mosaicModel: An Interface to Statistical Modeling Independent of Model
Architecture
Provides functions for evaluating, displaying, and interpreting statistical models. The goal is to abstract the operations on models from the particular architecture of the model. For instance, calculating effect sizes rather than looking at coefficients. The package includes interfaces to both regression and classification architectures, including lm(), glm(), rlm() in 'MASS', random forests and recursive partitioning, k-nearest neighbors, linear and quadratic discriminant analysis, and models produced by the 'caret' package's train(). It's straightforward to add in other other model architectures.
Version: |
0.3.0 |
Depends: |
R (≥ 3.1), mosaicCore, splines, dplyr |
Imports: |
caret, ggplot2, ggformula, lazyeval, knitr, MASS, testthat, tibble, tidyr, tidyverse |
Suggests: |
mosaic, mosaicData, randomForest, rpart |
Published: |
2017-09-22 |
Author: |
Kaplan Daniel [aut, cre],
Pruim Randall [aut, cre] |
Maintainer: |
Daniel Kaplan <kaplan at macalester.edu> |
License: |
MIT + file LICENSE |
NeedsCompilation: |
no |
CRAN checks: |
mosaicModel results |
Downloads:
Reverse dependencies:
Linking:
Please use the canonical form
https://CRAN.R-project.org/package=mosaicModel
to link to this page.