Simulation based confidence intervals for functions with complicated deriva-
tives. The American Statistician 67(2):76-81.

draic.msm 15

Examples

Simple linear regression, E(y) = alpha + beta x
x <- 1:100
y <- rnorm(100, 4*x, 5)
toy.lm <- lm(y ~ x)
estmean <- coef(toy.lm)
estvar <- summary(toy.lm)$cov.unscaled * summary(toy.lm)$sigma^2

Estimate of (1 / (alphahat + betahat))
1 / (estmean[1] + estmean[2])
Approximate standard error
deltamethod (~ 1 / (x1 + x2), estmean, estvar)

We have a variable z we would like to use within the formula.
z <- 1
deltamethod (~ z / (x1 + x2), estmean, estvar) will not work.
Instead, build up the formula as a string, and convert to a formula.
form <- sprintf("~ %f / (x1 + x2)", z)
form
deltamethod(as.formula(form), estmean, estvar)

draic.msm Criteria for comparing two multi-state models with nested state spaces

Description

A modification of Akaike’s information criterion, and a leave-one-out likelihood cross-validation
criterion, for comparing the predictive ability of two Markov multi-state models with nested state
spaces. This is evaluated based on the restricted or aggregated data which the models have in
common.

Note that standard AIC can be computed for one or more fitted msm models x,y,... using AIC(x,y,...),
and this can be used to compare models fitted to the same data. draic.msm and drlcv.msm are de-
signed for models fitted to data with differently-aggregated state spaces.

Usage

draic.msm(msm.full, msm.coarse, likelihood.only=FALSE,
information=c("expected","observed"), tl=0.95)

drlcv.msm(msm.full, msm.coarse, tl=0.95, cores=NULL,
verbose=TRUE,outfile=NULL)

Arguments

msm.full Model on the bigger state space.

16 draic.msm

msm.coarse Model on the smaller state space.
The two models must both be non-hidden Markov models without censored
states.
The two models must be fitted to the same datasets, except that the state space
of the coarse model must be an aggregated version of the state space of the full
model. That is, every state in the full dataset must correspond to a unique state in
the coarse dataset. For example, for the full state variable c(1,1,2,2,3,4), the
corresponding coarse states could be c(1,1,2,2,2,3), but not c(1,2,3,4,4,4).
The structure of allowed transitions in the coarse model must also be a collapsed
version of the big model structure, but no check is currently made for this in the
code.
To use these functions, all objects which were used in the calls to fit msm.full
and msm.coarse must be in the working environment, for example, datasets and
definitions of transition matrices.

likelihood.only

Don’t calculate Hessians and trace term (DRAIC).

information Use observed or expected information in the DRAIC trace term. Expected is the
default, and much faster, though is only available for models fitted to pure panel
data (all obstype=1 in the call to msm, thus not exact transition times or exact
death times)

tl Width of symmetric tracking interval, by default 0.95 for a 95% interval.

cores Number of processor cores to use in drlcv for cross-validation by parallel pro-
cessing. Requires the doParallel package to be installed. If not specified, par-
allel processing is not used. If cores is set to the string "default", the default
methods of makeCluster (on Windows) or registerDoParallel (on Unix-
like) are used.

verbose Print intermediate results of each iteration of cross-validation to the console
while running. May not work with parallel processing.

outfile Output file to print intermediate results of cross-validation. Useful to track ex-
ecution speed when using parallel processing, where output to the console may
not work.

Details

The difference in restricted AIC (Liquet and Commenges, 2011), as computed by this function, is
defined as

DRAIC = l(γn|x′′)− l(θn|x′′) + trace(J(θn|x′′)J(θn|x)−1 − J(γn|x′′)J(γn|x′)−1)

where γ and θ are the maximum likelihood estimates of the smaller and bigger models, fitted to the
smaller and bigger data, respectively.

l(γn|x′′) represents the likelihood of the simpler model evaluated on the restricted data.

l(θn|x′′) represents the likelihood of the complex model evaluated on the restricted data. This is a
hidden Markov model, with a misclassification matrix and initial state occupancy probabilities as
described by Thom et al (2014).

draic.msm 17

J() are the corresponding (expected or observed, as specified by the user) information matrices.

x is the expanded data, to which the bigger model was originally fitted, and x′ is the data to which
the smaller model was originally fitted. x′′ is the restricted data which the two models have in
common. x′′ = x′ in this implementation, so the models are nested.

The difference in likelihood cross-validatory criteria (Liquet and Commenges, 2011) is defined as

DRLCV = 1/n

n∑
i=1

log(hX′′(x′′i |γ−i)/gX′′(x′′i |θ−i))

where γ−i and θ−i are the maximum likelihood estimates from the smaller and bigger models fitted
to datasets with subject i left out, g() and h() are the densities of the corresponding models, and x′′i
is the restricted data from subject i.

Tracking intervals are analogous to confidence intervals, but not strictly the same, since the quan-
tity which D_RAIC aims to estimate, the difference in expected Kullback-Leibler discrepancy for
predicting a replicate dataset, depends on the sample size. See the references.

Positive values for these criteria indicate the coarse model is preferred, while negative values indi-
cate the full model is preferred.

Value

A list containing DRAIC (draic.msm) or DRLCV (drlcv.msm), its component terms, and tracking
intervals.

Author(s)

C. H. Jackson <chris.jackson@mrc-bsu.cam.ac.uk>, H. H. Z. Thom <howard.thom@bristol.ac.uk>

References

Thom, H. and Jackson, C. and Commenges, D. and Sharples, L. (2015) State selection in multistate
models with application to quality of life in psoriatic arthritis. Statistics In Medicine 34(16) 2381 -
2480.

Liquet, B. and Commenges D. (2011) Choice of estimators based on different observations: Modi-
fied AIC and LCV criteria. Scandinavian Journal of Statistics; 38:268-287.

See Also

logLik.msm

18 efpt.msm

ecmodel.object Developer documentation: model for covariates on misclassification
probabilities

Description

A list representing the model for covariates on misclassification probabilities.

Value

npars Number of covariate effect parameters. This is defined as the number of covari-
ates on misclassification (with factors expanded as contrasts) multiplied by the
number of allowed misclassifications in the model.

ndpars Number of distinct covariate effect parameters, as npars, but after any equality
constraints have been applied.

ncovs Number of covariates on misclassification, with factors expanded as contrasts.

constr List of equality constraints on these covariate effects, as supplied in the miscconstraint
argument to msm.

covlabels Names / labels of these covariates in the model matrix (see model.matrix.msm).

inits Initial values for these covariate effects, as a vector formed from the misccovinits
list supplied to msm.

covmeans Means of these covariates in the data (excluding data not required to fit the
model, such as observations with missing data in other elements or subjects’ last
observations). This includes means of 0/1 factor contrasts as well as continuous
covariates (for historic reasons, which may not be sensible).

See Also

msm.object.

efpt.msm Expected first passage time

Description

Expected time until first reaching a particular state or set of states in a Markov model.

Usage

efpt.msm(x=NULL, qmatrix=NULL, tostate, start="all", covariates="mean",
ci=c("none","normal","bootstrap"), cl=0.95, B=1000,
cores=NULL, ...)

efpt.msm 19

Arguments

x A fitted multi-state model, as returned by msm.

qmatrix Instead of x, you can simply supply a transition intensity matrix in qmatrix.

tostate State, or set of states supplied as a vector, for which to estimate the first passage
time into. Can be integer, or character matched to the row names of the Q matrix.

start Starting state (integer). By default (start="all"), this will return a vector of
expected passage times from each state in turn.
Alternatively, this can be used to obtain the expected first passage time from a
set of states, rather than single states. To achieve this, state is set to a vector of
weights, with length equal to the number of states in the model. These weights
should be proportional to the probability of starting in each of the states in the
desired set, so that weights of zero are supplied for other states. The function
will calculate the weighted average of the expected passage times from each of
the corresponding states.

covariates Covariate values defining the intensity matrix for the fitted model x, as supplied
to qmatrix.msm.

ci If "normal", then calculate a confidence interval by simulating B random vectors
from the asymptotic multivariate normal distribution implied by the maximum
likelihood estimates (and covariance matrix) of the log transition intensities and
covariate effects.
If "bootstrap" then calculate a confidence interval by non-parametric bootstrap
refitting. This is 1-2 orders of magnitude slower than the "normal" method, but
is expected to be more accurate. See boot.msm for more details of bootstrapping
in msm.
If "none" (the default) then no confidence interval is calculated.

cl Width of the symmetric confidence interval, relative to 1.

B Number of bootstrap replicates.

cores Number of cores to use for bootstrapping using parallel processing. See boot.msm
for more details.

... Arguments to pass to MatrixExp.

Details

The expected first passage times from each of a set of states i to to the remaining set of states i in
the state space, for a model with transition intensity matrix Q, are

−Q−1i,i 1

where 1 is a vector of ones, and Qi,i is the square subset of Q pertaining to states i.

It is equal to the sum of mean sojourn times for all states between the "from" and "to" states in a
unidirectional model. If there is non-zero chance of reaching an absorbing state before reaching
tostate, then it is infinite. It is trivially zero if the "from" state equals tostate.

This function currently only handles time-homogeneous Markov models. For time-inhomogeneous
models it will assume that Q equals the average intensity matrix over all times and observed covari-
ates. Simulation might be used to handle time dependence.

20 efpt.msm

Note this is the expectation of first passage time, and the confidence intervals are CIs for this mean,
not predictive intervals for the first passage time. The full distribution of the first passage time to a
set of states can be obtained by setting the rows of the intensity matrix Q corresponding to that set
of states to zero to make a model where those states are absorbing. The corresponding transition
probability matrix Exp(Qt) then gives the probabilities of having hit or passed that state by a time
t (see the example below). This is implemented in ppass.msm.

Value

A vector of expected first passage times, or "hitting times", from each state to the desired state.

Author(s)

C. H. Jackson <chris.jackson@mrc-bsu.cam.ac.uk>

References

Norris, J. R. (1997) Markov Chains. Cambridge University Press.

See Also

sojourn.msm, totlos.msm, boot.msm.

Examples

twoway4.q <- rbind(c(-0.5, 0.25, 0, 0.25), c(0.166, -0.498, 0.166, 0.166),
c(0, 0.25, -0.5, 0.25), c(0, 0, 0, 0))

efpt.msm(qmatrix=twoway4.q, tostate=3)
given in state 1, expected time to reaching state 3 is infinite
since may die (state 4) before entering state 3

If we remove the death state from the model, EFPTs become finite
Q <- twoway4.q[1:3,1:3]; diag(Q) <- 0; diag(Q) <- -rowSums(Q)
efpt.msm(qmatrix=Q, tostate=3)

Suppose we cannot die or regress while in state 2, can only go to state 3
Q <- twoway4.q; Q[2,4] <- Q[2,1] <- 0; diag(Q) <- 0; diag(Q) <- -rowSums(Q)
efpt.msm(qmatrix=Q, tostate=3)
The expected time from 2 to 3 now equals the mean sojourn time in 2.
-1/Q[2,2]

Calculate cumulative distribution of the first passage time
into state 3 for the following three-state model
Q <- twoway4.q[1:3,1:3]; diag(Q) <- 0; diag(Q) <- -rowSums(Q)
Firstly form a model where the desired hitting state is absorbing
Q[3,] <- 0
MatrixExp(Q, t=10)[,3]
ppass.msm(qmatrix=Q, tot=10)
Given in state 1 at time 0, P(hit 3 by time 10) = 0.479
MatrixExp(Q, t=50)[,3] # P(hit 3 by time 50) = 0.98
ppass.msm(qmatrix=Q, tot=50)

ematrix.msm 21

ematrix.msm Misclassification probability matrix

Description

Extract the estimated misclassification probability matrix, and corresponding confidence intervals,
from a fitted multi-state model at a given set of covariate values.

Usage

ematrix.msm(x, covariates="mean", ci=c("delta","normal","bootstrap","none"),
cl=0.95, B=1000, cores=NULL)

Arguments

x A fitted multi-state model, as returned by msm.

covariates The covariate values for which to estimate the misclassification probability ma-
trix. This can either be:

the string "mean", denoting the means of the covariates in the data (this is the
default),

the number 0, indicating that all the covariates should be set to zero,

or a list of values, with optional names. For example
list (60,1)

where the order of the list follows the order of the covariates originally given in
the model formula, or a named list,
list (age = 60,sex = 1)

ci If "delta" (the default) then confidence intervals are calculated by the delta
method, or by simple transformation of the Hessian in the very simplest cases.
If "normal", then calculate a confidence interval by simulating B random vec-
tors from the asymptotic multivariate normal distribution implied by the max-
imum likelihood estimates (and covariance matrix) of the multinomial-logit-
transformed misclassification probabilities and covariate effects, then transform-
ing back.
If "bootstrap" then calculate a confidence interval by non-parametric bootstrap
refitting. This is 1-2 orders of magnitude slower than the "normal" method, but
is expected to be more accurate. See boot.msm for more details of bootstrapping
in msm.

cl Width of the symmetric confidence interval to present. Defaults to 0.95.

B Number of bootstrap replicates, or number of normal simulations from the dis-
tribution of the MLEs

cores Number of cores to use for bootstrapping using parallel processing. See boot.msm
for more details.

22 emodel.object

Details

Misclassification probabilities and covariate effects are estimated on the multinomial-logit scale by
msm. A covariance matrix is estimated from the Hessian of the maximised log-likelihood. From
these, the delta method can be used to obtain standard errors of the probabilities on the natural
scale at arbitrary covariate values. Confidence intervals are estimated by assuming normality on the
multinomial-logit scale.

Value

A list with components:

estimate Estimated misclassification probability matrix. The rows correspond to true
states, and columns observed states.

SE Corresponding approximate standard errors.

L Lower confidence limits.

U Upper confidence limits.

Or if ci="none", then ematrix.msm just returns the estimated misclassification probability matrix.

The default print method for objects returned by ematrix.msm presents estimates and confidence
limits. To present estimates and standard errors, do something like

ematrix.msm(x)[c("estimates","SE")]

Author(s)

C. H. Jackson <chris.jackson@mrc-bsu.cam.ac.uk>

See Also

qmatrix.msm

emodel.object Developer documentation: misclassification model structure object

Description

A list giving information about the misclassifications assumed in a multi-state model fitted with the
ematrix argument of msm. Returned in a fitted msm model object. This information is converted
internally to a hmodel object (see hmodel.object) for use in likelihood computations.

fev 23

Value

nstates Number of states (same as qmodel$nstates).

npars Number of allowed misclassifications, equal to sum(imatrix).

imatrix Indicator matrix for allowed misclassifications. This has (r, s) entry 1 if mis-
classification of true state r as observed state s is possible. diagonal entries are
arbitrarily set to 0.

ematrix Matrix of initial values for the misclassification probabilities, supplied as the
ematrix argument of msm.

inits Vector of these initial values, reading across rows of qmatrix and excluding the
diagonal and disallowed transitions.

constr Indicators for equality constraints on baseline misclassification probabilities,
taken from the econstraint argument to msm, and mapped if necessary to the
set (1,2,3,...)

ndpars Number of distinct misclassification probabilities, after applying equality con-
straints.

nipars Number of initial state occupancy probabilities being estimated. This is zero if
est.initprobs=FALSE, otherwise equal to the number of states.

initprobs Initial state occupancy probabilities, as supplied to msm (initial values before
estimation, if est.initprobs=TRUE.)

est.initprobs Are initial state occupancy probabilities estimated (TRUE or FALSE), as supplied
in the est.initprobs argument of msm.

See Also

msm.object,qmodel.object, hmodel.object.

fev FEV1 measurements from lung transplant recipients

Description

A series of measurements of the forced expiratory volume in one second (FEV1) from lung trans-
plant recipients, from six months onwards after their transplant.

Usage

fev

Format

A data frame containing 5896 rows. There are 204 patients, the rows are grouped by patient num-
ber and ordered by days after transplant. Each row represents an examination and containing an
additional covariate.

24 hazard.msm

ptnum (numeric) Patient identification number.
days (numeric) Examination time (days after transplant).
fev (numeric) Percentage of baseline FEV1. A code of 999 indicates the patient’s date of death.

acute (numeric) 0/1 indicator for whether the patient suffered an acute infection or rejection
within 14 days of the visit.

Details

A baseline "normal" FEV1 for each individual is calculated using measurements from the first six
months after transplant. After six months, as presented in this dataset, FEV1 is expressed as a
percentage of the baseline value.

FEV1 is monitored to diagnose bronchiolitis obliterans syndrome (BOS), a long-term lung function
decline, thought to be a form of chronic rejection. Acute rejections and infections also affect the
lung function in the short term.

Source

Papworth Hospital, U.K.

References

Jackson, C.H. and Sharples, L.D. Hidden Markov models for the onset and progression of bron-
chiolitis obliterans syndrome in lung transplant recipients Statistics in Medicine, 21(1): 113–128
(2002).

hazard.msm Calculate tables of hazard ratios for covariates on transition intensi-
ties

Description

Hazard ratios are computed by exponentiating the estimated covariate effects on the log-transition
intensities. This function is called by summary.msm.

Usage

hazard.msm(x, hazard.scale = 1, cl = 0.95)

Arguments

x Output from msm representing a fitted multi-state model.

hazard.scale Vector with same elements as number of covariates on transition rates. Corre-
sponds to the increase in each covariate used to calculate its hazard ratio. De-
faults to all 1.

cl Width of the symmetric confidence interval to present. Defaults to 0.95.

hmm-dists 25

Value

A list of tables containing hazard ratio estimates, one table for each covariate. Each table has
three columns, containing the hazard ratio, and an approximate upper and lower confidence limit
respectively (assuming normality on the log scale), for each Markov chain transition intensity.

Author(s)

C. H. Jackson <chris.jackson@mrc-bsu.cam.ac.uk>

See Also

msm, summary.msm, odds.msm

hmm-dists Hidden Markov model constructors

Description

These functions are used to specify the distribution of the response conditionally on the underlying
state in a hidden Markov model. A list of these function calls, with one component for each state,
should be used for the hmodel argument to msm. The initial values for the parameters of the distri-
bution should be given as arguments. Note the initial values should be supplied as literal values -
supplying them as variables is currently not supported.

Usage

hmmCat(prob, basecat)
hmmIdent(x)
hmmUnif(lower, upper)
hmmNorm(mean, sd)
hmmLNorm(meanlog, sdlog)
hmmExp(rate)
hmmGamma(shape, rate)
hmmWeibull(shape, scale)
hmmPois(rate)
hmmBinom(size, prob)
hmmTNorm(mean, sd, lower, upper)
hmmMETNorm(mean, sd, lower, upper, sderr, meanerr=0)
hmmMEUnif(lower, upper, sderr, meanerr=0)
hmmNBinom(disp, prob)
hmmBetaBinom(size, meanp, sdp)
hmmBeta(shape1,shape2)
hmmT(mean,scale,df)

26 hmm-dists

Arguments

prob (hmmCat) Vector of probabilities of observing category 1,2,...,length(prob)
respectively. Or the probability governing a binomial or negative binomial dis-
tribution.

basecat (hmmCat) Category which is considered to be the "baseline", so that during esti-
mation, the probabilities are parameterised as probabilities relative to this base-
line category. By default, the category with the greatest probability is used as
the baseline.

x (hmmIdent) Code in the data which denotes the exactly-observed state.

mean (hmmNorm,hmmLNorm,hmmTNorm) Mean defining a Normal, or truncated Normal
distribution.

sd (hmmNorm,hmmLNorm,hmmTNorm) Standard deviation defining a Normal, or trun-
cated Normal distribution.

meanlog (hmmNorm,hmmLNorm,hmmTNorm) Mean on the log scale, for a log Normal distri-
bution.

sdlog (hmmNorm,hmmLNorm,hmmTNorm) Standard deviation on the log scale, for a log
Normal distribution.

rate (hmmPois,hmmExp,hmmGamma) Rate of a Poisson, Exponential or Gamma distri-
bution (see dpois, dexp, dgamma).

shape (hmmPois,hmmExp,hmmGamma) Shape parameter of a Gamma or Weibull distri-
bution (see dgamma, dweibull).

shape1,shape2 First and second parameters of a beta distribution (see dbeta).

scale (hmmGamma) Scale parameter of a Gamma distribution (see dgamma), or unstan-
dardised Student t distribution.

df Degrees of freedom of the Student t distribution.

size Order of a Binomial distribution (see dbinom).

disp Dispersion parameter of a negative binomial distribution, also called size or
order. (see dnbinom).

meanp Mean outcome probability in a beta-binomial distribution

sdp Standard deviation describing the overdispersion of the outcome probability in
a beta-binomial distribution

lower (hmmUnif,hmmTNorm,hmmMEUnif) Lower limit for an Uniform or truncated Nor-
mal distribution.

upper (hmmUnif,hmmTNorm,hmmMEUnif) Upper limit for an Uniform or truncated Nor-
mal distribution.

sderr (hmmMETNorm,hmmUnif) Standard deviation of the Normal measurement error
distribution.

meanerr (hmmMETNorm,hmmUnif) Additional shift in the measurement error, fixed to 0 by
default. This may be modelled in terms of covariates.

hmm-dists 27

Details

hmmCat represents a categorical response distribution on the set 1,2,...,length(prob). The
Markov model with misclassification is an example of this type of model. The categories in this
case are (some subset of) the underlying states.

The hmmIdent distribution is used for underlying states which are observed exactly without error.
For hidden Markov models with multiple outcomes, (see hmmMV), the outcome in the data which
takes the special hmmIdent value must be the first of the multiple outcomes.

hmmUnif, hmmNorm, hmmLNorm, hmmExp, hmmGamma, hmmWeibull, hmmPois, hmmBinom, hmmTNorm,
hmmNBinom and hmmBeta represent Uniform, Normal, log-Normal, exponential, Gamma, Weibull,
Poisson, Binomial, truncated Normal, negative binomial and beta distributions, respectively, with
parameterisations the same as the default parameterisations in the corresponding base R distribution
functions.

hmmT is the Student t distribution with general mean µ, scale σ and degrees of freedom df. The
variance is σ2df/(df + 2). Note the t distribution in base R dt is a standardised one with mean 0
and scale 1. These allow any positive (integer or non-integer) df. By default, all three parameters,
including df, are estimated when fitting a hidden Markov model, but in practice, df might need to
be fixed for identifiability - this can be done using the fixedpars argument to msm.

The hmmMETNorm and hmmMEUnif distributions are truncated Normal and Uniform distributions,
but with additional Normal measurement error on the response. These are generalisations of the
distributions proposed by Satten and Longini (1996) for modelling the progression of CD4 cell
counts in monitoring HIV disease. See medists for density, distribution, quantile and random
generation functions for these distributions. See also tnorm for density, distribution, quantile and
random generation functions for the truncated Normal distribution.

See the PDF manual ‘msm-manual.pdf’ in the ‘doc’ subdirectory for algebraic definitions of all
these distributions. New hidden Markov model response distributions can be added to msm by
following the instructions in Section 2.17.1.

Parameters which can be modelled in terms of covariates, on the scale of a link function, are as
follows.

PARAMETER NAME LINK FUNCTION
mean identity
meanlog identity
rate log
scale log
meanerr identity
meanp logit
prob logit or multinomial logit

Parameters basecat,lower,upper,size,meanerr are fixed at their initial values. All other pa-
rameters are estimated while fitting the hidden Markov model, unless the appropriate fixedpars
argument is supplied to msm.

For categorical response distributions (hmmCat) the outcome probabilities initialized to zero are
fixed at zero, and the probability corresponding to basecat is fixed to one minus the sum of the
remaining probabilities. These remaining probabilities are estimated, and can be modelled in terms
of covariates via multinomial logistic regression (relative to basecat).

28 hmmMV

Value

Each function returns an object of class hmodel, which is a list containing information about the
model. The only component which may be useful to end users is r, a function of one argument n
which returns a random sample of size n from the given distribution.

Author(s)

C. H. Jackson <chris.jackson@mrc-bsu.cam.ac.uk>

References

Satten, G.A. and Longini, I.M. Markov chains with measurement error: estimating the ’true’ course
of a marker of the progression of human immunodeficiency virus disease (with discussion) Applied
Statistics 45(3): 275-309 (1996).

Jackson, C.H. and Sharples, L.D. Hidden Markov models for the onset and progresison of bron-
chiolitis obliterans syndrome in lung transplant recipients Statistics in Medicine, 21(1): 113–128
(2002).

Jackson, C.H., Sharples, L.D., Thompson, S.G. and Duffy, S.W. and Couto, E. Multi-state Markov
models for disease progression with classification error. The Statistician, 52(2): 193–209 (2003).

See Also

msm

hmmMV Multivariate hidden Markov models

Description

Constructor for a a multivariate hidden Markov model (HMM) where each of the n variables ob-
served at the same time has a (potentially different) standard univariate distribution conditionally
on the underlying state. The n outcomes are independent conditionally on the hidden state.

If a particular state in a HMM has such an outcome distribution, then a call to hmmMV is supplied as
the corresponding element of the hmodel argument to msm. See Example 2 below.

A multivariate HMM where multiple outcomes at the same time are generated from the same dis-
tribution is specified in the same way as the corresponding univariate model, so that hmmMV is not
required. The outcome data are simply supplied as a matrix instead of a vector. See Example 1
below.

The outcome data for such models are supplied as a matrix, with number of columns equal to the
maximum number of arguments supplied to the hmmMV calls for each state. If some but not all of the
variables are missing (NA) at a particular time, then the observed data at that time still contribute to
the likelihood. The missing data are assumed to be missing at random. The Viterbi algorithm may
be used to predict the missing values given the fitted model and the observed data.

Typically the outcome model for each state will be from the same family or set of families, but with
different parameters. Theoretically, different numbers of distributions may be supplied for different

hmmMV 29

states. If a particular state has fewer outcomes than the maximum, then the data for that state are
taken from the first columns of the response data matrix. However this is not likely to be a useful
model, since the number of observations will probably give information about the underlying state,
violating the missing at random assumption.

Models with outcomes that are dependent conditionally on the hidden state (e.g. correlated multi-
variate normal observations) are not currently supported.

Usage

hmmMV(...)

Arguments

... The number of arguments supplied should equal the maximum number of obser-
vations made at one time. Each argument represents the univariate distribution
of that outcome conditionally on the hidden state, and should be the result of
calling a univariate hidden Markov model constructor (see hmm-dists).

Value

A list of objects, each of class hmmdist as returned by the univariate HMM constructors documented
in hmm-dists. The whole list has class hmmMVdist, which inherits from hmmdist.

Author(s)

C. H. Jackson <chris.jackson@mrc-bsu.cam.ac.uk>

References

Jackson, C. H., Su, L., Gladman, D. D. and Farewell, V. T. (2015) On modelling minimal disease
activity. Arthritis Care and Research (early view).

See Also

hmm-dists,msm

Examples

Simulate data from a Markov model
nsubj <- 30; nobspt <- 5
sim.df <- data.frame(subject = rep(1:nsubj, each=nobspt),

time = seq(0, 20, length=nobspt))
set.seed(1)
two.q <- rbind(c(-0.1, 0.1), c(0, 0))
dat <- simmulti.msm(sim.df[,1:2], qmatrix=two.q, drop.absorb=FALSE)

EXAMPLE 1
Generate two observations at each time from the same outcome
distribution:
Bin(40, 0.1) for state 1, Bin(40, 0.5) for state 2
dat$obs1[dat$state==1] <- rbinom(sum(dat$state==1), 40, 0.1)

30 hmodel.object

dat$obs2[dat$state==1] <- rbinom(sum(dat$state==1), 40, 0.1)
dat$obs1[dat$state==2] <- rbinom(sum(dat$state==2), 40, 0.5)
dat$obs2[dat$state==2] <- rbinom(sum(dat$state==2), 40, 0.5)
dat$obs <- cbind(obs1 = dat$obs1, obs2 = dat$obs2)

Fitted model should approximately recover true parameters
msm(obs ~ time, subject=subject, data=dat, qmatrix=two.q,

hmodel = list(hmmBinom(size=40, prob=0.2),
hmmBinom(size=40, prob=0.2)))

EXAMPLE 2
Generate two observations at each time from different
outcome distributions:
Bin(40, 0.1) and Bin(40, 0.2) for state 1,
dat$obs1 <- dat$obs2 <- NA
dat$obs1[dat$state==1] <- rbinom(sum(dat$state==1), 40, 0.1)
dat$obs2[dat$state==1] <- rbinom(sum(dat$state==1), 40, 0.2)

Bin(40, 0.5) and Bin(40, 0.6) for state 2
dat$obs1[dat$state==2] <- rbinom(sum(dat$state==2), 40, 0.6)
dat$obs2[dat$state==2] <- rbinom(sum(dat$state==2), 40, 0.5)
dat$obs <- cbind(obs1 = dat$obs1, obs2 = dat$obs2)

Fitted model should approximately recover true parameters
msm(obs ~ time, subject=subject, data=dat, qmatrix=two.q,

hmodel = list(hmmMV(hmmBinom(size=40, prob=0.3),
hmmBinom(size=40, prob=0.3)),

hmmMV(hmmBinom(size=40, prob=0.3),
hmmBinom(size=40, prob=0.3))),

control=list(maxit=10000))

hmodel.object Developer documentation: hidden Markov model structure object

Description

A list giving information about the models for the outcome data conditionally on the states of a
hidden Markov model. Used in internal computations, and returned in a fitted msm model object.

Value

hidden TRUE for hidden Markov models, FALSE otherwise.
nstates Number of states, the same as qmodel$nstates.
fitted TRUE if the parameter values in pars are the maximum likelihood estimates,

FALSE if they are the initial values.
models The outcome distribution for each hidden state. A vector of length nstates

whose rth entry is the index of the state r outcome distributions in the vector of
supported distributions. The vector of supported distributions is given in full by
msm:::.msm.HMODELS: the first few are 1 for categorical outcome, 2 for identity,
3 for uniform and 4 for normal.

hmodel.object 31

labels String identifying each distribution in models.
npars Vector of length nstates giving the number of parameters in each outcome

distribution, excluding covariate effects.
nipars Number of initial state occupancy probabilities being estimated. This is zero if

est.initprobs=FALSE, otherwise equal to the number of states.
totpars Total number of parameters, equal to sum(npars).
pars A vector of length totpars, made from concatenating a list of length nstates

whose rth component is vector of the parameters for the state r outcome distri-
bution.

plabs List with the names of the parameters in pars.
parstate A vector of length totpars, whose ith element is the state corresponding to the

ith parameter.
firstpar A vector of length nstates giving the index in pars of the first parameter for

each state.
locpars Index in pars of parameters which can have covariates on them.
initprobs Initial state occupancy probabilities, as supplied to msm (initial values before

estimation, if est.initprobs=TRUE.)
est.initprobs Are initial state occupancy probabilities estimated (TRUE or FALSE), as supplied

in the est.initprobs argument of msm.
ncovs Number of covariate effects per parameter in pars, with, e.g. factor contrasts

expanded.
coveffect Vector of covariate effects, of length sum(ncovs).
covlabels Labels of these effects.
coveffstate Vector indicating state corresponding to each element of coveffect.
ncoveffs Number of covariate effects on HMM outcomes, equal to sum(ncovs).
nicovs Vector of length nstates-1 giving the number of covariate effects on each initial

state occupancy probability (log relative to the baseline probability).
icoveffect Vector of length sum(nicovs) giving covariate effects on initial state occupancy

probabilities.
nicoveffs Number of covariate effects on initial state occupancy probabilities, equal to

sum(nicovs).
constr Constraints on (baseline) hidden Markov model outcome parameters, as sup-

plied in the hconstraint argument of msm, excluding covariate effects, con-
verted to a vector and mapped to the set 1,2,3,. . . if necessary.

covconstr Vector of constraints on covariate effects in hidden Markov outcome models, as
supplied in the hconstraint argument of msm, excluding baseline parameters,
converted to a vector and mapped to the set 1,2,3,. . . if necessary.

ranges Matrix of range restrictions for HMM parameters, including those given to the
hranges argument to msm.

foundse TRUE if standard errors are available for the estimates.
initpmat Matrix of initial state occupancy probabilities with one row for each subject

(estimated if est.initprobs=TRUE).
ci Confidence intervals for baseline HMM outcome parameters.
covci Confidence intervals for covariate effects in HMM outcome models.

32 logLik.msm

See Also

msm.object,qmodel.object, emodel.object.

logLik.msm Extract model log-likelihood

Description

Extract the log-likelihood and the number of parameters of a model fitted with msm.

Usage

S3 method for class 'msm'
logLik(object, by.subject=FALSE, ...)

Arguments

object A fitted multi-state model object, as returned by msm.

by.subject Return vector of subject-specific log-likelihoods, which should sum to the total
log-likelihood.

... (unused) further arguments passed to or from other methods.

Value

The log-likelihood of the model represented by ’object’ evaluated at the maximum likelihood esti-
mates.

Akaike’s information criterion can also be computed using AIC(object).

Author(s)

C. H. Jackson <chris.jackson@mrc-bsu.cam.ac.uk>

See Also

msm,lrtest.msm.

lrtest.msm 33

lrtest.msm Likelihood ratio test

Description

Likelihood ratio test between two or more fitted multi-state models

Usage

lrtest.msm(...)

Arguments

... Two or more fitted multi-state models, as returned by msm, ordered by increasing
numbers of parameters.

Value

A matrix with three columns, giving the likelihood ratio statistic, difference in degrees of freedom
and the chi-squared p-value for a comparison of the first model supplied with each subsequent
model.

Warning

The comparison between models will only be valid if they are fitted to the same dataset. This may
be a problem if there are missing values and R’s default of ’na.action = na.omit’ is used.

The likelihood ratio statistic only has the indicated chi-squared distribution if the models are nested.
An alternative for comparing non-nested models is Akaike’s information criterion. This can be
computed for one or more fitted msm models x,y,... using AIC(x,y,...).

See Also

logLik.msm,msm

MatrixExp Matrix exponential

Description

Calculates the exponential of a square matrix.

Usage

MatrixExp(mat, t = 1, method=NULL, ...)

34 MatrixExp

Arguments

mat A square matrix

t An optional scaling factor for mat.

method Under the default of NULL, this simply wraps the expm function from the expm
package. This is recommended. Options to expm can be supplied to MatrixExp,
including method.
Otherwise, for backwards compatibility, the following options, which use code
in the msm package, are available: "pade" for a Pade approximation method,
"series" for the power series approximation, or "analytic" for the analytic
formulae for simpler Markov model intensity matrices (see below). These op-
tions are only used if mat has repeated eigenvalues, thus the usual eigen-decomposition
method cannot be used.

... Arguments to pass to expm.

Details

See the expm documentation for details of the algorithms it uses.

Generally the exponential E of a square matrix M can often be calculated as

E = U exp(D)U−1

where D is a diagonal matrix with the eigenvalues of M on the diagonal, exp(D) is a diagonal
matrix with the exponentiated eigenvalues of M on the diagonal, and U is a matrix whose columns
are the eigenvectors of M .

This method of calculation is used if "pade" or "series" is supplied but M has distinct eigenval-
ues. I If M has repeated eigenvalues, then its eigenvector matrix may be non-invertible. In this
case, the matrix exponential is calculated using the Pade approximation defined by Moler and van
Loan (2003), or the less robust power series approximation,

exp(M) = I +M +M2/2 +M3/3! +M4/4! + ...

For a continuous-time homogeneous Markov process with transition intensity matrix Q, the proba-
bility of occupying state s at time u + t conditional on occupying state r at time u is given by the
(r, s) entry of the matrix exp(tQ).

If mat is a valid transition intensity matrix for a continuous-time Markov model (i.e. diagonal
entries non-positive, off-diagonal entries non-negative, rows sum to zero), then for certain simpler
model structures, there are analytic formulae for the individual entries of the exponential of mat.
These structures are listed in the PDF manual and the formulae are coded in the msm source file
src/analyticp.c. These formulae are only used if method="analytic". This is more efficient,
but it is not the default in MatrixExp because the code is not robust to extreme values. However it
is the default when calculating likelihoods for models fitted by msm.

The implementation of the Pade approximation used by method="pade" was taken from JAGS by
Martyn Plummer (http://mcmc-jags.sourceforge.net).

http://mcmc-jags.sourceforge.net

medists 35

Value

The exponentiated matrix exp(mat). Or, if t is a vector of length 2 or more, an array of exponenti-
ated matrices.

References

Cox, D. R. and Miller, H. D. The theory of stochastic processes, Chapman and Hall, London (1965)

Moler, C and van Loan, C (2003). Nineteen dubious ways to compute the exponential of a matrix,
twenty-five years later. SIAM Review 45, 3–49.

medists Measurement error distributions

Description

Truncated Normal and Uniform distributions, where the response is also subject to a Normally
distributed measurement error.

Usage

dmenorm(x, mean=0, sd=1, lower=-Inf, upper=Inf, sderr=0, meanerr=0,
log = FALSE)

pmenorm(q, mean=0, sd=1, lower=-Inf, upper=Inf, sderr=0, meanerr=0,
lower.tail = TRUE, log.p = FALSE)

qmenorm(p, mean=0, sd=1, lower=-Inf, upper=Inf, sderr=0, meanerr=0,
lower.tail = TRUE, log.p = FALSE)

rmenorm(n, mean=0, sd=1, lower=-Inf, upper=Inf, sderr=0, meanerr=0)
dmeunif(x, lower=0, upper=1, sderr=0, meanerr=0, log = FALSE)
pmeunif(q, lower=0, upper=1, sderr=0, meanerr=0, lower.tail = TRUE,

log.p = FALSE)
qmeunif(p, lower=0, upper=1, sderr=0, meanerr=0, lower.tail = TRUE,

log.p = FALSE)
rmeunif(n, lower=0, upper=1, sderr=0, meanerr=0)

Arguments

x,q vector of quantiles.

p vector of probabilities.

n number of observations. If length(n) > 1, the length is taken to be the number
required.

mean vector of means.

sd vector of standard deviations.

lower lower truncation point.

upper upper truncation point.

36 medists

sderr Standard deviation of measurement error distribution.

meanerr Optional shift for the measurement error distribution.

log, log.p logical; if TRUE, probabilities p are given as log(p), or log density is returned.

lower.tail logical; if TRUE (default), probabilities are P [X <= x], otherwise, P [X > x].

Details

The normal distribution with measurement error has density

Φ(u, µ2, σ3)− Φ(l, µ2, σ3)

Φ(u, µ0, σ0)− Φ(l, µ0, σ0)
φ(x, µ0 + µε, σ2)

where
σ2
2 = σ2

0 + σ2
ε ,

σ3 = σ0σε/σ2,

µ2 = (x− µε)σ2
0 + µ0σ

2
ε ,

µ0 is the mean of the original Normal distribution before truncation,
σ0 is the corresponding standard deviation,
u is the upper truncation point,
l is the lower truncation point,
σε is the standard deviation of the additional measurement error,
µε is the mean of the measurement error (usually 0).
φ(x) is the density of the corresponding normal distribution, and
Φ(x) is the distribution function of the corresponding normal distribution.

The uniform distribution with measurement error has density

(Φ(x, µε + l, σε)− Φ(x, µε + u, σε))/(u− l)

These are calculated from the original truncated Normal or Uniform density functions f(.|µ, σ, l, u)
as ∫

f(y|µ, σ, l, u)φ(x, y + µε, σε)dy

If sderr and meanerr are not specified they assume the default values of 0, representing no mea-
surement error variance, and no constant shift in the measurement error, respectively.

Therefore, for example with no other arguments, dmenorm(x), is simply equivalent to dtnorm(x),
which in turn is equivalent to dnorm(x).

These distributions were used by Satten and Longini (1996) for CD4 cell counts conditionally on
hidden Markov states of HIV infection, and later by Jackson and Sharples (2002) for FEV1 mea-
surements conditionally on states of chronic lung transplant rejection.

These distribution functions are just provided for convenience, and are not optimised for numer-
ical accuracy or speed. To fit a hidden Markov model with these response distributions, use a
hmmMETNorm or hmmMEUnif constructor. See the hmm-dists help page for further details.

model.frame.msm 37

Value

dmenorm, dmeunif give the density, pmenorm, pmeunif give the distribution function, qmenorm,
qmeunif give the quantile function, and rmenorm, rmeunif generate random deviates, for the Nor-
mal and Uniform versions respectively.

Author(s)

C. H. Jackson <chris.jackson@mrc-bsu.cam.ac.uk>

References

Satten, G.A. and Longini, I.M. Markov chains with measurement error: estimating the ’true’ course
of a marker of the progression of human immunodeficiency virus disease (with discussion) Applied
Statistics 45(3): 275-309 (1996)

Jackson, C.H. and Sharples, L.D. Hidden Markov models for the onset and progression of bron-
chiolitis obliterans syndrome in lung transplant recipients Statistics in Medicine, 21(1): 113–128
(2002).

See Also

dnorm, dunif, dtnorm

Examples

what does the distribution look like?
x <- seq(50, 90, by=1)
plot(x, dnorm(x, 70, 10), type="l", ylim=c(0,0.06)) ## standard Normal
lines(x, dtnorm(x, 70, 10, 60, 80), type="l") ## truncated Normal
truncated Normal with small measurement error
lines(x, dmenorm(x, 70, 10, 60, 80, sderr=3), type="l")

model.frame.msm Extract original data from msm objects.

Description

Extract the data from a multi-state model fitted with msm.

Usage

S3 method for class 'msm'
model.frame(formula, agg=FALSE, ...)
S3 method for class 'msm'
model.matrix(object, model="intens", state=1, ...)

38 model.frame.msm

Arguments

formula A fitted multi-state model object, as returned by msm.

agg Return the model frame in the efficient aggregated form used to calculate the
likelihood internally for non-hidden Markov models. This has one row for each
unique combination of from-state, to-state, time lag, covariate value and obser-
vation type. The variable named "(nocc)" counts how many observations of
that combination there are in the original data.

object A fitted multi-state model object, as returned by msm.

model "intens" to return the design matrix for covariates on intensities, "misc" for
misclassification probabilities, "hmm" for a general hidden Markov model, and
"inits" for initial state probabilities in hidden Markov models.

state State corresponding to the required covariate design matrix in a hidden Markov
model.

... Further arguments (not used).

Value

model.frame returns a data frame with all the original variables used for the model fit, with any
missing data removed (see na.action in msm). The state, time, subject, obstype and obstrue
variables are named "(state)", "(time)", "(subject)", "(obstype)" and "(obstrue)" respec-
tively (note the brackets). A variable called "(obs)" is the observation number from the original
data before any missing data were dropped. The variable "(pcomb)" is used for computing the
likelihood for hidden Markov models, and identifies which distinct time difference, obstype and
covariate values (thus which distinct interval transition probability matrix) each observation corre-
sponds to.

The model frame object has some other useful attributes, including "usernames" giving the user’s
original names for these variables (used for model refitting, e.g. in bootstrapping or cross validation)
and "covnames" identifying which ones are covariates.

model.matrix returns a design matrix for a part of the model that includes covariates. The required
part is indicated by the "model" argument.

For time-inhomogeneous models fitted with "pci", these datasets will have imputed observations
at each time change point, indicated where the variable "(pci.imp)" in the model frame is 1. The
model matrix for intensities will have factor contrasts for the timeperiod covariate.

Author(s)

C. H. Jackson <chris.jackson@mrc-bsu.cam.ac.uk>

See Also

msm, model.frame, model.matrix.

msm 39

msm Multi-state Markov and hidden Markov models in continuous time

Description

Fit a continuous-time Markov or hidden Markov multi-state model by maximum likelihood. Obser-
vations of the process can be made at arbitrary times, or the exact times of transition between states
can be known. Covariates can be fitted to the Markov chain transition intensities or to the hidden
Markov observation process.

Usage

msm (formula, subject=NULL, data = list(), qmatrix, gen.inits = FALSE,
ematrix=NULL, hmodel=NULL, obstype=NULL, obstrue=NULL,
covariates = NULL, covinits = NULL, constraint = NULL,
misccovariates = NULL, misccovinits = NULL, miscconstraint = NULL,
hcovariates = NULL, hcovinits = NULL, hconstraint = NULL, hranges=NULL,
qconstraint=NULL, econstraint=NULL, initprobs = NULL,
est.initprobs=FALSE, initcovariates = NULL, initcovinits = NULL,
deathexact = NULL, death=NULL, exacttimes = FALSE, censor=NULL,
censor.states=NULL, pci=NULL, phase.states=NULL, phase.inits=NULL,
cl = 0.95, fixedpars = NULL, center=TRUE,
opt.method="optim", hessian=NULL, use.deriv=TRUE,
use.expm=TRUE, analyticp=TRUE, na.action=na.omit, ...)

Arguments

formula A formula giving the vectors containing the observed states and the correspond-
ing observation times. For example,
state ~ time

Observed states should be numeric variables in the set 1,...,n, where n is the
number of states. Factors are allowed only if their levels are called "1",...,"n".
The times can indicate different types of observation scheme, so be careful to
choose the correct obstype.
For hidden Markov models, state refers to the outcome variable, which need
not be a discrete state. It may also be a matrix, giving multiple observations at
each time (see hmmMV).

subject Vector of subject identification numbers for the data specified by formula. If
missing, then all observations are assumed to be on the same subject. These
must be sorted so that all observations on the same subject are adjacent.

data Optional data frame in which to interpret the variables supplied in formula,
subject, covariates, misccovariates, hcovariates, obstype and obstrue.

qmatrix Matrix which indicates the allowed transitions in the continuous-time Markov
chain, and optionally also the initial values of those transitions. If an instanta-
neous transition is not allowed from state r to state s, then qmatrix should have
(r, s) entry 0, otherwise it should be non-zero.

40 msm

If supplying initial values yourself, then the non-zero entries should be those
values. If using gen.inits=TRUE then the non-zero entries can be anything
you like (conventionally 1). Any diagonal entry of qmatrix is ignored, as it is
constrained to be equal to minus the sum of the rest of the row.
For example,

rbind(c(0,0.1,0.01),c(0.1,0,0.2),c(0,0,0))

represents a ’health - disease - death’ model, with initial transition intensities
0.1 from health to disease, 0.01 from health to death, 0.1 from disease to health,
and 0.2 from disease to death.
If the states represent ordered levels of severity of a disease, then this matrix
should usually only allow transitions between adjacent states. For example, if
someone was observed in state 1 ("mild") at their first observation, followed by
state 3 ("severe") at their second observation, they are assumed to have passed
through state 2 ("moderate") in between, and the 1,3 entry of qmatrix should
be zero.
The initial intensities given here are with any covariates set to their means in the
data (or set to zero, if center = FALSE). If any intensities are constrained to be
equal using qconstraint, then the initial value is taken from the first of these
(reading across rows).

gen.inits If TRUE, then initial values for the transition intensities are generated automati-
cally using the method in crudeinits.msm. The non-zero entries of the supplied
qmatrix are assumed to indicate the allowed transitions of the model. This is
not available for hidden Markov models, including models with misclassified
states.

ematrix If misclassification between states is to be modelled, this should be a matrix of
initial values for the misclassification probabilities. The rows represent underly-
ing states, and the columns represent observed states. If an observation of state
s is not possible when the subject occupies underlying state r, then ematrix
should have (r, s) entry 0. Otherwise ematrix should have (r, s) entry corre-
sponding to the probability of observing s conditionally on occupying true state
r. The diagonal of ematrix is ignored, as rows are constrained to sum to 1. For
example,

rbind(c(0,0.1,0),c(0.1,0,0.1),c(0,0.1,0))

represents a model in which misclassifications are only permitted between adja-
cent states.
If any probabilities are constrained to be equal using econstraint, then the
initial value is taken from the first of these (reading across rows).
For an alternative way of specifying misclassification models, see hmodel.

hmodel Specification of the hidden Markov model (HMM). This should be a list of re-
turn values from HMM constructor functions. Each element of the list corre-
sponds to the outcome model conditionally on the corresponding underlying
state. Univariate constructors are described in thehmm-dists help page. These

msm 41

may also be grouped together to specify a multivariate HMM with a set of con-
ditionally independent univariate outcomes at each time, as described in hmmMV.
For example, consider a three-state hidden Markov model. Suppose the ob-
servations in underlying state 1 are generated from a Normal distribution with
mean 100 and standard deviation 16, while observations in underlying state 2
are Normal with mean 54 and standard deviation 18. Observations in state 3,
representing death, are exactly observed, and coded as 999 in the data. This
model is specified as
hmodel = list(hmmNorm(mean=100,sd=16),hmmNorm(mean=54,sd=18),hmmIdent(999))

The mean and standard deviation parameters are estimated starting from these
initial values. If multiple parameters are constrained to be equal using hconstraint,
then the initial value is taken from the value given on the first occasion that pa-
rameter appears in hmodel.
See the hmm-dists help page for details of the constructor functions for each
univariate distribution.
A misclassification model, that is, a hidden Markov model where the outcomes
are misclassified observations of the underlying states, can either be specified
using a list of hmmCat or hmmIdent objects, or by using an ematrix.
For example,

ematrix = rbind(c(0,0.1,0,0),c(0.1,0,0.1,0),c(0,0.1,0,0),c(0,0,0,0)
)

is equivalent to

hmodel = list(hmmCat(prob=c(0.9,0.1,0,0)),hmmCat(prob=c(0.1,0.8,0.1,0)),hmmCat(prob=c(0,0.1,0.9,0)),hmmIdent())

obstype A vector specifying the observation scheme for each row of the data. This can
be included in the data frame data along with the state, time, subject IDs and
covariates. Its elements should be either 1, 2 or 3, meaning as follows:

1 An observation of the process at an arbitrary time (a "snapshot" of the process,
or "panel-observed" data). The states are unknown between observation
times.

2 An exact transition time, with the state at the previous observation retained
until the current observation. An observation may represent a transition to
a different state or a repeated observation of the same state (e.g. at the end
of follow-up). Note that if all transition times are known, more flexible
models could be fitted with packages other than msm - see the note under
exacttimes.
Note also that if the previous state was censored using censor, for example
known only to be state 1 or state 2, then obstype 2 means that either state
1 is retained or state 2 is retained until the current observation - this does
not allow for a change of state in the middle of the observation interval.

3 An exact transition time, but the state at the instant before entering this state is
unknown. A common example is death times in studies of chronic diseases.

42 msm

If obstype is not specified, this defaults to all 1. If obstype is a single number,
all observations are assumed to be of this type. The obstype value for the first
observation from each subject is not used.
This is a generalisation of the deathexact and exacttimes arguments to allow
different schemes per observation. obstype overrides both deathexact and
exacttimes.
exacttimes=TRUE specifies that all observations are of obstype 2.
deathexact = death.states specifies that all observations of death.states
are of type 3. deathexact = TRUE specifies that all observations in the final
absorbing state are of type 3.

obstrue In misclassification models specified with ematrix, obstrue is a vector of logi-
cals (TRUE or FALSE) or numerics (1 or 0) specifying which observations (TRUE,
1) are observations of the underlying state without error, and which (FALSE, 0)
are realisations of a hidden Markov model.
In HMMs specified with hmodel, where the hidden state is known at some times,
if obstrue is supplied it is assumed to contain the actual true state data. Ele-
ments of obstrue at times when the hidden state is unknown are set to NA.
This allows the information from HMM outcomes generated conditionally on
the known state to be included in the model, thus improving the estimation of
the HMM outcome distributions.
In HMMs where there are also censored states, obstrue should be set to 1 for
observed states which are censored but not misclassified.

covariates A formula or a list of formulae representing the covariates on the transition
intensities via a log-linear model. If a single formula is supplied, like
covariates = ~ age + sex + treatment

then these covariates are assumed to apply to all intensities. If a named list is
supplied, then this defines a potentially different model for each named intensity.
For example,
covariates = list("1-2" = ~ age,"2-3" = ~ age + treatment)

specifies an age effect on the state 1 - state 2 transition, additive age and treat-
ment effects on the state 2 - state 3 transition, but no covariates on any other
transitions that are allowed by the qmatrix.
If covariates are time dependent, they are assumed to be constant in between the
times they are observed, and the transition probability between a pair of times
(t1, t2) is assumed to depend on the covariate value at t1.

covinits Initial values for log-linear effects of covariates on the transition intensities. This
should be a named list with each element corresponding to a covariate. A single
element contains the initial values for that covariate on each transition intensity,
reading across the rows in order. For a pair of effects constrained to be equal,
the initial value for the first of the two effects is used.
For example, for a model with the above qmatrix and age and sex covariates,
the following initialises all covariate effects to zero apart from the age effect
on the 2-1 transition, and the sex effect on the 1-3 transition. covinits =
list(sex=c(0,0,0.1,0),age=c(0,0.1,0,0))

For factor covariates, name each level by concatenating the name of the covariate
with the level name, quoting if necessary. For example, for a covariate agegroup
with three levels 0-15,15-60,60-, use something like

msm 43

covinits = list("agegroup15-60"=c(0,0.1,0,0),"agegroup60-"=c(0.1,0.1,0,0))

If not specified or wrongly specified, initial values are assumed to be zero.

constraint A list of one numeric vector for each named covariate. The vector indicates
which covariate effects on intensities are constrained to be equal. Take, for ex-
ample, a model with five transition intensities and two covariates. Specifying

constraint = list (age = c(1,1,1,2,2),treatment = c(1,2,3,4,5))

constrains the effect of age to be equal for the first three intensities, and equal
for the fourth and fifth. The effect of treatment is assumed to be different for
each intensity. Any vector of increasing numbers can be used as indicators. The
intensity parameters are assumed to be ordered by reading across the rows of the
transition matrix, starting at the first row, ignoring the diagonals.
Negative elements of the vector can be used to indicate that particular covariate
effects are constrained to be equal to minus some other effects. For example:
constraint = list (age = c(-1,1,1,2,-2),treatment = c(1,2,3,4,5))

constrains the second and third age effects to be equal, the first effect to be minus
the second, and the fifth age effect to be minus the fourth. For example, it may be
realisitic that the effect of a covariate on the "reverse" transition rate from state
2 to state 1 is minus the effect on the "forward" transition rate, state 1 to state
2. Note that it is not possible to specify exactly which of the covariate effects
are constrained to be positive and which negative. The maximum likelihood
estimation chooses the combination of signs which has the higher likelihood.
For categorical covariates, defined as factors, specify constraints as follows:

list(...,covnameVALUE1 = c(...),covnameVALUE2 = c(...),...)

where covname is the name of the factor, and VALUE1, VALUE2, ... are the labels
of the factor levels (usually excluding the baseline, if using the default contrasts).
Make sure the contrasts option is set appropriately, for example, the default
options(contrasts=c(contr.treatment,contr.poly))

sets the first (baseline) level of unordered factors to zero, then the baseline level
is ignored in this specification.
To assume no covariate effect on a certain transition, use the fixedpars argu-
ment to fix it at its initial value (which is zero by default) during the optimisation.

misccovariates A formula representing the covariates on the misclassification probabilities, anal-
ogously to covariates, via multinomial logistic regression. Only used if the
model is specified using ematrix, rather than hmodel.
This must be a single formula - lists are not supported, unlike covariates. If
a different model on each probability is required, include all covariates in this
formula, and use fixedpars to fix some of their effects (for particular probabil-
ities) at their default initial values of zero.

misccovinits Initial values for the covariates on the misclassification probabilities, defined in
the same way as covinits. Only used if the model is specified using ematrix.

44 msm

miscconstraint A list of one vector for each named covariate on misclassification probabilities.
The vector indicates which covariate effects on misclassification probabilities
are constrained to be equal, analogously to constraint. Only used if the model
is specified using ematrix.

hcovariates List of formulae the same length as hmodel, defining any covariates governing
the hidden Markov outcome models. The covariates operate on a suitably link-
transformed linear scale, for example, log scale for a Poisson outcome model.
If there are no covariates for a certain hidden state, then insert a NULL in the
corresponding place in the list. For example, hcovariates = list(~acute +
age,~acute,NULL).

hcovinits Initial values for the hidden Markov model covariate effects. A list of the same
length as hcovariates. Each element is a vector with initial values for the
effect of each covariate on that state. For example, the above hcovariates
can be initialised with hcovariates = list(c(-8,0),-8,NULL). Initial values
must be given for all or no covariates, if none are given these are all set to zero.
The initial value given in the hmodel constructor function for the corresponding
baseline parameter is interpreted as the value of that parameter with any covari-
ates fixed to their means in the data. If multiple effects are constrained to be
equal using hconstraint, then the initial value is taken from the first of the
multiple initial values supplied.

hconstraint A named list. Each element is a vector of constraints on the named hidden
Markov model parameter. The vector has length equal to the number of times
that class of parameter appears in the whole model.
For example consider the three-state hidden Markov model described above,
with normally-distributed outcomes for states 1 and 2. To constrain the outcome
variance to be equal for states 1 and 2, and to also constrain the effect of acute
on the outcome mean to be equal for states 1 and 2, specify
hconstraint = list(sd = c(1,1),acute=c(1,1))

Note this excludes initial state occupancy probabilities and covariate effects on
those probabilities, which cannot be constrained.

hranges Range constraints for hidden Markov model parameters. Supplied as a named
list, with each element corresponding to the named hidden Markov model pa-
rameter. This element is itself a list with two elements, vectors named "lower"
and "upper". These vectors each have length equal to the number of times
that class of parameter appears in the whole model, and give the correspond-
ing mininum amd maximum allowable values for that parameter. Maximum
likelihood estimation is performed with these parameters constrained in these
ranges (through a log or logit-type transformation). Lower bounds of -Inf and
upper bounds of Inf can be given if the parameter is unbounded above or below.
For example, in the three-state model above, to constrain the mean for state 1 to
be between 0 and 6, and the mean of state 2 to be between 7 and 12, supply
hranges=list(mean=list(lower=c(0,7),upper=c(6,12)))

These default to the natural ranges, e.g. the positive real line for variance pa-
rameters, and [0,1] for probabilities. Therefore hranges need not be specified
for such parameters unless an even stricter constraint is desired. If only one
limit is supplied for a parameter, only the first occurrence of that parameter is
constrained.

msm 45

Initial values should be strictly within any ranges, and not on the range boundary,
otherwise optimisation will fail with a "non-finite value" error.

qconstraint A vector of indicators specifying which baseline transition intensities are equal.
For example,
qconstraint = c(1,2,3,3)

constrains the third and fourth intensities to be equal, in a model with four al-
lowed instantaneous transitions. When there are covariates on the intensities
and center=TRUE (the default), qconstraint is applied to the intensities with
covariates taking the values of the means in the data. When center=FALSE,
qconstraint is applied to the intensities with covariates set to zero.

econstraint A similar vector of indicators specifying which baseline misclassification prob-
abilities are constrained to be equal. Only used if the model is specified using
ematrix, rather than hmodel.

initprobs Only used in hidden Markov models. Underlying state occupancy probabilities
at each subject’s first observation. Can either be a vector of nstates elements
with common probabilities to all subjects, or a nsubjects by nstates matrix of
subject-specific probabilities. This refers to observations after missing data and
subjects with only one observation have been excluded.
If these are estimated (see est.initprobs), then this represents an initial value,
and defaults to equal probability for each state. Otherwise this defaults to c(1,rep(0,nstates-1)),
that is, in state 1 with a probability of 1. Scaled to sum to 1 if necessary. The
state 1 occupancy probability should be non-zero.

est.initprobs Only used in hidden Markov models. If TRUE, then the underlying state occu-
pancy probabilities at the first observation will be estimated, starting from a vec-
tor of initial values supplied in the initprobs argument. Structural zeroes are
allowed: if any of these initial values are zero they will be fixed at zero during
optimisation, even if est.initprobs=TRUE, and no covariate effects on them
are estimated. The exception is state 1, which should have non-zero occupancy
probability.
Note that the free parameters during this estimation exclude the state 1 occu-
pancy probability, which is fixed at one minus the sum of the other probabilities.

initcovariates Formula representing covariates on the initial state occupancy probabilities, via
multinomial logistic regression. The linear effects of these covariates, observed
at the individual’s first observation time, operate on the log ratio of the state r
occupancy probability to the state 1 occupancy probability, for each r = 2 to the
number of states. Thus the state 1 occupancy probability should be non-zero.
If est.initprobs is TRUE, these effects are estimated starting from their initial
values. If est.initprobs is FALSE, these effects are fixed at theit initial values.

initcovinits Initial values for the covariate effects initcovariates. A named list with each
element corresponding to a covariate, as in covinits. Each element is a vector
with (1 - number of states) elements, containing the initial values for the linear
effect of that covariate on the log odds of that state relative to state 1, from state
2 to the final state. If initcovinits is not specified, all covariate effects are
initialised to zero.

deathexact Vector of indices of absorbing states whose time of entry is known exactly, but
the individual is assumed to be in an unknown transient state ("alive") at the

46 msm

previous instant. This is the usual situation for times of death in chronic disease
monitoring data. For example, if you specify deathexact = c(4,5) then states
4 and 5 are assumed to be exactly-observed death states.
See the obstype argument. States of this kind correspond to obstype=3. deathexact
= TRUE indicates that the final absorbing state is of this kind, and deathexact =
FALSE or deathexact = NULL (the default) indicates that there is no state of this
kind.
The deathexact argument is overridden by obstype or exacttimes.
Note that you do not always supply a deathexact argument, even if there are
states that correspond to deaths, because they do not necessarily have obstype=3.
If the state is known between the time of death and the previous observation,
then you should specify obstype=2 for the death times, or exacttimes=TRUE if
the state is known at all times, and the deathexact argument is ignored.

death Old name for the deathexact argument. Overridden by deathexact if both are
supplied. Deprecated.

censor A state, or vector of states, which indicates censoring. Censoring means that the
observed state is known only to be one of a particular set of states. For exam-
ple, censor=999 indicates that all observations of 999 in the vector of observed
states are censored states. By default, this means that the true state could have
been any of the transient (non-absorbing) states. To specify corresponding true
states explicitly, use a censor.states argument.
Note that in contrast to the usual terminology of survival analysis, here it is the
state which is considered to be censored, rather than the event time. If at the end
of a study, an individual has not died, but their true state is known, then censor is
unnecessary, since the standard multi-state model likelihood is applicable. Also
a "censored" state here can be at any time, not just at the end.
Note in particular that general time-inhomogeneous Markov models with piece-
wise constant transition intensities can be constructed using the censor facility.
If the true state is unknown on occasions when a piecewise constant covariate
is known to change, then censored states can be inserted in the data on those
occasions. The covariate may represent time itself, in which case the pci option
to msm can be used to perform this trick automatically, or some other time-
dependent variable.

censor.states Specifies the underlying states which censored observations can represent. If
censor is a single number (the default) this can be a vector, or a list with one
element. If censor is a vector with more than one element, this should be a list,
with each element a vector corresponding to the equivalent element of censor.
For example
censor = c(99,999),censor.states = list(c(2,3),c(3,4))

means that observations coded 99 represent either state 2 or state 3, while obser-
vations coded 999 are really either state 3 or state 4.

pci Model for piecewise-constant intensities. Vector of cut points defining the times,
since the start of the process, at which intensities change for all subjects. For
example
pci = c(5,10)

specifies that the intensity changes at time points 5 and 10. This will automati-
cally construct a model with a categorical (factor) covariate called timeperiod,

msm 47

with levels "[-Inf,5)", "[5,10)" and "[10,Inf)", where the first level is the
baseline. This covariate defines the time period in which the observation was
made. Initial values and constraints on covariate effects are specified the same
way as for a model with a covariate of this name, for example,
covinits = list("timeperiod[5,10)"=c(0.1,0.1),"timeperiod[10,Inf)"=c(0.1,0.1))

Thus if pci is supplied, you cannot have a previously-existing variable called
timeperiod as a covariate in any part of a msm model.
To assume piecewise constant intensities for some transitions but not others with
pci, use the fixedpars argument to fix the appropriate covariate effects at their
default initial values of zero.
Internally, this works by inserting censored observations in the data at times
when the intensity changes but the state is not observed.
If the supplied times are outside the range of the time variable in the data, pci
is ignored and a time-homogeneous model is fitted.
After fitting a time-inhomogeneous model, qmatrix.msm can be used to obtain
the fitted intensity matrices for each time period, for example,
qmatrix.msm(example.msm,covariates=list(timeperiod="[5,Inf)"))

This facility does not support interactions between time and other covariates.
Such models need to be specified "by hand", using a state variable with censored
observations inserted. Note that the data component of the msm object returned
from a call to msm with pci supplied contains the states with inserted censored
observations and time period indicators. These can be used to construct such
models.
Note that you do not need to use pci in order to model the effect of a time-
dependent covariate in the data. msm will automatically assume that covariates
are piecewise-constant and change at the times when they are observed. pci is
for when you want all intensities to change at the same pre-specified times for
all subjects.

phase.states Indices of states which have a two-phase sojourn distribution. This defines a
semi-Markov model, in which the hazard of an onward transition depends on
the time spent in the state.
This uses the technique described by Titman and Sharples (2009). A hidden
Markov model is automatically constructed on an expanded state space, where
the phases correspond to the hidden states. The "tau" proportionality constraint
described in this paper is currently not supported.
Covariates, constraints, deathexact and censor are expressed with respect to
the expanded state space. If not supplied by hand, initprobs is defined auto-
matically so that subjects are assumed to begin in the first of the two phases.
Hidden Markov models can additionally be given phased states. The user sup-
plies an outcome distribution for each original state using hmodel, which is ex-
panded internally so that it is assumed to be the same within each of the phased
states. initprobs is interpreted on the expanded state space. Misclassification
models defined using ematrix are not supported, and these must be defined us-
ing hmmCat or hmmIdent constructors, as described in the hmodel section of this
help page. Or the HMM on the expanded state space can be defined by hand.
Output functions are presented as it were a hidden Markov model on the ex-
panded state space, for example, transition probabilities between states, covari-

48 msm

ate effects on transition rates, or prevalence counts, are not aggregated over the
hidden phases.
Numerical estimation will be unstable when there is weak evidence for a two-
phase sojourn distribution, that is, if the model is close to Markov.
See d2phase for the definition of the two-phase distribution and the interpreta-
tion of its parameters.
This is an experimental feature, and some functions are not implemented. Please
report any experiences of using this feature to the author!

phase.inits Initial values for phase-type models. A list with one component for each "two-
phased" state. Each component is itself a list of two elements. The first of these
elements is a scalar defining the transition intensity from phase 1 to phase 2.
The second element is a matrix, with one row for each potential destination state
from the two-phased state, and two columns. The first column is the transition
rate from phase 1 to the destination state, and the second column is the transition
rate from phase 2 to the destination state. If there is only one destination state,
then this may be supplied as a vector.
In phase type models, the initial values for transition rates out of non-phased
states are taken from the qmatrix supplied to msm, and entries of this matrix
corresponding to transitions out of phased states are ignored.

exacttimes By default, the transitions of the Markov process are assumed to take place at
unknown occasions in between the observation times. If exacttimes is set to
TRUE, then the observation times are assumed to represent the exact times of
transition of the process. The subject is assumed to be in the same state between
these times. An observation may represent a transition to a different state or
a repeated observation of the same state (e.g. at the end of follow-up). This
is equivalent to every row of the data having obstype = 2. See the obstype
argument. If both obstype and exacttimes are specified then exacttimes is
ignored.
Note that the complete history of the multi-state process is known with this type
of data. The models which msm fits have the strong assumption of constant (or
piecewise-constant) transition rates. Knowing the exact transition times allows
more realistic models to be fitted with other packages. For example parametric
models with sojourn distributions more flexible than the exponential can be fitted
with the flexsurv package, or semi-parametric models can be implemented with
survival in conjunction with mstate.

cl Width of symmetric confidence intervals for maximum likelihood estimates, by
default 0.95.

fixedpars Vector of indices of parameters whose values will be fixed at their initial val-
ues during the optimisation. These are given in the order: transition inten-
sities (reading across rows of the transition matrix), covariates on intensities
(ordered by intensities within covariates), hidden Markov model parameters,
including misclassification probabilities (ordered by parameters within states),
hidden Markov model covariate parameters (ordered by covariates within pa-
rameters within states), initial state occupancy probabilities (excluding the first
probability, which is fixed at one minus the sum of the others).
If there are equality constraints on certain parameters, then fixedpars indexes
the set of unique parameters, excluding those which are constrained to be equal

msm 49

to previous parameters.
To fix all parameters, specify fixedpars = TRUE.
This can be useful for profiling likelihoods, and building complex models stage
by stage.

center If TRUE (the default, unless fixedpars=TRUE) then covariates are centered at
their means during the maximum likelihood estimation. This usually improves
stability of the numerical optimisation.

opt.method If "optim", "nlm" or "bobyqa", then the corresponding R function will be used
for maximum likelihood estimation. optim is the default. "bobyqa" requires
the package minqa to be installed. See the help of these functions for further
details. Advanced users can also add their own optimisation methods, see the
source for optim.R in msm for some examples.
If "fisher", then a specialised Fisher scoring method is used (Kalbfleisch and
Lawless, 1985) which can be faster than the generic methods, though less robust.
This is only available for Markov models with panel data (obstype=1), that is,
not for models with censored states, hidden Markov models, exact observation
or exact death times (obstype=2,3).

hessian If TRUE then standard errors and confidence intervals are obtained from a nu-
merical estimate of the Hessian (the observed information matrix). This is the
default when maximum likelihood estimation is performed. If all parameters are
fixed at their initial values and no optimisation is performed, then this defaults to
FALSE. If requested, the actual Hessian is returned in x$paramdata$opt$hessian,
where x is the fitted model object.
If hessian is set to FALSE, then standard errors and confidence intervals are
obtained from the Fisher (expected) information matrix, if this is available. This
may be preferable if the numerical estimation of the Hessian is computationally
intensive, or if the resulting estimate is non-invertible or not positive definite.

use.deriv If TRUE then analytic first derivatives are used in the optimisation of the like-
lihood, where available and an appropriate quasi-Newton optimisation method,
such as BFGS, is being used. Analytic derivatives are not available for all mod-
els.

use.expm If TRUE then any matrix exponentiation needed to calculate the likelihood is done
using the expm package. Otherwise the original routines used in msm 1.2.4 and
earlier are used. Set to FALSE for backward compatibility, and let the package
maintainer know if this gives any substantive differences.

analyticp By default, the likelihood for certain simpler 3, 4 and 5 state models is cal-
culated using an analytic expression for the transition probability (P) matrix.
For all other models, matrix exponentiation is used to obtain P. To revert to
the original method of using the matrix exponential for all models, specify
analyticp=FALSE. See the PDF manual for a list of the models for which ana-
lytic P matrices are implemented.

na.action What to do with missing data: either na.omit to drop it and carry on, or na.fail
to stop with an error. Missing data includes all NAs in the states, times, subject
or obstrue, all NAs at the first observation for a subject for covariates in initcovariates,
all NAs in other covariates (excluding the last observation for a subject), all NAs
in obstype (excluding the first observation for a subject), and any subjects with
only one observation (thus no observed transitions).

50 msm

... Optional arguments to the general-purpose R optimisation routine, optim by
default. For example method="Nelder-Mead" to change the optimisation algo-
rithm from the "BFGS" method that msm calls by default.
It is often worthwhile to normalize the optimisation using control=list(fnscale
= a), where a is the a number of the order of magnitude of the -2 log likelihood.
If ’false’ convergence is reported and the standard errors cannot be calculated
due to a non-positive-definite Hessian, then consider tightening the tolerance
criteria for convergence. If the optimisation takes a long time, intermediate
steps can be printed using the trace argument of the control list. See optim for
details.
For the Fisher scoring method, a control list can be supplied in the same way,
but the only supported options are reltol, trace and damp. The first two are
used in the same way as for optim. If the algorithm fails with a singular in-
formation matrix, adjust damp from the default of zero (to, e.g. 1). This adds
a constant identity matrix multiplied by damp to the information matrix during
optimisation.

Details

For full details about the methodology behind the msm package, refer to the PDF manual ‘msm-manual.pdf’
in the ‘doc’ subdirectory of the package. This includes a tutorial in the typical use of msm. The
paper by Jackson (2011) in Journal of Statistical Software presents the material in this manual in a
more concise form.

msm was designed for fitting continuous-time Markov models, processes where transitions can oc-
cur at any time. These models are defined by intensities, which govern both the time spent in the
current state and the probabilities of the next state. In discrete-time models, transitions are known
in advance to only occur at multiples of some time unit, and the model is purely governed by the
probability distributions of the state at the next time point, conditionally on the state at the current
time. These can also be fitted in msm, assuming that there is a continuous-time process under-
lying the data. Then the fitted transition probability matrix over one time period, as returned by
pmatrix.msm(...,t=1) is equivalent to the matrix that governs the discrete-time model. How-
ever, these can be fitted more efficiently using multinomial logistic regression, for example, using
multinom from the R package nnet (Venables and Ripley, 2002).

For simple continuous-time multi-state Markov models, the likelihood is calculated in terms of
the transition intensity matrix Q. When the data consist of observations of the Markov process at
arbitrary times, the exact transition times are not known. Then the likelihood is calculated using
the transition probability matrix P (t) = exp(tQ), where exp is the matrix exponential. If state i
is observed at time t and state j is observed at time u, then the contribution to the likelihood from
this pair of observations is the i, j element of P (u− t). See, for example, Kalbfleisch and Lawless
(1985), Kay (1986), or Gentleman et al. (1994).

For hidden Markov models, the likelihood for an individual with k observations is calculated di-
rectly by summing over the unknown state at each time, producing a product of k matrices. The
calculation is a generalisation of the method described by Satten and Longini (1996), and also by
Jackson and Sharples (2002), and Jackson et al. (2003).

There must be enough information in the data on each state to estimate each transition rate, other-
wise the likelihood will be flat and the maximum will not be found. It may be appropriate to reduce

msm 51

the number of states in the model, the number of allowed transitions, or the number of covariate ef-
fects, to ensure convergence. Hidden Markov models, and situations where the value of the process
is only known at a series of snapshots, are particularly susceptible to non-identifiability, especially
when combined with a complex transition matrix. Choosing an appropriate set of initial values for
the optimisation can also be important. For flat likelihoods, ’informative’ initial values will often
be required. See the PDF manual for other tips.

Value

To obtain summary information from models fitted by the msm function, it is recommended to use
extractor functions such as qmatrix.msm, pmatrix.msm, sojourn.msm, msm.form.qoutput. These
provide estimates and confidence intervals for quantities such as transition probabilities for given
covariate values.

For advanced use, it may be necessary to directly use information stored in the object returned by
msm. This is documented in the help page msm.object.

Printing a msm object by typing the object’s name at the command line implicitly invokes print.msm.
This formats and prints the important information in the model fit, and also returns that information
in an R object. This includes estimates and confidence intervals for the transition intensities and
(log) hazard ratios for the corresponding covariates. When there is a hidden Markov model, the
chief information in the hmodel component is also formatted and printed. This includes estimates
and confidence intervals for each parameter.

Author(s)

C. H. Jackson <chris.jackson@mrc-bsu.cam.ac.uk>

References

Jackson, C.H. (2011). Multi-State Models for Panel Data: The msm Package for R., Journal of
Statistical Software, 38(8), 1-29. URL http://www.jstatsoft.org/v38/i08/.

Kalbfleisch, J., Lawless, J.F., The analysis of panel data under a Markov assumption Journal of the
Americal Statistical Association (1985) 80(392): 863–871.

Kay, R. A Markov model for analysing cancer markers and disease states in survival studies. Bio-
metrics (1986) 42: 855–865.

Gentleman, R.C., Lawless, J.F., Lindsey, J.C. and Yan, P. Multi-state Markov models for analysing
incomplete disease history data with illustrations for HIV disease. Statistics in Medicine (1994)
13(3): 805–821.

Satten, G.A. and Longini, I.M. Markov chains with measurement error: estimating the ’true’ course
of a marker of the progression of human immunodeficiency virus disease (with discussion) Applied
Statistics 45(3): 275-309 (1996)

Jackson, C.H. and Sharples, L.D. Hidden Markov models for the onset and progression of bron-
chiolitis obliterans syndrome in lung transplant recipients Statistics in Medicine, 21(1): 113–128
(2002).

Jackson, C.H., Sharples, L.D., Thompson, S.G. and Duffy, S.W. and Couto, E. Multi-state Markov
models for disease progression with classification error. The Statistician, 52(2): 193–209 (2003)

Titman, A.C. and Sharples, L.D. Semi-Markov models with phase-type sojourn distributions. Bio-
metrics 66, 742-752 (2009).

52 msm.form.qoutput

Venables, W.N. and Ripley, B.D. (2002) Modern Applied Statistics with S, second edition. Springer.

See Also

simmulti.msm, plot.msm, summary.msm, qmatrix.msm, pmatrix.msm, sojourn.msm.

Examples

Heart transplant data
For further details and background to this example, see
Jackson (2011) or the PDF manual in the doc directory.
print(cav[1:10,])
twoway4.q <- rbind(c(-0.5, 0.25, 0, 0.25), c(0.166, -0.498, 0.166, 0.166),
c(0, 0.25, -0.5, 0.25), c(0, 0, 0, 0))
statetable.msm(state, PTNUM, data=cav)
crudeinits.msm(state ~ years, PTNUM, data=cav, qmatrix=twoway4.q)
cav.msm <- msm(state ~ years, subject=PTNUM, data = cav,

qmatrix = twoway4.q, deathexact = 4,
control = list (trace = 2, REPORT = 1))

cav.msm
qmatrix.msm(cav.msm)
pmatrix.msm(cav.msm, t=10)
sojourn.msm(cav.msm)

msm.form.qoutput Extract msm model parameter estimates in compact format

Description

Extract estimates and confidence intervals for transition intensities (or misclassification probabili-
ties), and their covariate effects, in a tidy matrix format with one row per transition. This is used
by the print method (print.msm) for msm objects. Covariate effects are returned as hazard or odds
ratios, not on the log scale.

Usage

msm.form.qoutput(x, covariates="mean", cl=0.95, digits=4, ...)
msm.form.eoutput(x, covariates="mean", cl=0.95, digits=4, ...)

Arguments

x A fitted multi-state model object, as returned by msm.

covariates Covariate values defining the "baseline" parameters (see qmatrix.msm).

cl Width of the symmetric confidence interval to present. Defaults to 0.95.

digits Minimum number of significant digits for the formatted character matrix re-
turned as an attribute. This is passed to format. Defaults to 4.

... Other arguments to be passed to format.

msm.object 53

Value

A numeric matrix with one row per transition, and one column for each estimate or confidence limit.
The "formatted" attribute contains the same results formatted for pretty printing. msm.form.qoutput
returns the transition intensities and their covariates, and msm.form.eoutput returns the misclassi-
fication probabilities and their covariates.

Author(s)

C. H. Jackson <chris.jackson@mrc-bsu.cam.ac.uk>

See Also

print.msm

msm.object Fitted msm model objects

Description

The msm function returns a list with the following components. These are intended for developers
and confident users. To extract results from fitted model objects, functions such as qmatrix.msm or
print.msm should be used instead.

Value

call The original call to msm, as returned by match.call.
Qmatrices A list of matrices. The first component, labelled logbaseline, is a matrix con-

taining the estimated transition intensities on the log scale with any covariates
fixed at their means in the data (or at zero, if center=FALSE). The component
labelled baseline is the equivalent on the untransformed scale. Each remain-
ing component is a matrix giving the linear effects of the labelled covariate on
the matrix of log intensities. To extract an estimated intensity matrix on the
natural scale, at an arbitrary combination of covariate values, use the function
qmatrix.msm.

QmatricesSE The standard error matrices corresponding to Qmatrices.
QmatricesL,QmatricesU

Corresponding lower and upper symmetric confidence limits, of width 0.95 un-
less specified otherwise by the cl argument.

Ematrices A list of matrices. The first component, labelled logitbaseline, is the esti-
mated misclassification probability matrix (expressed as as log odds relative to
the probability of the true state) with any covariates fixed at their means in the
data (or at zero, if center=FALSE). The component labelled baseline is the
equivalent on the untransformed scale. Each remaining component is a matrix
giving the linear effects of the labelled covariate on the matrix of logit mis-
classification probabilities. To extract an estimated misclassification probability
matrix on the natural scale, at an arbitrary combination of covariate values, use
the function ematrix.msm.

54 msm.object

EmatricesSE The standard error matrices corresponding to Ematrices.
EmatricesL,EmatricesU

Corresponding lower and upper symmetric confidence limits, of width 0.95 un-
less specified otherwise by the cl argument.

minus2loglik Minus twice the maximised log-likelihood.

deriv Derivatives of the minus twice log-likelihood at its maximum.

estimates Vector of untransformed maximum likelihood estimates returned from optim.
Transition intensities are on the log scale and misclassification probabilities are
given as log odds relative to the probability of the true state.

estimates.t Vector of transformed maximum likelihood estimates with intensities and prob-
abilities on their natural scales.

fixedpars Indices of estimates which were fixed during the maximum likelihood estima-
tion.

center Indicator for whether the estimation was performed with covariates centered on
their means in the data.

covmat Covariance matrix corresponding to estimates.

ci Matrix of confidence intervals corresponding to estimates.t

opt Return value from the optimisation routine (such as optim or nlm), giving infor-
mation about the results of the optimisation.

foundse Logical value indicating whether the Hessian was positive-definite at the sup-
posed maximum of the likelihood. If not, the covariance matrix of the parame-
ters is unavailable. In these cases the optimisation has probably not converged
to a maximum.

data A list giving the data used for the model fit, for use in post-processing. To extract
it, use the methods model.frame.msm or model.matrix.msm.
The format of this element changed in version 1.4 of msm, so that it now con-
tains a model.frame object mf with all the variables used in the model. The
previous format (an ad-hoc list of vectors and matrices) can be obtained with
the function recreate.olddata(msmobject), where msmobject is the object
returned by msm.

qmodel A list of objects representing the transition matrix structure and options for like-
lihood calculation. See qmodel.object for documentation of the components.

emodel A list of objects representing the misclassification model structure, for models
specified using the ematrix argument to msm. See emodel.object.

qcmodel A list of objects representing the model for covariates on transition intensities.
See qcmodel.object.

ecmodel A list of objects representing the model for covariates on transition intensities.
See ecmodel.object.

hmodel A list of objects representing the hidden Markov model structure. See hmodel.object.

cmodel A list giving information about censored states. See cmodel.object.

pci Cut points for time-varying intensities, as supplied to msm, but excluding any
that are outside the times observed in the data.

msm.summary 55

paramdata A list giving information about the parameters of the multi-state model. See
paramdata.object.

cl Confidence interval width, as supplied to msm.

covariates Formula for covariates on intensities, as supplied to msm.

misccovariates Formula for covariates on misclassification probabilities, as supplied to msm.

hcovariates Formula for covariates on hidden Markov model outcomes, as supplied to msm.

initcovariates Formula for covariates on initial state occupancy probabilities in hidden Markov
models, as supplied to msm.

sojourn A list as returned by sojourn.msm, with components:
mean = estimated mean sojourn times in the transient states, with covariates fixed
at their means (if center=TRUE) or at zero (if center=FALSE).
se = corresponding standard errors.

msm.summary Summarise a fitted multi-state model

Description

Summary method for fitted msm models. This is simply a wrapper around prevalence.msm which
produces a table of observed and expected state prevalences for each time, and for models with
covariates, hazard.msm to print hazard ratios with 95% confidence intervals for covariate effects.

Usage

S3 method for class 'msm'
summary(object, hazard.scale=1, ...)

Arguments

object A fitted multi-state model object, as returned by msm.

hazard.scale Vector with same elements as number of covariates on transition rates. Corre-
sponds to the increase in each covariate used to calculate its hazard ratio. De-
faults to all 1.

... Further arguments passed to prevalence.msm.

Value

A list of class summary.msm, with components:

prevalences Output from prevalence.msm.

hazard Output from hazard.msm.

hazard.scale Value of the hazard.scale argument.

56 msm2Surv

Author(s)

C. H. Jackson <chris.jackson@mrc-bsu.cam.ac.uk>

See Also

msm,prevalence.msm, hazard.msm

msm2Surv Convert data for ‘msm’ to data for ‘survival’, ‘mstate’ or ‘flexsurv’
analysis

Description

Converts longitudinal data for a msm model fit, where observations represent the exact transition
times of the process, to counting process data. This enables, for example, flexible parametric multi-
state models to be fitted with flexsurvreg from the flexsurv package, or semiparametric models
to be implemented with coxph and the mstate package.

Usage

msm2Surv(data, subject, time, state, covs, Q)

Arguments

data Data frame in the format expected by a msm model fit with exacttimes=TRUE or
all obstype=2. Each row represents an observation of a state, and the time vari-
able contains the exact and complete transition times of the underlying process.
This is explained in more detail in the help page for msm, section obstype=2.

subject Name of the subject ID in the data (character format, i.e. quoted).

time Name of the time variable in the data (character).

state Name of the state variable in the data (character).

covs Vector of covariate names to carry through (character). If not supplied, this is
taken to be all remaining variables in the data.

Q Transition intensity matrix. This should have number of rows and number of
columns both equal to the number of states. If an instantaneous transition is not
allowed from state r to state s, then Q should have (r, s) entry 0, otherwise it
should be non-zero. The diagonal entries are ignored.

Details

For example, if the data supplied to msm look like this:

subj days status age treat
1 0 1 66 1
1 27 2 66 1
1 75 3 66 1

msm2Surv 57

1 97 4 66 1
1 1106 4 69 1
2 0 1 49 0
2 90 2 49 0
2 1037 2 51 0

then the output of msm2Surv will be a data frame looking like this:

id from to Tstart Tstop time status age treat trans
1 1 2 0 27 27 1 66 1 1
1 1 4 0 27 27 0 66 1 2
1 2 3 27 75 48 1 66 1 3
1 2 4 27 75 48 0 66 1 4
1 3 4 75 97 22 1 69 1 5
2 1 2 0 90 90 1 49 0 1
2 1 4 0 90 90 0 49 0 2
2 2 3 90 1037 947 0 49 0 3
2 2 4 90 1037 947 0 49 0 4

At 27 days, subject 1 is observed to move from state 1 to state 2 (first row, status 1), which means
that their potential transition from state 1 to state 4 is censored (second row, status 0).

See the mstate package and the references below for more details of this data format and using it
for semi-parametric multi-state modelling.

Value

A data frame of class "msdata", with rows representing observed or censored transitions. There
will be one row for each observed transition in the original data, and additional rows for every
potential transition that could have occurred out of each observed state.

The data frame will have columns called:

id Subject ID

from Starting state of the transition

to Finishing state of the transition

Tstart The starting time of the transition

Tstop The finishing time of the transition

time The time difference = Tstop - Tstart

status Event or censoring indicator, with 1 indicating an observed transition, and 0
indicating censoring

trans Transition number

and any remaining columns will represent covariates. Any covariates whose names clash with
the standard variables in the returned data ("id", "from", "to", "Tstart", "Tstop", "time",
"status" or "trans") have ".2" appended to their names.

58 odds.msm

The transition matrix in mstate format is stored in the trans attribute of the returned object. See
the example code below.

Author(s)

C. H. Jackson <chris.jackson@mrc-bsu.cam.ac.uk>

References

Putter H, Fiocco M, Geskus RB (2007). Tutorial in biostatistics: Competing risks and multi-state
models. Statistics in Medicine 26: 2389-2430.

Liesbeth C. de Wreede, Marta Fiocco, Hein Putter (2011). mstate: An R Package for the Analysis
of Competing Risks and Multi-State Models. Journal of Statistical Software, 38(7), 1-30. http:
//www.jstatsoft.org/v38/i07

Jackson, C. H. (2014). flexsurv: Flexible parametric survival and multi-state models. R package
version 0.5.

See Also

msprep, in mstate, which produces data in a similar format, given data in "wide" format with one
row per subject.

Examples

msmdat <- data.frame(
subj = c(1, 1, 1, 1, 1, 2, 2, 2),
days = c(0, 27, 75, 97, 1106, 0, 90, 1037),
status = c(1, 2, 3, 4, 4, 1, 2, 2),
age = c(66, 66, 66, 66, 69, 49, 49, 51),
treat = c(1, 1, 1, 1, 1, 0, 0, 0)
)
transitions only allowed to next state up or state 4
Q <- rbind(c(1, 1, 0, 1),

c(0, 1, 1, 1),
c(0, 0, 1, 1),
c(0, 0, 0, 0))

dat <- msm2Surv(data=msmdat, subject="subj", time="days", state="status",
Q=Q)

dat
attr(dat, "trans")

odds.msm Calculate tables of odds ratios for covariates on misclassification
probabilities

Description

Odds ratios are computed by exponentiating the estimated covariate effects on the logit-misclassification
probabilities.

http://www.jstatsoft.org/v38/i07
http://www.jstatsoft.org/v38/i07

paramdata.object 59

Usage

odds.msm(x, odds.scale = 1, cl = 0.95)

Arguments

x Output from msm representing a fitted multi-state model.

odds.scale Vector with same elements as number of covariates on misclassification proba-
bilities. Corresponds to the increase in each covariate used to calculate its odds
ratio. Defaults to all 1.

cl Width of the symmetric confidence interval to present. Defaults to 0.95.

Value

A list of tables containing odds ratio estimates, one table for each covariate. Each table has three
columns, containing the odds ratio, and an approximate upper 95% and lower 95% confidence limit
respectively (assuming normality on the log scale), for each misclassification probability.

Author(s)

C. H. Jackson <chris.jackson@mrc-bsu.cam.ac.uk>

See Also

msm, hazard.msm

paramdata.object Developer documentation: internal msm parameters object

Description

An object giving information about the parameters of the multi-state model. Used internally during
maximum likelihood estimation and arranging results. Returned as the paramdata component of a
fitted msm model object.

Value

inits Vector of initial values for distinct parameters which are being estimated. These
have been transformed to the real line (e.g. by log), and exclude parameters
being fixed at their initial values, parameters defined to be always fixed (e.g.
binomial denominators) and parameters constrained to equal previous ones.

plabs Names of parameters in allinits.

allinits Vector of parameter values before estimation, including those which are fixed or
constrained to equal other parameters, and transformed to the real line.

hmmpars Indices of allinits which represent baseline parameters of hidden Markov out-
come models (thus excluding covariate effects in HMMs and initial state occu-
pancy probabilities).

60 paramdata.object

fixed TRUE if all parameters are fixed, FALSE otherwise.

fixedpars Indices of parameters in allinits which are fixed, either by definition or as
requested by the user in the fixedpars argument to msm. Excludes parameters
fixed by constraining to equal other parameters.

notfixed Indices of parameters which are not fixed by the definition of fixedpars.

optpars Indices of parameters in allinits being estimated, thus those included in inits.

auxpars Indices of "auxiliary" parameters which are always fixed, for example, binomial
denominators (hmmBinom) and the which parameter in hmmIdent.

constr Vector of integers, of length npars, indicating which sets of parameters are con-
strained to be equal to each other. If two of these integers are equal the corre-
sponding parameters are equal. A negative element indicates that parameter is
defined to be minus some other parameter (this is used for covariate effects on
transition intensities).

npars Total number of parameters, equal to length(allinits).

nfix Number of fixed parameters, equal to length(fixedpars).

nopt Number of parameters being estimated, equal to length(inits) and length(optpars).

ndup Number of parameters defined as duplicates of previous parameters by equality
constraints (currently unused).

ranges Matrix of defined ranges for each parameter on the natural scale (e.g. 0 to infin-
ity for rate parameters).

opt Object returned by the optimisation routine (such as optim).

foundse TRUE if standard errors are available after optimisation. If FALSE the optimisation
probably hasn’t converged.

lik Minus twice the log likelihood at the parameter estimates.

deriv Derivatives of the minus twice log likelihood at the parameter estimates, if avail-
able.

information Corresponding expected information matrix at the parameter estimates, if avail-
able.

params Vector of parameter values after maximum likelihood estimation, corresponding
to allinits, still on the real-line transformed scale.

covmat Covariance matrix corresponding to params.

ci Matrix of confidence intervals corresponding to params, with nominal coverage
(default 0.95) defined by the cl argument of msm.

estimates.t Vector of parameter estimates, as params but with parameters on their natural
scales.

See Also

msm.object

pearson.msm 61

pearson.msm Pearson-type goodness-of-fit test

Description

Pearson-type goodness-of-fit test for multi-state models fitted to panel-observed data.

Usage

pearson.msm(x, transitions=NULL, timegroups=3, intervalgroups=3,
covgroups=3, groups=NULL, boot=FALSE, B=500,
next.obstime=NULL, N=100, indep.cens=TRUE,
maxtimes=NULL, pval=TRUE)

Arguments

x A fitted multi-state model, as returned by msm.

transitions This should be an integer vector indicating which interval transitions should
be grouped together in the contingency table. Its length should be the number
of allowed interval transitions, excluding transitions from absorbing states to
absorbing states.
The allowed interval transitions are the set of pairs of states (a, b) for which it
is possible to observe a at one time and b at any later time. For example, in
a "well-disease-death" model with allowed instantaneous 1-2, 2-3 transitions,
there are 5 allowed interval transitions. In numerical order, these are 1-1, 1-2,
1-3, 2-2 and 2-3, excluding absorbing-absorbing transitions.
Then, to group transitions 1-1,1-2 together, and transitions 2-2,2-3 together,
specify
transitions = c(1,1,2,3,3).
Only transitions from the same state may be grouped. By default, each interval
transition forms a separate group.

timegroups Number of groups based on quantiles of the time since the start of the process.

intervalgroups Number of groups based on quantiles of the time interval between observations,
within time groups

covgroups Number of groups based on quantiles of
∑
r qirr, where qirr are the diagonal

entries of the transition intensity matrix for the ith transition. These are a func-
tion of the covariate effects and the covariate values at the ith transition: qirr is
minus the sum of the off-diagonal entries q(0)rs exp(βTrszi) on the rth row.
Thus covgroups summarises the impact of covariates at each observation, by
calculating the overall rate of progression through states at that observation.
For time-inhomogeneous models specified using the pci argument to msm, if
the only covariate is the time period, covgroups is set to 1, since timegroups
ensures that transitions are grouped by time.

62 pearson.msm

groups A vector of arbitrary groups in which to categorise each transition. This can
be an integer vector or a factor. This can be used to diagnose specific areas
of poor fit. For example, the contingency table might be grouped by arbitrary
combinations of covariates to detect types of individual for whom the model fits
poorly.
The length of groups should be x$data$n, the number of observations used in
the model fit, which is the number of observations in the original dataset with
any missing values excluded. The value of groups at observation i is used to
categorise the transition which ends at observation i. Values of groups at the
first observation for each subject are ignored.

boot Estimate an "exact" p-value using a parametric bootstrap.
All objects used in the original call to msm which produced x, such as the qmatrix,
should be in the working environment, or else an “object not found” error will
be given. This enables the original model to be refitted to the replicate datasets.
Note that groups cannot be used with bootstrapping, as the simulated observa-
tions will not be in the same categories as the original observations.

B Number of bootstrap replicates.

next.obstime This is a vector of length x$data$n (the number of observations used in the
model fit) giving the time to the next scheduled observation following each time
point. This is only used when times to death are known exactly.
For individuals who died (entered an absorbing state) before the next scheduled
observation, and the time of death is known exactly, next.obstime would be
greater than the observed death time.
If the individual did not die, and a scheduled observation did follow that time
point, next.obstime should just be the same as the time to that observation.
next.obstime is used to determine a grouping of the time interval between
observations, which should be based on scheduled observations. If exact times
to death were used in the grouping, then shorter intervals would contain excess
deaths, and the goodness-of-fit statistic would be biased.
If next.obstime is unknown, it is multiply-imputed using a product-limit es-
timate based on the intervals to observations other than deaths. The resulting
tables of transitions are averaged over these imputations. This may be slow.

N Number of imputations for the estimation of the distribution of the next sched-
uled observation time, when there are exact death times.

indep.cens If TRUE, then times to censoring are included in the estimation of the distribution
to the next scheduled observation time. If FALSE, times to censoring are assumed
to be systematically different from other observation times.

maxtimes A vector of length x$data$n, or a common scalar, giving an upper bound for the
next scheduled observation time. Used in the multiple imputation when times
to death are known exactly. If a value greater than maxtimes is simulated, then
the next scheduled observation is taken as censored. This should be supplied, if
known. If not supplied, this is taken to be the maximum interval occurring in
the data, plus one time unit. For observations which are not exact death times,
this should be the time since the previous observation.

pval Calculate a p-value using the improved approximation of Titman (2009). This
is optional since it is not needed during bootstrapping, and it is computationally

pearson.msm 63

non-trivial. Only available currently for non-hidden Markov models for panel
data without exact death times. Also not available for models with censoring,
including time-homogeneous models fitted with the pci option to msm.

Details

This method (Aguirre-Hernandez and Farewell, 2002) is intended for data which represent observa-
tions of the process at arbitrary times ("snapshots", or "panel-observed" data). For data which rep-
resent the exact transition times of the process, prevalence.msm can be used to assess fit, though
without a formal test.

When times of death are known exactly, states are misclassified, or an individual’s final observation
is a censored state, the modification by Titman and Sharples (2008) is used. The only form of
censoring supported is a state at the end of an individual’s series which represents an unknown
transient state (i.e. the individual is only known to be alive at this time). Other types of censoring
are omitted from the data before performing the test.

See the references for further details of the methods. The method used for censored states is a
modification of the method in the appendix to Titman and Sharples (2008), described at http:
//www.mrc-bsu.cam.ac.uk/wp-content/uploads/robustcensoring.pdf (Titman, 2007).

Groupings of the time since initiation, the time interval and the impact of covariates are based on
equally-spaced quantiles. The number of groups should be chosen that there are not many cells
with small expected numbers of transitions, since the deviance statistic will be unstable for sparse
contingency tables. Ideally, the expected numbers of transitions in each cell of the table should
be no less than about 5. Conversely, the power of the test is reduced if there are too few groups.
Therefore, some sensitivity analysis of the test results to the grouping is advisable.

Saved model objects fitted with previous versions of R (versions less than 1.2) will need to be
refitted under the current R for use with pearson.msm.

Value

A list whose first two elements are contingency tables of observed transitions O and expected tran-
sitionsE, respectively, for each combination of groups. The third element is a table of the deviances
(O−E)2/E multiplied by the sign of O−E. If the expected number of transitions is zero then the
deviance is zero. Entries in the third matrix will be bigger in magnitude for groups for which the
model fits poorly.

"test" the fourth element of the list, is a data frame with one row containing the
Pearson-type goodness-of-fit test statistic stat. The test statistic is the sum
of the deviances. For panel-observed data without exact death times, misclassi-
fication or censored observations, p is the p-value for the test statistic calculated
using the improved approximation of Titman (2009).
For these models, for comparison with older versions of the package, test also
presents p.lower and p.upper, which are theoretical lower and upper limits
for the p-value of the test statistic, based on χ2 distributions with df.lower
and df.upper degrees of freedom, respectively. df.upper is the number of
independent cells in the contingency table, and df.lower is df.upper minus
the number of estimated parameters in the model.

http://www.mrc-bsu.cam.ac.uk/wp-content/uploads/robustcensoring.pdf
http://www.mrc-bsu.cam.ac.uk/wp-content/uploads/robustcensoring.pdf

64 pearson.msm

"intervalq" (not printed by default) contains the definition of the grouping of the intervals
between observations. These groups are defined by quantiles within the groups
corresponding to the time since the start of the process.

"sim" If there are exact death times, this contains simulations of the contingency ta-
bles and test statistics for each imputation of the next scheduled sampling time.
These are averaged over to produce the presented tables and test statistic. This
element is not printed by default.
With exact death times, the null variance of the test statistic (formed by taking
mean of simulated test statistics) is less than twice the mean (Titman, 2008), and
the null distribution is not χ2. In this case, p.upper is an upper limit for the true
asymptotic p-value, but p.lower is not a lower limit, and is not presented.

"boot" If the bootstrap has been used, the element will contain the bootstrap replicates
of the test statistics (not printed by default).

"lambda" If the Titman (2009) p-value has been calculated, this contains the weights defin-
ing the null distribution of the test statistic as a weighted sum of χ2

1 random
variables (not printed by default).

Author(s)

Andrew Titman <a.titman@lancaster.ac.uk>, Chris Jackson <chris.jackson@mrc-bsu.cam.ac.uk>

References

Aguirre-Hernandez, R. and Farewell, V. (2002) A Pearson-type goodness-of-fit test for stationary
and time-continuous Markov regression models. Statistics in Medicine 21:1899-1911.

Titman, A. and Sharples, L. (2008) A general goodness-of-fit test for Markov and hidden Markov
models. Statistics in Medicine 27(12):2177-2195

Titman, A. (2009) Computation of the asymptotic null distribution of goodness-of-fit tests for multi-
state models. Lifetime Data Analysis 15(4):519-533.

Titman, A. (2008) Model diagnostics in multi-state models of biological systems. PhD thesis,
University of Cambridge.

See Also

msm, prevalence.msm, scoreresid.msm,

Examples

psor.q <- rbind(c(0,0.1,0,0),c(0,0,0.1,0),c(0,0,0,0.1),c(0,0,0,0))
psor.msm <- msm(state ~ months, subject=ptnum, data=psor,

qmatrix = psor.q, covariates = ~ollwsdrt+hieffusn,
constraint = list(hieffusn=c(1,1,1),ollwsdrt=c(1,1,2)))

pearson.msm(psor.msm, timegroups=2, intervalgroups=2, covgroups=2)
More 1-2, 1-3 and 1-4 observations than expected in shorter time
intervals - the model fits poorly.
A random effects model might accommodate such fast progressors.

pexp 65

pexp Exponential distribution with piecewise-constant rate

Description

Density, distribution function, quantile function and random generation for a generalisation of the
exponential distribution, in which the rate changes at a series of times.

Usage

dpexp(x, rate=1, t=0, log = FALSE)
ppexp(q, rate=1, t=0, lower.tail = TRUE, log.p = FALSE)
qpexp(p, rate=1, t=0, lower.tail = TRUE, log.p = FALSE)
rpexp(n, rate=1, t=0)

Arguments

x,q vector of quantiles.

p vector of probabilities.

n number of observations. If length(n) > 1, the length is taken to be the number
required.

rate vector of rates.

t vector of the same length as rate, giving the times at which the rate changes.
The first element of t should be 0, and t should be in increasing order.

log, log.p logical; if TRUE, probabilities p are given as log(p), or log density is returned.

lower.tail logical; if TRUE (default), probabilities are P[X <= x], otherwise, P[X > x].

Details

Consider the exponential distribution with rates r1, . . . , rn changing at times t1, . . . , tn, with t1 =
0. Suppose tk is the maximum ti such that ti < x. The density of this distribution at x > 0 is f(x)
for k = 1, and

k∏
i=1

(1− F (ti − ti−1, ri))f(x− tk, rk)

for k > 1.

whereF () and f() are the distribution and density functions of the standard exponential distribution.

If rate is of length 1, this is just the standard exponential distribution. Therefore, for example,
dpexp(x), with no other arguments, is simply equivalent to dexp(x).

Only rpexp is used in the msm package, to simulate from Markov processes with piecewise-constant
intensities depending on time-dependent covariates. These functions are merely provided for com-
pletion, and are not optimized for numerical stability or speed.

66 phasemeans.msm

Value

dpexp gives the density, ppexp gives the distribution function, qpexp gives the quantile function,
and rpexp generates random deviates.

Author(s)

C. H. Jackson <chris.jackson@mrc-bsu.cam.ac.uk>

See Also

dexp, sim.msm.

Examples

x <- seq(0.1, 50, by=0.1)
rate <- c(0.1, 0.2, 0.05, 0.3)
t <- c(0, 10, 20, 30)
standard exponential distribution
plot(x, dexp(x, 0.1), type="l")
distribution with piecewise constant rate
lines(x, dpexp(x, rate, t), type="l", lty=2)
standard exponential distribution
plot(x, pexp(x, 0.1), type="l")
distribution with piecewise constant rate
lines(x, ppexp(x, rate, t), type="l", lty=2)

phasemeans.msm Parameters of phase-type models in mixture form

Description

Parameters of fitted two-phase models, in mixture model parameterisation.

Usage

phasemeans.msm(x, covariates="mean", ci=c("none","normal","bootstrap"),
cl=0.95, B=1000, cores=NULL)

Arguments

x A fitted multi-state model, as returned by msm.
covariates Covariate values, see qmatrix.msm.
ci If "none" (the default) no confidence intervals are calculated. Otherwise "normal",

or "boot" as described by qmatrix.msm.
cl Width of the symmetric confidence interval, relative to 1.
B Number of bootstrap replicates, or number of normal simulations from the dis-

tribution of the MLEs.
cores Number of cores to use for bootstrapping using parallel processing. See boot.msm

for more details.

plot.msm 67

Value

Matrix with one row for each state that has a two-phase distribution, and three columns: the short-
stay mean, long-stay mean and long-stay probability. These are functions of the transition intensities
of the expanded hidden Markov model, defined in d2phase.

Author(s)

C. H. Jackson <chris.jackson@mrc-bsu.cam.ac.uk>

See Also

d2phase.

plot.msm Plots of multi-state models

Description

This produces a plot of the expected probability of survival against time, from each transient state.
Survival is defined as not entering an absorbing state.

Usage

S3 method for class 'msm'
plot(x, from, to, range, covariates, legend.pos, xlab="Time",

ylab="Fitted survival probability", lwd=1, ...)

Arguments

x Output from msm, representing a fitted multi-state model object.
from States from which to consider survival. Defaults to the complete set of transient

states.
to Absorbing state to consider. Defaults to the highest-labelled absorbing state.
range Vector of two elements, giving the range of times to plot for.
covariates Covariate values for which to evaluate the expected probabilities. This can ei-

ther be:

the string "mean", denoting the means of the covariates in the data (this is the
default),

the number 0, indicating that all the covariates should be set to zero,

or a list of values, with optional names. For example
list (60,1)

where the order of the list follows the order of the covariates originally given in
the model formula, or a named list,
list (age = 60,sex = 1)

68 plot.prevalence.msm

legend.pos Vector of the x and y position, respectively, of the legend.

xlab x axis label.

ylab y axis label.

lwd Line width. See par.

... Other arguments to be passed to the generic plot and lines functions.

Author(s)

C. H. Jackson <chris.jackson@mrc-bsu.cam.ac.uk>

See Also

msm

plot.prevalence.msm Plot of observed and expected prevalences

Description

Provides a rough indication of goodness of fit of a multi-state model, by estimating the observed
numbers of individuals occupying a state at a series of times, and plotting these against forecasts
from the fitted model, for each state. Observed prevalences are indicated as solid lines, expected
prevalences as dashed lines.

Usage

S3 method for class 'prevalence.msm'
plot(x, mintime=NULL, maxtime=NULL, timezero=NULL,

initstates=NULL, interp=c("start","midpoint"),
censtime=Inf, subset=NULL,
covariates="population", misccovariates="mean",
piecewise.times=NULL, piecewise.covariates=NULL,
xlab="Times",ylab="Prevalence (%)", lwd.obs=1,
lwd.exp=1, lty.obs=1, lty.exp=2, col.obs="blue",
col.exp="red", legend.pos=NULL,
...)

Arguments

x A fitted multi-state model produced by msm.

mintime Minimum time at which to compute the observed and expected prevalences of
states.

maxtime Maximum time at which to compute the observed and expected prevalences of
states.

timezero Initial time of the Markov process. Expected values are forecasted from here.
Defaults to the minimum of the observation times given in the data.

plot.prevalence.msm 69

initstates Optional vector of the same length as the number of states. Gives the numbers
of individuals occupying each state at the initial time, to be used for forecasting
expected prevalences. The default is those observed in the data. These should
add up to the actual number of people in the study at the start.

interp Interpolation method for observed states, see prevalence.msm.

censtime Subject-specific maximum follow-up times, see prevalence.msm.

subset Vector of the subject identifiers to calculated observed prevalences for.

covariates Covariate values for which to forecast expected state occupancy. See prevalence.msm
— if this function runs too slowly, as it may if there are continuous covariates,
replace covariates="population" with covariates="mean".

misccovariates (Misclassification models only) Values of covariates on the misclassification
probability matrix. See prevalence.msm.

piecewise.times

Times at which piecewise-constant intensities change. See prevalence.msm.
piecewise.covariates

Covariates on which the piecewise-constant intensities depend. See prevalence.msm.

xlab x axis label.

ylab y axis label.

lwd.obs Line width for observed prevalences. See par.

lwd.exp Line width for expected prevalences. See par.

lty.obs Line type for observed prevalences. See par.

lty.exp Line type for expected prevalences. See par.

col.obs Line colour for observed prevalences. See par.

col.exp Line colour for expected prevalences. See par.

legend.pos Vector of the x and y position, respectively, of the legend.

... Further arguments to be passed to the generic plot function.

Details

See prevalence.msm for details of the assumptions underlying this method.

Observed prevalences are plotted with a solid line, and expected prevalences with a dotted line.

References

Gentleman, R.C., Lawless, J.F., Lindsey, J.C. and Yan, P. Multi-state Markov models for analysing
incomplete disease history data with illustrations for HIV disease. Statistics in Medicine (1994)
13(3): 805–821.

See Also

prevalence.msm

70 plot.survfit.msm

plot.survfit.msm Plot empirical and fitted survival curves

Description

Plot a Kaplan-Meier estimate of the survival probability and compare it with the fitted survival
probability from a msm model.

Usage

S3 method for class 'survfit.msm'
plot(x, from=1, to=NULL, range=NULL, covariates="mean",

interp=c("start","midpoint"), ci=c("none","normal","bootstrap"), B=100,
legend.pos=NULL, xlab="Time", ylab="Survival probability",
lty=1, lwd=1, col="red", lty.ci=2, lwd.ci=1, col.ci="red",
mark.time=TRUE, col.surv="blue", lty.surv=2, lwd.surv=1,
survdata=FALSE,
...)

Arguments

x Output from msm, representing a fitted multi-state model object.

from Non-absorbing state from which to consider survival. Defaults to state 1. The
fitted probabilities will then be calculated as the transition probabilities from this
state to to. The empirical survival curve plots survival from the first observation
of from (where this exists) to the first entry time into to.

to Absorbing state to consider. Defaults to the highest-labelled absorbing state.

range Vector of two elements, giving the range of times to plot for.

covariates Covariate values for which to evaluate the expected probabilities. This can ei-
ther be:

the string "mean", denoting the means of the covariates in the data (this is the
default),

the number 0, indicating that all the covariates should be set to zero,

or a list of values, with optional names. For example
list (60,1)

where the order of the list follows the order of the covariates originally given in
the model formula, or a named list,
list (age = 60,sex = 1)

but note the empirical curve is plotted for the full population. To consider sub-
sets for the empirical curve, set survdata=TRUE to extract the survival data and
build a survival plot by hand using plot.survfit.

plot.survfit.msm 71

ci If "none" (the default) no confidence intervals are plotted. If "normal" or
"bootstrap", confidence intervals are plotted based on the respective method
in pmatrix.msm. This is very computationally-intensive, since intervals must be
computed at a series of times.

B Number of bootstrap or normal replicates for the confidence interval. The de-
fault is 100 rather than the usual 1000, since these plots are for rough diagnostic
purposes.

interp If interp="start" (the default) then the entry time into the absorbing state is
assumed to be the time it is first observed in the data.
If interp="midpoint" then the entry time into the absorbing state is assumed
to be halfway between the time it is first observed and the previous observation
time. This is generally more reasonable for "progressive" models with observa-
tions at arbitrary times.

legend.pos Vector of the x and y position, respectively, of the legend.

xlab x axis label.

ylab y axis label.

lty Line type for the fitted curve. See par.

lwd Line width for the fitted curve. See par.

col Colour for the fitted curve. See par.

lty.ci Line type for the fitted curve confidence limits. See par.

lwd.ci Line width for the fitted curve confidence limits. See par.

col.ci Colour for the fitted curve confidence limits. See par.

mark.time Mark the empirical survival curve at each censoring point, see lines.survfit.

col.surv Colour for the empirical survival curve, passed to lines.survfit. See par.

lty.surv Line type for the empirical survival curve, passed to lines.survfit. See par.

lwd.surv Line width for the empirical survival curve, passed to lines.survfit. See par.

survdata Set to TRUE to return the survival data frame constructed when plotting the em-
pirical curve. This can be used for constructing survival plots by hand using
plot.survfit.

... Other arguments to be passed to the plot function which draws the fitted curve,
or the lines.survfit function which draws the empirical curve.

Details

If the data represent observations of the process at arbitrary times, then the first occurrence of the
absorbing state in the data will usually be greater than the actual first transition time to that state.
Therefore the Kaplan-Meier estimate of the survival probability will be an overestimate.

The method of Turnbull (1976) could be used to give a non-parametric estimate of the time to an
interval-censored event, and compared to the equivalent estimate from a multi-state model. This is
implemented in the CRAN package interval (Fay and Shaw 2010).

This currently only handles time-homogeneous models.

72 plotprog.msm

References

Turnbull, B. W. (1976) The empirical distribution function with arbitrarily grouped, censored and
truncated data. J. R. Statist. Soc. B 38, 290-295.

Fay, MP and Shaw, PA (2010). Exact and Asymptotic Weighted Logrank Tests for Interval Censored
Data: The interval R package. Journal of Statistical Software. http://www.jstatsoft.org/v36/ i02/.
36 (2):1-34.

See Also

survfit, plot.survfit, plot.prevalence.msm

plotprog.msm Kaplan Meier estimates of incidence

Description

Compute and plot Kaplan-Meier estimates of the probability that each successive state has not
occurred yet.

Usage

plotprog.msm(formula, subject, data, legend.pos=NULL, xlab="Time",
ylab="1 - incidence probability", lwd=1, xlim=NULL,
mark.time=TRUE, ...)

Arguments

formula A formula giving the vectors containing the observed states and the correspond-
ing observation times. For example,
state ~ time

Observed states should be in the set 1,...,n, where n is the number of states.

subject Vector of subject identification numbers for the data specified by formula. If
missing, then all observations are assumed to be on the same subject. These
must be sorted so that all observations on the same subject are adjacent.

data An optional data frame in which the variables represented by state, time and
subject can be found.

legend.pos Vector of the x and y position, respectively, of the legend.

xlab x axis label.

ylab y axis label.

lwd Line width. See par.

xlim x axis limits, e.g. c(0,10) for an axis ranging from 0 to 10. Default is the range
of observation times.

mark.time Mark the empirical survival curve at each censoring point, see lines.survfit.

... Other arguments to be passed to the plot and lines.survfit functions.

pmatrix.msm 73

Details

If the data represent observations of the process at arbitrary times, then the first occurrence of the
state in the data will usually be greater than the actual first transition time to that state. Therefore
the probabilities plotted by plotprog.msm will be overestimates.

See Also

survfit, plot.survfit

pmatrix.msm Transition probability matrix

Description

Extract the estimated transition probability matrix from a fitted multi-state model for a given time
interval, at a given set of covariate values.

Usage

pmatrix.msm(x=NULL, t=1, t1=0, covariates="mean",
ci=c("none","normal","bootstrap"), cl=0.95, B=1000,
cores=NULL, qmatrix=NULL,
...)

Arguments

x A fitted multi-state model, as returned by msm.

t The time interval to estimate the transition probabilities for, by default one unit.

t1 The starting time of the interval. Used for models x with piecewise-constant
intensities fitted using the pci option to msm. The probabilities will be computed
on the interval [t1, t1+t].

covariates The covariate values at which to estimate the transition probabilities. This can
either be:

the string "mean", denoting the means of the covariates in the data (this is the
default),

the number 0, indicating that all the covariates should be set to zero,

or a list of values, with optional names. For example
list (60,1)

where the order of the list follows the order of the covariates originally given in
the model formula, or a named list,
list (age = 60,sex = 1)

If some covariates are specified but not others, the missing ones default to zero.

74 pmatrix.msm

For time-inhomogeneous models fitted using the pci option to msm, "covariates"
here include only those specified using the covariates argument to msm, and
exclude the artificial covariates representing the time period.
For time-inhomogeneous models fitted "by hand" by using a time-dependent co-
variate in the covariates argument to msm, the function pmatrix.piecewise.msm
should be used to to calculate transition probabilities.

ci If "normal", then calculate a confidence interval for the transition probabilities
by simulating B random vectors from the asymptotic multivariate normal distri-
bution implied by the maximum likelihood estimates (and covariance matrix) of
the log transition intensities and covariate effects, then calculating the resulting
transition probability matrix for each replicate. See, e.g. Mandel (2013) for a
discussion of this approach.
If "bootstrap" then calculate a confidence interval by non-parametric bootstrap
refitting. This is 1-2 orders of magnitude slower than the "normal" method, but
is expected to be more accurate. See boot.msm for more details of bootstrapping
in msm.
If "none" (the default) then no confidence interval is calculated.

cl Width of the symmetric confidence interval, relative to 1.
B Number of bootstrap replicates, or number of normal simulations from the dis-

tribution of the MLEs
cores Number of cores to use for bootstrapping using parallel processing. See boot.msm

for more details.
qmatrix A transition intensity matrix. Either this or a fitted model x must be supplied.

No confidence intervals are available if qmatrix is supplied.
... Optional arguments to be passed to MatrixExp to control the method of com-

puting the matrix exponential.

Details

For a continuous-time homogeneous Markov process with transition intensity matrix Q, the proba-
bility of occupying state s at time u+ t conditionally on occupying state r at time u is given by the
(r, s) entry of the matrix P (t) = exp(tQ), where exp() is the matrix exponential.

For non-homogeneous processes, where covariates and hence the transition intensity matrix Q are
piecewise-constant in time, the transition probability matrix is calculated as a product of matrices
over a series of intervals, as explained in pmatrix.piecewise.msm.

The pmatrix.piecewise.msm function is only necessary for models fitted using a time-dependent
covariate in the covariates argument to msm. For time-inhomogeneous models fitted using "pci",
pmatrix.msm can be used, with arguments t and t1, to calculate transition probabilities over any
time period.

Value

The matrix of estimated transition probabilities P (t) in the given time. Rows correspond to "from-
state" and columns to "to-state".

Or if ci="normal" or ci="bootstrap", pmatrix.msm returns a list with components estimates
and ci, where estimates is the matrix of estimated transition probabilities, and ci is a list of two
matrices containing the upper and lower confidence limits.

pmatrix.piecewise.msm 75

Author(s)

C. H. Jackson <chris.jackson@mrc-bsu.cam.ac.uk>.

References

Mandel, M. (2013). "Simulation based confidence intervals for functions with complicated deriva-
tives." The American Statistician 67(2):76-81

See Also

qmatrix.msm, pmatrix.piecewise.msm, boot.msm

pmatrix.piecewise.msm Transition probability matrix for processes with piecewise-constant in-
tensities

Description

Extract the estimated transition probability matrix from a fitted non-time-homogeneous multi-state
model for a given time interval. This is a generalisation of pmatrix.msm to models with time-
dependent covariates. Note that pmatrix.msm is sufficient to calculate transition probabilities for
time-inhomogeneous models fitted using the pci argument to msm.

Usage

pmatrix.piecewise.msm(x=NULL, t1, t2, times, covariates,
ci=c("none","normal","bootstrap"), cl=0.95, B=1000, cores=NULL,
qlist=NULL,...)

Arguments

x A fitted multi-state model, as returned by msm. This should be a non-homogeneous
model, whose transition intensity matrix depends on a time-dependent covariate.

t1 The start of the time interval to estimate the transition probabilities for.

t2 The end of the time interval to estimate the transition probabilities for.

times Cut points at which the transition intensity matrix changes.

covariates A list with number of components one greater than the length of times. Each
component of the list is specified in the same way as the covariates argument
to pmatrix.msm. The components correspond to the covariate values in the
intervals
(t1,times[1]],(times[1],times[2]],...,(times[length(times)],t2]

(assuming that all elements of times are in the interval (t1,t2)).

76 pmatrix.piecewise.msm

ci If "normal", then calculate a confidence interval for the transition probabilities
by simulating B random vectors from the asymptotic multivariate normal distri-
bution implied by the maximum likelihood estimates (and covariance matrix) of
the log transition intensities and covariate effects, then calculating the resulting
transition probability matrix for each replicate.
If "bootstrap" then calculate a confidence interval by non-parametric bootstrap
refitting. This is 1-2 orders of magnitude slower than the "normal" method, but
is expected to be more accurate. See boot.msm for more details of bootstrapping
in msm.
If "none" (the default) then no confidence interval is calculated.

cl Width of the symmetric confidence interval, relative to 1.

B Number of bootstrap replicates, or number of normal simulations from the dis-
tribution of the MLEs

cores Number of cores to use for bootstrapping using parallel processing. See boot.msm
for more details.

qlist A list of transition intensity matrices, of length one greater than the length of
times. Either this or a fitted model x must be supplied. No confidence intervals
are available if (just) qlist is supplied.

... Optional arguments to be passed to MatrixExp to control the method of com-
puting the matrix exponential.

Details

Suppose a multi-state model has been fitted, in which the transition intensity matrixQ(x(t)) is mod-
elled in terms of time-dependent covariates x(t). The transition probability matrix P (t1, tn) for the
time interval (t1, tn) cannot be calculated from the estimated intensity matrix as exp((tn − t1)Q),
because Q varies within the interval t1, tn. However, if the covariates are piecewise-constant, or
can be approximated as piecewise-constant, then we can calculate P (t1, tn) by multiplying together
individual matrices P (ti, ti+1) = exp((ti+1− ti)Q), calculated over intervals where Q is constant:

P (t1, tn) = P (t1, t2)P (t2, t3) . . . P (tn−1, tn)

Value

The matrix of estimated transition probabilities P (t) for the time interval [t1,tn]. That is, the
probabilities of occupying state s at time tn conditionally on occupying state r at time t1. Rows
correspond to "from-state" and columns to "to-state".

Author(s)

C. H. Jackson <chris.jackson@mrc-bsu.cam.ac.uk>

See Also

pmatrix.msm

pnext.msm 77

Examples

Not run:
In a clinical study, suppose patients are given a placebo in the
first 5 weeks, then they begin treatment 1 at 5 weeks, and
a combination of treatments 1 and 2 from 10 weeks.
Suppose a multi-state model x has been fitted for the patients'
progress, with treat1 and treat2 as time dependent covariates.

Cut points for when treatment covariate changes
times <- c(0, 5, 10)

Indicators for which treatments are active in the four intervals
defined by the three cut points
covariates <- list(list (treat1=0, treat2=0), list (treat1=0, treat2=0), list(treat1=1, treat2=0),
list(treat1=1, treat2=1))

Calculate transition probabilities from the start of the study to 15 weeks
pmatrix.piecewise.msm(x, 0, 15, times, covariates)

End(Not run)

pnext.msm Probability of each state being next

Description

Compute a matrix of the probability of each state s being the next state of the process after each
state r. Together with the mean sojourn times in each state (sojourn.msm), these fully define a
continuous-time Markov model.

Usage

pnext.msm(x, covariates = "mean",
ci=c("normal","bootstrap","delta","none"), cl = 0.95,
B=1000, cores=NULL)

Arguments

x A fitted multi-state model, as returned by msm.

covariates The covariate values at which to estimate the intensities. This can either be:

the string "mean", denoting the means of the covariates in the data (this is the
default),

the number 0, indicating that all the covariates should be set to zero,

or a list of values, with optional names. For example

78 pnext.msm

list (60,1)

where the order of the list follows the order of the covariates originally given in
the model formula, or a named list,
list (age = 60,sex = 1)

ci If "normal" (the default) then calculate a confidence interval by simulating B
random vectors from the asymptotic multivariate normal distribution implied by
the maximum likelihood estimates (and covariance matrix) of the log transition
intensities and covariate effects, then transforming.
If "bootstrap" then calculate a confidence interval by non-parametric bootstrap
refitting. This is 1-2 orders of magnitude slower than the "normal" method, but
is expected to be more accurate. See boot.msm for more details of bootstrapping
in msm.
If "delta" then confidence intervals are calculated based on the delta method
SEs of the log rates, but this is not recommended since it may not respect the
constraint that probabilities are less than one.

cl Width of the symmetric confidence interval to present. Defaults to 0.95.

B Number of bootstrap replicates, or number of normal simulations from the dis-
tribution of the MLEs.

cores Number of cores to use for bootstrapping using parallel processing. See boot.msm
for more details.

Details

For a continuous-time Markov process in state r, the probability that the next state is s is −qrs/qrr,
where qrs is the transition intensity (qmatrix.msm).

A continuous-time Markov model is fully specified by these probabilities together with the mean
sojourn times −1/qrr in each state r. This gives a more intuitively meaningful description of a
model than the intensity matrix.

Remember that msm deals with continuous-time, not discrete-time models, so these are not the
same as the probability of observing state s at a fixed time in the future. Those probabilities are
given by pmatrix.msm.

Value

The matrix of probabilities that the next move of a process in state r (rows) is to state s (columns).

Author(s)

C. H. Jackson <chris.jackson@mrc-bsu.cam.ac.uk>

See Also

qmatrix.msm,pmatrix.msm,qratio.msm

ppass.msm 79

ppass.msm Passage probabilities

Description

Probabilities of having visited each state by a particular time in a continuous time Markov model.

Usage

ppass.msm(x=NULL, qmatrix=NULL, tot, start="all", covariates="mean",
piecewise.times=NULL, piecewise.covariates=NULL,
ci=c("none","normal","bootstrap"), cl=0.95, B=1000,
cores=NULL, ...)

Arguments

x A fitted multi-state model, as returned by msm.

qmatrix Instead of x, you can simply supply a transition intensity matrix in qmatrix.

tot Finite time to forecast the passage probabilites for.

start Starting state (integer). By default (start="all"), this will return a matrix one
row for each starting state.
Alternatively, this can be used to obtain passage probabilities from a set of states,
rather than single states. To achieve this, state is set to a vector of weights,
with length equal to the number of states in the model. These weights should be
proportional to the probability of starting in each of the states in the desired set,
so that weights of zero are supplied for other states. The function will calculate
the weighted average of the passage probabilities from each of the corresponding
states.

covariates Covariate values defining the intensity matrix for the fitted model x, as supplied
to qmatrix.msm.

piecewise.times

Currently ignored: not implemented for time-inhomogeneous models.
piecewise.covariates

Currently ignored: not implemented for time-inhomogeneous models.

ci If "normal", then calculate a confidence interval by simulating B random vectors
from the asymptotic multivariate normal distribution implied by the maximum
likelihood estimates (and covariance matrix) of the log transition intensities and
covariate effects.
If "bootstrap" then calculate a confidence interval by non-parametric bootstrap
refitting. This is 1-2 orders of magnitude slower than the "normal" method, but
is expected to be more accurate. See boot.msm for more details of bootstrapping
in msm.
If "none" (the default) then no confidence interval is calculated.

cl Width of the symmetric confidence interval, relative to 1.

80 ppass.msm

B Number of bootstrap replicates.

cores Number of cores to use for bootstrapping using parallel processing. See boot.msm
for more details.

... Arguments to pass to MatrixExp.

Details

The passage probabilities to state s are computed by setting the sth row of the transition intensity
matrix Q to zero, giving an intensity matrix Q∗ for a simplified model structure where state s is
absorbing. The probabilities of passage are then equivalent to row s of the transition probability
matrix Exp(tQ∗) under this simplified model for t =tot.

Note this is different from the probability of occupying each state at exactly time t, given by
pmatrix.msm. The passage probability allows for the possibility of having visited the state before
t, but then occupying a different state at t.

The mean of the passage distribution is the expected first passage time, efpt.msm.

This function currently only handles time-homogeneous Markov models. For time-inhomogeneous
models the covariates are held constant at the value supplied, by default the column means of the
design matrix over all observations.

Value

A matrix whose r, s entry is the probability of having visited state s at least once before time t,
given the state at time 0 is r. The diagonal entries should all be 1.

Author(s)

C. H. Jackson <chris.jackson@mrc-bsu.cam.ac.uk>

References

Norris, J. R. (1997) Markov Chains. Cambridge University Press.

See Also

efpt.msm, totlos.msm, boot.msm.

Examples

Q <- rbind(c(-0.5, 0.25, 0, 0.25), c(0.166, -0.498, 0.166, 0.166),
c(0, 0.25, -0.5, 0.25), c(0, 0, 0, 0))

ppass[1,2](t) converges to 0.5 with t, since given in state 1, the
probability of going to the absorbing state 4 before visiting state
2 is 0.5, and the chance of still being in state 1 at t decreases.

ppass.msm(qmatrix=Q, tot=2)
ppass.msm(qmatrix=Q, tot=20)
ppass.msm(qmatrix=Q, tot=100)

prevalence.msm 81

Q <- Q[1:3,1:3]; diag(Q) <- 0; diag(Q) <- -rowSums(Q)

Probability of about 1/2 of visiting state 3 by time 10.5, the
median first passage time

ppass.msm(qmatrix=Q, tot=10.5)

Mean first passage time from state 2 to state 3 is 10.02: similar
to the median

efpt.msm(qmatrix=Q, tostate=3)

prevalence.msm Tables of observed and expected prevalences

Description

This provides a rough indication of the goodness of fit of a multi-state model, by estimating the
observed numbers of individuals occupying each state at a series of times, and comparing these
with forecasts from the fitted model.

Usage

prevalence.msm(x, times=NULL, timezero=NULL, initstates=NULL, covariates="population",
misccovariates="mean", piecewise.times=NULL, piecewise.covariates=NULL,

ci=c("none","normal","bootstrap"), cl=0.95, B=1000, cores=NULL,
interp=c("start","midpoint"), censtime=Inf, subset=NULL, plot=FALSE, ...)

Arguments

x A fitted multi-state model produced by msm.

times Series of times at which to compute the observed and expected prevalences of
states.

timezero Initial time of the Markov process. Expected values are forecasted from here.
Defaults to the minimum of the observation times given in the data.

initstates Optional vector of the same length as the number of states. Gives the numbers
of individuals occupying each state at the initial time, to be used for forecasting
expected prevalences. The default is those observed in the data. These should
add up to the actual number of people in the study at the start.

covariates Covariate values for which to forecast expected state occupancy. With the de-
fault covariates="population", expected prevalences are produced by sum-
ming model predictions over the covariates observed in the original data, for a
fair comparison with the observed prevalences. This may be slow, particularly
with continuous covariates.
Predictions for fixed covariates can be obtained by supplying covariate values in
the standard way, as in qmatrix.msm. Therefore if covariates="population"

82 prevalence.msm

is too slow, using the mean observed values through covariates="mean" may
give a reasonable approximation.
This argument is ignored if piecewise.times is specified. If there are a mixture
of time-constant and time-dependent covariates, then the values for all covariates
should be supplied in piecewise.covariates.

misccovariates (Misclassification models only) Values of covariates on the misclassification
probability matrix for converting expected true to expected misclassified states.
Ignored if covariates="population", otherwise defaults to the mean values
of the covariates in the data set.

piecewise.times

Times at which piecewise-constant intensities change. See pmatrix.piecewise.msm
for how to specify this. Ignored if covariates="population". This is only re-
quired for time-inhomogeneous models specified using explicit time-dependent
covariates, and should not be used for models specified using "pci".

piecewise.covariates

Covariates on which the piecewise-constant intensities depend. See pmatrix.piecewise.msm
for how to specify this. Ignored if covariates="population".

ci If "normal", then calculate a confidence interval for the expected prevalences
by simulating B random vectors from the asymptotic multivariate normal distri-
bution implied by the maximum likelihood estimates (and covariance matrix) of
the log transition intensities and covariate effects, then calculating the expected
prevalences for each replicate.
If "bootstrap" then calculate a confidence interval by non-parametric bootstrap
refitting. This is 1-2 orders of magnitude slower than the "normal" method, but
is expected to be more accurate. See boot.msm for more details of bootstrapping
in msm.
If "none" (the default) then no confidence interval is calculated.

cl Width of the symmetric confidence interval, relative to 1

B Number of bootstrap replicates

cores Number of cores to use for bootstrapping using parallel processing. See boot.msm
for more details.

interp Suppose an individual was observed in states Sr−1 and Sr at two consecutive
times tr−1 and tr, and we want to estimate ’observed’ prevalences at a time t
between tr−1 and tr.
If interp="start", then individuals are assumed to be in state Sr−1 at time t,
the same state as they were at tr−1.
If interp="midpoint" then if t <= (tr−1 + tr)/2, the midpoint of tr−1 and
tr, the state at t is assumed to be Sr−1, otherwise Sr. This is generally more
reasonable for "progressive" models.

censtime If the time is greater than censtime and the patient has reached an absorbing
state, then that subject will be removed from the risk set. For example, if patients
have died but would only have been observed up to this time, then this avoids
overestimating the proportion of people who are dead at later times.
This can be supplied as a single value, or as a vector with one element per
subject (after any subset has been taken), in the same order as the original

prevalence.msm 83

data. This vector also only includes subjects with complete data, thus it excludes
for example subjects with only one observation (thus no observed transitions),
and subjects for whom every observation has missing values. (Note, to help
construct this, the complete data used for the model fit can be accessed with
model.frame(x), where x is the fitted model object)
This is ignored if it is less than the subject’s maximum observation time.

subset Subset of subjects to calculate observed prevalences for.

plot Generate a plot of observed against expected prevalences. See plot.prevalence.msm

... Further arguments to pass to plot.prevalence.msm.

Details

The fitted transition probability matrix is used to forecast expected prevalences from the state oc-
cupancy at the initial time. To produce the expected number in state j at time t after the start, the
number of individuals under observation at time t (including those who have died, but not those
lost to follow-up) is multiplied by the product of the proportion of individuals in each state at the
initial time and the transition probability matrix in the time interval t. The proportion of individ-
uals in each state at the "initial" time is estimated, if necessary, in the same way as the observed
prevalences.

For misclassification models (fitted using an ematrix), this aims to assess the fit of the full model
for the observed states. That is, the combined Markov progression model for the true states and the
misclassification model. Thus, expected prevalences of true states are estimated from the assumed
proportion occupying each state at the initial time using the fitted transition probabiliy matrix. The
vector of expected prevalences of true states is then multiplied by the fitted misclassification prob-
ability matrix to obtain the expected prevalences of observed states.

For general hidden Markov models, the observed state is taken to be the predicted underlying state
from the Viterbi algorithm (viterbi.msm). The goodness of fit of these states to the underlying
Markov model is tested.

In any model, if there are censored states, then these are replaced by imputed values of highest
probability from the Viterbi algorithm in order to calculate the observed state prevalences.

For an example of this approach, see Gentleman et al. (1994).

Value

A list of matrices, with components:

Observed Table of observed numbers of individuals in each state at each time
Observed percentages

Corresponding percentage of the individuals at risk at each time.

Expected Table of corresponding expected numbers.
Expected percentages

Corresponding percentage of the individuals at risk at each time.

Or if ci.boot = TRUE, the component Expected is a list with components estimates and ci.
estimates is a matrix of the expected prevalences, and ci is a list of two matrices, containing the
confidence limits. The component Expected percentages has a similar format.

84 print.msm

Author(s)

C. H. Jackson <chris.jackson@mrc-bsu.cam.ac.uk>

References

Gentleman, R.C., Lawless, J.F., Lindsey, J.C. and Yan, P. Multi-state Markov models for analysing
incomplete disease history data with illustrations for HIV disease. Statistics in Medicine (1994)
13(3): 805–821.
Titman, A.C., Sharples, L. D. Model diagnostics for multi-state models. Statistical Methods in
Medical Research (2010) 19(6):621-651.

See Also

msm, summary.msm

print.msm Print a fitted msm model object

Description

Print a fitted msm model object

Usage

S3 method for class 'msm'
print(x,covariates=NULL, digits=4, ...)
printnew.msm(x, covariates=NULL, digits=4, ...)

Arguments

x Output from msm, representing a fitted multi-state model object.
covariates Covariates for which to print “baseline” transition intensities or misclassification

probabilities. See qmatrix.msm for more details.
digits Minimum number of significant digits, passed to format. Defaults to 4.
... Other arguments to be passed to format.

Details

This is the new method of formatting msm objects for printing. The old method was based on print-
ing lists of matrices. That produced a lot of wasted space for parameters which were zero, and it was
difficult to match corresponding numbers between matrices. The new method presents all the tran-
sition intensities and covariate effects as a single compact table, and likewise for misclassification
matrices.
Also in the old method, covariate effects were presented as log hazard ratios or log odds ratios. The
log scale is more convenient mathematically, but unnatural to interpret. The new method presents
hazard ratios for covariates on transition intensities and odds ratios for misclassification probabili-
ties.
printnew.msm is an alias for print.msm.

printold.msm 85

Value

The object returned by print.msm is a numeric matrix with one column for each estimate or con-
fidence limit for intensities and their covariates, in the same arrangement as printed, but with
the underlying numbers in full precision. The results formatted for printing are stored in the
"formatted" attribute of the object, as a character matrix. These can alternatively be produced
by msm.form.qoutput, which has no printing side-effect. msm.form.eoutput produces the same
arrangement for misclassification probabilities instead of intensities.

Author(s)

C. H. Jackson <chris.jackson@mrc-bsu.cam.ac.uk>

See Also

msm, printold.msm, msm.form.qoutput.

printold.msm Print a fitted msm model object

Description

Print a fitted msm model object (in old format, from msm 1.3.1 and earlier)

Usage

printold.msm(x,...)

Arguments

x Output from msm, representing a fitted multi-state model object.

... Other arguments to be passed to format.

Details

See print.msm for a better and cleaner output format, and an explanation of the change.

Author(s)

C. H. Jackson <chris.jackson@mrc-bsu.cam.ac.uk>

See Also

print.msm

86 psor

psor Psoriatic arthritis data

Description

A series of observations of grades of psoriatic arthritis, as indicated by numbers of damaged joints.

Usage

psor

Format

A data frame containing 806 observations, representing visits to a psoriatic arthritis (PsA) clinic
from 305 patients. The rows are grouped by patient number and ordered by examination time. Each
row represents an examination and contains additional covariates.

ptnum (numeric) Patient identification number
months (numeric) Examination time in months
state (numeric) Clinical state of PsA. Patients in states 1, 2, 3 and 4

have 0, 1 to 4, 5 to 9 and 10 or more damaged joints,
respectively.

hieffusn (numeric) Presence of five or more effusions
ollwsdrt (character) Erythrocyte sedimentation rate of less than 15 mm/h

References

Gladman, D. D. and Farewell, V.T. (1999) Progression in psoriatic arthritis: role of time-varying
clinical indicators. J. Rheumatol. 26(11):2409-13

Examples

Four-state progression-only model with high effusion and low
sedimentation rate as covariates on the progression rates. High
effusion is assumed to have the same effect on the 1-2, 2-3, and 3-4
progression rates, while low sedimentation rate has the same effect
on the 1-2 and 2-3 intensities, but a different effect on the 3-4.

data(psor)
psor.q <- rbind(c(0,0.1,0,0),c(0,0,0.1,0),c(0,0,0,0.1),c(0,0,0,0))
psor.msm <- msm(state ~ months, subject=ptnum, data=psor,

qmatrix = psor.q, covariates = ~ollwsdrt+hieffusn,
constraint = list(hieffusn=c(1,1,1),ollwsdrt=c(1,1,2)),
fixedpars=FALSE, control = list(REPORT=1,trace=2), method="BFGS")

qmatrix.msm(psor.msm)
sojourn.msm(psor.msm)
hazard.msm(psor.msm)

qcmodel.object 87

qcmodel.object Developer documentation: model for covariates on transition intensi-
ties

Description

A list representing the model for covariates on transition intensities

Value

npars Number of covariate effect parameters. This is defined as the number of covari-
ates on intensities (with factors expanded as contrasts) multiplied by the number
of allowed transitions in the model.

Note if msm was called with covariates set to a list of different covariates for
different intensities, then this will include covariate effects that are implicitly
defined as zero by this list. The information in paramdata objects can be used
to identify wich ones are fixed at zero.

This also includes any timeperiod covariates in a time-inhomogeneous model
defined by the pci option to msm.

ndpars Number of distinct covariate effect parameters, as npars, but after any equality
constraints have been applied.

ncovs Number of covariates on intensities, with factors expanded as contrasts.

constr List of equality constraints on these covariate effects, as supplied in the constraint
argument to msm.

covlabels Names / labels of these covariates in the model matrix (see model.matrix.msm).

inits Initial values for these covariate effects, as a vector formed from the covinits
list supplied to msm.

covmeans Means of these covariates in the data (excluding data not required to fit the
model, such as observations with missing data in other elements or subjects’ last
observations). This includes means of 0/1 factor contrasts as well as continuous
covariates (for historic reasons, which may not be sensible).

See Also

msm.object.

88 qgeneric

qgeneric Generic function to find quantiles of a distribution

Description

Generic function to find the quantiles of a distribution, given the equivalent probability distribution
function.

Usage

qgeneric(pdist, p, special=NULL, ...)

Arguments

pdist Probability distribution function, for example, pnorm for the normal distribution,
which must be defined in the current workspace. This should accept and return
vectorised parameters and values. It should also return the correct values for the
entire real line, for example a positive distribution should have pdist(x)==0 for
x < 0.

p Vector of probabilities to find the quantiles for.

special Vector of character strings naming arguments of the distribution function that
should not be vectorised over. Used, for example, for the rate and t arguments
in qpexp.

... The remaining arguments define parameters of the distribution pdist. These
MUST be named explicitly.
This may also contain the standard arguments log.p (logical; default FALSE,
if TRUE, probabilities p are given as log(p)), and lower.tail (logical; if TRUE
(default), probabilities are P[X <= x] otherwise, P[X > x].).
If the distribution is bounded above or below, then this should contain argu-
ments lbound and ubound respectively, and these will be returned if p is 0 or 1
respectively. Defaults to -Inf and Inf respectively.

Details

This function is intended to enable users to define "q" functions for new distributions, in cases
where the distribution function pdist is available analytically, but the quantile function is not.

It works by finding the root of the equation h(q) = pdist(q) − p = 0. Starting from the interval
(−1, 1), the interval width is expanded by 50% until h() is of opposite sign at either end. The root
is then found using uniroot.

This assumes a suitably smooth, continuous distribution.

An identical function is provided in the flexsurv package.

Value

Vector of quantiles of the distribution at p.

qmatrix.msm 89

Author(s)

Christopher Jackson <chris.jackson@mrc-bsu.cam.ac.uk>

Examples

qnorm(c(0.025, 0.975), 0, 1)
qgeneric(pnorm, c(0.025, 0.975), mean=0, sd=1) # must name the arguments

qmatrix.msm Transition intensity matrix

Description

Extract the estimated transition intensity matrix, and the corresponding standard errors, from a fitted
multi-state model at a given set of covariate values.

Usage

qmatrix.msm(x, covariates="mean", sojourn=FALSE,
ci=c("delta","normal","bootstrap","none"), cl=0.95,
B=1000, cores=NULL)

Arguments

x A fitted multi-state model, as returned by msm.

covariates The covariate values at which to estimate the intensity matrix. This can either be:

the string "mean", denoting the means of the covariates in the data (this is the
default),

the number 0, indicating that all the covariates should be set to zero,

or a list of values, with optional names. For example
list (60,1)

where the order of the list follows the order of the covariates originally given in
the model formula. Or more clearly, a named list,
list (age = 60,sex = 1)

If some covariates are specified but not others, the missing ones default to zero.
With covariates="mean", for factor / categorical variables, the mean of the 0/1
dummy variable for each factor level is used, representing an average over all
values in the data, rather than a specific factor level.

sojourn Set to TRUE if the estimated sojourn times and their standard errors should also
be returned.

90 qmatrix.msm

ci If "delta" (the default) then confidence intervals are calculated by the delta
method, or by simple transformation of the Hessian in the very simplest cases.
Normality on the log scale is assumed.
If "normal", then calculate a confidence interval by simulating B random vectors
from the asymptotic multivariate normal distribution implied by the maximum
likelihood estimates (and covariance matrix) of the log transition intensities and
covariate effects, then transforming.
If "bootstrap" then calculate a confidence interval by non-parametric bootstrap
refitting. This is 1-2 orders of magnitude slower than the "normal" method, but
is expected to be more accurate. See boot.msm for more details of bootstrapping
in msm.

cl Width of the symmetric confidence interval to present. Defaults to 0.95.

B Number of bootstrap replicates, or number of normal simulations from the dis-
tribution of the MLEs.

cores Number of cores to use for bootstrapping using parallel processing. See boot.msm
for more details.

Details

Transition intensities and covariate effects are estimated on the log scale by msm. A covariance
matrix is estimated from the Hessian of the maximised log-likelihood.

A more practically meaningful parameterisation of a continuous-time Markov model with transition
intensities qrs is in terms of the mean sojourn times−1/qrr in each state r and the probabilities that
the next move of the process when in state r is to state s, −qrs/qrr.

Value

A list with components:

estimate Estimated transition intensity matrix.

SE Corresponding approximate standard errors.

L Lower confidence limits

U Upper confidence limits

Or if ci="none", then qmatrix.msm just returns the estimated transition intensity matrix.

If sojourn is TRUE, extra components called sojourn, sojournSE, sojournL and sojournU are
included, containing the estimates, standard errors and confidence limits, respectively, of the mean
sojourn times in each transient state.

The default print method for objects returned by qmatrix.msm presents estimates and confidence
limits. To present estimates and standard errors, do something like

qmatrix.msm(x)[c("estimates","SE")]

Author(s)

C. H. Jackson <chris.jackson@mrc-bsu.cam.ac.uk>

qmodel.object 91

See Also

pmatrix.msm, sojourn.msm, deltamethod, ematrix.msm

qmodel.object Developer documentation: transition model structure object

Description

A list giving information about the structure of states and allowed transitions in a multi-state model,
and options for likelihood calculation. Used in internal computations, and returned in a fitted msm
model object.

Value

nstates Number of states
iso Label for which basic structure the model is isomorphic to in the list of structures

for which analytic formulae for the transition probabilities are implemented
in the source file src/analyticp.c. This list is given by the internal ob-
ject msm:::.msm.graphs which is defined and documented in the source file
R/constants.R.
iso is 0 if the analytic P matrix is not implemented for this structure, or if
analytic P matrix calculations are disabled using use.analyticp=FALSE in the
call to msm.

perm Permutation required to convert the base isomorphism into the structure of this
model. A vector of integers whose rth element is the state number in the base
structure representing state r in the current structure.

qperm Inverse permutation: vector whose rth element is the state number in the current
structure representing the rth state in the base structure.

npars Number of allowed instantaneous transitions, equal to sum(imatrix).
imatrix Indicator matrix for allowed instantaneous transitions. This has (r, s) entry 1 if

the transition from r to s is permitted in continuous time, and 0 otherwise. The
diagonal entries are arbitrarily set to 0.

qmatrix Matrix of initial values for the transition intensities, supplied as the qmatrix
argument of msm.

inits Vector of these initial values, reading across rows of qmatrix and excluding the
diagonal and disallowed transitions.

constr Indicators for equality constraints on baseline intensities, taken from the qconstraint
argument to msm, and mapped if necessary to the set (1,2,3,...).

ndpars Number of distinct allowed instantaneous transitions, after applying equality
constraints.

expm Use expm package to calculate matrix exponentials for likelihoods, as supplied
to the use.expm argument of msm. TRUE or FALSE.

See Also

msm.object,emodel.object, hmodel.object.

92 qratio.msm

qratio.msm Estimated ratio of transition intensities

Description

Compute the estimate and approximate standard error of the ratio of two estimated transition inten-
sities from a fitted multi-state model at a given set of covariate values.

Usage

qratio.msm(x, ind1, ind2, covariates = "mean",
ci=c("delta","normal","bootstrap","none"), cl = 0.95,
B=1000, cores=NULL)

Arguments

x A fitted multi-state model, as returned by msm.

ind1 Pair of numbers giving the indices in the intensity matrix of the numerator of the
ratio, for example, c(1,2).

ind2 Pair of numbers giving the indices in the intensity matrix of the denominator of
the ratio, for example, c(2,1).

covariates The covariate values at which to estimate the intensities. This can either be:

the string "mean", denoting the means of the covariates in the data (this is the
default),

the number 0, indicating that all the covariates should be set to zero,

or a list of values, with optional names. For example
list (60,1)

where the order of the list follows the order of the covariates originally given in
the model formula, or a named list,
list (age = 60,sex = 1)

ci If "delta" (the default) then confidence intervals are calculated by the delta
method.
If "normal", then calculate a confidence interval by simulating B random vectors
from the asymptotic multivariate normal distribution implied by the maximum
likelihood estimates (and covariance matrix) of the log transition intensities and
covariate effects, then transforming.
If "bootstrap" then calculate a confidence interval by non-parametric bootstrap
refitting. This is 1-2 orders of magnitude slower than the "normal" method, but
is expected to be more accurate. See boot.msm for more details of bootstrapping
in msm.

cl Width of the symmetric confidence interval to present. Defaults to 0.95.

recreate.olddata 93

B Number of bootstrap replicates, or number of normal simulations from the dis-
tribution of the MLEs

cores Number of cores to use for bootstrapping using parallel processing. See boot.msm
for more details.

Details

For example, we might want to compute the ratio of the progression rate and recovery rate for a
fitted model disease.msm with a health state (state 1) and a disease state (state 2). In this case, the
progression rate is the (1,2) entry of the intensity matrix, and the recovery rate is the (2,1) entry.
Thus to compute this ratio with covariates set to their means, we call

qratio.msm(disease.msm,c(1,2),c(2,1)) .

Standard errors are estimated by the delta method. Confidence limits are estimated by assuming
normality on the log scale.

Value

A named vector with elements estimate, se, L and U containing the estimate, standard error, lower
and upper confidence limits, respectively, of the ratio of intensities.

Author(s)

C. H. Jackson <chris.jackson@mrc-bsu.cam.ac.uk>

See Also

qmatrix.msm

recreate.olddata Convert data stored in msm object to old format

Description

Converts the data element of msm objects to the old format.

Usage

recreate.olddata(x)

Arguments

x Object returned by the msm function, representing a fitted multi-state model.

Details

This is just provided for convenience and to illustrate the changes. It is not guaranteed to be com-
plete, and is liable to be withdrawn. Users who were relying on the previous undocumented format
are advised to upgrade their code to use the new format, which uses model frames and model design
matrices in the standard format used in version 1.4, based on model.frame and model.matrix.

94 scoreresid.msm

Value

A list of vectors and matrices in the undocumented ad-hoc format used for the data component of
msm objects in msm versions 1.3.1 and earlier.

scoreresid.msm Score residuals

Description

Score residuals for detecting outlying subjects.

Usage

scoreresid.msm(x, plot=FALSE)

Arguments

x A fitted multi-state model, as returned by msm.

plot If TRUE, display a simple plot of the residuals in subject order, labelled by subject
identifiers

Details

The score residual for a single subject is

U(θ)T I(θ)−1U(θ)

where U(θ) is the vector of first derivatives of the log-likelihood for that subject at maximum
likelihood estimates θ, and I(θ) is the observed Fisher information matrix, that is, the matrix of
second derivatives of minus the log-likelihood for that subject at theta.

Subjects with a higher influence on the maximum likelihood estimates will have higher score resid-
uals.

These are only available for models with analytic derivatives (which includes all non-hidden and
most hidden Markov models).

Value

Vector of the residuals, named by subject identifiers.

Author(s)

Andrew Titman <a.titman@lancaster.ac.uk> (theory), Chris Jackson <chris.jackson@mrc-bsu.cam.ac.uk>
(code)

sim.msm 95

sim.msm Simulate one individual trajectory from a continuous-time Markov
model

Description

Simulate one realisation from a continuous-time Markov process up to a given time.

Usage

sim.msm(qmatrix, maxtime, covs=NULL, beta=NULL, obstimes=0, start=1,
mintime=0)

Arguments

qmatrix The transition intensity matrix of the Markov process. The diagonal of qmatrix
is ignored, and computed as appropriate so that the rows sum to zero. For ex-
ample, a possible qmatrix for a three state illness-death model with recovery
is:
rbind(c(0,0.1,0.02),c(0.1,0,0.01),c(0,0,0))

maxtime Maximum time for the simulated process.

covs Matrix of time-dependent covariates, with one row for each observation time
and one column for each covariate.

beta Matrix of linear covariate effects on log transition intensities. The rows corre-
spond to different covariates, and the columns to the transition intensities. The
intensities are ordered by reading across rows of the intensity matrix, starting
with the first, counting the positive off-diagonal elements of the matrix.

obstimes Vector of times at which the covariates are observed.

start Starting state of the process. Defaults to 1.

mintime Starting time of the process. Defaults to 0.

Details

The effect of time-dependent covariates on the transition intensity matrix for an individual is de-
termined by assuming that the covariate is a step function which remains constant in between the
individual’s observation times.

Value

A list with components,

states Simulated states through which the process moves. This ends with either an
absorption before obstime, or a transient state at obstime.

times Exact times at which the process changes to the corresponding states

qmatrix The given transition intensity matrix

96 simfitted.msm

Author(s)

C. H. Jackson <chris.jackson@mrc-bsu.cam.ac.uk>

See Also

simmulti.msm

Examples

qmatrix <- rbind(
c(-0.2, 0.1, 0.1),
c(0.5, -0.6, 0.1),
c(0, 0, 0)
)

sim.msm(qmatrix, 30)

simfitted.msm Simulate from a Markov model fitted using msm

Description

Simulate a dataset from a Markov model fitted using msm, using the maximum likelihood estimates
as parameters, and the same observation times as in the original data.

Usage

simfitted.msm(x, drop.absorb=TRUE, drop.pci.imp=TRUE)

Arguments

x A fitted multi-state model object as returned by msm.

drop.absorb Should repeated observations in an absorbing state be omitted. Use the default
of TRUE to avoid warnings when using the simulated dataset for further msm fits.
Or set to FALSE if exactly the same number of observations as the original data
are needed.

drop.pci.imp In time-inhomogeneous models fitted using the pci option to msm, censored ob-
servations are inserted into the data by msm at the times where the intensity
changes, but dropped by default when simulating from the fitted model using
this function. Set this argument to FALSE to keep these observations and the
corresponding indicator variable.

simmulti.msm 97

Details

This function is a wrapper around simmulti.msm, and only simulates panel-observed data. To
generate datasets with the exact times of transition, use the lower-level sim.msm.

Markov models with misclassified states fitted through the ematrix option to msm are supported,
but not general hidden Markov models with hmodel. For misclassification models, this function
includes misclassification in the simulated states.

This function is used for parametric bootstrapping to estimate the null distribution of the test statistic
in pearson.msm.

Value

A dataset with variables as described in simmulti.msm.

Author(s)

C. H. Jackson <chris.jackson@mrc-bsu.cam.ac.uk>

See Also

simmulti.msm, sim.msm, pearson.msm, msm.

simmulti.msm Simulate multiple trajectories from a multi-state Markov model with
arbitrary observation times

Description

Simulate a number of individual realisations from a continuous-time Markov process. Observations
of the process are made at specified arbitrary times for each individual, giving panel-observed data.

Usage

simmulti.msm(data, qmatrix, covariates=NULL, death = FALSE, start,
ematrix=NULL, misccovariates=NULL, hmodel=NULL, hcovariates=NULL,
censor.states=NULL, drop.absorb=TRUE)

Arguments

data A data frame with a mandatory column named time, representing observation
times. The optional column named subject, corresponds to subject identifi-
cation numbers. If not given, all observations are assumed to be on the same
individual. Observation times should be sorted within individuals. The optional
column named cens indicates the times at which simulated states should be cen-
sored. If cens==0 then the state is not censored, and if cens==k, say, then all
simulated states at that time which are in the set censor.states are replaced by
k. Other named columns of the data frame represent any covariates, which may
be time-constant or time-dependent. Time-dependent covariates are assumed to
be constant between the observation times.

98 simmulti.msm

qmatrix The transition intensity matrix of the Markov process, with any covariates set
to zero. The diagonal of qmatrix is ignored, and computed as appropriate so
that the rows sum to zero. For example, a possible qmatrix for a three state
illness-death model with recovery is:
rbind(c(0,0.1,0.02),c(0.1,0,0.01),c(0,0,0))

covariates List of linear covariate effects on log transition intensities. Each element is
a vector of the effects of one covariate on all the transition intensities. The
intensities are ordered by reading across rows of the intensity matrix, starting
with the first, counting the positive off-diagonal elements of the matrix.
For example, for a multi-state model with three transition intensities, and two
covariates x and y on each intensity,
covariates=list(x = c(-0.3,-0.3,-0.3),y=c(0.1,0.1,0.1))

death Vector of indices of the death states. A death state is an absorbing state whose
time of entry is known exactly, but the individual is assumed to be in an unknown
transient state ("alive") at the previous instant. This is the usual situation for
times of death in chronic disease monitoring data. For example, if you specify
death = c(4,5) then states 4 and 5 are assumed to be death states.
death = TRUE indicates that the final state is a death state, and death = FALSE
(the default) indicates that there is no death state.

start A vector with the same number of elements as there are distinct subjects in
the data, giving the states in which each corresponding individual begins. Or a
single number, if all of these are the same. Defaults to state 1 for each subject.

ematrix An optional misclassification matrix for generating observed states conditionally
on the simulated true states. As defined in msm.

misccovariates Covariate effects on misclassification probabilities via multinomial logistic re-
gression. Linear effects operate on the log of each probability relative to the
probability of classification in the correct state. In same format as covariates.

hmodel An optional hidden Markov model for generating observed outcomes condition-
ally on the simulated true states. As defined in msm.

hcovariates List of the same length as hmodel, defining any covariates governing the hidden
Markov outcome models. Unlike in the msm function, this should also define
the values of the covariate effects. Each element of the list is a named vector
of the initial values for each set of covariates for that state. For example, for a
three-state hidden Markov model with two, one and no covariates on the state 1,
2 and 3 outcome models respectively,
hcovariates = list (c(acute=-8,age=0),c(acute=-8),NULL)

censor.states Set of simulated states which should be replaced by a censoring indicator at
censoring times. By default this is all transient states (representing alive, with
unknown state).

drop.absorb Drop repeated observations in the absorbing state, retaining only one.

Details

sim.msm is called repeatedly to produce a simulated trajectory for each individual. The state at
each specified observation time is then taken to produce a new column state. The effect of time-
dependent covariates on the transition intensity matrix for an individual is determined by assuming

sojourn.msm 99

that the covariate is a step function which remains constant in between the individual’s observation
times. If the subject enters an absorbing state, then only the first observation in that state is kept in
the data frame. Rows corresponding to future observations are deleted. The entry times into states
given in death are assumed to be known exactly.

Value

A data frame with columns,

subject Subject identification indicators

time Observation times

state Simulated (true) state at the corresponding time

obs Observed outcome at the corresponding time, if ematrix or hmodel was sup-
plied

keep Row numbers of the original data. Useful when drop.absorb=TRUE, to show
which rows were not dropped

plus any supplied covariates.

Author(s)

C. H. Jackson <chris.jackson@mrc-bsu.cam.ac.uk>

See Also

sim.msm

Examples

Simulate 100 individuals with common observation times
sim.df <- data.frame(subject = rep(1:100, rep(13,100)), time = rep(seq(0, 24, 2), 100))
qmatrix <- rbind(c(-0.11, 0.1, 0.01),

c(0.05, -0.15, 0.1),
c(0.02, 0.07, -0.09))

simmulti.msm(sim.df, qmatrix)

sojourn.msm Mean sojourn times from a multi-state model

Description

Estimate the mean sojourn times in the transient states of a multi-state model and their confidence
limits.

Usage

sojourn.msm(x, covariates="mean", ci=c("delta","normal","bootstrap","none"),
cl=0.95, B=1000)

100 sojourn.msm

Arguments

x A fitted multi-state model, as returned by msm.
covariates The covariate values at which to estimate the mean sojourn times. This can ei-

ther be:

the string "mean", denoting the means of the covariates in the data (this is the
default),

the number 0, indicating that all the covariates should be set to zero,

a list of values, with optional names. For example,
list(60,1), where the order of the list follows the order of the covariates orig-
inally given in the model formula, or a named list, e.g.
list (age = 60,sex = 1)

ci If "delta" (the default) then confidence intervals are calculated by the delta
method, or by simple transformation of the Hessian in the very simplest cases.
If "normal", then calculate a confidence interval by simulating B random vectors
from the asymptotic multivariate normal distribution implied by the maximum
likelihood estimates (and covariance matrix) of the log transition intensities and
covariate effects, then transforming.
If "bootstrap" then calculate a confidence interval by non-parametric bootstrap
refitting. This is 1-2 orders of magnitude slower than the "normal" method, but
is expected to be more accurate. See boot.msm for more details of bootstrapping
in msm.

cl Width of the symmetric confidence interval to present. Defaults to 0.95.
B Number of bootstrap replicates, or number of normal simulations from the dis-

tribution of the MLEs

Details

The mean sojourn time in a transient state r is estimated by −1/qrr, where qrr is the rth entry on
the diagonal of the estimated transition intensity matrix.
A continuous-time Markov model is fully specified by the mean sojourn times and the probability
that each state is next (pnext.msm). This is a more intuitively meaningful description of a model
than the transition intensity matrix (qmatrix.msm).
Time dependent covariates, or time-inhomogeneous models, are not supported. This would require
the mean of a piecewise exponential distribution, and the package author is not aware of any general
analytic form for that.

Value

A data frame with components:

estimates Estimated mean sojourn times in the transient states.
SE Corresponding standard errors.
L Lower confidence limits.
U Upper confidence limits.

statetable.msm 101

Author(s)

C. H. Jackson <chris.jackson@mrc-bsu.cam.ac.uk>

See Also

msm, qmatrix.msm, deltamethod

statetable.msm Table of transitions

Description

Calculates a frequency table counting the number of times each pair of states were observed in
successive observation times. This can be a useful way of summarising multi-state data.

Usage

statetable.msm(state, subject, data=NULL)

Arguments

state Observed states, assumed to be ordered by time within each subject.

subject Subject identification numbers corresponding to state. If not given, all obser-
vations are assumed to be on the same subject.

data An optional data frame in which the variables represented by subject and
state can be found.

Details

If the data are intermittently observed (panel data) this table should not be used to decide what
transitions should be allowed in the Q matrix, which works in continuous time. This function
counts the transitions between states over a time interval, not in real time. There can be observed
transitions between state r and s over an interval even if qrs = 0, because the process may have
passed through one or more intermediate states in the middle of the interval.

Value

A frequency table with starting states as rows and finishing states as columns.

Author(s)

C. H. Jackson <chris.jackson@mrc-bsu.cam.ac.uk>

See Also

crudeinits.msm

102 surface.msm

Examples

Heart transplant data
data(cav)

148 deaths from state 1, 48 from state 2 and 55 from state 3.
statetable.msm(state, PTNUM, data=cav)

surface.msm Explore the likelihood surface

Description

Plot the log-likelihood surface with respect to two parameters.

Usage

surface.msm(x, params=c(1,2), np=10, type=c("contour","filled.contour","persp","image"),
point=NULL, xrange=NULL, yrange=NULL,...)

S3 method for class 'msm'
contour(x, ...)
S3 method for class 'msm'
persp(x, ...)
S3 method for class 'msm'
image(x, ...)

Arguments

x Output from msm, representing a fitted msm model.

params Integer vector with two elements, giving the indices of the parameters to vary.
All other parameters will be fixed. Defaults to c(1,2), representing the first two
log transition intensities. See the fixedpars argument to msm for a definition of
these indices.

np Number of grid points to use in each direction, by default 10. An np x np grid
will be used to evaluate the likelihood surface. If 100 likelihood function evalu-
ations is slow, then reduce this.

type Character string specifying the type of plot to produce.

"contour" Contour plot, using the R function contour.
"filled.contour" Solid-color contour plot, using the R function filled.contour.
"persp" Perspective plot, using the R function persp.
"image" Grid color plot, using the R function image.

point Vector of length n, where n is the number of parameters in the model, including
the parameters that will be varied here. This specifies the point at which to fix

tnorm 103

the likelihood. By default, this is the maximum likelihood estimates stored in
the fitted model x, x$estimates.

xrange Range to plot for the first varied parameter. Defaults to plus and minus two
standard errors, obtained from the Hessian at the maximum likelihood estimate.

yrange Range to plot for the second varied parameter. Defaults to plus and minus two
standard errors, obtained from the Hessian at the maximum likelihood estimate.

... Further arguments to be passed to the plotting function.

Details

Draws a contour or perspective plot. Useful for diagnosing irregularities in the likelihood surface.
If you want to use these plots before running the maximum likelihood estimation, then just run msm
with all estimates fixed at their initial values.

contour.msm just calls surface.msm with type = "contour".

persp.msm just calls surface.msm with type = "persp".

image.msm just calls surface.msm with type = "image".

As these three functions are methods of the generic functions contour, persp and image, they can
be invoked as contour(x), persp(x) or image(x), where x is a fitted msm object.

Author(s)

C. H. Jackson <chris.jackson@mrc-bsu.cam.ac.uk>

See Also

msm, contour, filled.contour, persp, image.

tnorm Truncated Normal distribution

Description

Density, distribution function, quantile function and random generation for the truncated Normal
distribution with mean equal to mean and standard deviation equal to sd before truncation, and
truncated on the interval [lower,upper].

Usage

dtnorm(x, mean=0, sd=1, lower=-Inf, upper=Inf, log = FALSE)
ptnorm(q, mean=0, sd=1, lower=-Inf, upper=Inf,

lower.tail = TRUE, log.p = FALSE)
qtnorm(p, mean=0, sd=1, lower=-Inf, upper=Inf,

lower.tail = TRUE, log.p = FALSE)
rtnorm(n, mean=0, sd=1, lower=-Inf, upper=Inf)

104 tnorm

Arguments

x,q vector of quantiles.

p vector of probabilities.

n number of observations. If length(n) > 1, the length is taken to be the number
required.

mean vector of means.

sd vector of standard deviations.

lower lower truncation point.

upper upper truncation point.

log logical; if TRUE, return log density or log hazard.

log.p logical; if TRUE, probabilities p are given as log(p).

lower.tail logical; if TRUE (default), probabilities are P[X <= x], otherwise, P[X > x].

Details

The truncated normal distribution has density

f(x, µ, σ) = φ(x, µ, σ)/(Φ(u, µ, σ)− Φ(l, µ, σ))

for l <= x <= u, and 0 otherwise.

µ is the mean of the original Normal distribution before truncation,
σ is the corresponding standard deviation,
u is the upper truncation point,
l is the lower truncation point,
φ(x) is the density of the corresponding normal distribution, and
Φ(x) is the distribution function of the corresponding normal distribution.

If mean or sd are not specified they assume the default values of 0 and 1, respectively.

If lower or upper are not specified they assume the default values of -Inf and Inf, respectively,
corresponding to no lower or no upper truncation.

Therefore, for example, dtnorm(x), with no other arguments, is simply equivalent to dnorm(x).

Only rtnorm is used in the msm package, to simulate from hidden Markov models with truncated
normal distributions. This uses the rejection sampling algorithms described by Robert (1995).

These functions are merely provided for completion, and are not optimized for numerical stability or
speed. To fit a hidden Markov model with a truncated Normal response distribution, use a hmmTNorm
constructor. See the hmm-dists help page for further details.

Value

dtnorm gives the density, ptnorm gives the distribution function, qtnorm gives the quantile function,
and rtnorm generates random deviates.

Author(s)

C. H. Jackson <chris.jackson@mrc-bsu.cam.ac.uk>

totlos.msm 105

References

Robert, C. P. Simulation of truncated normal variables. Statistics and Computing (1995) 5, 121–125

See Also

dnorm

Examples

x <- seq(50, 90, by=1)
plot(x, dnorm(x, 70, 10), type="l", ylim=c(0,0.06)) ## standard Normal distribution
lines(x, dtnorm(x, 70, 10, 60, 80), type="l") ## truncated Normal distribution

totlos.msm Total length of stay, or expected number of visits

Description

Estimate the expected total length of stay, or the expected number of visits, in each state, for an
individual in a given period of evolution of a multi-state model.

Usage

totlos.msm(x, start=1, end=NULL, fromt=0, tot=Inf, covariates="mean",
piecewise.times=NULL, piecewise.covariates=NULL,
num.integ=FALSE, discount=0, env=FALSE,
ci=c("none","normal","bootstrap"), cl=0.95, B=1000,
cores=NULL, ...)

envisits.msm(x, start=1, end=NULL, fromt=0, tot=Inf, covariates="mean",
piecewise.times=NULL, piecewise.covariates=NULL,
num.integ=FALSE, discount=0,
ci=c("none","normal","bootstrap"), cl=0.95, B=1000,
cores=NULL, ...)

Arguments

x A fitted multi-state model, as returned by msm.

start Either a single number giving the state at the beginning of the period, or a vector
of probabilities of being in each state at this time.

end States to estimate the total length of stay (or number of visits) in. Defaults to
all states. This is deprecated, since with the analytic solution (see "Details") it
doesn’t save any computation to only estimate for a subset of states.

fromt Time from which to estimate. Defaults to 0, the beginning of the process.

106 totlos.msm

tot Time up to which the estimate is made. Defaults to infinity, giving the expected
time spent in or number of visits to the state until absorption. However, the cal-
culation will be much more efficient if a finite (potentially large) time is speci-
fied: see the "Details" section. For models without an absorbing state, t must be
specified.

covariates The covariate values to estimate for. This can either be:

the string "mean", denoting the means of the covariates in the data (this is the
default),

the number 0, indicating that all the covariates should be set to zero,

or a list of values, with optional names. For example
list (60,1)

where the order of the list follows the order of the covariates originally given in
the model formula, or a named list,
list (age = 60,sex = 1)

piecewise.times

Times at which piecewise-constant intensities change. See pmatrix.piecewise.msm
for how to specify this. This is only required for time-inhomogeneous models
specified using explicit time-dependent covariates, and should not be used for
models specified using "pci".

piecewise.covariates

Covariates on which the piecewise-constant intensities depend. See pmatrix.piecewise.msm
for how to specify this.

num.integ Use numerical integration instead of analytic solution (see below).

discount Discount rate in continuous time.

env Supplied to totlos.msm. If TRUE, return the expected number of visits to each
state. If FALSE, return the total length of stay in each state. envisits.msm
simply calls totlos.msm with env=TRUE.

ci If "normal", then calculate a confidence interval by simulating B random vectors
from the asymptotic multivariate normal distribution implied by the maximum
likelihood estimates (and covariance matrix) of the log transition intensities and
covariate effects, then calculating the total length of stay for each replicate.
If "bootstrap" then calculate a confidence interval by non-parametric bootstrap
refitting. This is 1-2 orders of magnitude slower than the "normal" method, but
is expected to be more accurate. See boot.msm for more details of bootstrapping
in msm.
If "none" (the default) then no confidence interval is calculated.

cl Width of the symmetric confidence interval, relative to 1

B Number of bootstrap replicates

cores Number of cores to use for bootstrapping using parallel processing. See boot.msm
for more details.

... Further arguments to be passed to the integrate function to control the numer-
ical integration.

totlos.msm 107

Details

The expected total length of stay in state j between times t1 and t2, from the point of view of an
individual in state i at time 0, is defined by the integral from t1 to t2 of the i, j entry of the transition
probability matrix P (t) = Exp(tQ), where Q is the transition intensity matrix.

The corresponding expected number of visits to state j (excluding the stay in the current state at
time 0) is

∑
i!=j TiQi,j , where Ti is the expected amount of time spent in state i.

More generally, suppose that π0 is the vector of probabilities of being in each state at time 0,
supplied in start, and we want the vector x giving the expected lengths of stay in each state. The
corresponding integral has the following solution (van Loan 1978; van Rosmalen et al. 2013)

x =
[

1 0K
]
Exp(tQ′)

[
0K
IK

]
where

Q′ =

[
0 π0
0K Q− rIK

]
π0 is the row vector of initial state probabilities supplied in start, 0K is the row vector of K zeros,
r is the discount rate, IK is the K x K identity matrix, and Exp is the matrix exponential.

Alternatively, the integrals can be calculated numerically, using the integrate function. This may
take a long time for models with many states where P (t) is expensive to calculate. This is required
where tot = Inf, since the package author is not aware of any analytic expression for the limit of
the above formula as t goes to infinity.

With the argument num.integ=TRUE, numerical integration is used even where the analytic solution
is available. This facility is just provided for checking results against versions 1.2.4 and earlier, and
will be removed eventually. Please let the package maintainer know if any results are different.

For a model where the individual has only one place to go from each state, and each state is visited
only once, for example a progressive disease model with no recovery or death, these are equal to
the mean sojourn time in each state. However, consider a three-state health-disease-death model
with transitions from health to disease, health to death, and disease to death, where everybody starts
healthy. In this case the mean sojourn time in the disease state will be greater than the expected
length of stay in the disease state. This is because the mean sojourn time in a state is conditional
on entering the state, whereas the expected total time diseased is a forecast for a healthy individual,
who may die before getting the disease.

In the above formulae, Q is assumed to be constant over time, but the results generalise easily
to piecewise-constant intensities. This function automatically handles models fitted using the pci
option to msm. For any other inhomogeneous models, the user must specify piecewise.times and
piecewise.covariates arguments to totlos.msm.

Value

A vector of expected total lengths of stay (totlos.msm), or expected number of visits (envisits.msm),
for each transient state.

Author(s)

C. H. Jackson <chris.jackson@mrc-bsu.cam.ac.uk>

108 transient.msm

References

C. van Loan (1978). Computing integrals involving the matrix exponential. IEEE Transactions on
Automatic Control 23(3)395-404.

J. van Rosmalen, M. Toy and J.F. O’Mahony (2013). A mathematical approach for evaluating
Markov models in continuous time without discrete-event simulation. Medical Decision Making
33:767-779.

See Also

sojourn.msm, pmatrix.msm, integrate, boot.msm.

transient.msm Transient and absorbing states

Description

Returns the transient and absorbing states of either a fitted model or a transition intensity matrix.

Usage

transient.msm(x=NULL, qmatrix=NULL)
absorbing.msm(x=NULL, qmatrix=NULL)

Arguments

x A fitted multi-state model as returned by msm.

qmatrix A transition intensity matrix. The diagonal is ignored and taken to be minus the
sum of the rest of the row.

Value

A vector of the ordinal indices of the transient or absorbing states.

Author(s)

C. H. Jackson <chris.jackson@mrc-bsu.cam.ac.uk>

updatepars.msm 109

updatepars.msm updatepars.msm

Description

Update the maximum likelihood estimates in a fitted model object. Developer use only.

Usage

updatepars.msm(x, pars)

Arguments

x A fitted multi-state model object, as returned by msm.

pars Vector of new parameters, in their untransformed real-line parameterisations, to
substitute for the maximum likelihood estimates corresponding to those in the
estimates component of the fitted model object (msm.object). The order of
the parameters is documented in msm, argument fixedpars.

Value

An updated msm model object with the updated maximum likelihood estimates, but with the covari-
ances / standard errors unchanged.

Point estimates from output functions such as qmatrix.msm, pmatrix.msm, or any related function,
can then be evaluated with the new parameters, and at arbitrary covariate values.

This function is used, for example, when computing confidence intervals from pmatrix.msm, and
related functions, using the ci="normal" method.

Author(s)

C. H. Jackson <chris.jackson@mrc-bsu.cam.ac.uk>

viterbi.msm Calculate the probabilities of underlying states and the most likely
path through them

Description

For a fitted hidden Markov model, or a model with censored state observations, the Viterbi algorithm
recursively constructs the path with the highest probability through the underlying states. The
probability of each hidden state is also computed for hidden Markov models.

Usage

viterbi.msm(x, normboot=FALSE)

110 viterbi.msm

Arguments

x A fitted hidden Markov multi-state model, or a model with censored state obser-
vations, as produced by msm

normboot If TRUE, then before running the algorithm, the maximum likelihood estimates
of the model parameters are replaced by an alternative set of parameters drawn
randomly from the asymptotic multivariate normal distribution of the MLEs.

Value

A data frame with columns:

subject = subject identification numbers

time = times of observations

observed = corresponding observed states

fitted = corresponding fitted states found by Viterbi recursion. If the model is not a hidden Markov
model and there are no censored state observations, this is just the observed states.

For hidden Markov models, an additional matrix pstate is also returned inside the data frame,
giving the probability of each hidden state at each point, conditionally on all the data. This is
computed by the forward/backward algorithm.

Author(s)

C. H. Jackson <chris.jackson@mrc-bsu.cam.ac.uk>

References

Durbin, R., Eddy, S., Krogh, A. and Mitchison, G. Biological sequence analysis, Cambridge Uni-
versity Press, 1998.

See Also

msm

Index

∗Topic datagen
sim.msm, 95
simmulti.msm, 97

∗Topic datasets
aneur, 5
bos, 9
cav, 10
fev, 23
psor, 86

∗Topic distribution
2phase, 3
hmm-dists, 25
hmmMV, 28
medists, 35
pexp, 65
qgeneric, 88
tnorm, 103

∗Topic math
deltamethod, 13
MatrixExp, 33

∗Topic models
boot.msm, 6
coef.msm, 11
crudeinits.msm, 12
draic.msm, 15
efpt.msm, 18
ematrix.msm, 21
hazard.msm, 24
logLik.msm, 32
lrtest.msm, 33
model.frame.msm, 37
msm, 39
msm.form.qoutput, 52
msm.summary, 55
odds.msm, 58
pearson.msm, 61
phasemeans.msm, 66
plot.msm, 67
plot.prevalence.msm, 68

plot.survfit.msm, 70
plotprog.msm, 72
pmatrix.msm, 73
pmatrix.piecewise.msm, 75
pnext.msm, 77
ppass.msm, 79
prevalence.msm, 81
print.msm, 84
printold.msm, 85
qmatrix.msm, 89
qratio.msm, 92
scoreresid.msm, 94
simfitted.msm, 96
sojourn.msm, 99
statetable.msm, 101
surface.msm, 102
totlos.msm, 105
transient.msm, 108
updatepars.msm, 109
viterbi.msm, 109

2phase, 3

absorbing.msm (transient.msm), 108
AIC, 15, 32, 33
aneur, 5

boot.msm, 6, 7, 14, 19–21, 66, 74–76, 78–80,
82, 90, 92, 93, 100, 106, 108

bos, 9
bos3 (bos), 9
bos4 (bos), 9

cav, 10
cmodel.object, 11, 54
coef.msm, 11
contour, 102, 103
contour.msm (surface.msm), 102
coxph, 56
crudeinits.msm, 12, 40, 101

d2phase, 48, 67

111

112 INDEX

d2phase (2phase), 3
dbeta, 26
dbinom, 26
deltamethod, 7, 13, 91, 101
deriv, 14
dexp, 26, 66
dgamma, 26
dmenorm (medists), 35
dmeunif (medists), 35
dnbinom, 26
dnorm, 37, 105
dpexp (pexp), 65
dpois, 26
draic.msm, 15
drlcv.msm (draic.msm), 15
dt, 27
dtnorm, 37
dtnorm (tnorm), 103
dunif, 37
dweibull, 26

ecmodel.object, 18, 54
efpt.msm, 18, 80
ematrix.msm, 7, 8, 21, 22, 53, 91
emodel.object, 22, 32, 54, 91
envisits.msm, 106, 107
envisits.msm (totlos.msm), 105
expm, 34

fev, 23
filled.contour, 102, 103
flexsurvreg, 56
format, 52, 84, 85

h2phase (2phase), 3
hazard.msm, 24, 55, 56, 59
hmm-dists, 25
hmmBeta (hmm-dists), 25
hmmBetaBinom (hmm-dists), 25
hmmBinom, 60
hmmBinom (hmm-dists), 25
hmmCat, 41
hmmCat (hmm-dists), 25
hmmExp (hmm-dists), 25
hmmGamma (hmm-dists), 25
hmmIdent, 41, 60
hmmIdent (hmm-dists), 25
hmmLNorm (hmm-dists), 25
hmmMETNorm, 36

hmmMETNorm (hmm-dists), 25
hmmMEUnif, 36
hmmMEUnif (hmm-dists), 25
hmmMV, 27, 28, 28, 39, 41
hmmNBinom (hmm-dists), 25
hmmNorm (hmm-dists), 25
hmmPois (hmm-dists), 25
hmmT (hmm-dists), 25
hmmTNorm, 104
hmmTNorm (hmm-dists), 25
hmmUnif (hmm-dists), 25
hmmWeibull (hmm-dists), 25
hmodel.object, 22, 23, 30, 54, 91

image, 102, 103
image.msm (surface.msm), 102
integrate, 106–108

lines, 68
lines.survfit, 71, 72
load, 7
logLik.msm, 17, 32, 33
lrtest.msm, 32, 33

makeCluster, 7, 16
match.call, 53
MatrixExp, 19, 33, 34, 74, 76, 80
medists, 27, 35
model.frame, 38, 54, 93
model.frame.msm, 37, 54
model.matrix, 38, 93
model.matrix.msm, 18, 54, 87
model.matrix.msm (model.frame.msm), 37
msm, 6, 7, 11–13, 16, 18, 19, 21–25, 27–34, 38,

39, 51–56, 59–64, 66–68, 70, 73–75,
77, 79, 81, 84, 85, 87, 89–94, 96–98,
100–103, 105, 107–110

msm.form.eoutput, 85
msm.form.eoutput (msm.form.qoutput), 52
msm.form.qoutput, 51, 52, 85
msm.object, 11, 18, 23, 32, 51, 53, 60, 87, 91,

109
msm.summary, 55
msm2Surv, 56, 57
msprep, 58

nlm, 54

odds.msm, 25, 58

INDEX 113

optim, 49, 50, 54, 60

p2phase (2phase), 3
par, 68, 69, 71, 72
paramdata, 87
paramdata.object, 55, 59
pearson.msm, 61, 97
persp, 102, 103
persp.msm (surface.msm), 102
pexp, 65
phasemeans.msm, 66
plot, 68, 69, 71, 72
plot.msm, 52, 67
plot.prevalence.msm, 68, 72, 83
plot.survfit, 70–73
plot.survfit.msm, 70
plotprog.msm, 72, 73
pmatrix.msm, 6–8, 51, 52, 71, 73, 75, 76, 78,

80, 91, 108, 109
pmatrix.piecewise.msm, 7, 8, 74, 75, 75, 82,

106
pmenorm (medists), 35
pmeunif (medists), 35
pnext.msm, 77, 100
pnorm, 88
ppass.msm, 20, 79
ppexp (pexp), 65
prevalence.msm, 7, 8, 55, 56, 63, 64, 69, 81
print.msm, 51–53, 84, 85
print.summary.msm (msm.summary), 55
printnew.msm (print.msm), 84
printold.msm, 85, 85
psor, 86
ptnorm (tnorm), 103

q2phase (2phase), 3
qcmodel.object, 54, 87
qgeneric, 88
qmatrix.msm, 7, 8, 19, 22, 47, 51–53, 66, 75,

78, 79, 81, 84, 89, 90, 93, 100, 101,
109

qmenorm (medists), 35
qmeunif (medists), 35
qmodel.object, 23, 32, 54, 91
qpexp, 88
qpexp (pexp), 65
qratio.msm, 7, 8, 78, 92
qtnorm (tnorm), 103

r2phase (2phase), 3
recreate.olddata, 93
registerDoParallel, 7, 16
rmenorm (medists), 35
rmeunif (medists), 35
rpexp (pexp), 65
rtnorm (tnorm), 103

save, 7
scoreresid.msm, 64, 94
sim.msm, 66, 95, 97–99
simfitted.msm, 96
simmulti.msm, 52, 96, 97, 97
sojourn.msm, 8, 20, 51, 52, 55, 77, 91, 99, 108
statetable.msm, 13, 101
summary.msm, 24, 25, 52, 84
summary.msm (msm.summary), 55
surface.msm, 102
survfit, 72, 73

tnorm, 27, 103
totlos.msm, 7, 8, 20, 80, 105, 106, 107
transient.msm, 108

uniroot, 88
updatepars.msm, 109

viterbi.msm, 83, 109

	2phase
	aneur
	boot.msm
	bos
	cav
	cmodel.object
	coef.msm
	crudeinits.msm
	deltamethod
	draic.msm
	ecmodel.object
	efpt.msm
	ematrix.msm
	emodel.object
	fev
	hazard.msm
	hmm-dists
	hmmMV
	hmodel.object
	logLik.msm
	lrtest.msm
	MatrixExp
	medists
	model.frame.msm
	msm
	msm.form.qoutput
	msm.object
	msm.summary
	msm2Surv
	odds.msm
	paramdata.object
	pearson.msm
	pexp
	phasemeans.msm
	plot.msm
	plot.prevalence.msm
	plot.survfit.msm
	plotprog.msm
	pmatrix.msm
	pmatrix.piecewise.msm
	pnext.msm
	ppass.msm
	prevalence.msm
	print.msm
	printold.msm
	psor
	qcmodel.object
	qgeneric
	qmatrix.msm
	qmodel.object
	qratio.msm
	recreate.olddata
	scoreresid.msm
	sim.msm
	simfitted.msm
	simmulti.msm
	sojourn.msm
	statetable.msm
	surface.msm
	tnorm
	totlos.msm
	transient.msm
	updatepars.msm
	viterbi.msm
	Index

