
Package ‘mosum’
November 4, 2019

Title Moving Sum Based Procedures for Changes in the Mean

Version 1.2.3

Date 2019-10-21

Description Implementations of MOSUM-based statistical procedures and algorithms for detect-
ing multiple changes in the mean. This comprises the MOSUM procedure for estimating multi-
ple mean changes from Eichinger and Kirch (2018) <doi:10.3150/16-BEJ887> and the multi-
scale algorithmic extensions from Cho and Kirch (2019) <arXiv:1910.12486>.

Depends R (>= 3.1.2)

License GPL (>= 3)

LazyData true

Imports RColorBrewer, plot3D, Rcpp (>= 0.12.5)

LinkingTo Rcpp

Maintainer Haeran Cho <haeran.cho@bristol.ac.uk>

RoxygenNote 6.1.1

Encoding UTF-8

NeedsCompilation yes

Author Alexander Meier [aut],
Haeran Cho [aut, cre],
Claudia Kirch [aut]

Repository CRAN

Date/Publication 2019-11-04 14:30:02 UTC

R topics documented:
bandwidths.default . 2
confint.mosum.cpts . 3
confint.multiscale.cpts . 4
mosum . 5
mosum.criticalValue . 7
multiscale.bottomUp . 8
multiscale.localPrune . 10

1

2 bandwidths.default

persp3D.multiscaleMosum . 12
plot.mosum.cpts . 13
plot.multiscale.cpts . 14
print.mosum.cpts . 15
print.multiscale.cpts . 16
summary.mosum.cpts . 17
summary.multiscale.cpts . 17
testData . 18

Index 20

bandwidths.default Default choice for the set of multiple bandwidths

Description

Create bandwidths according to a default function of the sample size

Usage

bandwidths.default(n, d.min = 10, G.min = 10, G.max = min(n/2,
n^(2/3)))

Arguments

n integer representing the sample size
d.min integer for the minimal mutual distance of change-points that can be expected
G.min integer for the minimal allowed bandwidth
G.max integer for the maximal allowed bandwidth

Details

Returns an integer vector of bandwidths (G_1,...,G_m), with G_0 = G_1 = max(G.min, 2/3*d.min),
G_j+1 = G_j-1 + G_j (for j = 1, ..., m-1) and m satisfying G_m <= G.max while G_m+1 > G.max.

Value

an integer vector of bandwidths

References

A. Meier, C. Kirch and H. Cho (2019) mosum: A Package for Moving Sums in Change-point
Analysis. To appear in the Journal of Statistical Software.

H. Cho and C. Kirch (2019) Localised pruning for data segmentation based on multiscale change
point procedures. arXiv preprint arXiv:1910.12486.

Examples

bandwidths.default(1000, 10, 10, 200)

confint.mosum.cpts 3

confint.mosum.cpts Confidence intervals for change-points

Description

Generate bootstrap confidence intervals for change-points.

Usage

S3 method for class 'mosum.cpts'
confint(object, parm = "cpts", level = 0.05,
N_reps = 1000, ...)

Arguments

object an object of class mosum.cpts
parm specification of which parameters are to be given confidence intervals; parm =

"cpts" is supported
level numeric value in (0, 1), such that the 100(1-level)% confidence bootstrap in-

tervals are computed
N_reps number of bootstrap replications
... not in use

Details

See the referenced literature for further details

Value

S3 object of class cpts.ci, containing the following fields:

level, N_reps input parameters
CI data frame of five columns, containing the estimated change-points (column

cpts), the pointwise confidence intervals (columns pw.left and pw.right) and
the uniform confidence intervals (columns unif.left and unif.right) for the
corresponding change-points

References

A. Meier, C. Kirch and H. Cho (2019) mosum: A Package for Moving Sums in Change-point
Analysis. To appear in the Journal of Statistical Software.

Examples

x <- testData(lengths = rep(100, 3), means = c(0, 3, 1), sds = rep(1, 3), seed = 1337)$x
m <- mosum(x, G = 40)
ci <- confint(m, N_reps = 5000)
print(ci$CI)

4 confint.multiscale.cpts

confint.multiscale.cpts

Confidence intervals for change-points

Description

Generate bootstrap confidence intervals for change-points.

Usage

S3 method for class 'multiscale.cpts'
confint(object, parm = "cpts", level = 0.05,
N_reps = 1000, ...)

Arguments

object an object of class multiscale.cpts

parm specification of which parameters are to be given confidence intervals; parm =
"cpts" is supported

level numeric value in (0, 1), such that the 100(1-level)% confidence bootstrap in-
tervals are computed

N_reps number of bootstrap replications

... not in use

Details

See the referenced literature for further details

Value

S3 object of class cpts.ci, containing the following fields:

level, N_reps input parameters

CI data frame of five columns, containing the estimated change-points (column
cpts), the pointwise confidence intervals (columns pw.left and pw.right) and
the uniform confidence intervals (columns unif.left and unif.right) for the
corresponding change-points

References

A. Meier, C. Kirch and H. Cho (2019) mosum: A Package for Moving Sums in Change-point
Analysis. To appear in the Journal of Statistical Software.

mosum 5

Examples

x <- testData(lengths = rep(100, 3), means = c(0, 3, 1), sds = rep(1, 3), seed = 1337)$x
mlp <- multiscale.localPrune(x, G = c(8, 15, 30, 70))
ci <- confint(mlp, N_reps = 5000)
print(ci$CI)

mosum MOSUM procedure for multiple change-point estimation

Description

Computes the MOSUM detector, detects (multiple) change-points and estimates their locations.

Usage

mosum(x, G, G.right = G, var.est.method = c("mosum", "mosum.min",
"mosum.max", "custom")[1], var.custom = NULL,
boundary.extension = TRUE, threshold = c("critical.value",
"custom")[1], alpha = 0.1, threshold.custom = NULL,
criterion = c("eta", "epsilon")[1], eta = 0.4, epsilon = 0.2,
do.confint = FALSE, level = 0.05, N_reps = 1000)

Arguments

x input data (a numeric vector or an object of classes ts and timeSeries)

G an integer value for the moving sum bandwidth; G should be less than length(n)/2.
Alternatively, a number between 0 and 0.5 describing the moving sum band-
width relative to length(x) can be given

G.right if G.right != G, the asymmetric bandwidth (G,G.right) will be used; if max(G,G.right)/min(G,G.right)
> 4, a warning message is generated

var.est.method how the variance is estimated; possible values are

• "mosum"both-sided MOSUM variance estimator
• "mosum.min"minimum of the sample variance estimates from the left and

right summation windows
• "mosum.max"maximum of the sample variance estimates from the left and

right summation windows
• "custom"a vector of length(x) is to be parsed by the user; use var.custom

in this case to do so

var.custom a numeric vector (of the same length as x) containing local estimates of the
variance or long run variance; use iff var.est.method = "custom"

boundary.extension

a logical value indicating whether the boundary values should be filled-up with
CUSUM values

6 mosum

threshold string indicating which threshold should be used to determine significance. By
default, it is chosen from the asymptotic distribution at the given significance
level alpha. Alternatively it is possible to parse a user-defined numerical value
with threshold.custom

alpha a numeric value for the significance level with 0 <= alpha <= 1; use iff threshold
= "critical.value"

threshold.custom

a numeric value greater than 0 for the threshold of significance; use iff threshold
= "custom"

criterion string indicating how to determine whether each point k at which MOSUM
statistic exceeds the threshold is a change-point; possible values are

• "eta"there is no larger exceeding in an eta*G environment of k
• "epsilon"k is the maximum of its local exceeding environment, which has

at least size epsilon*G

eta a positive numeric value for the minimal mutual distance of changes, relative to
moving sum bandwidth (iff criterion = "eta")

epsilon a numeric value in (0,1] for the minimal size of exceeding environments, relative
to moving sum bandwidth (iff criterion = "epsilon")

do.confint flag indicating whether to compute the confidence intervals for change-points

level use iff do.confint = TRUE; a numeric value (0 <= level <= 1) with which 100(1-level)%
confidence interval is generated

N_reps use iff do.confint = TRUE; number of bootstrap replicates to be generated

Value

S3 object of class mosum.cpts, which contains the following fields:

x input data
G.left, G.right

left and right summation bandwidths
var.est.method, var.custom,boundary.extension

input parameters

stat a series of MOSUM statistic values; the first G and last G.right values are NA
iff boundary.extension = FALSE

rollsums a series of MOSUM detector values; equals stat*sqrt(var.estimation)

var.estimation the local variance estimated according to var.est.method

threshold, alpha, threshold.custom

input parameters
threshold.value

threshold value of the corresponding MOSUM test
criterion, eta, epsilon

input parameters

cpts a vector containing the estimated change-point locations

mosum.criticalValue 7

cpts.info data frame containing information about change-point estimators including de-
tection bandwidths, asymptotic p-values for the corresponding MOSUM statis-
tics and (scaled) size of jumps

do.confint input parameter

ci S3 object of class cpts.ci containing confidence intervals for change-points iff
do.confint=TRUE

References

A. Meier, C. Kirch and H. Cho (2019) mosum: A Package for Moving Sums in Change-Point
Analysis. To appear in the Journal of Statistical Software.

B. Eichinger and C. Kirch (2018) A MOSUM procedure for the estimation of multiple random
change-points. Bernoulli, Volume 24, Number 1, pp. 526-564.

Examples

x <- testData(lengths = rep(100, 3), means = c(0, 5, -2), sds = rep(1, 3), seed = 1234)$x
m <- mosum(x, G = 40)
plot(m)
summary(m)

mosum.criticalValue MOSUM asymptotic critical value

Description

Computes the asymptotic critical value for the MOSUM test.

Usage

mosum.criticalValue(n, G.left, G.right, alpha)

Arguments

n an integer value for the length of the input data

G.left, G.right

integer values for the left and right moving sum bandwidth (G.left, G.right)

alpha a numeric value for the significance level with 0 <= alpha <= 1

Value

a numeric value for the asymptotic critical value for the MOSUM test

8 multiscale.bottomUp

Examples

x <- testData(lengths = rep(100, 3), means = c(0, 5, -2), sds = rep(1, 3), seed = 1234)$x
m <- mosum(x, G = 40)
par(mfrow = c(2, 1))
plot(m$stat, type = "l", xlab = "Time", ylab = "", main = "mosum")
abline(h = mosum.criticalValue(300, 40, 40, .1), col = 4)
abline(v = m$cpts, col = 2)
plot(m, display = "mosum") # identical plot is produced

multiscale.bottomUp Multiscale MOSUM algorithm with bottom-up merging

Description

Multiscale MOSUM procedure with symmetric bandwidths combined with bottom-up bandwidth-
based merging.

Usage

multiscale.bottomUp(x, G = bandwidths.default(length(x), G.min = max(20,
ceiling(0.05 * length(x)))), threshold = c("critical.value",
"custom")[1], alpha = 0.1, threshold.function = NULL, eta = 0.4,
do.confint = FALSE, level = 0.05, N_reps = 1000, ...)

Arguments

x input data (a numeric vector or an object of classes ts and timeSeries)
G a vector of (symmetric) bandwidths, given as either integers less than length(x)/2,

or numbers between 0 and 0.5 describing the moving sum bandwidths relative to
length(x). If the smallest bandwidth is smaller than min(20,0.05*length(x))
(0.05 if relative bandwidths are given) and threshold = "critical.value", it
generates a warning message

threshold string indicating which threshold should be used to determine significance. By
default, it is chosen from the asymptotic distribution at the given significance
level alpha. Alternatively, it is possible to parse a user-defined function with
threshold.function

alpha a numeric value for the significance level with 0 <= alpha <= 1; use iff threshold
= "critical.value"

threshold.function

function object of form function(G,length(x),alpha), to compute a thresh-
old of significance for different bandwidths G; use iff threshold = "custom"

eta see mosum
do.confint flag indicating whether to compute the confidence intervals for change-points
level use iff do.confint = TRUE; a numeric value (0 <= level <= 1) with which 100(1-level)%

confidence interval is generated
N_reps use iff do.confint = TRUE; number of bootstrap replicates to be generated
... further arguments to be passed to the mosum calls

multiscale.bottomUp 9

Details

See Algorithm 1 in the first referenced paper for a comprehensive description of the procedure and
further details.

Value

S3 object of class multiscale.cpts, which contains the following fields:

x input data

cpts estimated change-points

cpts.info data frame containing information about estimated change-points

pooled.cpts set of change-point candidates that have been considered by the algorithm

G bandwidths
threshold, alpha, threshold.function

input parameters

eta input parameters

do.confint input parameter

ci object of class cpts.ci containing confidence intervals for change-points iff
do.confint = TRUE

References

A. Meier, C. Kirch and H. Cho (2019) mosum: A Package for Moving Sums in Change-point
Analysis. To appear in the Journal of Statistical Software.

M. Messer et al. (2014) A multiple filter test for the detection of rate changes in renewal processes
with varying variance. The Annals of Applied Statistics, Volume 8, Number 4, pp. 2027-2067.

Examples

x1 <- testData(lengths = c(100, 200, 300, 300),
means = c(0, 1, 2, 2.7), sds = rep(1, 4), seed = 123)$x
mbu1 <- multiscale.bottomUp(x1)
plot(mbu1)
summary(mbu1)

x2 <- testData(model = "mix", seed = 1234)$x
threshold.custom <- function(G, n, alpha) {
mosum.criticalValue(n, G, G, alpha) * log(n/G)^0.1
}
mbu2 <- multiscale.bottomUp(x2, G = 10:40, threshold = "custom",
threshold.function = threshold.custom)
plot(mbu2)
summary(mbu2)

10 multiscale.localPrune

multiscale.localPrune Multiscale MOSUM algorithm with localised pruning

Description

Multiscale MOSUM procedure with (possibly) assymetric bandwidths and localised pruning based
on Schwarz criterion.

Usage

multiscale.localPrune(x, G = bandwidths.default(length(x)),
max.unbalance = 4, threshold = c("critical.value", "custom")[1],
alpha = 0.1, threshold.function = NULL, criterion = c("eta",
"epsilon")[1], eta = 0.4, epsilon = 0.2, rule = c("pval",
"jump")[1], penalty = c("log", "polynomial")[1], pen.exp = 1.01,
do.confint = FALSE, level = 0.05, N_reps = 1000, ...)

Arguments

x input data (a numeric vector or an object of classes ts and timeSeries)

G a vector of bandwidths, given as either integers less than length(x)/2, or
numbers between 0 and 0.5 describing the moving sum bandwidths relative
to length(x). Asymmetric bandwidths obtained as the Cartesian product of the
set G with itself are used for change-point analysis

max.unbalance a numeric value for the maximal ratio between maximal and minimal band-
widths to be used for candidate generation, 1 <= max.unbalance <= Inf

threshold string indicating which threshold should be used to determine significance. By
default, it is chosen from the asymptotic distribution at the significance level
alpha. Alternatively, it is possible to parse a user-defined function with threshold.function

alpha a numeric value for the significance level with 0 <= alpha <= 1. Use iff threshold
= "critical.value"

threshold.function

function object of form function(G_l,G_r,length(x),alpha), to compute a
threshold of significance for different bandwidths (G_l,G_r); use iff threshold
= "custom"

criterion how to determine whether an exceeding point is a change-point; to be parsed to
mosum

eta, epsilon see mosum

rule string for the choice of sorting criterion for change-point candidates in merging
step. Possible values are:

• "pval"smallest p-value
• "jump"largest (rescaled) jump size

penalty string specifying the type of penalty term to be used in Schwarz criterion; pos-
sible values are:

multiscale.localPrune 11

• "log"use penalty = log(length(x))^pen.exp

• "polynomial"use penalty = length(x)^pen.exp

pen.exp exponent for the penalty term (see penalty);

do.confint flag indicating whether confidence intervals for change-points should be com-
puted

level use iff do.confint = TRUE; a numeric value (0 <= level <= 1) with which 100(1-level)%
confidence interval is generated

N_reps use iff do.confint = TRUE; number of bootstrap replicates to be generated

... further arguments to be parsed to mosum calls

Details

See Algorithm 2 in the first referenced paper for a comprehensive description of the procedure and
further details.

Value

S3 object of class multiscale.cpts, which contains the following fields:

x input data

cpts estimated change-points

cpts.info data frame containing information about estimated change-points

sc Schwarz criterion values of the estimated change-point set

pooled.cpts set of change-point candidates that have been considered by the algorithm

G input parameter

threshold, alpha, threshold.function

input parameters

criterion, eta, epsilon

input parameters

rule, penalty, pen.exp

input parameters

do.confint input parameter

ci object of class cpts.ci containing confidence intervals for change-points iff
do.confint = TRUE

References

A. Meier, C. Kirch and H. Cho (2019) mosum: A Package for Moving Sums in Change-point
Analysis. To appear in the Journal of Statistical Software.

H. Cho and C. Kirch (2019) Localised pruning for data segmentation based on multiscale change
point procedures. arXiv preprint arXiv:1910.12486.

12 persp3D.multiscaleMosum

Examples

x <- testData(model = "mix", seed = 123)$x
mlp <- multiscale.localPrune(x, G = c(8, 15, 30, 70), do.confint = TRUE)
print(mlp)
summary(mlp)
par(mfcol=c(2, 1), mar = c(2, 4, 2, 2))
plot(mlp, display = "data", shaded = "none")
plot(mlp, display = "significance", shaded = "CI", CI = "unif")

persp3D.multiscaleMosum

3D Visualisation of multiscale MOSUM statistics

Description

3D Visualisation of multiscale MOSUM statistics.

Usage

persp3D.multiscaleMosum(x, mosum.args = list(),
threshold = c("critical.value", "custom")[1], alpha = 0.1,
threshold.function = NULL, pal.name = "YlOrRd", expand = 0.2,
theta = 120, phi = 20, xlab = "G", ylab = "time",
zlab = "MOSUM", ticktype = "detailed", NAcol = "#800000FF", ...)

Arguments

x a numeric input data vector

mosum.args a named list containing further arguments to be parsed to the respective mosum
function calls, see mosum; the bandwidths are chosen by the function and should
not be given as an argument in mosum.args

threshold string indicating which threshold should be used for normalisation of MOSUM
statistics computed with different bandwidths. By default, it is chosen from the
asymptotic distribution at the given significance level alpha. Alternatively it is
possible to parse a user-defined numerical value with threshold.custom; see
also Details.

alpha a numeric value for the significance level with 0 <= alpha <= 1; use iff threshold
= "critical.value"

threshold.function

function object of form function(G), to compute a threshold of significance for
different bandwidths G; use iff threshold='custom'

pal.name a string containing the name of the ColorBrewer palette to be used; sequential
palettes are recommended. See RColorBrewer::brewer.pal.info for details

expand expansion factor applied to the z coordinates

theta azimuthal angle defining the viewing direction

plot.mosum.cpts 13

phi colatitude angle defining the viewing direction

xlab, ylab, zlab, ticktype

graphical parameters

NAcol coloring parameter

... further arguments to be passed to function call of persp3D

Details

The visualisation is based on persp3D. MOSUM statistics computed with different bandwidths
are rescaled for making them visually comparable. Rescaling is done either by dividing by their
respective critical value at the significance level alpha (iff threshold = "critical.value") or
by a custom value given by threshold.function (iff threshold = "custom"). By default, clim
argument of persp3D is given so that the three lightest (for sequential palettes) hues indicate in-
significance of the corresponding MOSUM statistics, while darker hues indicate the presence of
significant changes.

Value

see persp3D

Examples

Not run:
If you run the example be aware that this may take some time
print("example may take some time to run")

x <- testData(model = "blocks", seed = 1234)$x
persp3D.multiscaleMosum(x, mosum.args = list(boundary.extension = FALSE))

End(Not run)

plot.mosum.cpts Plotting the output from MOSUM procedure

Description

Plotting method for S3 objects of class mosum.cpts

Usage

S3 method for class 'mosum.cpts'
plot(x, display = c("data", "mosum")[1],
cpts.col = "red", critical.value.col = "blue", xlab = "Time", ...)

14 plot.multiscale.cpts

Arguments

x a mosum.cpts object

display which to be plotted against the change-point estimators; possible values are

• "data"input time series is plotted along with the estimated piecewise con-
stant signal

• "mosum"scaled MOSUM detector values are plotted

cpts.col a specification for the color of the vertical lines at the change-point estimators,
see par

critical.value.col

a specification for the color of the horizontal line indicating the critical value,
see par; use iff display = "mosum"

xlab graphical parameter

... additional graphical arguments, see plot and abline

Details

The location of each change-point estimator is plotted as a vertical line against the input time se-
ries and the estimated piecewise constant signal (display = "data") or MOSUM detector values
(display = "mosum").

Examples

x <- testData(lengths = rep(100, 3), means = c(0, 5, -2), sds = rep(1, 3), seed = 1234)$x
m <- mosum(x, G = 40)
par(mfrow = c(2, 1), mar = c(2.5, 2.5, 2.5, .5))
plot(m, display = "data")
plot(m, display = "mosum")

plot.multiscale.cpts Plotting the output from multiscale MOSUM procedure

Description

Plotting method for S3 objects of class "multiscale.cpts".

Usage

S3 method for class 'multiscale.cpts'
plot(x, display = c("data", "significance")[1],
shaded = c("CI", "bandwidth", "none")[1], level = 0.05,
N_reps = 1000, CI = c("pw", "unif")[1], xlab = "Time", ...)

print.mosum.cpts 15

Arguments

x a multiscale.cpts object

display which to be plotted against the estimated change-point locations; possible values
are

• "data"input time series is plotted along with the estimated piecewise con-
stant signal

• "significance"one minus the p-values associated with the detection of
change-point estimators are represented as the height of vertical lines indi-
cating their locations

shaded string indicating which to display as shaded areas surrounding the estimated
change-point locations. Poissble values are

• "bandwidth"respective detection intervals are plotted
• "CI"bootstrap confidence intervals are plotted
• "none"none is plotted

level, N_reps argument to be parsed to confint.multiscale.cpts; use iff shaded = "CI".

CI string indicating whether pointwise (CI = "pw") or uniform (CI = "unif") con-
fidence intervals are to be plotted; use iff shaded = "CI"

xlab graphical parameter

... not in use

Details

The locations of change-point estimators are plotted against the input time series and the estimated
piecewise constant signal (display = "data"), or the significance of each estimator is represented
by the corresponding 1-p.value derived from the asymptotic distribution of MOSUM test statistic
(display = "significance"). It also produces the rectangles representing the detection intervals
(if shaded = "bandwidth") or bootstrap confidence intervals of the corresponding change-points
(if shaded = "CI") around their locations.

Examples

x <- testData(model = "blocks", seed = 1234)$x
mlp <- multiscale.localPrune(x)
par(mfrow = c(2, 1))
plot(mlp, display = "data", shaded = "bandwidth")
plot(mlp, display = "significance", shaded = "CI")

print.mosum.cpts Change-points estimated by MOSUM procedure

Description

Print method for objects of class mosum.cpts

16 print.multiscale.cpts

Usage

S3 method for class 'mosum.cpts'
print(x, ...)

Arguments

x a mosum.cpts object

... not in use

Examples

x <- testData(lengths = rep(100, 3), means = c(0, 5, -2), sds = rep(1, 3), seed = 1234)$x
m <- mosum(x, G = 40)
print(m)

print.multiscale.cpts Change-points estimated by multiscale MOSUM procedure

Description

Print method for objects of class multiscale.cpts

Usage

S3 method for class 'multiscale.cpts'
print(x, ...)

Arguments

x a multiscale.cpts object

... not in use

Examples

x <- testData(model = "mix", seed = 12345)$x
mlp <- multiscale.localPrune(x)
print(mlp)

summary.mosum.cpts 17

summary.mosum.cpts Summary of change-points estimated by MOSUM procedure

Description

Summary method for objects of class mosum.cpts

Usage

S3 method for class 'mosum.cpts'
summary(object, ...)

Arguments

object a mosum.cpts object

... not in use

Details

Provide information about each estimated change-point, including the bandwidths used for its esti-
mation, associated p-value and (scaled) jump size; if object$do.confint=TRUE, end points of the
pointwise and uniform confidence intervals are also provided.

Examples

x <- testData(lengths = rep(100, 3), means = c(0, 5, -2), sds = rep(1, 3), seed = 1234)$x
m <- mosum(x, G = 40, do.confint = TRUE)
summary(m)

summary.multiscale.cpts

Summary of change-points estimated by multiscale MOSUM proce-
dure

Description

Summary method for objects of class multiscale.cpts

Usage

S3 method for class 'multiscale.cpts'
summary(object, ...)

Arguments

object a multiscale.cpts object

... not in use

18 testData

Details

Provide information about each estimated change-point, including the bandwidths used for its de-
tection, associated p-value and (scaled) jump size; if object$do.confint=TRUE, end points of the
pointwise and uniform confidence intervals are also provided.

Examples

x <- testData(model = "mix", seed = 12345)$x
mlp <- multiscale.localPrune(x, do.confint = TRUE)
summary(mlp)

testData Test data with piecewise constant mean

Description

Generate piecewise stationary time series with independent innovations and change-points in the
mean.

Usage

testData(model = c("custom", "blocks", "fms", "mix", "stairs10",
"teeth10")[1], lengths = NULL, means = NULL, sds = NULL,
rand.gen = rnorm, seed = NULL, ...)

Arguments

model a string indicating from which model a realisation is to be generated; possible
values are "custom" (for user-specified model using lengths, means and sds),
and "blocks", "fms", "mix", "stairs10", "teeth10" (for the referenced test signals)

lengths use iff model = "custom"; an integer vector for the lengths of the piecewise
stationary segments

means use iff model = "custom"; a numeric vector for the means of the piecewise sta-
tionary segments

sds use iff model = "custom"; a numeric vector for the deviation scaling of the
piecewise stationary segments. The values are multiplied to the outcome of
rand.gen, coinciding with the standard deviation in the case of standard normal
innovations (rand.gen = rnorm)

rand.gen optional; a function to generate the noise/innovations

seed optional; if a seed value is provided (!is.null(seed)), then set.seed(seed)
is called beforehand)

... further arguments to be parsed to rand.gen

Details

See Appendix B in the reference for details about the test signals.

testData 19

Value

a list containing the following entries:

• x a numeric vector containing a realisation of the piecewise time series model, given as signal
+ noise

• mu mean vector of piecewise stationary time series model

• sigma scaling vector of piecewise stationary time series model

• cpts a vector of change-points in the piecewise stationary time series model

References

P. Fryzlewicz (2014) Wild Binary Segmentation for Multiple Change-Point Detection. The Annals
of Statistics, Volume 42, Number 6, pp. 2243-2281.

Examples

visualise estimated changepoints by solid vertical lines
and true changepoints by broken vertical lines
td <- testData(lengths = c(50, 50, 200, 300, 300), means = c(0, 1, 2, 3, 2.3),
sds = rep(1, 5), seed = 123)
mbu <- multiscale.bottomUp(td$x)
plot(mbu, display = "data")
abline(v = td$cpts, col = 2, lwd = 2, lty = 2)

visualise estimated piecewise constant signal by solid line
and true signal by broken line
td <- testData("blocks", seed = 123)
mlp <- multiscale.localPrune(td$x)
plot(mlp, display = "data")
lines(td$mu, col = 2, lwd = 2, lty = 2)

Index

abline, 14

bandwidths.default, 2

confint.mosum.cpts, 3
confint.multiscale.cpts, 4, 15

mosum, 5, 8, 10–12
mosum.criticalValue, 7
multiscale.bottomUp, 8
multiscale.localPrune, 10

par, 14
persp3D, 13
persp3D.multiscaleMosum, 12
plot, 14
plot.mosum.cpts, 13
plot.multiscale.cpts, 14
print.mosum.cpts, 15
print.multiscale.cpts, 16

summary.mosum.cpts, 17
summary.multiscale.cpts, 17

testData, 18

20

	bandwidths.default
	confint.mosum.cpts
	confint.multiscale.cpts
	mosum
	mosum.criticalValue
	multiscale.bottomUp
	multiscale.localPrune
	persp3D.multiscaleMosum
	plot.mosum.cpts
	plot.multiscale.cpts
	print.mosum.cpts
	print.multiscale.cpts
	summary.mosum.cpts
	summary.multiscale.cpts
	testData
	Index

