Package ‘mpMap2’

April 23, 2020
Type Package

Title Genetic Analysis of Multi-Parent Recombinant Inbred Lines
Version 1.0.3
Date 2020-04-23

Author Rohan Shah [aut, cre],
Emma Huang [aut],
Matthew Morell [ctb],
Alex Whan [ctb],

Colin Cavanagh [ctb]

Maintainer Rohan Shah <cran@bookshah.com>

Description Constructing linkage maps, reconstructing haplotypes,
estimating linkage disequilibrium and quantitative trait loci
(QTL) mapping in multi-parent Recombinant Inbred Lines designs.

License GPL-2

SystemRequirements C++11

LazyLoad yes

Depends R (>=3.5.0)

LinkingTo Rcpp

Suggests testthat, knitr, rmarkdown, gridExtra, Heatplus

Imports ggplot2, Matrix, methods, qtl, igraph, fastcluster, pryr,
nnls, RColorBrewer, jsonlite, progress, stats, sn, car

RoxygenNote 7.0.2

Collate 'Pillai.R' 'Rcpp_exceptions.R' 'map-class.R'
'addExtraMarkerFromRawCall.R' 'addExtraMarkers.R'
'canSkip Validity.R' 'pedigree-class.R' 'hetData-class.R'
'geneticData-class.R' 'lg-class.R' 'rawSymmetricMatrix.R'
'rf-class.R' 'mpcross-class.R' 'additionOperators.R'
'as.mplnterval.R' 'assignFounderPattern.R’
‘assignFounderPatternPrototype.R' 'backcrossPedigree.R'
'‘biparentalDominant.R' 'callFromMap.R' 'changeMarkerPosition.R'
'combineGenotypes.R' 'combineKeepRFE.R'

'‘compressedProbabilities.R' 'compute AllEpistaticChiSquared.R'
'computeGenotypeProbabilities.R' 'createSNPTemplate.R'
'detailedPedigree-class.R' 'eightWayPedigreeImproperFunnels.R'
'eightWayPedigreeRandomFunnels.R'
'eightWayPedigreeSingleFunnel.R' 'estimateMap.R'
'estimateMapFromImputation.R' 'estimateRF.R’
'estimateRFSingleDesign.R' 'expand.R' 'expandedProbabilities.R’
‘exportMapToPretz].R' 'extralmputationPoints.R' 'f2Pedigree.R’
'finals.R' 'fixedNumberOfFounderAlleles.R' 'formGroups.R'
'founders.R' 'fourParentPedigreeRandomFunnels.R'
'fourParentPedigreeSingleFunnel.R' 'fullHetData.R'
'generateGridPositions.R' 'generateIntervalMidPoints.R'
'getAllFunnels.R' 'getChromosomes.R'
'getIntercrossingAndSelfingGenerations.R' 'getPositions.R'
'hetData.R' 'identC.R' 'imputationGenerics.R' 'impute.R’
'imputeFounders.R' 'jitterMap.R' 'lineNames.R'
'listCodingErrors.R' 'mapFunctions.R' 'markers.R' 'mpcross.R’
‘multiparentSNP.R' 'multiparentSNPPrototype.R' 'nFounders.R'
'nLines.R' 'nMarkers.R' 'num_threads.R' 'orderCross.R’
'pedigree.R' 'pedigreeGraph-class.R' 'pedigreeGraph.R’
'pedigreeToGraph.R' 'plot.R' 'plotMosaic.R'

'plotProbabilities.R' ‘print.R' ‘probabilityData.R’
"‘purdyToPedigree.R' 'redact.R' removeHets.R'
‘reorderPedigree.R' reverseChromosomes.R' 'rilPedigree.R’
'roxygen.R' 'selfing.R' 'show.R' 'simulateMPCross.R'
'simulatePhenotypes.R' 'singleLocusProbabilities.R’
'sixteenParentPedigreeRandomFunnels.R' 'stripPedigree.R’
'subset.R' 'testDistortion.R' 'toMpMap.R'
'transposeProbabilities.R' ‘twoParentPedigree.R' 'validation.R'

VignetteBuilder knitr

NeedsCompilation yes

Repository CRAN

Date/Publication 2020-04-23 16:10:14 UTC

R topics documented:

+,mpcrossMapped,mpcrossMapped-method
addExtraMarkerFromRawCall
addExtraMarkers
asmplnterval Lo
assignFounderPattern
backcrossPedigree
biparentalDominant
callFromMap
changeMarkerPosition, .
clusterOrderCross oo

R topics documented:

R topics documented: 3

combineKeepRF 16
computeAllEpistaticChiSquared 0oL 17
computeGenotypeProbabilities oL 18
detailedPedigree-class 19
eightParentPedigreeImproperFunnels oL 20
eightParentPedigreeRandomFunnels 22
eightParentPedigreeSingleFunnel oL 23
eightParentSubsetMap 24
estimateMap e e e e e 24
estimateMapFromImputation 26
estimateRF 27
estimateRFSingleDesign 29
existinglLocalisationStatistics 30
expand e 31
exportMapToPretzl 31
extralmputationPoints00 32
f2Pedigree 32
finalNames 33
finals. 34
fixedNumberOfFounderAlleles 34
flatlmputationMapNames e 35
formGroups e e 36
founderNames L e 37
founders L 38
fourParentPedigreeRandomFunnels 0oL 39
fourParentPedigreeSingleFunnel 0oL 40
fromMpMap e 41
generateGridPositionso 41
generatelntervalMidPointso 42
geneticData-class 43
getAllFunnels L 44
getAllFunnelsIncAIC e 45
getChromosomes 46
getlntercrossingAndSelfingGenerations 47
getPositions e 47
hetData 48
hetsForSNPMarkers 49
imputationData e 49
imputationKey L 50
imputationMap 52
IMPULE o o o e e 52
imputeFounders e 53
infiniteSelfing L 55
initialize,canSkipValidity-method oL 56
JitterMap ... e 57
lineNames 57
lineNames,mpcross-method L L 58

HneNames<-. o e e 58

Index

R topics documented:

linesByNames e e e e 59
listCodingErrors 60
listCodingErrorsInfiniteSelfing oo oL 61
mapFunctions L e 61
markers e 62
IPCTOSS « « v v e v v e 63
mpCross-class 64
mperossMapped L L L e e e e e e 65
mpcrossMapped-class e 66
mpecrossRF-class 66
multiparentSNP L 67
nFounders 67
nLineso 68
nMarkers e e e e 69
normalPhenotype L 70
omp_set_num_threads L 70
orderCross o i e e e e e e 71
pedigree L e e e 72
pedigree-class 73
pedigreeGraph-class L 74
pedigreeToGraph L 74
plot,addExtraMarkersStatistics, ANY-method 75
plot,mpcross,ANY-method 75
plot,pedigreeGraph, ANY-method 76
PIOtMOSAIC L e e e e e e 77
plotProbabilities e e e e 78
probabilities-class 79
probabilityData 79
redact e 80
removeHets L 81
reverseChromosOmes oL e e e e e e 82
rilPedigree e 83
selfing<- e 83
simulatedFourParentData 84
simulateMPCross oL e 85
sixteenParentPedigreeRandomFunnels 0oL, 85
stripPedigree L L 86
subset,imputed-method 87
testDistortion Ll 88
OMPMaD e e e 89
transposeProbabilities Lo 90
twoParentPedigree 91
wsnp_Ku_rep_c103074_89904851 e 92
[,rawSymmetricMatrix,index,index,logical-method 93

96

+,mpcrossMapped,mpcrossMapped-method 5

+,mpcrossMapped, mpcrossMapped-method
Combine mpcross objects

Description

Combine two mpcross objects into a single object

Usage

S4 method for signature 'mpcrossMapped,mpcrossMapped’
el + e2

S4 method for signature 'mpcross,mpcross'’
el + e2

S4 method for signature 'mpcrossRF,mpcrossRF'
el + e2

S4 method for signature 'mpcrossRF,mpcross’

el + e2
Arguments

el An mpcross object

e2 Another mpcross object
Details

These addition operators combine multiple objects of classes mpcross or mpcrossMapped into a
single object. The input objects may contain recombination fraction data, or may have associated
genetic maps. The operators try to keep whatever extra data is in the input objects, and will warn if
data is discarded. Data will be discarded if, for example, one of the objects contains recombination
fraction data and the other does not.

In general, the combined object will contain the input objects as separate experiments. In special
cases, the datasets may actually be combined as a single experiment. For example, if the input
objects contains disjoint sets of markers, but the same genetic lines, then the datasets will be com-
bined. Similarly, if the input objects contain the same genetic markers, but disjoint sets of genetic
lines, then the datasets will be combined.

Internally this function redirects to another generic named addMpMap2, because this generic allows
for optional named arguments.

Value

A combined object that contains the data from both e1 and e2.

6 addExtraMarkerFromRawCall

addExtraMarkerFromRawCall
Add an extra marker from raw calling data

Description

Add an extra marker to a map, based on raw calling data, using a QTL-mapping style approach.

Usage

addExtraMarkerFromRawCall(
mpcrossMapped,
newMarker,
useOnlyExtraImputationPoints = TRUE
)

Arguments

mpcrossMapped An object of class mpcrossMapped (dataset with a map), which must include
imputed IBD genotypes and recombination fraction data.

newMarker A matrix containing the raw data for the marker to add.

useOnlyExtralmputationPoints
Should we only attempt to add the new marker at points at which imputation
data has been generated, which are not markers?

Details

This function uses a QTL-mapping style approach to test for where an extra marker should be added
to an existing map. The code uses the imputation data at a collection of points, and the raw calling
data for the extra marker. The raw calling data must be bivariate.

Test statistics measuring the association of the new marker to a point are computed using a mul-
tivariate analysis of variance approach. If the imputed genotype at a point is independent of the
data for the new marker, then the new marker probably should not be mapped to that point. If
the imputed genotype at a point and the data for the new marker are strongly dependent, then the
new marker should probably be mapped to that point. Dependence and independence are measured
using an F-test.

By default the set of points at which the new marker is considered for addition is the set of points
at which imputation data is available, which are not markers. The intention is that this set of points
should be an equally spaced grid of points; this reduces the number of tests that are performed, as
generally there are far fewer points in the grid, than there are markers. After the new marker is
added, local reordering will need to be performed anyway, making any loss in accuracy by using
the grid of points largely irrelevant. Setting useOnlyExtraImputationPoints to FALSE means
that every marker position will also be used as a possible position for the new marker (this is not
recommended).

addExtraMarkers 7

Value

An object of class addExtraMarkersStatistics containing the test statistic values and the genetic
map used to generate them.

addExtraMarkers Add extra markers

Description

Add extra markers to a map, using a QTL-mapping style approach.

Usage

addExtraMarkers(
mpcrossMapped,
newMarkers,
useOnlyExtraImputationPoints = TRUE,
reorderRadius = 103,
maxOffset = 50,
knownChromosome,
imputationArgs = NULL,
onlyStatistics = FALSE,
orderCrossArgs = list(),
verbose = TRUE,
reorder = TRUE

Arguments

mpcrossMapped An object of class mpcrossMapped (dataset with a map), which must include
imputed IBD genotypes and recombination fraction data.
newMarkers An object of class mpcross containing the new markers to add.
useOnlyExtralmputationPoints
Should we only attempt to add the new marker at points at which imputation

data has been generated, which are nor markers? Currently this must be TRUE.
In future FALSE may be allowed.

reorderRadius The width of the region (in terms of number of markers) in which to attempt to
reorder, after the extra markers are added.

maxOffset The maxOffset parameter for the call to estimateMap, which is used to re-
estimate the map (locally), after the additional markers are added.
knownChromosome
The name of a chromosome, if the extra markers are known to go on a specific
chromosome

imputationArgs A list containing additional arguments to imputeFounders.

8 addExtraMarkers

onlyStatistics If this argument is TRUE, then only the chi-squared test statistic values are com-
puted, and the markers are not added.

orderCrossArgs A list containing additional arguments to orderCross.

verbose Should extra logging output be generated?
reorder Should local reordering be performed after the extra markers are added?
Details

This function uses a QTL-mapping style approach to add extra markers to an existing map. The
code uses the imputation data at a collection of points, and the marker alleles for the first marker of
the extra markers. If the imputed genotype at a point is independent from the genotype at the new
marker, then the new marker probably should not be mapped to that point. If the imputed genotype
at a point and the marker allele are strongly dependent, then the new marker should probably be
mapped to that point. Dependence and independence are measured using a chi-squared test stastistic
for independence. All the extra markers are then mapped to the position where the test statistic is
largest. It is recommended that only single markers be added at a time, unless you are extremely
confident that all the extra markers should be located at the same position.

Currently the set of points at which the new markers are considered for addition is the set of points
at which imputation data is available, which are not markers. The intention is that this set of points
should be an equally spaced grid of points; this reduced the number of tests that are performed,
as generally there are far fewer points in the grid, than there are markers. After the new marker is
added, local reordering will need to be performed anyway, making any loss in accuracy by using the
grid of points largely irrelevant. In future it may be possible to use the set of all marker positions
as the set of points at which tests are performed, by setting useOnlyExtraImputationPoints to
FALSE.

Once the extra markers have added, local reordering is optionally performed, depending on argu-
ment reordering. The radius of the region on which reordering is performed, in terms of the
number of markers, is reorderRadius.

Once the optional reordering step has been performed, the map is recomputed locally, to account
for the addition of the extra markers. The argument maxOffset is passed through to estimateMap.
Finally, the imputation data will be recomputed if imputationArgs is not NULL; in that case,
imputationArgs should contain a list of arguments to imputeFounders. It is recommended that
the imputation data be recomputed if further markers are to be added.

In some cases the user will want to apply a threshold to the maximum value of the test statistics,
and only add the marker if the test statistics exceed the threshold. In this case the function should
be called twice. For the first call, onlyStatistics should be set to FALSE. If the resulting test
statistics exceed the threshold, then addExtrMarkers should be called again with onlyStatistics
set to TRUE.

Value

If onlyStatistics was set to TRUE, an object of class addExtraMarkersStatistics containing
the test statistic values. If onlyStatistics was set to FALSE, a list containing the test statistic
values in entry statistics and in entry object, a new object containing the input object with the
new markers added.

as.mplnterval 9

Examples

data(simulatedFourParentData)

#Create object that includes the correct map

mapped <- new("mpcrossMapped”, simulatedFourParentData, map = simulatedFourParentMap)
#Remove marker number 50. Normally the map is discarded, but we specify to keep it.
removedMiddle <- subset(mapped, markers = (1:101)[-50], keepMap = TRUE)

#Compute imputation data, at all the markers, and an equally spaced grid of points
removedMiddle <- imputeFounders(removedMiddle, errorProb = 0.02,

extraPositions = generateGridPositions(1))

#Estimate recombination fractions

removedMiddle <- estimateRF(removedMiddle)

#Get out the extra marker to add

extraMarker <- subset(simulatedFourParentData, markers = 50)

#Add the extra marker, without doing any local reordering. After the marker is added,
recompute the imputation data, using the same arguments as previously.

withExtra <- addExtraMarkers(mpcrossMapped = removedMiddle, newMarkers = extraMarker,
reorder = FALSE, imputationArgs = list(errorProb = 0.02,

extraPositions = generateGridPositions(1)))$object

as.mpInterval Convert mpcross object to MPWGAIM format

Description

Convert an object of class mpcrossMapped to the format used by MPWGAIM.

Usage

as.mpInterval(
object,
type = "mpMarker”,
positions,
homozygoteMissingProb,
heterozygoteMissingProb,

errorProb
)
Arguments
object The object of class mpcrossMapped to convert
type The type of MPWGAIM object to output. Must be "mpMarker” or "mpInterval”
positions In the case of mpMarker format, the positions at which the IBD probabilities

should be output. Must be either "all” (all positions for which IBD probabili-

ties are available) or "marker” (only marker positions).
homozygoteMissingProb

Used as an input to computeGenotypeProbabilitiesInternal, if the IBD

probabilities need to be calculated.

10 assignFounderPattern

heterozygoteMissingProb
Used as an input to computeGenotypeProbabilitiesInternal, if the IBD
probabilities need to be calculated.

errorProb Used as an input to computeGenotypeProbabilitiesInternal, if the IBD
probabilities need to be calculated.

Details

MPWGAIM is a package for performing QTL analysis using multi-parent populations. This func-
tion outputs a data object suitable for input to MPWGAIM. The output object can be in MPW-
GAIMs mpMarker or mpInterval formats. See the documentation of MPWGAIM for further in-
formation.

Value

An object of class mpMarker or mpInterval, which are formats specified by package mpwgaim.

assignFounderPattern Set founder genotypes

Description

Set founder genotypes

Usage

assignFounderPattern(founderMatrix)

Arguments

founderMatrix The new matrix of founder genotypes

Details

Set the founder genotypes to a specified matrix, for an object with fully informative markers. This
can allow the same set of founder genotypes to be used for multiple simulation runs.

Value

An object of internal class assignFounderPattern, suitable for application to an object of class
mpcross using the addition operation.

backcrossPedigree 11

backcrossPedigree Generate a backcross pedigree which starts from inbred founders

Description

Generate a backcross pedigree which starts from inbred founders

Usage

backcrossPedigree(populationSize)

Arguments

populationSize The size of the generated population.

Details

Generate a backcross pedigree which starts from inbred founders

Value

An object of class detailedPedigree representing the experimental design, suitable for simulation
using simulateMPCross.

Examples

pedigree <- backcrossPedigree(1000)
#This pedigree is automatically marked as involving finite generations of selfing.
selfing(pedigree)

biparentalDominant Make markers in a biparental cross dominant

Description

Change the markers in a biparental cross from fully informative to dominant. The dominant founder
is chosen randomly for every marker. The transformation is applied to an object using the addition
operator, see the example below for details.

Usage

biparentalDominant()

Value

An object of internal type biparentalDominant, which can be combined with an object of class
mpcross using the addition operator.

12 callFromMap

Examples

#Simulate an F2 design

f2Pedigree <- f2Pedigree(1000)

map <- qtl::sim.map(len = 100, n.mar = 11, include.x=FALSE)

cross <- simulateMPCross(map = map, pedigree = f2Pedigree, mapFunction = haldane, seed = 1)
founders(cross)

finals(cross)[1:10,]

#The heterozygotes are initially coded as 3

hetData(cross)[[1]1]

#Make all markers dominant

dominantCross <- cross + biparentalDominant()
founders(dominantCross)

finals(dominantCross)[1:10,]

#The heterozygotes are now coded the same as one of the homozygotes
hetData(dominantCross)[1:4]

callFromMap Call markers based on an existing map

Description

This function uses an existing genetic map to call genetic markers, including markers polymorphic
on multiple chromosomes.

Usage

callFromMap(
rawData,
thresholdChromosomes = 100,
thresholdAlleleClusters = c(1e-10, 1e-20, 1e-30, 1e-40),
maxChromosomes = 2,
existingImputations,
tDistributionPValue = 0.6,
useOnlyExtraImputationPoints = TRUE,

)
Arguments
rawData Raw data for a genetic marker.
thresholdChromosomes
The test-statistic threshold for declaring a marker to be polymorphic on a chro-
mosome.

thresholdAlleleClusters

The p-value threshold for declaring two underlying founder alleles to have dif-
ferent marker alleles. Multiple possible values should be input.

maxChromosomes The maximum number of chromosomes that a marker can be polymorphic on

callFromMap 13

existingImputations
An object of class mpcrossMapped from the mpMap2 package, containing data
about imputed underlying genotypes.

tDistributionPValue
Paramater controlling the size of each detected cluster, ranging from O to 1.
Small values result in small clusters, and large values result in large clusters.

useOnlyExtralmputationPoints
Should we only use the non-marker positions to identify the correct locations?

Extra arguments. Only existinglocalisationStatistics is supported, mostly
so the example can run quickly.

Details

This function uses an existing genetic map to call a genetic marker. There are a number of advan-
tages to this approach

1. It can correctly call markers which are polymorphic on multiple chromosomes, therefore con-
verting one marker into two.

2. It avoids incorrectly calling markers polymorphic on multiple chromosomes. Incorrect calling
can lead to supurious genetic interactions.

3. It can call markers that initially appear to be monomorphic in the population.

4. It can call additional marker alleles for markers that would otherwise be ignored.

Once a genetic map has been constructed, it should be used to impute underlying founder genotypes
at an equally spaced grid of points using function imputeFounders. The steps in the algorithm are
as follows:

1. Determine which chromosomes the marker is associated to, and where on those chromosomes.
This is determined using function addExtraMarkerFromRawCall, which is itself based on a
manova model. The marker is assumed associated to chromosomes for which the test statistic
is greater than thresholdChromosomes. An appropriate value for thresholdChromosomes
can be determined by looking at the results of addExtraMarkerFromRawCall, for a number
of different markers.

2. Determine the distribution of marker alleles, at all the associated genetic locations. This is done
by taking the founders to be the vertices of a graph, and connecting founders which seem to
part of the same marker allele. The resulting graph should be a union of disjoint complete
graphs (cliques).

3. We now have a preliminary assignment of marker alleles to lines, where the assignment may be
of 1, 2, 3 or more different marker alleles, depending on how many chromosomes the marker
is associated with. For example, if the marker is associated with two chromosomes, then there
will be two marker alleles for each line. For each unique combination of marker alleles, we
take the lines which have that assignment of marker alleles, and fit a skew-t distribution.

4. For each fitted distribution, determine a confidence region using p-value tDistributionPValue.

5. Use these confidence regions to construct marker calls at each associated location.

14 callFromMap

Value

At the minimum, a list containing an entry called indicating whether the marker could be success-
fully called. If it could, other entries are returned.

overallAssignment Defines clusters within the data.

classificationsPerPosition Defines genotype calls per genetic location to which the marker was
mapped.

clusterBoundaries Contours giving the boundaries of each cluster in overallAssignment.

preliminaryGroups The preliminary groups based on IBD imputations, which the final genotype
calls are built from.

pValuesMatrices The matrices of p-values used to form a graph, and therefore identify founder
alleles.

Examples

data(eightParentSubsetMap)

data(wsnp_Ku_rep_c103074_89904851)
data(callFromMapExampleLocalisationStatistics)

library(ggplot2)

library(gridExtra)

#We use an existing set of localisation statistics, to make the example faster

called <- callFromMap(rawData = as.matrix(wsnp_Ku_rep_c103074_89904851), existingImputations =

eightParentSubsetMap, useOnlyExtralmputationPoints = TRUE, tDistributionPValue = 0.8,

thresholdChromosomes = 80, existinglocalisationStatistics = existinglLocalisationStatistics)

plotData <- wsnp_Ku_rep_c103074_89904851

plotData$genotypelB <- factor(called$classificationsPerPosition$Chri1BLoc31$finals)
plotData$imputedi1B <- factor(imputationData(eightParentSubsetMap)[, "Chri1BLoc31"])
plotData$genotypelD <- factor(called$classificationsPerPosition$Chri1DLoc16%$finals)
plotData$imputediD <- factor(imputationData(eightParentSubsetMap)[, "ChriDLoc16"])

plotImputationsiB <- ggplot(plotData, mapping = aes(x = theta, y = r, color = imputediB)) +
geom_point() + theme_bw() + ggtitle("Imputed genotype, 1B") +
guides(color=guide_legend(title="IBD genotype"))

called1B <- ggplot(plotData, mapping = aes(x = theta, y = r, color = genotypelB)) +
geom_point() + theme_bw() + ggtitle(”Called genotype, 1B") +
guides(color=guide_legend(title="Called cluster”)) + scale_color_manual(values =
c("black"”, RColorBrewer: :brewer.pal(n = 4, name = "Set1")))

plotImputationsiD <- ggplot(plotData, mapping = aes(x = theta, y = r, color = imputediD)) +
geom_point() + theme_bw() + ggtitle("Imputed genotype, 1D") +
guides(color=guide_legend(title="IBD genotype"))

called1D <- ggplot(plotData, mapping = aes(x = theta, y = r, color = genotypelD)) +
geom_point() + theme_bw() + ggtitle("Called genotype, 1D") +
guides(color=guide_legend(title="Called cluster”)) +

scale_color_manual (values = c("black”,RColorBrewer: :brewer.pal(n=3,name = "Set1")[1:2]))

grid.arrange(plotImputationsiB, plotImputations1D, called1B, called1D)

changeMarkerPosition 15

changeMarkerPosition Change the position of a single marker

Description

Change the position of a single marker

Usage

changeMarkerPosition(mpcrossMapped, marker, newChromosome, newPosition)

Arguments

mpcrossMapped The object of class mpcrossMapped, containing a marker to be modified
marker The name of the marker to change
newChromosome The new chromosome for the specified marker

newPosition The new position for the specified marker in cM, on the new chromosome

Details

For an object of class mpcrossMapped, change the position of a single marker

Value

A copy of the input object, with the specified marker shifted to the new position and chromosome.

clusterOrderCross Group markers into blocks and arrange those blocks

Description

Group markers into blocks and arrange those blocks

Usage

clusterOrderCross(
mpcrossLG,
cool = 0.5,
tmin = 0.1,
nReps = 1,
maxMove = @,
effortMultiplier = 1,
randomStart = TRUE,
nGroups

16 combineKeepRF

Arguments
mpcrossLG An object of class mpcrossLG, containing genetic data and linkage groups.
cool Rate of cooling
tmin Minimum temperature
nReps Number of independent replications of the simulated annealing algorithm
maxMove Maximum number of positions by which to shift a single marker, as part of the

simulated annealing. A value of zero indicates no limit.

effortMultiplier

Multiplier for the amount of computational effort
randomStart If TRUE, start from the current ordering

nGroups The number of groups to form using hierarchical clustering

Details

In some cases the number of markers is too large to reorder all markers on a chromosome. However,
the problem becomes more tractable if the markers are already in a roughly correct ordering to start
with. This function is intended to generate that roughly accurate ordering, and then subsequenty
local reordering using orderCross can be applied to generate a final marker ordering.

The rough ordering is generated by forming some number of groups of markers, using hierarchical
clustering. A consensus disimilarity between every group of markers is formed, and this is used
to order the groups. That is, we decide whether the markers will be ordered as group 1, group 2,
group 3, etc, or group 2, group 1, group 3, etc. The ordering of the markers within each group is
unchanged.

Value

An object of class mpcrossLG, identical to the input except with the markers rearranged.

combineKeepRF Combine mpcross objects, keeping recombination fraction data

Description

Combine mpcross objects, keeping recombination fraction data

Usage
combineKeepRF (
objectl,
object2,
verbose = TRUE,
gbLimit = -1,

callEstimateRF = TRUE,
skipValidity = FALSE

computeAllEpistaticChiSquared 17

Arguments
objectl An object of class mpcrossRF
object2 Another object of class mpcrossRF
verbose Passed straight through to estimateRF
gbLimit Passed straight through to estimateRF

callEstimateRF Should estimateRF be called, to compute any missing estimates?

skipValidity Should we skip the validity check for object construction, in this function? Run-
ning the validity checks can be expensive, and in theory internal package code
is trusted to generate valid objects.

Details

This function takes two objects containing disjoint sets of markers, each containing estimated re-
combination fractions for their individual sets of markers. A new object is returned that contains
the combined set of markers, and also contains recombination fraction data.

This function is more efficient than other ways of achieving this, as it keeps the recombination frac-
tion data contained in the original objects. If callEstimateRF is TRUE, it also computes the missing
recombination fraction estimates between markers in different objects, using a call to estimateRF.

Value

A new object of class mpcrossRF containing the combined information of the two input objects.

computeAllEpistaticChiSquared
Compute chi-squared test statistics for independence

Description

Compute chi-squared test statistics for independence

Usage
computeAllEpistaticChiSquared(mpcrossMapped, verbose = TRUE)

Arguments

mpcrossMapped An object of class mpcrossMapped with IBD probability data.
verbose If this is TRUE a progress bar is generated

Details

This function computes what are (approximately) chi-squared test statistics for independence of
the genotypes at different points on the genome. This computation is done using the IBD proba-
bility data. Significant non-independence between IBD probabilities at distant points on the same
chromosome, or points on different chromosomes, can indicate non-standard genetic inheritance or
selective pressure.

18 computeGenotypeProbabilities

Value

A square matrix with rows and columns corresponding to genetic locations, and values correspond-
ing to test statistics.

computeGenotypeProbabilities
Compute IBD genotype probabilities

Description

Compute IBD genotype probabilities

Usage

computeGenotypeProbabilities(
mpcrossMapped,
homozygoteMissingProb =
heterozygoteMissingProb
errorProb = 0,
extraPositions = list()

1,
:]’

Arguments

mpcrossMapped An object of class mpcrossMapped, for which to compute the IBD genotype
probabilities.

homozygoteMissingProb
The "probability" that a marker genotype that is truly homozygous will be marked
as missing.

heterozygoteMissingProb
The "probability" that a marker genotype that is truly heterozygous will be
marked as missing.

errorProb The probability that a marker genotype is incorrect.

extraPositions The extra positions at which to compute the IBD genotype probabilities. May
be either a list with named components corresponding to chromosomes (simialr
to a map) or a function which will be applied to the input object to generate the
extra positions.

Details

This function computes the IBD genotype probabilities using a Hidden Marker Model (HMM) and
the forward-backward algorithm. The HMM model is only an approximation to the underlying
genetics, but it is a very good one.

There are a number of parameters to this model. homozygoteMissingProb gives the "probability"”
that a marker homozygote will be marked a missing. heterozygoteMissingProb gives the "prob-
ability" that a marker heterozygote will be marked as missing. We say "probability" because really

detailedPedigree-class 19

the important thing is the difference these two parameters, not the values themselves. If they are
equal then a missing marker genotype contains no information. If codeheterozygoteMissingProb is
relatively larger than homozygoteMissingProb, then missing marker genotypes suggests that the
underlying genotype is heterozygous, provided enough missing marker values occur sequentially.

The key reason for introducing these paramters is that if heterozygoteMissingProb is relatively
larger, then a dataset with no observed marker heterozygotes can still be used to estimate positions
of underlying heterozygous genotypes, provided that heterozygous genotypes lead to consecutive
missing marker genotype values.

The errorProb parameter gives the probability that a marker genotype is actually incorrect. In
this case, it is assumed that the correct value for this marker genotype is random and uniformly
distributed. This is different from assuming that the underlying genotype itself is random. If
errorProb is zero, then it is not possible to have co-located markers with inconsistent genotypes,
and if this occurs an error will be generated. jitterMap can be used to avoid this, but setting
errorProb to some non-zero value is a much better solution.

It is also possible to generate IBD probabilities at non-marker positions. These extra positions
are specified by the extraPositions options, which can be specified two ways. The first is by
specifying a list with name entries, where the names correspond to chromosomes. Each named
entry should be a named vector, with names corresponding to the names of the positions, and values
corresponding to the positions in cM on that chromosome.

The second possibility is to specify a function, which will be applied to the input object of class
mpcrossMapped to generate the extra positions. Two helper options are provided for this - generateGridPositions
and link{generatelntervalMidPoints}.

Value

An object of class mpcrossMapped containing all information in the input object, and also estimated
IDB probabilities.

detailedPedigree-class
Pedigree for simulation

Description
Class detailedPedigree is similar to the S4 class pedigree, except it also contains information about
which lines are going to observed. This allows simulation of a data set with the given pedigree.
Usage

detailedPedigree(lineNames, mother, father, initial, observed, selfing)

Arguments

lineNames The names assigned to the lines.

mother The female parent of this line, given by name or by index within 1ineNames.

20 eightParentPedigreeImproperFunnels

father The male parent of this line, given by name or by index within 1ineNames.
initial The founder lines, given by name or by index within lineNames.
observed The lines which are observed in the final population, given by name or by index

within lineNames.

selfing Value determining whether or not subsequent analysis of populations generated
from this pedigree should assume infinite generations of selfing. Possible values
are "finite" and "infinite".

Value

An object of class detailedPedigree, suitable for simulation.

Functions

* detailedPedigree: Construct object of class detailedPedigree

Slots

initial The indices of the inbred founder lines in the pedigree. These founders lines must be the
first lines in the pedigree.

observed A logical vector with one value per line in the pedigree. A value of TRUE indicates that
this line will be genotyped.

See Also

pedigree-class, simulateMPCross, detailedPedigree

detailedPedigree-class

Examples

lineNames <- paste@("L", 1:10)

mother <- c(@, @, 1, rep(3, 7))

father <- c(0, 0, 2, rep(2, 7))

initial <- 1:2

lineNames <- paste@("L", 1:10)

observed <- c(rep(FALSE, 3), rep(TRUE, 7))

detailedPedigreeObj <- detailedPedigree(mother = mother, father = father, initial = initial,
observed = observed, lineNames = lineNames, selfing = "finite")

eightParentPedigreelmproperFunnels
Generate an eight-parent pedigree with improper funnels

Description

Generate a eight-parent pedigree starting from inbred founders, where the founders in the funnels
are not necessarily distinct.

eightParentPedigreeImproperFunnels 21

Usage

eightParentPedigreelmproperFunnels(
initialPopulationSize,
selfingGenerations,
nSeeds

Arguments

initialPopulationSize
The number of initially generated lines, whose genetic material is a mosaic of
the eight founding lines. These lines are generated using three generations of
structured mating.

selfingGenerations
The number of selfing generations at the end of the pedigree.

nSeeds The number of progeny taken from each intercrossing line, or from each ini-
tially generated line (if no intercrossing is specified). These lines are then selfed
according to selfingGenerations.

Details

Generate a eight-parent pedigree starting from inbred founders. The founders in the funnel for every
line are chosen with replacement. So for any line from the final population, it is likely that some
founding lines are absent from the corresponding funnel, and some appear multiple times.

Value
An object of class detailedPedigree representing the experimental design, suitable for simulation
using simulateMPCross.
See Also
eightParentPedigreeSingleFunnel, fourParentPedigreeSingleFunnel, fourParentPedigreeRandomFunnels,

twoParentPedigree

Examples

pedigree <- eightParentPedigreelmproperFunnels(initialPopulationSize = 10,
selfingGenerations = @, nSeeds = 1)

#Generate map

map <- qtl::sim.map()

#Simulate data

cross <- simulateMPCross(map = map, pedigree = pedigree, mapFunction = haldane)
#Get out a list of funnels, which are rows of this matrix. Note that, of the values 1:8,
some are missing within a row, and some are repeated.

getAllFunnels(cross)

#convert the pedigree to a graph

pedigreeAsGraph <- pedigreeToGraph(pedigree)

#Plot it

plot(pedigreeAsGraph)

22 eightParentPedigreeRandomFunnels

#Write it to a file in DOT format

eightParentPedigreeRandomFunnels
Generate an eight-parent pedigree, using random funnels

Description

Generate a eight-parent pedigree starting from inbred founders, using a random funnel.

Usage

eightParentPedigreeRandomFunnels(
initialPopulationSize,
selfingGenerations,
nSeeds = 1L,
intercrossingGenerations

Arguments

initialPopulationSize
The number of initially generated lines, whose genetic material is a mosaic of
the eight founding lines. These lines are generated using three generations of
structured mating.

selfingGenerations
The number of selfing generations at the end of the pedigree.

nSeeds The number of progeny taken from each intercrossing line, or from each ini-
tially generated line (if no intercrossing is specified). These lines are then selfed
according to selfingGenerations.

intercrossingGenerations
The number of generations of random mating performed from the F1 generation.
Population size is maintained at that specified by initialPopulationSize.

Value

An object of class detailedPedigree representing the experimental design, suitable for simulation
using simulateMPCross.

See Also

eightParentPedigreeSingleFunnel, fourParentPedigreeSingleFunnel, fourParentPedigreeRandomFunnels
twoParentPedigree

eightParentPedigreeSingleFunnel 23

Examples

pedigree <- eightParentPedigreeRandomFunnels(initialPopulationSize = 10,
selfingGenerations = @, nSeeds = 1, intercrossingGenerations = 10)

#Generate map

map <- qtl::sim.map()

#Simulate data

cross <- simulateMPCross(map = map, pedigree = pedigree, mapFunction = haldane)
#Get out a list of funnels, which are rows of this matrix. For this pedigree, every
funnel is a random ordering of 1:8.

getAllFunnels(cross)

#convert the pedigree to a graph

pedigreeAsGraph <- pedigreeToGraph(pedigree)

#Plot it

plot(pedigreeAsGraph)

#Write it to a file in DOT format

eightParentPedigreeSingleFunnel
Generate an eight-parent pedigree, using a single funnel

Description

Generate a eight-parent pedigree starting from inbred founders, using a single funnel.

Usage

eightParentPedigreeSingleFunnel(
initialPopulationSize,
selfingGenerations,
nSeeds = 1L,
intercrossingGenerations

Arguments

initialPopulationSize
The number of initially generated lines, whose genetic material is a mosaic of
the eight founding lines. These lines are generated using three generations of
structured mating.

selfingGenerations
The number of selfing generations at the end of the pedigree.

nSeeds The number of progeny taken from each intercrossing line, or from each ini-
tially generated line (if no intercrossing is specified). These lines are then selfed
according to selfingGenerations.

intercrossingGenerations
The number of generations of random mating performed from the F1 generation.
Population size is maintained at that specified by initialPopulationSize.

24 estimateMap

Value

An object of class detailedPedigree representing the experimental design, suitable for simulation
using simulateMPCross.

See Also

eightParentPedigreeSingleFunnel, fourParentPedigreeSingleFunnel, fourParentPedigreeRandomFunnels,
twoParentPedigree

Examples

pedigree <- eightParentPedigreeSingleFunnel(initialPopulationSize = 10,
selfingGenerations = @, nSeeds = 1, intercrossingGenerations = 1)

map <- qtl::sim.map()

cross <- simulateMPCross(map = map, pedigree = pedigree, mapFunction = haldane)
#Get out a list of funnels, which are rows of this matrix. For this pedigree, every funnel is 1:8.
getAllFunnels(cross)

#convert the pedigree to a graph

pedigreeAsGraph <- pedigreeToGraph(pedigree)

#Plot it

plot(pedigreeAsGraph)

#Write it to a file in DOT format

write.graph(graph = pedigreeAsGraph@graph, format = "dot", file = "./pedigree.dot")

eightParentSubsetMap Genetic map and genetic data from an 8-parent MAGIC population.

Description

Genetic map and genetic data from an 8-parent MAGIC population.

Author(s)

Alex Whan, Matthew Morell, Rohan Shah, Colin Cavanagh This dataset contains the genetic map,
genetic data, and imputed IBD genotypes for parts of chromosomes 1A, 1B and 1D, from an 8-way
MAGIC population of 4229 lines.

estimateMap Estimate map distances

Description

Estimate map distances based on the estimated recombination fractions

estimateMap 25

Usage

estimateMap(
mpcrossLG,
mapFunction = rfToHaldane,
maxOffset = 1,
maxMarkers = 2000,
verbose = FALSE

)
Arguments
mpcrossLG An object of class mpcrossLG, which must also contain data about recombina-
tion fractions and linkage groups.
mapFunction The map function to use to compute recombination fractions to centiMorgan
distances.
maxOffset The maximum separation between pairs of markers used for map construction,
in terms of position within the ordering. Recombination fractions between pairs
of markers, which are further apart than this, will not be used to estimate the
map distances.
maxMarkers The (approximate) number of markers for which distances are estimated simul-
taneously.
verbose Should verbose output be produced?
Details

Once a marker order has been chosen, one possible way of estimating a genetic map is to convert
the recombination fractions between adjacent markers into centiMorgan distances. This tends not to
work well, because individual recombination fraction estimates can be highly variable, depending
on the experimental design used, and the distribution of the marker alleles among the founders. It
also wastes much of the information contained in the data; we can estimate recombination fractions
between all pairs of markers, rather than just adjacent markers, and this information should be used
in the estimation of map distances

This function uses non-linear least squares to estimate map distances as follows. Assume that there
are n markers on a chromosome, and for all pairs of markers there is an available estimate of the
recombination fraction. For every pair of markers which differ by maxOffset or less, in terms of
their position within the ordering, the recombination fraction between these markers is turned into
a centiMorgan distance. This centiMorgan distance is expressed as a sum of distances between
adjacent markers, which is a simple equation. The set of all the equations generated in this way is
represented as a matrix equation, and solved via non-linear least squares. As these non-linear least
squares problems can become very large, input maxMarkers allows the non-linear least squares
problem to be broken into several smaller problems.

For example, assume that there are five markers, for which an order has been determined. The
distance between markers ¢ and j, as estimated by the recombination fractions, is d(i,j). The
genetic distance between markers ¢ and ¢ 4+ 1 in the final genetic map is a(i). So in this case, the
parameters that are to be estimated are a(1), a(2), a(3) and a(4). If max0Offset is 3, then the set of
equations generated is

d(1,3) = a(1l) + a(2)

26 estimateMapFromImputation

d(1,4) = a(1l) 4+ a(2) + a(3)
d(2,4) = a(2) + a(3)
d(3,5) = a(3) + a(4)

d(2,5) = a(2) + a(3) + a(4)

These constraints are represented as a matrix equation and solved for a(1),a(2),a(3) and a(4)
using non-linear least squares. However, if maxOffset is set to 2, then the set of equations is

d(1,3) = a(1) + a(2)

d(2,4)
d(3,5)

a(2) + a(3)
a(3) + a(4)

Value

A map object, in the format specified by the qtl-package package. This format is a list of chro-
mosomes, with each entry being a named numeric vector of marker positions.

Examples

data(simulatedFourParentData)

#Estimate recombination fractions

rf <- estimateRF(simulatedFourParentData)

#Assign all markers to one linkage group / chromosome
grouped <- formGroups(rf, groups = 1)

#Estimate map

estimatedMap <- estimateMap(grouped, maxOffset = 10)
#Create object that includes the map

mapped <- new("mpcrossMapped”, grouped, map = estimatedMap)

estimateMapFromImputation
Re-estimate large gaps in a genetic map from IBD genotype imputa-
tions

Description

Re-estimate large gaps in a genetic map from IBD genotype imputations

Usage

estimateMapFromImputation(
mpcrossMapped,
gapSize = 5,
recombinationFractions = c(0:60/600, 11:49/100)

estimateRF 27

Arguments

mpcrossMapped An object of class mpcrossMapped

gapSize The size of the gap to reestimate.

recombinationFractions
The recombination fractions to use for numerical maximum likelihood estima-
tion

Details

For larger gaps in a genetic map, the pairwise recombination fractions are not (by themselves)
useful. An alternative is to estimate the IBD genotypes, and use the imputed IBD genotypes to re-
estimate larger gaps using numerical maximum likelihood. Although the IBD genotypes are based
on an existing genetic map, they may not be strongly affected by a large gap that has been poorly
estimated, as the imputed IBD genotypes represent a consensus across all nearby markers, and also
allow for genotyping errors. As a result, the re-estimated map may be different from the original
map, and potentially more accurate.

Value

An object of class mpcrossMapped with a re-estimated map.

estimateRF Estimate pairwise recombination fractions This function estimates the
recombination fractions between all pairs of markers in the input ob-
ject. The recombination fractions are estimated using numerical max-
imum likelihood, and a grid search. Because every estimate will be
one of the input test values, the estimates can be stored efficiently with
a single byte per estimate.

Description

Estimate pairwise recombination fractions

This function estimates the recombination fractions between all pairs of markers in the input object.
The recombination fractions are estimated using numerical maximum likelihood, and a grid search.
Because every estimate will be one of the input test values, the estimates can be stored efficiently
with a single byte per estimate.

Usage

estimateRF(
object,
recombValues,
lineWeights,
gbLimit = -1,
keepLod = FALSE,
keepLkhd = FALSE,

28

estimateRF

verbose = FALSE,
markerRows = 1:nMarkers(object),

markerColumns

Arguments

object

recombValues

lineWeights

gbLimit

keepLod

keepLkhd

verbose

markerRows

markerColumns

Details

= 1:nMarkers(object)

An object of class mpcross.

a vector of test values to use for the numeric maximum likelihood step. Must
contain 0 and 0.5, and must have less than 255 values in total. The default value
is c(0:20/200,11:50/100).

Values to use to correct for segregation distortion. This parameter should in
general be left unspecified.

The maximum amount of working memory this estimation step should be al-
lowed to use at any one time, in gigabytes. Smaller values may increase the
computation time. A value of -1 indicates no limit.

Set to TRUE to compute the likelihood ratio score statistics for testing whether the
estimate is different from 0.5. Due to memory constraints this should generally
be left as FALSE.

Set to TRUE to compute the maximum value of the likelihood. Due to memory
constraints this should generally be left as FALSE.

Output diagnostic information, such as the amount of memory required, and the
progress of the computation.

Used to estimate only a subset of the full matrix of pairwise recombination frac-
tions.

Used to estimate only a subset of the full matrix of pairwise recombination frac-
tions.

The majority of the options for this function should not be specified by the end user. In particular,
keepLkhd, keepLod and 1ineWeights should not be specified without good reason.

Arguments markerRows and markerColumns can be used to estimate only a subset of the full re-
combination matrix. Reasons for doing this could include

1. Allowing the full matrix to be estimated in multiple steps, with intermediate computations

being saved

2. The matrix of recombination fractions has mostly already been estimated. This can occur
when adding extra markers.

3. Memory limitations. Performing estimation for markers with many alleles takes a large
amount of memory. It is often useful to estimate recombination fractions between all pairs
of biallelic markers, and let other pairs be done using a separate call.

If arguments markerRows and markerColumns are used, only the upper-triangular part of the spec-
ified subset is computed. See the examples for details.

estimateRFSingleDesign 29

Value

An object of class mpcrossRF, which contains the original genetic data, and also estimated recom-
bination fraction data.

Examples

map <- qtl::sim.map(len = 100, n.mar = 11, include.x=FALSE)

f2Pedigree <- f2Pedigree(1000)

cross <- simulateMPCross(map = map, pedigree = f2Pedigree, mapFunction = haldane, seed = 1)
rf <- estimateRF(cross)

#Print the estimated recombination fraction values

rferf@thetal1:11, 1:11]

#Now only estimate recombination fractions between the first 3 markers.
The other estimates will just be marked as NA

rf <- estimateRF(cross, markerRows = 1:3, markerColumns = 1:3)

#Print the estimated recombination fraction values

rferf@thetal1:11, 1:11]

#A more complicated example, where three values are estimated
rf <- estimateRF(cross, markerRows = 1, markerColumns = 1:3)
#Print the estimated recombination fraction values
rf@rf@thetal1:11, 1:11]

#In this case only ONE value is estimated, because only one element of the requested subset
lies in the upper-triangular part - The value on the diagonal.

rf <- estimateRF(cross, markerRows = 3, markerColumns = 1:3)

#Print the estimated recombination fraction values

rf@rf@thetal1:11, 1:11]

estimateRFSingleDesign
Estimate pairwise recombination fractions

Description

Estimate pairwise recombination fractions, similar to estimateRF, but with different performance
requirements in terms of compute time and storage.

Usage

estimateRFSingleDesign(
object,
recombValues,
lineWeights,
keepLod = FALSE,
keepLkhd = FALSE,
verbose = FALSE,

30

markerRows =
markerColumns

Arguments

object

recombValues

lineWeights

keepLod

keepLkhd

verbose

markerRows

markerColumns

Details

existingLocalisationStatistics

1:nMarkers(object),

= 1:nMarkers(object)

An object of class mpcross.

a vector of test values to use for the numeric maximum likelihood step. Must
contain 0 and 0.5, and must have less than 255 values in total. The default value
is c(0:20/200,11:50/100).

Values to use to correct for segregation distortion. This parameter should in
general be left unspecified.

Set to TRUE to compute the likelihood ratio score statistics for testing whether the
estimate is different from 0.5. Due to memory constraints this should generally
be left as FALSE.

Set to TRUE to compute the maximum value of the likelihood. Due to memory
constraints this should generally be left as FALSE.

Output diagnostic information, such as the amount of memory required, and the
progress of the computation.

Used to estimate only a subset of the full matrix of pairwise recombination frac-
tions.

Used to estimate only a subset of the full matrix of pairwise recombination frac-
tions.

Estimate pairwise recombination fractions, similar to estimateRF, but with different performance
requirements in terms of compute time and storage. Specifically, this version is expected to perform
better when there is only a single population.

Value

An object of class mpcrossRF, which contains the original genetic data, and also estimated recom-
bination fraction data.

existinglocalisationStatistics

Localisation statistics for example of callFromMap

Description

This dataset contains the localisation statistics for the example for running callFromMap. This
makes the example fast enough to pass the CRAN check.

expand 31

expand Expand markers contained within object

Description

Expand set of markers within object, adding extra markers with missing observations as necessary.

Usage

expand(mpcross, newMarkers)

Arguments
mpcross The input mpcross object
newMarkers The names of the new markers to add
Details

This function expands the set of markres within an mpcross object. The new set of marker names
must contain all the existing marker names, with any desired extra marker names. Any added mark-
ers will have all observations marked as missing. Any existing non-genetic information (genetic
map, assignment of linkage groups, IBD genotypes, IBD probabilitieS) will be removed.

Value

An object of class mpcross with a larger set of markers.

exportMapToPretzl Export genetic map to Pretzl

Description

Export genetic map to Pretzl

Usage

exportMapToPretzl (inputObject, name, separateChromosomes = FALSE)

Arguments
inputObject The object of class mpcrossMapped containing the genetic map
name If a single JSON object is being exported, the name of the exported map.
separateChromosomes

If TRUE, separate exports will be generated for each chromosome. The name
associated with each chromosome map will contain the chromosome name as a
suffix.

32 f2Pedigree

Details
Convert the genetic map from an object of class mpcrossMapped to the JSON format used by Pretzl.
Pretzl is a web app for visualising and comparing genetic maps.

Value

A list containing JSON, suitable for import into Pretzl.

extralmputationPoints Get out non-marker positions used for IBD genotype imputation

Description

Get out non-marker positions used for IBD genotype imputation

Usage

extralImputationPoints(mpcrossMapped)

Arguments

mpcrossMapped The object from which to get the non-marker positions

Details

Extract non-marker positions used for IBD genotype imputation

Value

A vector of genetic position names.

f2Pedigree Generate an F2 pedigree which starts from inbred founders

Description

Generate an F2 pedigree which starts from inbred founders

Usage

f2Pedigree(populationSize)

Arguments

populationSize The size of the generated population.

finalNames 33

Value

An object of class detailedPedigree representing the experimental design, suitable for simulation
using simulateMPCross.

Examples

pedigree <- f2Pedigree(1000)
#This pedigree is automatically marked as involving finite generations of selfing.

selfing(pedigree)
finalNames Names of genetic lines Return the names of the genetic lines If the
mpcross object contains a single experiment a vector of names of ge-
netic lines is returned. The names of the founding lines for the popula-
tion are excluded. If an mpcross object contains multiple experiments
a list of vectors of names is returned.
Description

Names of genetic lines
Return the names of the genetic lines

If the mpcross object contains a single experiment a vector of names of genetic lines is returned.
The names of the founding lines for the population are excluded. If an mpcross object contains
multiple experiments a list of vectors of names is returned.

Usage
finalNames(object)

S4 method for signature 'mpcross'
finalNames(object)

S4 method for signature 'geneticData'

finalNames(object)
Arguments

object The mpcross object from which to extract the names of the genetic lines
Value

The names of the genetic lines in the final population.

34

fixedNumberOfFounderAlleles

finals Genetic data for final lines Return the genetic data matrix for the fi-
nal lines If the mpcross object contains a single experiment a matrix
is returned, with rows corresponding to genotyped lines and columns
corresponding to markers. The founding lines of the population are
excluded from this matrix. If an mpcross object contains multiple ex-
periments a list of such matrices is returned, one for each experiment.

Description

Genetic data for final lines
Return the genetic data matrix for the final lines

If the mpcross object contains a single experiment a matrix is returned, with rows corresponding
to genotyped lines and columns corresponding to markers. The founding lines of the population
are excluded from this matrix. If an mpcross object contains multiple experiments a list of such
matrices is returned, one for each experiment.

Usage

finals(object)

S4 method for signature 'mpcross'
finals(object)

S4 method for signature 'geneticData'
finals(object)

Arguments

object The mpcross object from which to extract the genetic data matrix

Value

An integer matrix with rows corresponding to genotyped lines and columns corresponding to mark-
ers.

fixedNumberOfFounderAlleles
Convert fully informative experiment to one with a fixed number of
alleles per marker

Description

Convert a fully informative experiment to one with a fixed number of alleles per marker

flatImputationMapNames 35

Usage

fixedNumberOfFounderAlleles(alleles)

Arguments

alleles Number of alleles for each marker

Details

By default, simulated data is fully informative, so every founder carries its own allele, and all
heterozygotes are distinguishable.

This function takes in a fully informative experiment, and changes every marker so that it has a
fixed number of founder alleles. Heterozygotes are also changed, so every combination of different
alleles is still distinguishable.

Value

An object of internal class fixedNumberOfFounderAlleles suitable for application to an object of
class mpcross using the addition operation.

Examples

data(simulatedFourParentData)

founders(simulatedFourParentData)[, 1:10]

altered <- simulatedFourParentData + fixedNumberOfFounderAlleles(3)
founders(altered)[, 1:10]

flatImputationMapNames
Get names of positions for IBD genotype imputation

Description

Get the names of all positions at which IBD genotype imputation has already been performed
Usage
flatImputationMapNames(object, ...)

S4 method for signature 'imputed'
flatImputationMapNames(object, ...)

S4 method for signature 'geneticData'
flatImputationMapNames(object, ...)

S4 method for signature 'mpcrossMapped'
flatImputationMapNames(object, ...)

36 formGroups

Arguments
object The object from which to get the names of positions
Extra parameters, currently only "experiment” is supported.
Details

Get the names of all positions at which IBD genotype imputation has already been performed

Value

The names of all positions at which IBD genotype imputation has already been performed.

formGroups Form linkage groups

Description

Group markers into linkage groups using hierarchical clustering.

Usage
formGroups(
mpcrosskF,
groups,
clusterBy = "theta"”,
method = "average”,
preCluster = FALSE
)
Arguments
mpcrossRF An object of class mpcrossRF.
groups The number of groups to form
clusterBy The matrix to use for clustering. The three choices are theta (recombination
fractions), lod (log-odds ratio) or combined (a combination of both).
method The method to use for hierarchical cluster. Choices are average, complete and
single.
preCluster Before clustering is performed, should we form groups of markers which are

completely linked?

founderNames 37

Details

This function groups markers into the specified number of linkage groups, using hierarchical clus-
tering. This can be done using three different dissimilarity matrices, specified by the clusterBy
argument. If "theta" is specified, then the matrix of recombination fractions is used. If "lod"
is specified, then a matrix of likelihood ratio test statistics is used. The hypothesis being tested is
whether the recombination fraction is 0.5 (no linkage). If "combined” is specified, then a combina-
tion of both previous approaches is used. We recommend the default value of "theta”.

The linkage method for hierachical clustering is specified by the method argument; acceptable

n on

values are "average"”, "complete” and "single".

Argument preCluster determines whether the code combines markers that are completely linked,
before performing hierarchical clustering. This can lead to speed-ups in clustering truly huge
datasets.

Value

An object of class mpcrossLG, containing all the information in the input object and also information
about linkage groups.

founderNames Names of founding genetic lines Return the names of the founding ge-
netic lines If the mpcross object contains a single experiment a vector
of names of genetic lines is returned. If an mpcross object contains
multiple experiments a list of vectors of names is returned.

Description

Names of founding genetic lines
Return the names of the founding genetic lines

If the mpcross object contains a single experiment a vector of names of genetic lines is returned. If
an mpcross object contains multiple experiments a list of vectors of names is returned.

Usage
founderNames (object)

S4 method for signature 'mpcross’
founderNames(object)

S4 method for signature 'geneticData'

founderNames (object)
Arguments
object The mpcross object from which to extract the names of the founding genetic

lines

38 founders

Value

A vector of names of genetic lines, or a list of such vectors, in the case of multiple experiments.

founders Genetic data for founding lines Return the genetic data matrix for the
founding lines If the mpcross object contains a single experiment a
matrix is returned, with rows corresponding to founding lines and
columns corresponding to markers. If an mpcross object contains
multiple experiments a list of such matrices is returned, one for each
experiment.

Description

Genetic data for founding lines
Return the genetic data matrix for the founding lines
If the mpcross object contains a single experiment a matrix is returned, with rows corresponding
to founding lines and columns corresponding to markers. If an mpcross object contains multiple
experiments a list of such matrices is returned, one for each experiment.

Usage

founders(object)

S4 method for signature 'mpcross'
founders(object)

S4 method for signature 'geneticData'

founders(object)
Arguments
object The mpcross object from which to extract the genetic data matrix of the found-
ing lines
Value

An integer matrix, with rows corresponding to founding lines and columns corresponding to mark-
ers, or a list of such matrices in the case of multiple experiments.

fourParentPedigreeRandomFunnels 39

fourParentPedigreeRandomFunnels
Generate a four-parent pedigree

Description

Generate a four-parent pedigree starting from inbred founders, using a random funnel

Usage

fourParentPedigreeRandomFunnels(
initialPopulationSize,
selfingGenerations,
nSeeds = 1L,
intercrossingGenerations

Arguments

initialPopulationSize
The number of F1 lines generated

selfingGenerations
The number of selfing generations at the end of the pedigree

nSeeds The number of progeny taken from each intercrossing line, or from each F1 if no
intercrossing is specified. These lines are then selfed according to selfingGener-
ations

intercrossingGenerations
The number of generations of random mating performed from the F1 generation.
Population size is maintained at that specified by initialPopulationSize

Value

An object of class detailedPedigree representing the experimental design, suitable for simulation
using simulateMPCross.

See Also

fourParentPedigreeSingleFunnel, twoParentPedigree

40 fourParentPedigreeSingleFunnel

fourParentPedigreeSingleFunnel
Generate a four-parent pedigree

Description

Generate a four-parent pedigree starting from inbred founders, using a single funnel

Usage

fourParentPedigreeSingleFunnel(
initialPopulationSize,
selfingGenerations,
nSeeds = 1L,
intercrossingGenerations

Arguments

initialPopulationSize
The number of F1 lines generated

selfingGenerations
The number of selfing generations at the end of the pedigree

nSeeds The number of progeny taken from each intercrossing line, or from each F1 if no
intercrossing is specified. These lines are then selfed according to selfingGener-
ations

intercrossingGenerations
The number of generations of intercrossing, after each F2 line is generated.

Details

Note that unlike fourParentPedigreeRandomFunnels, there is no intercrossing allowed in the
single funnel case because the relevant haplotype probabilities assume randomly chosen funnels

Value
An object of class detailedPedigree representing the experimental design, suitable for simulation
using simulateMPCross.

See Also

fourParentPedigreeRandomFunnels, twoParentPedigree

fromMpMap 41

fromMpMap Convert from mpMap format to mpMap?2 format

Description

Convert an object from mpMap format into mpMap2 format

Usage

fromMpMap(mpcross, selfing = "infinite"”, fixCodingErrors = FALSE)

Arguments
mpcross Object to convert
selfing Number of generations of selfing to put in the pedigree, for the converted object.
Must be "finite” or "infinite”.
fixCodingErrors
Should we attempt to fix coding errors, by replacing invalid values by NA?
Defaults to FALSE.
Details

Convert an object from mpMap format (the predecessor to mpMap2) into mpMap2 format. It is
unlikely that this function will ever need to be used.

Value

An object of class mpcross or mpcrossMapped, depending on the data contained in the input object.

generateGridPositions Specify an equally spaced grid of genetic positions

Description

Specify an equally spaced grid of genetic positions

Usage

generateGridPositions(spacing)

Arguments

spacing The spacing of the genetic positions, in cM.

42 generatelntervalMidPoints

Details

Some functions, such as imputeFounders and computeGenotypeProbabilities, take in a set of
genetic positions as one of the inputs. This function is an easy way to specify an equally spaced
grid of positions.

Note that the return value is itself a function, which is applied internally by imputeFounders or
computeGenotypeProbabilities to an object of class mpcrossMapped.

Value

A function which can be applied to an object of class mpcrossMapped by imputeFounders or
computeGenotypeProbabilities.

Examples

data(simulatedFourParentData)

#Create object that includes the correct map

mapped <- new("mpcrossMapped”, simulatedFourParentData, map = simulatedFourParentMap)
#Estimate IBD genotypes at all the markers, and marker midpoints

imputed <- imputeFounders(mapped, errorProb = 0.02,

extraPositions = generateGridPositions(1))

generatelntervalMidPoints
Specify interval midpoints

Description

Specify interval midpoints

Usage

generatelntervalMidPoints(object)

Arguments

object The object of class mpcrossMapped from which to take the interval midpoints.

Details

Some functions, such as imputeFounders and computeGenotypeProbabilities, take in a set of
genetic positions as one of the inputs. This function is an easy way to specify the midpoint of every
marker interval.

Note that you don’t have to explicitly evaluate this function, it can be passed in directly (see exam-
ples).

geneticData-class 43

Value

A function which can be applied to an object of class mpcrossMapped by imputeFounders or
computeGenotypeProbabilities.

Examples

data(simulatedFourParentData)

#Create object that includes the correct map

mapped <- new("mpcrossMapped”, simulatedFourParentData, map = simulatedFourParentMap)
#Estimate IBD genotypes at all the markers, and marker midpoints

imputed <- imputeFounders(mapped, errorProb = 0.02,

extraPositions = generatelntervalMidPoints(mapped))

#Alternatively we can explicitly evaluate the function. This is identical to above.
imputed <- imputeFounders(mapped, errorProb = 0.02,

extraPositions = generatelntervalMidPoints)

geneticData-class Object containing the genetic data for a population

Description

Object containing the genetic data for a population

Details

This object contians the genetic data for a population. Required data includes the genetic data for
the founding lines of the poulation, the final lines of the population, information about the enoding
of heterozygotes, and the pedigree used to generate the final genetic lines from the founding genetic
line.

Optional data includes IBD genotype imputations, a data.frame of phenotypes, and IBD genotype
probabilities.

This class has extensive validity checking, to ensure that all the different inputs are compatible and
meet the requirements. If an error is found, an informative error message should be produced.

Slots

founders The genetic data for the founding lines of the population. Must be an integer matrix,
where rows correspond to genetic lines and columns correspond to genetic markers.

finals The genetic data for the final lines of the population. Must be an integer matrix, where
rows correspond to genetic lines and columns correspond to genetic markers.

hetData Information about the encoding of marker heterozygotes.

pedigree Object of class pedigree with information about how the final genetic lines are gener-
ated from the founding lines.

imputed Optional data about imputed IBD genotypes. Can be generated using imputeFounders,
assuming there is a genetic map available.

44 getAllFunnels

probabilities Optional data about IBD genotype probabilities. Can be generated using computeGenotypeProbabilities
assuming there is a genetic map available.

pheno Optional

getAllFunnels Get funnels

Description

Get the order of the founding lines, as they contribute to each line in the final population

Usage

getAllFunnels(cross, standardised = FALSE)

Arguments

cross The object of class mpcross containing the pedigree of interest

standardised Should the output funnels be standardised?

Details

In multi-parent experimental designs, the founding lines of the population are combined together
through initial mixing generations. For experiments without further intercrossing generations, the
order in which these mixing crosses occur influences the genotypes of the final lines. It can be
important to examine or visualise these orders, which are known as funnels.

This function returns a matrix, where each row corresponds to a genetic line in the final population,
and each column corresponds to a position in the mixing step. So if a row of the returned matrix
contains the values 4, 1, 2, 3, then the pedigee that generated the first individual in the experiment
started by crossing founders 4 and 1 to give individual 41, and 2 and 3 to give individual 23. Then
individuals 41 and 23 are crossed to generate individual 4123, which after inbreeding results in the
first final genetic line.

If sex is considered to be unimportant, then many orderings are equivalent. For example, the order-
ing 4, 1, 2, 3 of the initial founders is equivalent to 1, 4, 2, 3. In this case each funnel can be put
into a standardised ordering, by setting standardised to FALSE.

Note that if there are generations of random interbreeding in the population (often referred to as
maintenance generations), then there is no "funnel" associated with a genetic line, and values of NA
are returned. In that case, see getAl11FunnelsIncAIC.

Note that funnels for all pedigrees simulated by mpMap?2 are already standardised. This will not
generally be the case for realy experiments.
Value

An integer matrix with rows representing genetic lines, and columns representing positions within
the funnel.

getAllFunnelsIncAIC 45

Examples

data(simulatedFourParentData)

#Funnels used to generate the first ten lines

#Because this is simulated data, they are already standardised,

#' with the first founder in the first position in the mixing step.
getAllFunnels(simulatedFourParentData)[1:10,]

getAllFunnelsIncAIC Get all funnels, including AIC lines

Description

Get every order of the founding lines, which makes a contribution to the final population

Usage
getAllFunnelsIncAIC(cross, standardised = FALSE)

Arguments

cross The object of class mpcross containing the pedigree of interest

standardised Should the output funnels be standardised?

Details

This function is similar to getAll1Funnels, but more useful for populations with maintenance (or
AIC) generations. It returns a list of all the mixing orders in the initial generations, which make a
genetic contribution to the final population. Unlike for getAl1lFunnels, rows of the returned matrix
DO NOT refer to specific genetic lines.

Value

Matrix of mixing orders that contribute to the final popluation. Rows DO NOT refer to specific
genetic lines.

Examples

set.seed(1)

pedigree <- fourParentPedigreeRandomFunnels(initialPopulationSize = 1000,
selfingGenerations = 6, intercrossingGenerations = 1)

#Assume infinite generations of selfing in subsequent analysis

selfing(pedigree) <- "infinite"

#Generate random map

map <- qtl::sim.map(len = 100, n.mar = 101, anchor.tel = TRUE, include.x = FALSE)

#Simulate data

cross <- simulateMPCross(map = map, pedigree = pedigree, mapFunction = haldane, seed = 1L)

#Because we have maintenance in this experiment, we can't get out the funnels per genetic line

funnels <- getAllFunnels(cross)

46 getChromosomes

dim(funnels)

funnels[1:10,]

#But we can get out a list of all the funnels that go into the experiment.
funnels <- getAllFunnelsIncAIC(cross)

dim(funnels)

funnels[1:10,]

getChromosomes Get chromosome assignment per marker

Description

Get chromosome assignment per marker from an mpcross object.

Usage

getChromosomes (mpcrossMapped, markers)

Arguments

mpcrossMapped The object containing the map of interest

markers The markers for which we want the chromosomes

Details

Extract a character vector, with names corresponding to markers, and values corresponding to the
chromosome on which the named marker is located.

Value

A character vector, with names corresponding to markers, and values corresponding to the chromo-
some on which the named marker is located.

Examples

map <- qtl::sim.map()

pedigree <- f2Pedigree(1000)

cross <- simulateMPCross(map = map, pedigree = pedigree, mapFunction = haldane, seed = 1)
mappedCross <- mpcrossMapped(cross = cross, map = map)

chromosomeAssignment <- getChromosomes(mappedCross, markers(mappedCross))
chromosomeAssignment

getlntercrossingAndSelfingGenerations 47

getIntercrossingAndSelfingGenerations
Identify number of generations of intercrossing and selfing, per genetic
line

Description

Identify number of generations of intercrossing and selfing, per genetic line

Usage

getIntercrossingAndSelfingGenerations(cross)

Arguments

cross The mpcross object containing the pedigree to be analysed.

Details

Many structured populations consist of a number of generations of mixing, followed by a number
of generations of intercrossing, followed by inbreeding. This function identifies the number of
generations of selfing and intercrossing, for each genetic line, in the case of 4-way, 8-way or 16-
way multi-parent design.

Value

An integer matrix with two columns, giving the number of generations of selfing and intercrossing,
for each genetic line. Or in the case of multiple experiments contained within a single object, a list
of such matrices.

getPositions Get positions of genetic markers

Description

Get positions of genetic markers, on their respective chromosomes

Usage

getPositions(mpcrossMapped, markers)

Arguments

mpcrossMapped The mpcross object containing the map of interest

markers The markers for which to get the positions

48 hetData

Details

Get positions of genetic markers in cM, on their respective chromosomes

Value

A named vector of numbers, with names corresponding to the selected genetic markers, and values
corresponding to genetic positions.

Examples

map <- qtl::sim.map()

pedigree <- f2Pedigree(1000)

cross <- simulateMPCross(map = map, pedigree = pedigree, mapFunction = haldane, seed = 1)
mappedCross <- mpcrossMapped(cross = cross, map = map)

getPositions(mappedCross, c("D13M3", "DXM1", "DXM3"))

hetData Get the encoding of marker heterozygotes

Description

Get the encoding of marker heterozygotes

Usage

hetData(object, marker)

S4 method for signature 'mpcross'’
hetData(object, marker)

S4 method for signature 'geneticData'
hetData(object, marker)

Arguments
object The object from which to extract the encoding data
marker The marker of interest. If this is missing, heterozygote encoding data is returned
for all markers.
Details

Get the encoding of markers heterozygotes, either for all markers, or a specific marker.

Value

Heterozygote encoding data, for either a specific marker or all markers.

hetsForSNPMarkers 49

hetsForSNPMarkers Create heterozygote encodings for SNP markers

Description

Create encoding which assumes that the single non-homozygote value for a SNP marker is the
heterozygote

Usage

hetsForSNPMarkers(founders, finals, pedigree)

Arguments
founders Genetic data for the founding lines of the population
finals Genetic data for the final genotyped lines of the population
pedigree Pedigree for the population. Unused by this particular function.
Details

This function takes in genotype data for the founding lines and the final poulation. It returns an
encoding for hetorozygotes for all markers, where multiallelic markers are assumed to have no
heterozygotes. For biallelic markers with three observed alleles in the final population, the extra
allele is assumed to be the heterozygote.

Value

An object of class hetData, which contains encodings for the marker heterozygotes and the (unique)
marker heterozygote

imputationData Get out the IBD genotype imputation data

Description

Get out the IBD genotype imputation data

50 imputationKey
Usage
imputationData(object, ...)

S4 method for signature 'imputed'
imputationData(object, ...)

S4 method for signature 'geneticData'
imputationData(object, ...)

S4 method for signature 'mpcrossMapped’

imputationData(object, ...)
Arguments
object The object from which to extract the IBD genotype imputation data

Extra parameters. Currently only "experiment” is supported, letting the user
extract the imputation data for a specific experiment.

Details

Extract the IBD genotype imputation data. The data takes the form of a matrix of values, with
rows corresponding to genetic lines and columns corresponding to genetic positions. The genetic
positions may include non-marker positions, so use imputationMap to find out the chromosome
and position for every marker.

Each value in the matrix represents the predicted genotype for that genetic line, at that position. In
the case of completely inbred experiments, each value in the matrix represents the founders from
which that allele is believed to be derived. In the case of experiments with residual heterozygosity,
the possible genotypes include heterozygotes, and the interpretation of the values in the matrix is
more complicated. Function imputationKey gives information about how the values in the matrix
correspond to actual genotypes.

Value

The IBD genotype imputation data.

imputationKey Get out key for IBD genotype imputations

Description

Get out key for IBD genotype imputations

imputationKey 51
Usage
imputationKey(object, ...)

S4 method for signature 'imputed'
imputationKey(object, ...)

S4 method for signature 'geneticData'
imputationKey(object, ...)

S4 method for signature 'mpcrossMapped'

imputationKey(object, ...)
Arguments
object The object from which to get the imputation key.

Extra parameters. Currently only "experiment” is supported, letting the user
extract the imputation map for a specific experiment.

Details

When IBD genotype imputation is performed using a population with finite generations of selfing,
some of the imputed genotypes will be heterozygotes. However, the imputation code only returns a
single value per line per genetic position. This key translates that value to a pair of founder alleles.

The key is a matrix with three columns. The first two columns represent founder alleles, and the
third column gives the encoding for that particular pair of founder alleles.

Value

Key giving the encoding of heterozygotes, in the imputed IBD genotype data.

Examples

pedigree <- eightParentPedigreeRandomFunnels(initialPopulationSize = 100,
selfingGenerations = 2, nSeeds = 1, intercrossingGenerations =)
selfing(pedigree) <- "finite"

#Generate map

map <- qtl::sim.map()

#Simulate data

cross <- simulateMPCross(map = map, pedigree = pedigree, mapFunction = haldane)
crossSNP <- cross + multiparentSNP(keepHets = TRUE)

crossMapped <- mpcrossMapped(crossSNP, map = map)

imputed <- imputeFounders(crossMapped, errorProb = 0.01)

#An imputed IBD genotype of 1 indicates a homozygote for founder 1

#An imputed IBD genotype of 9 indicates a heterozygote for founders 1 and 2
#etc

head (imputationKey(imputed))

52

impute
imputationMap Get map used for IBD genotype imputation
Description
Get map used for IBD genotype imputation
Usage
imputationMap(object, ...)
S4 method for signature 'imputed'
imputationMap(object, ...)
S4 method for signature 'geneticData'
imputationMap(object, ...)
S4 method for signature 'mpcrossMapped'
imputationMap(object, ...)
Arguments
object The object from which to extract the IBD genotype imputation positions.

Extra parameters. Currently only "experiment” is supported, letting the user
extract the imputation map for a specific experiment.

Details
Get the map of positions used for IBD genotype imputation. This is necessary because the points at

which IBD genotype imputation has been performed may include non-marker points. See imputeFounders
for further details.

Value

The map of positions used for IBD genotype imputation.

impute Impute missing recombination fraction estimates

Description

Impute missing recombination fraction estimates

imputeFounders 53

Usage

impute(
mpcrossLG,
verbose = FALSE,
allErrors = FALSE,
extractErrorsFunction = function(e) e

)
Arguments
mpcrossLG An object of class mpcrossLG, which contains estimated pairwise recombination
fractions
verbose Should more verbose output be generated?
allErrors If there is an error, should we immediately return, or should we continue, and

report all errors?

extractErrorsFunction
Error handling function. If there are errors and allErrors is TRUE, this function
will be called with a matrix indicating which estimates could not be imputed.

Details

Recombination fractions between every pair of markers are estimated using numerical maximum
likelihood. Unfortunately the likelihood is flat in some cases, so an estimate cannot be made. This
later causes problems when trying to use estimated recombination fractions to order the markers,
because a complete matrix of estimates is required. The solution is to impute the missing estimates
using related estimates. For example, the recombination fraction between markers A and C may not
be directly estimatable. However, there may be a marker B known to be tightly linked to A, which
has a known recombination fraction with C. The estimated recombination fraction between B and
C can be taken to be an estimate of the recombination fraction between A and C.

This function imputes values in the estimated recombination fraction matrix, to return a complete
matrix. If there is a value that cannot be imputed, an error is triggered. Input allErrors controls
whether the function will stop after encountering a single error, or continue and report all errors. If
all errors are being reported, the optional function extractErrorsFunction is called with infor-
mation about which missing estimates could not be imputed.

Value

An object of class mpcrossLG, containing all the information in the input object, but also an imputed
copy of the estimated recombination fraction data.

imputeFounders Impute underlying genotypes

Description

Impute the most likely sequence of underlying genotypes, using the Viterbi algorithm

54 imputeFounders

Usage

imputeFounders(
mpcrossMapped,
homozygoteMissingProb =
heterozygoteMissingProb
errorProb = 0,
extraPositions = list(),
showProgress = FALSE

1,
:']7

Arguments

mpcrossMapped An object containing genetic data and a genetic map
homozygoteMissingProb

The probability with which homozygous genotypes are observed as missing.
heterozygoteMissingProb

The probability with which heterozygous genotypes are observed as missing.

errorProb The probability of a genotyping error.
extraPositions Extra genetic positions at which to perform imputation.

showProgress If this paramater is TRUE, a progress bar is produced.

Value

An object of class mpcrossMapped, containing all the information in the input object, and also in-
cluding imputed IBD genotypes. This function uses the Viterbi algorithm to calculate the most
likely sequence of underlying genotypes, given observed genetic data. The parameters for the algo-
rithm are a homozygous mising rate, a heterozygous missing rate, and an error probability.

The two missing rates are intended to allow long strings of missing values to be imputed as het-
erozygotes, in the case that heterozygous genotypes are observed as missing much more often than
homozygotes. Only the ratio of these two parameters is relevant, which is why the default values of
1 are acceptable. These default values really mean that the missing rates are equal.

The parameter extraPositions specifies the genetic positions at which imputation should be per-

formed. This can be either a list, or a function such as generateGridPositions generateIntervalMidPoints.
If a function is input, this function is applied to the input genetic map, to determine the extra ge-

netic locations. If a list is input, the names of the list entries should be chromosome names, and the

entry for each chromosome should be a named vector. We give an example of the list format in the

examples section at the bottom of this page.

One subtlety when using extra genetic positions is that specifying such positions can change the
results of the imputation process. This is undesirable, but does not represent a bug in the implemen-
tation. The Hidden Markov Model (HMM) used to model the genotypes is not exact, although it is
a highly accurate approximation. As it is an approximation, it fails to satisfy the condition

PSth — PtPS

This property (a stochastic semigroup property) fails to hold because the HMM is only an approx-
imation. As a result, adding extra genetic positions can change the results of the imputation. We

infiniteSelfing 55

emphasise that this is possible only when there are number of underlying sequences which are al-
most equally likely, and even then this problem occurs rarely. However, this problem becomes
obvious when large simulation studies are performed.

infiniteSelfing Create allele encoding corresponding to infinite generations of selfing

Description

Create allele encoding corresponding to infinite generations of selfing

Usage

infiniteSelfing(founders, finals, pedigree)

Arguments
founders The genetic data for the founding lines, which are assumed to be inbred
finals The genetic data for the lines genotyped at the end of the experiment.
pedigree The pedigree for the experiment

Details

In many experiments (particularly those that are significantly inbred), only marker homozygotes
are observed, which means that the relationship between marker genotypes and marker alleles is
particularly simple. In such cases, generally a marker genotype of some value (say 0) indicates that
the individual is homozygous for marker allele 0.

This function takes in genetic data for the founding lines, genetic data for the final population, and
the pedigree. It returns an encoding for marker genotypes where every genotype is homozygous for
the marker allele with the same value.

Value

An object of class hetData, which encodes only the marker homozygotes.

Examples

map <- qtl::sim.map()

pedigree <- f2Pedigree(1000)

cross <- simulateMPCross(map = map, pedigree = pedigree, mapFunction = haldane, seed = 1)
#Initially the object contains markers that are fully informative.

#The final genetic data contains values 1, 2 and 3, while the genetic data for the founding
lines contains only values 1 and 2.

#A value of 1 or 2 in the final genetic data indicates a homozygote for the

corresponding marker allele.

#A value of 3 in the final genetic data indicates a heterozygote for the marker allele.
#Information about this encoding is stored in the hetData slot.

hetData(cross, "DIM1")

56

initialize,canSkip Validity-method

cross <- cross + biparentalDominant()

#Now we have converted all markers to dominant.

#The final genetic data contains values 1 and 2, and the genetic data for the founding
lines contains only values 1 and 2.

#A value of 2 indicates a homozygote for the corresponding marker allele, OR a

marker heterozygote.

hetData(cross, "DIM1")

#But under infinite generations of selfing, the encoding is simpler.

simpleEncoding <- infiniteSelfing(founders = founders(cross), finals = finals(cross),
pedigree = pedigree)

simpleEncoding[["D1M1"]]

initialize,canSkipValidity-method
Initialize method which can skip the validity check

Description

This is an initialization method with an optional skipValidity argument. If this argument is set
to TRUE, the validity check is skipped. This is used by some internal functions within the package,
as the validity check can be slow, and internal code is (presumably) guaranteed to produce valid
objects.

Usage

S4 method for signature 'canSkipValidity'
initialize(.Object, ...)

S4 method for signature 'geneticDatalist'

initialize(.Object, ...)
Arguments
.Object the object to initialize

Other arguments. Only skipValidity is used.

Details

Initialize method which can skip the validity check

JjitterMap 57

jitterMap Add noise to marker positions

Description

Add noise to marker positions, so that no markers are co-located

Usage

jitterMap(map)

Arguments

map The map to add noise to.

Details

Add noise to marker positions, so that no markers are located at the same position on a single
chromosome. This was necessary before there was an error model implemented in the IBD genotype
imputation and IBD genotype probabliity code. There is little reason to use this function now.

Value

A copy of the input map, with noise added to genetic positions.

lineNames Get or set the genetic line names

Description

Get or set the genetic line names associated with a pedigree or mpcross object.

Usage

lineNames(object)

Arguments

object The object from which to extract the line names

Details

These functions get or set the names of the genetic lines associated with a pedigree or mpcross
object.

Value

Vector of genetic line names

58

lineNames<-

lineNames,mpcross-method
Get the genetic line names

Description

Get the genetic line names of a population

Usage

S4 method for signature 'mpcross'’
lineNames(object)

S4 method for signature 'geneticData'

lineNames(object)
Arguments

object The object from which to extract the line names
Details

These functions get the names of the genetic lines associated with an mpcross object.

Value

Vector of genetic line names

lineNames<- Get or set the genetic line names of a pedigree

Description

Get or set the genetic line names of a pedigree

Usage

lineNames(object) <- value

S4 method for signature 'pedigree'
lineNames(object)

S4 replacement method for signature 'detailedPedigree’
lineNames(object) <- value

S4 replacement method for signature 'pedigree'’
lineNames(object) <- value

linesByNames 59

Arguments
object The object for which to get or set the line names
value The vector of new genetic line names

Details

These functions get or set the names of the genetic lines associated with a pedigree.

Value

None

linesByNames Extract pedigree by names

Description

Extract part of pedigree in human-readable format

Usage

linesByNames(pedigree, names)

Arguments

pedigree An object of class pedigree

names The names of the lines for which to extract the pedigree
Details

Pedigrees in mpMap?2 are stored using indices for maternal and paternal lines, which is not a human-
readable format. This function takes in a pedigree, and returns a human-readable subset.

Value

A matrix giving the genetic lines and their parents, by line name.

60 listCodingErrors

listCodingErrors Generate a list of encoding errors

Description

Generate a list of encoding errors from genetic data

Usage

listCodingErrors(founders, finals, hetData)

Arguments
founders Genetic data for the founding lines of the population
finals Genetic data for the final lines of the population
hetData Data about the encoding of marker heterozygotes
Details

Given genetic data matrices for the founding lines and the final lines of a population, and infor-
mation about the encoding of marker heterozygotes, generate a list of errors. These errors include
observed values which don’t correspond to a known combination of marker alleles, missing values
in the genetic data for the founding lines, etc.

The results of this function allow human-readable lists of errors to be generated, or errors to be
automatically fixed (if the errors are sufficiently simple).

Value

List with the following entries:

finals Markers with an invalid observed value.

null Markers with a missing value for a founding line, for which the are observations for at least
one genetic line.

missingHetData Markers for which a homozygote did not have an encoding.

invalidHetData Markers for which the heterozygote encoding data was invalid.

listCodingErrorsinfiniteSelfing 61

listCodingErrorsInfiniteSelfing
Generate a list of encoding errors assuming infinite selfing

Description

Generate a list of encoding errors assuming infinite selfing

Usage

listCodingErrorsInfiniteSelfing(founders, finals)

Arguments
founders Genetic data for the founding lines of the population
finals Genetic data for the final lines of the population
Details

Generate a list of encoding errors assuming infinite selfing. Given the infinite selfing assumption,
no information about heterozygote encoding is required.

Value

List with the following entries:

finals Markers with an invalid observed value.

null Markers with a missing value for a founding line, for which the are observations for at least
one genetic line.

missingHetData Markers for which a homozygote did not have an encoding.

invalidHetData Markers for which the heterozygote encoding data was invalid.

mapFunctions Map functions

Description

Functions used to convert between recombination fractions and centiMorgan distances.

62 markers

Usage

haldaneToRf (x)
haldane(x)

rfToHaldane(r)
rfToKosambi(r)
kosambiToRf (x)

kosambi (x)

Arguments

X centiMorgan distance

r recombination fraction

Value

Recombination fraction.
Genetic distance in cM.
Genetic distance in cM.
Recombination fraction.

Recombination fraction.

Functions

¢ haldaneToRf: Convert from Haldane distance to recombination fraction
e haldane: Convert from Haldane distance to recombination fraction

e rfToHaldane: Convert from recombination fraction to Haldane distance
* rfToKosambi: Convert from recombination fraction to Kosambi distance
* kosambiToRf: Convert from Kosambi distance to recombination fraction

e kosambi: Convert from recombination fraction to Kosambi distance

markers Genotyped markers Return the names of the genotyped markers. If
an mpcross object contains multiple experiments, all experiments are
required to have the same markers. So a single vector of marker names
is returned, in all cases.

mpcross 63

Description

Genotyped markers
Return the names of the genotyped markers.

If an mpcross object contains multiple experiments, all experiments are required to have the same
markers. So a single vector of marker names is returned, in all cases.
Usage

markers(object)

S4 method for signature 'mpcross'
markers(object)

S4 method for signature 'geneticData'
markers(object)

S4 method for signature 'rf'
markers(object)

S4 method for signature 'lg
markers(object)

S4 method for signature 'hetData'
markers(object)

Arguments

object The mpcross object from which to extract the marker names

Value

The names of the genetic markers.

mpCross Create object of class mpcross

Description

Create object of class mpcross

Usage

mpcross(
founders,
finals,
pedigree,

64

mpcross-class

hetData = infiniteSelfing,
fixCodingErrors = FALSE

)
Arguments
founders The genetic data for the founding lines of the population, represented as an
integer matrix.
finals The genetic data for the final lines of the population, represented as an integer
matrix.
pedigree An object of class pedigree
hetData Information about how marker heterozygotes have been encoded. Can be an ob-
ject of class hetData, or a function generating such an object from the previous
three inputs.
fixCodingErrors
Should we automatically fix data errors, by changing invalid values to missing?
Details

This function constructs an object of class mpcross representing a multi-parent population. It takes
in genetic data about the founding lines and final population line, a pedigree, and information about
how marker heterozygotes have been encoded.

Parameter founders is the genetic data about the founding lines of the population. It must be an
integer matrix, with rows representing genetic lines, and columns representing genetic markers.
Parameter finals is a similar matrix, representing data for the final genetic lines in the population.

Parameter pedigree stores information about how the final lines in the population were generated
from the founding lines.

Parameter hetDat must be an object of class hetData containing information about how marker
heterozygotes have been encoded, OR a function which generates such an object. The function
must take as arguments founders,finals and pedigree. See infiniteSelfing for an example
of such a function.

Value

An object of class mpcross, constructed from the arguments.

mpcross-class A collection of multi-parent populations without a genetic map

Description

A collection of multi-parent populations without a genetic map

mpcrossMapped 65

Details

An object of class mpcross contains data about one or more multi-parent populations, without a
genetic map. As there is no genetic map, there is no information about IBD imputed genotypes or
IBD genotype probabilities. There is also no information about estimated recombination fractions.

A mpcross object must contain (at a minimum) genetic data about the founding lines of the popula-
tion, genetic lines about the final lines of the population, a pedigree with information about how the
final lines were generated from the founding lines, and information about how heterozygotes have
been encoded. See geneticData-class for further information. See mpcross for the constructor
function.

Slots

geneticData A list of objects of class geneticData-class, each representing a population.

mpcrossMapped Create object of class mpcrossMapped

Description

Create object of class mpcrossMapped

Usage

mpcrossMapped(cross, map, rf = NULL)

Arguments

cross An object of class mpcross

map A genetic map, formatted as in the qtl package.

rf Optional recombination fraction data. Leave as NULL if there is no such data.
Details

This function constructs an object of class mpcrossMapped representing a multi-parent population
with a map. It takes in an object of class mpcross, a genetic map, and optional recombination
fraction data.

Value

An object of class mpcrossMapped, constructed from the arguments.

66 mpcrossRF-class

mpcrossMapped-class A collection of multi-parent populations with a genetic map

Description

A collection of multi-parent populations with a genetic map

Details

An object of class mpcrossMapped contains genetic data for one or more populations, and a genetic
map. It might also contain data about the recombination fractions between markers (or it might
not).

Slots

map The genetic map for all populations
rf The recombination fraction data (which might be NULL).

geneticData A list of objects of class geneticData, each representing a population.

mpcrossRF-class A collection of multi-parent populations with recombination fraction
estimates

Description

A collection of multi-parent populations with recombination fraction estimates

Details

An object of class mpcrossRF contains data about one or more multi-parent populations, without
a genetic map, but with recombination fraction estimates. As there is no genetic map, there is no
information about IBD imputed genotypes or IBD genotype probabilities.

Slots

geneticData A list of objects of class geneticData, each representing a population.

rf Estimates of recombination fractions between every pair of genetic markers.

multiparentSNP 67

multiparentSNP Convert all markers to SNP markers

Description

Convert all markers in an object with fully informative markers to SNP markers

Usage

multiparentSNP (keepHets)

Arguments

keepHets Should heterozygotes for the SNP marker be kept?

Details

When initially generated, objects of class mpcross have markers that are fully informative - Every
founder carries a different allele, and all marker heterozygotes are distinguishable. This function
can be used to convert a simulated object to one with SNP markers. The resulting markers have two
alleles, and the marker heterozygote might or might be observable.

Value

An object of internal type multiparentSNP, which can be combined with an object of class mpcross
using the addition operator.

nFounders Number of genotyped markers Return the number of genotyped mark-
ers in an object. If an mpcross object contains multiple experiments,
one number is returned per experiment.

Description
Number of genotyped markers
Return the number of genotyped markers in an object.

If an mpcross object contains multiple experiments, one number is returned per experiment.

68 nLines
Usage
nFounders(object)

S4 method for signature 'detailedPedigree'
nFounders(object)

S4 method for signature 'pedigree'
nFounders(object)

S4 method for signature 'mpcross'
nFounders(object)

S4 method for signature 'geneticData'

nFounders(object)
Arguments

object The mpcross object from which to extract the number of founders
Value

The number of founding lines in the population, or a list of numbers in the case of multiple experi-
ments contained in a single object.

nLines Number of genotyped lines Return the number of genotyped lines in
an object. This includes only the number of final lines genotyped in
the population, and does not include the founding lines. If an mpcross
object contains multiple experiments, one number is returned per ex-
periment.

Description

Number of genotyped lines
Return the number of genotyped lines in an object.

This includes only the number of final lines genotyped in the population, and does not include the
founding lines. If an mpcross object contains multiple experiments, one number is returned per
experiment.

Usage
nLines(object)

S4 method for signature 'mpcross’
nLines(object)

S4 method for signature 'geneticData'
nLines(object)

nMarkers 69

Arguments

object The mpcross object from which to extract the number of genotyped lines.

Value

The number of genetic lines in the population, or a list of numbers in the case of multiple experi-
ments contained in a single object.

nMarkers Number of genotyped markers Return the number of genotyped mark-
ers in an object. If an mpcross object contains multiple experiments,
all experiments are required to have the same markers. So only one
number is returned, in all cases.

Description

Number of genotyped markers
Return the number of genotyped markers in an object.

If an mpcross object contains multiple experiments, all experiments are required to have the same
markers. So only one number is returned, in all cases.

Usage

nMarkers(object)

S4 method for signature 'mpcross'
nMarkers(object)

S4 method for signature 'geneticData'

nMarkers(object)
Arguments

object The mpcross object from which to extract the marker names
Value

The number of markers in an object of class mpcross.

70 omp_set_num_threads

normalPhenotype Simulate normally distributed phenotype

Description

Add a normally distributed phenotype

Usage

normalPhenotype(means, standardDeviations, phenotypeName, marker)

Arguments
means The means of the phenotype for all the different founder alleles
standardDeviations

The standard deviations of the phenotype for all the different founder alleles
phenotypeName The name of the new phenotype

marker The name of the marker which controls this phenotype

Details

Add a normally distributed phenotype to a given populations

Value

An object of class normalPhenotype representing the phenotype.

omp_set_num_threads Get or set number of threads for OpenMP

Description

Get or set the number of threads for OpenMP

Usage
omp_set_num_threads(num)
omp_get_num_threads()

Arguments

num New number of threads for OpenMP

orderCross 71

Details

Some functions in mpMap?2 are parallelised. Depending on the number of cores available, and the
type of workload, it may be advantageous to turn parallelisation on or off, by setting the number of
OpenMP threads appropriately. Setting the number of threads to 1 turns parallelisation off

In particular, for small examples on a computer with a large number of threads, parallelisation may
result in a huge decrease in performance.

This function returns an error if the package was not compiled with OpenMP.

Value

None

The number of threads for OpenMP

orderCross Order markers Order markers within linkage groups using simulated
annealing

Description

This function orders markers within linkage groups using a simulated annealing heuristic. The un-
derlying implementation is a C++ reimplementation of the fortran code arsa. f from the seriation
package. The reimplementation allows for multithreading, and is therefore much faster. It also fixes
a couple of bugs in the original code.

Parameters cool and tmin are standard simulated annealing parameters, and decreasing cool in-
creases the amount of computation effort. Parameter nReps gives the number of independent repli-
cations of the simulated annealing algorithm to be used. The result of the best replication is then
chosen.

Parameter maxMove gives the maximum number of positions by which to shift a marker, as part of
a step within the simulated annealing algorithm. The computational effort of determining whether
a proposed move of a particular marker should be accepted, depends on the number of positions by
which it is moved. So if the ordering is already approximately correct at the start of the algorithm,
proposals that move markers by large distances are expensive, and also unneccessary. These types
of proposed changes to the ordering can be avoided by setting maxMove to some positive value,
maybe one tenth of the number of markers.

Parameter effortMultiplier simply increases or decreases the amount of computational effort.
A value of 0.5 requires half as much effort, a value of 1.0 uses the default amount of effort, and a
value of 2.0 requires twice as much computational effort.

Parameter randomStart controls the starting point of each replication of the algorithm. If this
parameter is TRUE, then every replication starts form an independent random ordering. If this
parameter is FALSE, then every replication starts from the marker ordering given in the input object.

72 pedigree

Usage

orderCross(
mpcrossLG,
cool = 0.5,
tmin = 0.1,
nReps = 1,
maxMove = @,
effortMultiplier = 1,
randomStart = TRUE,
verbose = FALSE

)
Arguments
mpcrossLG An object of class mpcrossLG, containing genetic data and linkage groups.
cool Rate of cooling
tmin Minimum temperature
nReps Number of independent replications of the simulated annealing algorithm
maxMove Maximum number of positions by which to shift a single marker, as part of the
simulated annealing. A value of zero indicates no limit.
effortMultiplier

Multiplier for the amount of computational effort
randomStart If TRUE, start from the current ordering

verbose If TRUE, generate more detailed output

Value

An object of class mpcrossLG, identical to the input except with the markers rearranged.

pedigree Create a pedigree object

Description

Create a pedigree object

Usage

pedigree(lineNames, mother, father, selfing, warnImproperFunnels = TRUE)

pedigree-class 73

Arguments
lineNames The names of the genetic lines
mother The index of the maternal line
father The index of the paternal line
selfing Should the number of generations of selfing be taken from the pedigree ("finite"),
or should selfing be assumed to be infinite ("infinite")?
warnImproperFunnels
Should a warning be generated in subsequent computations using this pedigree,
if there are lines which do not contain all founding lines as ancestors?
Details

This function creates a pedigree object from parts. All lines are assumed to have an index, starting
at 1 for the first line. Values at index of the various inputs 1 all relate to the first line, values at index
2 all relate to the second line, etc.

Input 1ineNames assigns a name to every line. Input mother gives the index of a mother line, where
a value of 0 indicates that a line is a founder of the population (and therefore inbred). Input father
gives the index of a father line, where a value of 0 indicates that a line is a founder of the population
(and therefore inbred). Input selfing mustbe "finite"” or "infinite". A value of infinite means
that the number of generations of selfing for this pedigree will be assumed to be infinite. A value of
"finite"” means that the number of generations of selfing will be computed from the pedigree, for
every line.

Value

An object of class pedigree representing the inputs.

pedigree-class Pedigree class

Description

This class describes a pedigree for an experimental design. Although package mpMap2 only allows
for the analysis of pedigrees corresponding to multi-parent crosses, this pedigree class can describe
arbitrary experimental designs.

Slots

mother The index within the pedigree of the mother of this individual
father The index within the pedigree of the father of this individual
lineName The name of this individual

selfing A value indicating whether analysis of an experiment using this pedigree should assume
infinite generations of selfing. A value of "infinite"” indicates infinite generations of selfing,
and a value of "finite" indicates finite generations of selfing.

warnImproperFunnels A value indicating whether to warn the user about funnels with repeated
founders.

74 pedigreeToGraph

See Also

pedigree-class, simulateMPCross, detailedPedigree-class, rilPedigree, f2Pedigree, fourParentPedigreeRandc
fourParentPedigreeSingleFunnel, eightParentPedigreeRandomFunnels, eightParentPedigreeSingleFunnel,
sixteenParentPedigreeRandomFunnels

pedigreeGraph-class Graph for a pedigree

Description

Graph for a pedigree

Details
This class contains the directed graph corresponding to a pedigree, and data for laying out the graph
on a plane.

Slots

graph An object of class igraph.
layout A matrix where each row gives the position of a graph vertex in the plane.

pedigreeToGraph Convert pedigree to a graph

Description

Convert pedigree to a graph

Usage
pedigreeToGraph(pedigree)

Arguments

pedigree The pedigree to convert into a graph

Details

It is often useful for visualisation purposes to generate the pedigree graph. In this graph, every
genetic line is a vertex in a graph, and there is an edge from every parent to all the offspring. This
function generates the graph, and lays the graph out in the plane in a way that tends to make the
structure of the graph as clear as possible.

Value

An object of class pedigreeGraph, containing the graph and a planar layout for the graph.

plot,addExtraMarkersStatistics, AN Y-method 75

plot,addExtraMarkersStatistics,ANY-method
Plot chi-squared statistics for independence

Description

Plot the chi-squared statistics for independence, used to map a new marker to an existing genetic

map
Usage
S4 method for signature 'addExtraMarkersStatistics,ANY'
plot(x, vy, ...)
Arguments
X Object of class addExtraMarkersStatistics containing test-statistic values.
y Unused
Unused
Details

This function plots a trace of the chi-squared test-statistics used to map a new genetic marker to an
existing genetic map. This can be useful to, for example, see if a single polymorphism is present at
multiple points on the genome.

Value

A ggplot object suitable for display.

plot,mpcross, ANY-method
Plot methods

Description

There are multiple meaningful ways to plot some mpMap?2 objects. Please use plotProbabilities
or plotMosaic instead.

76 plot,pedigreeGraph, AN Y-method

Usage

S4 method for signature 'mpcross,ANY'
plot(x, vy, ...)

S4 method for signature 'geneticData,ANY'
plot(x, vy, ...)

S4 method for signature 'probabilities,ANY'
plot(x, vy, ...)

S4 method for signature 'imputed,ANY'

plot(x, y, ...)
Arguments
X Unused
y Unused
Unused
Details

There are multiple meaningful ways to plot some mpMap2 objects. In these cases the plot function
is implemented but returns an error. Please use plotProbabilities or plotMosaic instead.

Value

None

plot,pedigreeGraph, ANY-method
Plot the graph of a pedigree

Description

Plot the graph of a pedigree

Usage
S4 method for signature 'pedigreeGraph,ANY'
plot(x, vy, ...)
Arguments
X pedigree graph to plot
y unused

Other options to plot.igraph

plotMosaic 77

Details

Plot the graph of a pedigree, after the graph has been generated by pedigreeToGraph

Value

None

See Also

pedigreeToGraph

plotMosaic Plot estimated genetic composition of lines

Description

Plot estimated genetic composition of lines

Usage

plotMosaic(inputObject, chromosomes, positions, lines, ...)

Arguments

inputObject An object of class mpcrossMapped containing imputed IBD genotypes

chromosomes Chromosomes to plot
positions Genetic positions to plot
lines Genetic lines to plot

Extra inputs to heatmap_2

Details

This function produces a heatmap showing the genetic composition of lines, as measured by the im-
puted IBD genotypes. Rows correspond to genetic lines, columns correspond to genetic positions,
and colours indicate founder alleles. All heterozygotes are marked in the same colour, otherwise
there are generally too many colours to be useful.

Value

None

78 plotProbabilities

plotProbabilities Plot genetic composition across the genome

Description

Plot genetic composition across the genome

Usage

plotProbabilities(inputObject, positions, alleles, chromosomes)

Arguments

inputObject An object of class mpcrossMapped containing IBD genotype probabilities

positions The genetic positions at which to plot the composition
alleles The founder alleles which we are interested in.
chromosomes The chromosomes of to plot the composition.

Details

Plot genetic composition of a population, across the genome. Composition is determined by using
the IBD genotype probabilities, as computed by computeGenotypeProbabilities. The plot is
produced by taking the average IBD genotype probability, for each founder allele and each genotpe
position. Deviations from the expected proprotions (determined by the experimental design) may
indicate non-standard genetic inheritance or selective pressure.

Value

A ggplot object, suitable for display.

Examples

data(simulatedFourParentData)

partl <- subset(simulatedFourParentData, lines =
names(which(finals(simulatedFourParentData)[, 50] == 1)))

part2 <- subset(simulatedFourParentData, lines =
names(which(finals(simulatedFourParentData)[, 50] != 1)))

distorted <- subset(partl, lines = sample(nLines(partl), 100)) + part2

distortedMapped <- mpcrossMapped(distorted, map = simulatedFourParentMap)

probabilities <- computeGenotypeProbabilities(distortedMapped)

#Here the composition of the population reflects the fact that we have less of founder 1 than
expected, at a specific point on the genome

plotProbabilities(probabilities)

#Go back to the undistorted data

undistortedMapped <- mpcrossMapped(simulatedFourParentData, map = simulatedFourParentMap)
probabilities <- computeGenotypeProbabilities(distortedMapped)

#Here the composition of the population reflects the expected inheritance; the trace

corresponding to every founder is flat

plotProbabilities(probabilities)

probabilities-class 79

probabilities-class Identity-by-descent genotype probabilities

Description

Identity-by-descent genotype probabilities

Arguments
data An integer matrix containing the IBD genotype probabilities. Rows correspond
to combinations of genetic lines and founder lines, and columns correspond to
genetic positions.
key A matrix identifying how pairs of founder alleles are mapped to rows of the data
slot.
map The map of positions at which IBD genotype probabilities are computed.
Details

This object contains the identify-by-descent genotype probabilities, as computed by computeGenotypeProbabilities.
The slot data is a numeric matrix containing the actual computations, where columns correspond
to genetic positions.

Describing the rows of the data matrix is more complicated. The slot key is a matrix containing three
columns, the first two being founder alleles, and the third being an encoding of that combination. If
k is the number of rows in key, then the first k rows of the data matrix correspond to the first genetic
line in the population. Specifically, the first row corresponds to genotype probabilities for the first
line, for the combination of founder alleles encoding as 1. The second corresponds to genotype
probabilities for the first line, for the combination encoded as 2, etc.

probabilityData Get IBD probability data

Description

Get the identity-by-descent probability data from an mpcross object.
Usage
probabilityData(object, ...)

S4 method for signature 'geneticData'
probabilityData(object, ...)

S4 method for signature 'mpcrossMapped'
probabilityData(object, ...)

80 redact

Arguments
object The mpcross object from which to extract the probability data.
Additional options. Only design is supported, and gets the probability data for
only a single experiment.
Details

mpMap?2 stores IBD probabilities in a matrix where the number of rows is the number of alleles
times the number of genetic lines, and the columns are the positions at which probabilities are cal-
culated. In the example below, the row names are L115 -L1,L115-L2,L115-L3,L115 -L4,L120
-L1, etc, and the column names are DXM1,DXM2,DXM3, etc. So, for example, for a population gen-
erated from four founders and assumed to be totally inbred, the first four values in the first column
are the probabilities that genetic line 1 carries alleles from specific founders, at a specific position.
The first four columns give the probabilities for genetic line 2 at the next position, etc.

This can be an inconvenient layout for some operations. This function returns a matrix where the
alleles appear as part of the columns, rather than the rows. For example, after applying this function
to the given example, the first four values in the first row will be the probabilities that genetic line 1
carries alleles from specific founders, at a specific position.

Value

A numeric matrix containing the IBD probabliity data, or a list of such matrices in the case of
multiple experiments within a single object.

Examples

data(simulatedFourParentData)

crossSNP <- simulatedFourParentData + multiparentSNP(keepHets = FALSE)
mapped <- mpcrossMapped(crossSNP, map = simulatedFourParentMap)
probabilities <- computeGenotypeProbabilities(mapped, error = 0.05)
probabilityData <- probabilityData(probabilities)

probabilityDatal[1:5, 1:5]

redact Redact sensitive information This function redacts possibly sensitive
information from objects, resulting in an object that is safe to publish.

Description

Sensitive information includes names of genetic lines (both founding lines and final population
lines) and marker names. All actual data (marker genotypes, imputed IBD genotypes, IBD proba-
bilities, etc) are preserved.

removeHets
Usage
redact(object)

S4 method for
redact (object)

S4 method for
redact(object)

S4 method for
redact (object)

S4 method for
redact(object)

S4 method for
redact(object)

Arguments

signature

signature

signature

signature

signature

'mpcross’

'mpcrossRF'

"mpcrossLG'

'mpcrossMapped’

'geneticData’

object The object of class mpcross to redact.

Value

An object of class mpcross, with identifying information removed.

81

removeHets

Remove heterozygotes

Description

Remove all heterozygotes from dataset

Usage

removeHets ()

Details

This function can be used to remove all heterozygotes from an mpcross object. Information about
how pairs of different marker alleles are encoded as genotypes is discarded, and all observations of
heterozygotes will be marked as NA. Any information calculated based on the genetic data (imputed
IBD genotypes, IBD probabilities) will be discarded.

Value

An object of internal class removeHets, which can be combined with an object of class mpcross
using the addition operator.

82 reverseChromosomes

Examples

pedigree <- eightParentPedigreelmproperFunnels(initialPopulationSize = 10,
selfingGenerations = 1, nSeeds = 1)

#Generate map

map <- qtl::sim.map()

#Simulate data

cross <- simulateMPCross(map = map, pedigree = pedigree, mapFunction = haldane)

finals(cross)[1:5, 1:5]

hetData(cross)[[11]

cross <- cross + removeHets()

finals(cross)[1:5, 1:5]

hetData(cross)[[1]1]

reverseChromosomes Reverse the order of the specified chromosomes

Description

Create a new object, with the specified chromosomes reversed

Usage

reverseChromosomes(mpcrossMapped, chromosomes)

Arguments

mpcrossMapped The initial object, for which we want to reverse some of the chromosomes

chromosomes The names of the chromosomes to reverse

Details

Create a new object, with the specified chromosomes reversed

Value

An object of class mpcrossMapped, with certain chromosomes reversed.

Examples

map <- qtl::sim.map()

pedigree <- f2Pedigree(1000)

cross <- simulateMPCross(map = map, pedigree = pedigree, mapFunction = haldane, seed = 1)
mappedCross <- mpcrossMapped(cross = cross, map = map)

reversedX <- reverseChromosomes(mappedCross, "X")

reversedX@map[["X"]]

mappedCross@map[["X"]1]

rilPedigree 83

rilPedigree Generate a two-parent RIL pedigree which starts from inbred founders

Description

Generate a two-parent RIL pedigree which starts from inbred founders

Usage

rilPedigree(populationSize, selfingGenerations)

Arguments

populationSize The size of the generated population

selfingGenerations
Number of generations of selfing. Specifying one generation leads to an F2
design.
Value

An object of class detailedPedigree representing the experimental design, suitable for simulation
using simulateMPCross.

selfing<- Get or set a pedigree to have finite or infinite generations of selfing

Description

Get or set a pedigree to have finite or infinite generations of selfing
Usage

selfing(object) <- value

selfing(object)

S4 method for signature 'pedigree'
selfing(object)

S4 replacement method for signature 'detailedPedigree’
selfing(object) <- value

S4 replacement method for signature 'pedigree'’
selfing(object) <- value

84

Arguments

object

value

Details

simulatedFourParentData

The pedigree object for which to get or set the generations of selfing, as finite or
infinite.

The new value

A pedigree object contains details about the genetic relationships between individuals in a popula-
tion. Many experiments will include a finite number of generations of inbreeding by selfing, and
this information will also be contained in the pedigree. However, when it comes time to actually
analyse the poulation, it can be sensible to assume that an infinite number of generations of selfing
have actually been performed, as this is computationally quicker.

This extra information about whether to assume infinite generations of selfing, or the finite number
of generations given in the pedigree, is stored in an extra slot, which must have value "finite"
or "infinite”. If "finite" is specified, then in subsequent analysis (e.g. computation of IBD
genotypes or probabilities) the number of generations of selfing for each line is taken from the

pedigree.

Value

Dimensions of selfing, either "finite"” or "infinite".

Examples

pedigree <- eightParentPedigreelmproperFunnels(initialPopulationSize = 10,
selfingGenerations = @, nSeeds = 1)

selfing(pedigree)
selfing(pedigree)

<- "finite"

simulatedFourParentData

Simulated data from a four-parent population.

Description

Simulated data from a four-parent population. Used in the examples given in the documentation.

Examples

set.seed(1)

#This data was generated by the following script
pedigree <- fourParentPedigreeRandomFunnels(initialPopulationSize = 1000,
selfingGenerations = 6, intercrossingGenerations = @)

#Assume infinite

generations of selfing in subsequent analysis

selfing(pedigree) <- "infinite”

#Generate random

map

simulatedFourParentMap <- qtl::sim.map(len = 100, n.mar = 101, anchor.tel = TRUE,

simulateMPCross 85

include.x = FALSE)

#Simulate data

simulatedFourParentData <- simulateMPCross(map = simulatedFourParentMap, pedigree = pedigree,
mapFunction = haldane, seed = 1L)

simulateMPCross Simulate data from multi-parent designs

Description

Data is simulated according to a pedigree, map and QTL model

Usage

simulateMPCross(map, pedigree, mapFunction, seed)

Arguments
map Linkage map with which to generate data. See sim.map
pedigree Pedigree for a multi-parent cross.
mapFunction Map function used to convert distances to recombination fractions
seed Random seed to use.

Value

Object of class mpcross.

sixteenParentPedigreeRandomFunnels
Generate a sixteen-parent pedigree

Description

Generate a sixteen-parent pedigree starting from inbred founders, using a random funnel

Usage

sixteenParentPedigreeRandomFunnels(
initialPopulationSize,
selfingGenerations,
nSeeds = 1L,
intercrossingGenerations

86 stripPedigree

Arguments

initialPopulationSize
The number of F1 lines generated

selfingGenerations
The number of selfing generations at the end of the pedigree

nSeeds The number of progeny taken from each intercrossing line, or from each F1 if no
intercrossing is specified. These lines are then selfed according to selfingGener-

ations
intercrossingGenerations

The number of generations of random mating performed from the F1 generation.
Population size is maintained at that specified by initialPopulationSize

Value

An object of class detailedPedigree representing the experimental design, suitable for simulation
using simulateMPCross.

See Also
eightParentPedigreeSingleFunnel, fourParentPedigreeSingleFunnel, fourParentPedigreeRandomFunnels,
twoParentPedigree
stripPedigree Strip pedigree of unneccessary lines
Description

Strip pedigree of lines that make no genetic contribution to the specified set of lines.

Usage

stripPedigree(pedigree, finallines)

Arguments
pedigree The initial pedigree, which may contain some unneccessary extra genetic lines
finallLines The list of lines of interest. Lines in the pedigree which do not make a genetic
contribution to the lines in finalLines will be removed.
Details

Pedigrees for structured experiments can be messy. Often they include lines that make no genetic
contribution to the lines that were finally genotyped. When it comes to visualising the structure of
the pedigree of the final population, these unneccessary extra lines can make it difficult to see the
structure. This function takes in a pedigree and a list of genetic lines, and returns a subpedigree that
contains only those lines that make a genetic contribution to the named lines.

This function relies on the use of the Boost C++ libraries, and may not be available in every dis-
tributed version of mpMap?2. If this function is unavailable, the function will return NULL.

subset,imputed-method 87

Value

An object of class detailedPedigree representing the experimental design, suitable for simulation
using simulateMPCross.

subset, imputed-method Subset data

Description

Subset data objects by line names, chromosomes, linkage groups, markers or positions

Usage

S4 method for signature 'imputed'
subset(x, ...)

S4 method for signature 'probabilities'
subset(x, ...)

S4 method for signature 'mpcross'
subset(x, ...)

S4 method for signature 'mpcrossMapped'
subset(x, ...)

S4 method for signature 'mpcrossRF'
subset(x, ...)

S4 method for signature 'mpcrossLG'
subset(x, ...)
S4 method for signature 'lg'
subset(x, ...)

S4 method for signature 'geneticData'
subset(x, ...)

S4 method for signature 'hetData'
subset(x, ...)

S4 method for signature 'rf'
subset(x, ...)

S4 method for signature 'rawSymmetricMatrix'
subset(x, ...)

88 testDistortion

Arguments
X The object to be subset
A method to use to subset (markers, lines, positions or chromosomes), and val-
ues for that method.
Details

mpMap?2 objects can be subset in a number of different ways, depending on the particular class of
the object that is contained.

Subsetting by "lines” subsets by the genetic lines in the final population. Line names or line in-
dices can be used, although line names should be preferred. Any information about recombination
fractions will be discarded. Subsetting by "chromosomes” keeps only certain chromosomes, and
requires that the object have a genetic map. Subsetting by "markers” keeps only certain genetic
markers. Data about imputed IBD genotypes and IBD genotype probabilities is discarded. Subset-
ting by "positions” only subsets the imputed IBD genotypes and IBD probability data, and does
not subset the underlying markers. Subestting by "groups” retains only certain linkage groups.

An object of class mpcross can be subset by genetic lines or markers.

Objects of classes mpcrossLG or mpcrossRF can be subset by genetic lines, markers or linkage
groups.

An object of class mpcrossMapped can be subset by genetic lines, markers or chromosomes.

The remainder of the subsetting methods are not expected to be called directly by the user. They
subset internal components, and are used internally by the top-level methods.

Value

A subsetted object, of the same type as the input.

testDistortion Test for distortion using IBD genotype probabilities

Description

Test for distortion using IBD genotype probabilities

Usage

testDistortion(object)

Arguments

object An object of class mpcrossMapped which contains imputed IBD genotype data

toMpMap 89

Details

In real experiments, genetic inheritance may not follow the expected model. This function tests
for deviations from expected inheritance by using the genetic composition of the population at
individual positions, as measured by the IBD genotype probabilities.

At a particular point, the mean for each founder allele of the IBD genotype probabilities for each
founder allele are summed across the population. The average is taken, and this is then compared
with the proportion expected to be inherited from that founder, under standard models of genetic
inheritance.

The result is a matrix containing p-values, test-statistic values, and the L1 and L2 distances between
the observed genetic proportions, and the expected genetic proportions.

Value

A data.frame containing p-values and test-statistic values for each position at which there is IBD
genotype probability data.

toMpMap Convert to mpMap format

Description

Convert to the format used by the original mpMap package.

Usage

toMpMap (mpcross)
Arguments

mpcross The object of class mpcross to convert.
Details

Converts an mpcross object to the format used by the original mpMap, the predecessor of this
package. It is unlikely that this function will ever need to be used.

Value

An object with structure compatible with the older mpMap package.

90 transposeProbabilities

transposeProbabilities
Transpose IBD probabilities

Description

Transpose the IBD probabilities matrix, so that the different alleles or founders appear on the
columns, rather than the rows

Usage

transposeProbabilities(inputObject)

Arguments

inputObject The mpcross object containing the probability data.

Details

mpMap?2 stores IBD probabilities in a matrix where the number of rows is the number of alleles
times the number of genetic lines, and the columns are the positions at which probabilities are cal-
culated. In the example below, the row names are L115 -L1,L115-L2,L115-L3,L115 -L4,L120
-L1, etc, and the column names are DXM1,DXM2,DXM3, etc. So, for example, for a population gen-
erated from four founders and assumed to be totally inbred, the first four values in the first column
are the probabilities that genetic line 1 carries alleles from specific founders, at a specific position.
The first four columns give the probabilities for genetic line 2 at the next position, etc.

This can be an inconvenient layout for some operations. This function returns a matrix where the
alleles appear as part of the columns, rather than the rows. For example, after applying this function
to the given example, the first four values in the first row will be the probabilities that genetic line 1
carries alleles from specific founders, at a specific position.

Value

A numeric matrix containing IBD probability data.

Examples

data(simulatedFourParentData)

crossSNP <- simulatedFourParentData + multiparentSNP(keepHets = FALSE)
mapped <- mpcrossMapped(crossSNP, map = simulatedFourParentMap)
probabilities <- computeGenotypeProbabilities(mapped, error = 0.05)
probabilityData <- probabilityData(probabilities)

probabilityData[1:5, 1:5]
transposeProbabilities(probabilities)[1:5,1:5]

twoParentPedigree 91

twoParentPedigree Generate a two-parent pedigree which starts from inbred founders

Description

Generate a two-parent pedigree starting from inbred founders

Usage

twoParentPedigree(
initialPopulationSize,
selfingGenerations,
nSeeds = 1L,
intercrossingGenerations

Arguments

initialPopulationSize
The number of F1 lines generated
selfingGenerations
The number of selfing generations at the end of the pedigree

nSeeds The number of progeny taken from each intercrossing line, or from each F1 if no
intercrossing is specified. These lines are then selfed according to selfingGener-
ations

intercrossingGenerations
The number of generations of random mating performed from the F1 generation.
Population size is maintained at that specified by initialPopulationSize

Value

An object of class detailedPedigree representing the experimental design, suitable for simulation
using simulateMPCross.

Examples

plotWOptions <- function(graph)

plot(graph, vertex.size = 8, vertex.label.cex=0.6, edge.arrow.size=0.01, edge.width=0.2)
#F2 design

pedigree <- twoParentPedigree(initialPopulationSize = 10, selfingGenerations
intercrossingGenerations = @, nSeeds = 1)

graph <- pedigreeToGraph(pedigree)

plotWOptions(graph)

1
-

#An equivalent F2 design (if the founders really are inbred)

pedigree <- twoParentPedigree(initialPopulationSize = 10, selfingGenerations = 0,
intercrossingGenerations = 1, nSeeds = 0)

graph <- pedigreeToGraph(pedigree)

92 wsnp_Ku_rep_c103074_89904851

plotWOptions(graph)

#Another equivalent F2 design (if the founders really are inbred)

pedigree <- twoParentPedigree(initialPopulationSize = 1, selfingGenerations = 1,
intercrossingGenerations = @, nSeeds=10)

graph <- pedigreeToGraph(pedigree)

plotWOptions(graph)

#A RIL design (10 generations of inbreeding)

pedigree <- twoParentPedigree(initialPopulationSize = 10, selfingGenerations = 10,
intercrossingGenerations = @, nSeeds = 1)

graph <- pedigreeToGraph(pedigree)

plotWOptions(graph)

#Another RIL design (10 generations of inbreeding)

pedigree <- twoParentPedigree(initialPopulationSize = 1, selfingGenerations = 10,
intercrossingGenerations = @, nSeeds = 10)

graph <- pedigreeToGraph(pedigree)

plotWOptions(graph)

#0ne generation of mixing followed by 10 generations of inbreeding

pedigree <- twoParentPedigree(initialPopulationSize = 10, selfingGenerations = 10,
intercrossingGenerations = 1, nSeeds = 1)

graph <- pedigreeToGraph(pedigree)

plotWOptions(graph)

#Two generations of mixing and no inbreeding

pedigree <- twoParentPedigree(initialPopulationSize = 10, selfingGenerations
intercrossingGenerations = 2, nSeeds = 0)

graph <- pedigreeToGraph(pedigree)

plotWOptions(graph)

1
[

#0ne generation of mixing, and then two selfed lines are generated (10 generations of selfing)
pedigree <- twoParentPedigree(initialPopulationSize = 10, selfingGenerations = 10,
intercrossingGenerations = 1, nSeeds = 2)

graph <- pedigreeToGraph(pedigree)

plotWOptions(graph)

wsnp_Ku_rep_c103074_89904851
Raw genotyping data for marker wsnp_Ku_rep_c103074_89904851

Description

Raw genotyping data for marker wsnp_Ku_rep_c103074_89904851

Author(s)

Alex Whan, Matthew Morell, Rohan Shah, Colin Cavanagh This dataset contains the raw genotyp-
ing data for marker wsnp_Ku_rep_c103074_89904851. This marker is interesting, because it can
be mapped to both chromosome 1B (four alleles) and 1D (two alleles).

[,rawSymmetricMatrix,index,index,logical-method 93

Examples

data(eightParentSubsetMap)

data(wsnp_Ku_rep_c103074_89904851)

data(callFromMapExampleLocalisationStatistics)

called <- callFromMap(rawData = as.matrix(wsnp_Ku_rep_c103074_89904851), existingImputations =
eightParentSubsetMap, useOnlyExtralmputationPoints = TRUE, tDistributionPValue = 0.8,
thresholdChromosomes = 80, existinglocalisationStatistics = existinglLocalisationStatistics)

library(ggplot2)

library(gridextra)

plotData <- wsnp_Ku_rep_c103074_89904851

plotData$genotypelB <- factor(called$classificationsPerPosition$ChriBLoc31$finals)

plotData$imputed1B <- factor(imputationData(eightParentSubsetMap)[, "Chri1BLoc31"])

plotData$genotypelD <- factor(called$classificationsPerPosition$Chri1DLoc16%$finals)

plotData$imputed1D <- factor(imputationData(eightParentSubsetMap)[, "Chri1DLoc16"])

plotImputations1B <- ggplot(plotData, mapping = aes(x = theta, y = r, color = imputediB)) +
geom_point() + theme_bw() + ggtitle("Imputed genotype, 1B") +
guides(color=guide_legend(title="IBD genotype"))

called1B <- ggplot(plotData, mapping = aes(x = theta, y = r, color = genotypelB)) +
geom_point() + theme_bw() + ggtitle(”Called genotype, 1B") +
guides(color=guide_legend(title="Called cluster”)) + scale_color_manual(values =
c("black"”, RColorBrewer: :brewer.pal(n = 4, name = "Set1")))

plotImputations1D <- ggplot(plotData, mapping = aes(x = theta, y = r, color = imputedi1D)) +
geom_point() + theme_bw() + ggtitle("Imputed genotype, 1D") +
guides(color=guide_legend(title="IBD genotype"))

called1D <- ggplot(plotData, mapping = aes(x = theta, y = r, color = genotypelD)) +
geom_point() + theme_bw() + ggtitle(”Called genotype, 1D") +
guides(color=guide_legend(title="Called cluster”)) +

scale_color_manual (values = c("black”,RColorBrewer: :brewer.pal(n=3,name = "Set1")[1:2]))

grid.arrange(plotImputationsiB, plotImputationsiD, called1B, calledl1D)

[,rawSymmetricMatrix, index, index,logical-method
Internal operators for mpMap?2

Description

Internal operators, used to modify mpcross objects.

Usage

S4 method for signature 'rawSymmetricMatrix,index,index,logical’
x[i, j, ..., drop = TRUE]

S4 method for signature 'rawSymmetricMatrix,index,index,missing’

94

x[i, j, ...,

##

S4 method

x[i, 3, ...,

##

S4 method

x[i, 3, ...,

##
el

it
el

##
el

#it
el

##
el

#it
el

1t
el

#it
el

1t
el

##
el

i
el

##
el

#it
el

#it

S4 method
+ e2

S4 method
+ e2

S4 method
+ e2

S4 method
+ e2

S4 method
+ e2

S4 method
+ e2

S4 method
+ e2

S4 method
+ e2

S4 method
+ e2

S4 method
+ e2

S4 method
+ e2

S4 method
+ e2

S4 method
+ e2

S4 method

drop = TRUE]

for

signature

drop = TRUE]

for

signature

drop = TRUE]

for

for

for

for

for

for

for

for

for

for

for

for

for

for

signature

signature

signature

signature

signature

signature

signature

signature

signature

signature

signature

signature

signature

signature

[,rawSymmetricMatrix,index,index,logical-method

'rawSymmetricMatrix,missing,missing,missing'’

"rawSymmetricMatrix,matrix,missing,missing'’

'geneticData, assignFounderPattern’

'mpcross, assignFounderPattern’

'mpcrossMapped, assignFounderPattern'

'geneticData,assignFounderPatternPrototype’

'mpcross, assignFounderPatternPrototype’

'mpcrossMapped, assignFounderPatternPrototype'

'geneticData,biparentalDominant'

'mpcross,biparentalDominant'’

'geneticData, fixedNumberOfFounderAlleles'

'mpcross, fixedNumberOfFounderAlleles'

'geneticData,multiparentSNP'

'mpcross,multiparentSNP'

'geneticData,multiparentSNPPrototype’

'mpcross,multiparentSNPPrototype’

[,rawSymmetricMatrix,index,index,logical-method 95

el + e2

S4 method for signature 'mpcross,removeHets'

el + e2

S4 method for signature 'geneticData,normalPhenotype’

el + e2

S4 method for signature 'mpcross,normalPhenotype’

el + e2

Arguments

X

i,J

drop
el
e2

Details

object from which to extract element(s)

indices specifying elements to extract or replace

Currently unused

If TRUE the result is coerced to the lowest possible dimension
Object one

Object two

These operators are used to combine objects in order to apply a function. For example, el +
biparentalDominant() returns the biparental design e1, with all markers converted to dominant
markers. Consult the documentation on the individual functions, rather than this list of operators.

Value

Various. Not for external use.

Modified version of the input object. The class of the output depends on the class of the input.

Index

+,geneticData,assignFounderPattern-method +,mpcross,multiparentSNPPrototype-method
([,rawSymmetricMatrix, index, index, logical-metlbdpawSymmetricMatrix, index, index,logical-method),
93 93

+,geneticData, assignFounderPatternPrototype-mefhpdross,normalPhenotype-method
([,rawSymmetricMatrix, index, index,logical-methbdyawSymmetricMatrix, index, index,logical-method),

93 93

+,geneticData,biparentalDominant-method +,mpcross, removeHets-method
([,rawSymmetricMatrix,index,index,logical-methbdyawSymmetricMatrix,index, index,logical-method),
93 93

+,geneticData, fixedNumberOfFounderAlleles-methptpcrossMapped, assignFounderPattern-method
([, rawSymmetricMatrix,index, index,logical-methbdjawSymmetricMatrix,index,index,logical-method),

93 93

+,geneticData,multiparentSNP-method +,mpcrossMapped, assignFounderPatternPrototype-method
([,rawSymmetricMatrix,index,index, logical-methbdjawSymmetricMatrix,index, index, logical-method),
93 93

+, geneticData,multiparentSNPPrototype-method +,mpcrossMapped, mpcrossMapped-method,
([,rawSymmetricMatrix, index, index, logical-metRod),

93 +,mpcrossRF ,mpcross-method
+ geneticData, normalPhenotype-method (+,mpcrossMapped, mpcrossMapped-method),
([, rawSymmetricMatrix,index, index,logical-metRod),
93 +,mpcrossRF,mpcrossRF-method
+,mpcross,assignFounderPattern-method (+,mpcrossMapped, mpcrossMapped-method),
([, rawSymmetricMatrix, index, index, logical-metRod),
93 .geneticData (geneticData-class), 43

+,mpcross,assignFounderPatternPrototype-methodnpcross (mpcross-class), 64
([, rawSymmetricMatrix,index, index,logiaptrmssNapped (mpcrossMapped-class), 66

93 .mpcrossRF (mpcrossRF-class), 66
+,mpcross,biparentalDominant-method .pedigreeGraph (pedigreeGraph-class), 74

(L, rawSymmetricMatrix, index, index, logipabbabifiddjes (probabilities-class), 79

93 [,rawSymmetricMatrix, index, index,logical-method,
+,mpcross, fixedNumberOfFounderAlleles-method 93

([,rawSymmetricMatrix, index, index, logicabhwsghimedsicMatrix, index, index,missing-method

93 ([, rawSymmetricMatrix, index, index, logical-method),
+,mpcross,mpcross-method 93

(+,mpcrossMapped, mpcrossMapped-method]., rawSymmetricMatrix,matrix,missing,missing-method

5 ([, rawSymmetricMatrix, index, index, logical-method),
+,mpcross,multiparentSNP-method 93

(L, rawSymmetricMatrix, index, index, log{cabwlgtmed);icMatrix,missing,missing,missing-method

93 ([,rawSymmetricMatrix, index, index, logical-method),

96

INDEX

93

addExtraMarkerFromRawCall, 6, 13
addExtraMarkers, 7
as.mpInterval, 9
assignFounderPattern, 10

backcrossPedigree, 11
biparentalDominant, 11

callFromMap, 12

changeMarkerPosition, 15

clusterOrderCross, 15

combineKeepRF, 16

computeAllEpistaticChiSquared, 17

computeGenotypeProbabilities, 18, 44, 78,
79

detailedPedigree, 20

detailedPedigree
(detailedPedigree-class), 19

detailedPedigree-class, 19

eightParentPedigreelImproperFunnels, 20
eightParentPedigreeRandomFunnels, 22,
74
eightParentPedigreeSingleFunnel, 21, 22,
23, 24, 74, 86
eightParentSubsetMap, 24
estimateMap, 7, 24
estimateMapFromImputation, 26
estimateRF, 27, 29, 30
estimateRFSingleDesign, 29
existinglLocalisationStatistics, 30
expand, 31
exportMapToPretzl, 31
extraImputationPoints, 32

f2Pedigree, 32, 74

finalNames, 33

finalNames, geneticData-method
(finalNames), 33

finalNames,mpcross-method (finalNames),
33

finals, 34

finals,geneticData-method (finals), 34

finals,mpcross-method (finals), 34

fixedNumberOfFounderAlleles, 34

flatImputationMapNames, 35

97

flatImputationMapNames, geneticData-method

(flatImputationMapNames), 35
flatImputationMapNames, imputed-method
(flatImputationMapNames), 35

flatImputationMapNames,mpcrossMapped-method

(flatImputationMapNames), 35

formGroups, 36

founderNames, 37

founderNames, geneticData-method
(founderNames), 37

founderNames,mpcross-method
(founderNames), 37

founders, 38

founders, geneticData-method (founders),
38

founders,mpcross-method (founders), 38

fourParentPedigreeRandomFunnels, 21, 22,
24,39, 40, 74, 86

fourParentPedigreeSingleFunnel, 21, 22,
24, 39, 40, 74, 86

fromMpMap, 41

generateGridPositions, 19, 41
generatelntervalMidPoints, 42
geneticData-class, 43
getAllFunnels, 44, 45
getAllFunnelsIncAIC, 44, 45
getChromosomes, 46
getIntercrossingAndSelfingGenerations,
47
getPositions, 47

haldane (mapFunctions), 61

haldaneToRf (mapFunctions), 61
hetData, 48

hetData, geneticData-method (hetData), 48
hetData,mpcross-method (hetData), 48
hetsForSNPMarkers, 49

imputationData, 49

imputationData, geneticData-method
(imputationData), 49

imputationData, imputed-method
(imputationData), 49

imputationData,mpcrossMapped-method
(imputationData), 49

imputationKey, 50, 50

imputationKey, geneticData-method
(imputationKey), 50

98

imputationKey, imputed-method
(imputationKey), 50
imputationKey, mpcrossMapped-method
(imputationKey), 50
imputationMap, 50, 52
imputationMap, geneticData-method
(imputationMap), 52
imputationMap, imputed-method
(imputationMap), 52
imputationMap,mpcrossMapped-method
(imputationMap), 52
impute, 52
imputeFounders, 7, 13,43, 52,53
infiniteSelfing, 55, 64
initialize,canSkipValidity-method, 56
initialize,geneticDatalist-method

(initialize,canSkipValidity-method),

56
jitterMap, 57

kosambi (mapFunctions), 61
kosambiToRf (mapFunctions), 61

lineNames, 57
lineNames, geneticData-method
(lineNames,mpcross-method), 58
lineNames,mpcross-method, 58
lineNames,pedigree-method
(lineNames<-), 58
lineNames<-, 58
lineNames<-,detailedPedigree-method
(lineNames<-), 58
lineNames<-,pedigree-method
(lineNames<-), 58
linesByNames, 59
listCodingErrors, 60
listCodingErrorsInfiniteSelfing, 61

mapFunctions, 61

markers, 62

markers, geneticData-method (markers), 62
markers,hetData-method (markers), 62
markers, lg-method (markers), 62
markers,mpcross-method (markers), 62
markers, rf-method (markers), 62
mpcross, 63, 65

mpcross-class, 64

mpcrossMapped, 65

INDEX

mpcrossMapped-class, 66
mpcrossRF-class, 66
multiparentSNP, 67

nFounders, 67

nFounders,detailedPedigree-method
(nFounders), 67

nFounders,geneticData-method
(nFounders), 67

nFounders,mpcross-method (nFounders), 67

nFounders,pedigree-method (nFounders),
67

nLines, 68

nLines, geneticData-method (nLines), 68

nLines,mpcross-method (nLines), 68

nMarkers, 69

nMarkers, geneticData-method (nMarkers),
69

nMarkers,mpcross-method (nMarkers), 69

normalPhenotype, 70

omp_get_num_threads
(omp_set_num_threads), 70

omp_set_num_threads, 70

orderCross, 8, 16,71

pedigree, 72
pedigree-class, 73
pedigreeGraph-class, 74
pedigreeToGraph, 74, 77
plot,addExtraMarkersStatistics, ANY-method,
75
plot,geneticData, ANY-method
(plot,mpcross,ANY-method), 75
plot,imputed, ANY-method
(plot,mpcross,ANY-method), 75
plot,mpcross,ANY-method, 75
plot,pedigreeGraph,ANY-method, 76
plot,probabilities, ANY-method
(plot,mpcross, ANY-method), 75
plotMosaic, 75, 76, 77
plotProbabilities, 75, 76, 78
probabilities-class, 79
probabilityData, 79
probabilityData, geneticData-method
(probabilityData), 79
probabilityData,mpcrossMapped-method
(probabilityData), 79

redact, 80

INDEX

redact, geneticData-method (redact), 80
redact,mpcross-method (redact), 80
redact,mpcrossLG-method (redact), 80
redact,mpcrossMapped-method (redact), 80
redact,mpcrossRF-method (redact), 80
removeHets, 81

reverseChromosomes, 82

rfToHaldane (mapFunctions), 61
rfToKosambi (mapFunctions), 61
rilPedigree, 74, 83

selfing (selfing<-), 83
selfing,pedigree-method (selfing<-), 83
selfing<-, 83
selfing<-,detailedPedigree-method

(selfing<-), 83
selfing<-,pedigree-method (selfing<-),

83
sim.map, 85
simulatedFourParentData, 84
simulatedFourParentMap

(simulatedFourParentData), 84
simulateMPCross, 20, 74, 85
sixteenParentPedigreeRandomFunnels, 74,

85
stripPedigree, 86
subset,geneticData-method

(subset, imputed-method), 87
subset,hetData-method

(subset, imputed-method), 87
subset, imputed-method, 87
subset,lg-method

(subset, imputed-method), 87
subset,mpcross-method

(subset, imputed-method), 87
subset, mpcrossLG-method

(subset, imputed-method), 87
subset,mpcrossMapped-method

(subset, imputed-method), 87
subset, mpcrossRF-method

(subset, imputed-method), 87
subset,probabilities-method

(subset, imputed-method), 87
subset, rawSymmetricMatrix-method

(subset, imputed-method), 87
subset, rf-method

(subset, imputed-method), 87

testDistortion, 88

99

toMpMap, 89
transposeProbabilities, 90
twoParentPedigree, 21, 22, 24, 39, 40, 86, 91

wsnp_Ku_rep_c103074_89904851, 92

	+,mpcrossMapped,mpcrossMapped-method
	addExtraMarkerFromRawCall
	addExtraMarkers
	as.mpInterval
	assignFounderPattern
	backcrossPedigree
	biparentalDominant
	callFromMap
	changeMarkerPosition
	clusterOrderCross
	combineKeepRF
	computeAllEpistaticChiSquared
	computeGenotypeProbabilities
	detailedPedigree-class
	eightParentPedigreeImproperFunnels
	eightParentPedigreeRandomFunnels
	eightParentPedigreeSingleFunnel
	eightParentSubsetMap
	estimateMap
	estimateMapFromImputation
	estimateRF
	estimateRFSingleDesign
	existingLocalisationStatistics
	expand
	exportMapToPretzl
	extraImputationPoints
	f2Pedigree
	finalNames
	finals
	fixedNumberOfFounderAlleles
	flatImputationMapNames
	formGroups
	founderNames
	founders
	fourParentPedigreeRandomFunnels
	fourParentPedigreeSingleFunnel
	fromMpMap
	generateGridPositions
	generateIntervalMidPoints
	geneticData-class
	getAllFunnels
	getAllFunnelsIncAIC
	getChromosomes
	getIntercrossingAndSelfingGenerations
	getPositions
	hetData
	hetsForSNPMarkers
	imputationData
	imputationKey
	imputationMap
	impute
	imputeFounders
	infiniteSelfing
	initialize,canSkipValidity-method
	jitterMap
	lineNames
	lineNames,mpcross-method
	lineNames<-
	linesByNames
	listCodingErrors
	listCodingErrorsInfiniteSelfing
	mapFunctions
	markers
	mpcross
	mpcross-class
	mpcrossMapped
	mpcrossMapped-class
	mpcrossRF-class
	multiparentSNP
	nFounders
	nLines
	nMarkers
	normalPhenotype
	omp_set_num_threads
	orderCross
	pedigree
	pedigree-class
	pedigreeGraph-class
	pedigreeToGraph
	plot,addExtraMarkersStatistics,ANY-method
	plot,mpcross,ANY-method
	plot,pedigreeGraph,ANY-method
	plotMosaic
	plotProbabilities
	probabilities-class
	probabilityData
	redact
	removeHets
	reverseChromosomes
	rilPedigree
	selfing<-
	simulatedFourParentData
	simulateMPCross
	sixteenParentPedigreeRandomFunnels
	stripPedigree
	subset,imputed-method
	testDistortion
	toMpMap
	transposeProbabilities
	twoParentPedigree
	wsnp_Ku_rep_c103074_89904851
	[,rawSymmetricMatrix,index,index,logical-method
	Index

