
Package ‘mosaicCore’
June 24, 2018

Type Package

Title Common Utilities for Other MOSAIC-Family Packages

Version 0.6.0

Date 2018-06-23

Depends R (>= 3.0.0),

Imports stats, dplyr, lazyeval, rlang, tidyr, MASS

Suggests mosaicData, mosaic, ggformula, NHANES, testthat

Author Randall Pruim <rpruim@calvin.edu>, Daniel T. Kaplan

<kaplan@macalester.edu>, Nicholas J. Horton <nhorton@amherst.edu>

Maintainer Randall Pruim <rpruim@calvin.edu>

Description Common utilities used in other MOSAIC-family packages are
collected here.

License GPL (>= 2)

LazyLoad yes

LazyData yes

URL https://github.com/ProjectMOSAIC/mosaicCore

BugReports https://github.com/ProjectMOSAIC/mosaicCore/issues

RoxygenNote 6.0.1.9000

Encoding UTF-8

NeedsCompilation no

Repository CRAN

Date/Publication 2018-06-24 04:17:57 UTC

R topics documented:
ash_points . 2
coef.function . 3
columns . 4

1

https://github.com/ProjectMOSAIC/mosaicCore
https://github.com/ProjectMOSAIC/mosaicCore/issues

2 ash_points

counts . 4
coverage . 6
dfapply . 7
df_stats . 8
ediff . 11
evalFormula . 12
evalSubFormula . 12
fit_distr_fun . 13
formularise . 14
infer_transformation . 15
inspect . 15
joinFrames . 16
logical2factor . 17
logit . 18
makeFun . 18
make_df . 21
modelVars . 21
mosaic_formula . 22
na.warn . 23
named . 23
nice_names . 24
n_missing . 25
parse.formula . 25
print.msummary.lm . 27
prop . 28
reop_formula . 29
tally . 30
vector2df . 32

Index 33

ash_points Compute knot points of an average shifted histogram

Description

Mainly a utility for the lattice and ggplot2 plotting functions, ash_points() returns the points to
be plotted.

Usage

ash_points(x, binwidth = NULL, adjust = 1)

coef.function 3

Arguments

x A numeric vector

binwidth The width of the histogram bins. If NULL (the default) the binwidth will be
chosen so that approximately 10 bins cover the data. adjust can be used to to
increase or decrease binwidth.

adjust A number used to scale binwidth.

Value

A data frame containing x and y coordinates of the resulting ASH plot.

coef.function Extract coefficients from a function

Description

coef will extract the coefficients attribute from a function. Functions created by applying link{makeFun}
to a model produced by lm(), glm(), or nls() store the model coefficients there to enable this ex-
traction.

Usage

S3 method for class 'function'
coef(object, ...)

Arguments

object a function

... ignored

Examples

if (require(mosaicData)) {
model <- lm(width ~ length, data = KidsFeet)
f <- makeFun(model)
coef(f)

}

4 counts

columns return a vector of row or column indices

Description

return a vector of row or column indices

Usage

columns(x, default = c())

rows(x, default = c())

Arguments

x an object that may or may not have any rows or columns

default what to return if there are no rows or columns

Value

if x has rows or columns, a vector of indices, else default

Examples

dim(iris)
columns(iris)
rows(iris)
columns(NULL)
columns("this doesn't have columns")

counts Compute all proportions or counts

Description

Compute vector of counts, proportions, or percents for each unique value (and NA if there is missing
data) in a vector.

counts 5

Usage

counts(x, ...)

S3 method for class 'factor'
counts(x, ..., format = c("count", "proportion", "percent"))

Default S3 method:
counts(x, ..., format = c("count", "proportion", "percent"))

S3 method for class 'formula'
counts(x, data, ..., format = "count")

props(x, ..., format = "proportion")

percs(x, ..., format = "percent")

Arguments

x A vector or a formula.

... Arguments passed to methods.

format One of "count", "proportion", or "percent". May be abbreviated.

data A data frame.

See Also

mosaic::prop()

mosaic::count()

Examples

if (require(mosaicData)) {
props(HELPrct$substance)
numeric version tallies missing values as well
props(HELPmiss$link)
Formula version omits missing data with warning (by default)
props(~ link, data = HELPmiss) # omit NAs with warning
props(~ link, data = HELPmiss, na.action = na.pass) # no warning; tally NAs
props(~ link, data = HELPmiss, na.action = na.omit) # no warning, omit NAs
props(~ substance | sex, data = HELPrct)
props(~ substance | sex, data = HELPrct, format = "percent")
percs(~ substance | sex, data = HELPrct)
counts(~ substance | sex, data = HELPrct)
df_stats(~ substance | sex, data = HELPrct, props, counts)
df_stats(~ substance | sex, data = HELPmiss, props, na.action = na.pass)

}

6 coverage

coverage Interval statistics

Description

Calculate coverage intervals and confidence intervals for the sample mean, median, sd, proportion,
... Typically, these will be used within df_stats(). For the mean, median, and sd, the variable x
must be quantitative. For proportions, the x can be anything; use the success argument to specify
what value you want the proportion of. Default for success is TRUE for x logical, or the first level
returned by unique for categorical or numerical variables.

Usage

coverage(x, level = 0.95, na.rm = TRUE)

ci.mean(x, level = 0.95, na.rm = TRUE)

ci.median(x, level = 0.9, na.rm = TRUE)

ci.sd(x, level = 0.95, na.rm = TRUE)

ci.prop(x, success = NULL, level = 0.95, method = c("Clopper-Pearson",
"binom.test", "Score", "Wilson", "prop.test", "Wald", "Agresti-Coull",
"Plus4"))

Arguments

x a variable.

level number in 0 to 1 specifying the confidence level for the interval. (Default: 0.95)

na.rm if TRUE disregard missing data

success for proportions, this specifies the categorical level for which the calculation of
proportion will be done. Defaults: TRUE for logicals for which the proportion is
to be calculated.

method for ci.prop(), the method to use in calculating the confidence interval. See
mosaic::binom.test() for details.

Details

Methods: ci.mean() uses the standard t confidence interval. ci.median() uses the normal approx-
imation method. ci.sd() uses the chi-squared method. ci.prop() uses the binomial method. In
the usual situation where the mosaic package is available, ci.prop() uses mosaic::binom.test()
internally, which provides several methods for the calculation. See the documentation for binom.test()
for details about the available methods. Clopper-Pearson is the default method. When used with
df_stats(), the confidence interval is calculated for each group separately. For "pooled" confi-
dence intervals, see methods such as lm() or glm().

dfapply 7

Value

a named numerical vector with components lower and upper, and, in the case of ci.prop(),
center. When used the df_stats(), these components are formed into a data frame.

Note

When using these functions with df_stats(), omit the x argument, which will be supplied auto-
matically by df_stats(). See examples.

See Also

mosaicCore::df_stats(), mosaic::binom.test(), mosaic::t.test()

Examples

The central 95% interval
df_stats(hp ~ cyl, data = mtcars, c95 = coverage(0.95))
The confidence interval on the mean
df_stats(hp ~ cyl, data = mtcars, mean, ci.mean)
What fraction of cars have 6 cylinders?
df_stats(mtcars, ~ cyl, six_cyl_prop = ci.prop(success = 6, level = 0.90))
Use without `df_stats()` (rare)
ci.mean(mtcars$hp)

dfapply apply-type function for data frames

Description

An apply-type function for data frames.

Usage

dfapply(data, FUN, select = TRUE, ...)

Arguments

data data frame

FUN a function to apply to (some) variables in the data frame

select a logical, character (naming variables), or numeric vector or a function used to
select variables to which FUN is applied. If a function, it should take a vector as
input and return a single logical. See examples.

... arguments passed along to FUN

See Also

apply(), sapply(), tapply(), lapply(), inspect()

8 df_stats

Examples

dfapply(iris, mean, select = is.numeric)
dfapply(iris, mosaic::favstats, select = c(TRUE, TRUE, FALSE, FALSE, FALSE))
dfapply(iris, mean, select = c(1,2))
dfapply(iris, mean, select = c("Sepal.Length", "Petal.Length"))
if (require(mosaicData)) {

dfapply(HELPrct, table, select = is.factor)
do.call(rbind, dfapply(HELPrct, mean, select = is.numeric))

}

df_stats Calculate statistics on a variable

Description

Creates a data frame of statistics calculated on one variable, possibly for each group formed by
combinations of additional variables. The resulting data frame has one column for each of the
statistics requested as well as columns for any grouping variables.

Usage

df_stats(formula, data, ..., drop = TRUE, fargs = list(), sep = "_",
format = c("wide", "long"), groups = NULL, long_names = TRUE,
nice_names = FALSE, na.action = "na.warn")

Arguments

formula A formula indicating which variables are to be used. Semantics are approx-
imately as in lm() since stats::model.frame() is used to turn the formula
into a data frame. But first conditions and groups are re-expressed into a form
that stats::model.frame() can interpret. See details.

data A data frame or list containing the variables.

... Functions used to compute the statistics. If this is empty, a default set of sum-
mary statistics is used. Functions used must accept a vector of values and return
either a (possibly named) single value, a (possibly named) vector of values, or
a data frame with one row. Functions can be specified with character strings,
names, or expressions that look like function calls with the first argument miss-
ing. The latter option provides a convenient way to specify additional argu-
ments. See the examples. Note: If these arguments are named, those names will
be used in the data frame returned (see details). Such names may not be among
the names of the named arguments of df_stats().
If a function is specified using ::, be sure to include the trailing parens, even if
there are no additional arguments required.

drop A logical indicating whether combinations of the grouping variables that do not
occur in data should be dropped from the result.

fargs Arguments passed to the functions in

df_stats 9

sep A character string to separate components of names. Set to "" if you don’t want
separation.

format One of "long" or "wide" indicating the desired shape of the returned data
frame.

groups An expression to be evaluated in data and defining (additional) groups. This
isn’t necessary, since these can be placed into the formula, but it is provided for
similarity to other functions from the mosaic package.

long_names A logical indicating whether the default names should include the name of the
variable being summarized as well as the summarizing function name in the
default case when names are not derived from the names of the returned object
or an argument name.

nice_names A logical indicating whether make.names() should be used to force names of
the returned data frame to by syntactically valid.

na.action A function (or character string naming a function) that determines how NAs are
treated. Options include "na.warn" which removes missing data and emits a
warning, "na.pass" which includes all of the data, "na.omit" or "na.exclude"
which silently discard missing data, and "na.fail" which fails if there is miss-
ing data. See link[stats]{na.pass}() and na.warn() for details. The de-
fault is "na.warn" unless no function are specified in ..., in which case "na.pass"
is used since the default function reports the number of missing values.

Details

Use a one-sided formula to compute summary statistics for the left hand side expression over the
entire data. Use a two-sided formula to compute summary statistics for the left hand expression for
each combination of levels of the expressions occurring on the right hand side. This is most useful
when the left hand side is quantitative and each expression on the right hand side has relatively few
unique values. A function like mosaic::ntiles() is often useful to create a few groups of roughly
equal size determined by ranges of a quantitative variable. See the examples.

Note that unlike dplyr::summarise(), df_stats() ignores any grouping defined in data if data
is a grouped tibble.

Value

A data frame. Names of columns in the resulting data frame consist of three parts separated by sep.
The first part is the argument name, if it exists, else the function. The second part is the name of the
variable being summarised if long_names == TRUE and the first part is the function name, else ""
The third part is the names of the object returned by the summarizing function, if they exist, else a
sequence of consecutive integers or "" if there is only one component returned by the summarizing
function. See the examples.

Cautions Regarding Formulas

The use of | to define groups is tricky because (a) stats::model.frame() doesn’t handle this sort
of thing and (b) | is also used for logical or. The current algorithm for handling this will turn the
first occurrence of | into an attempt to condition, so logical or cannot be used before conditioning
in the formula. If you have need of logical or, we suggest creating a new variable that contains the
results of evaluating the expression.

10 df_stats

Similarly, addition (+) is used to separate grouping variables, not for arithmetic.

Examples

df_stats(~ hp, data = mtcars)
There are several ways to specify functions
df_stats(~ hp, data = mtcars, mean, trimmed_mean = mean(trim = 0.1), "median",

range, Q = quantile(c(0.25, 0.75)))
When using ::, be sure to include parents, even if there are no additional arguments.
df_stats(~ hp, data = mtcars, mean = base::mean(), trimmed_mean = base::mean(trim = 0.1))

force names to by syntactically valid
df_stats(~ hp, data = mtcars, Q = quantile(c(0.25, 0.75)), nice_names = TRUE)
shorter names
df_stats(~ hp, data = mtcars, mean, trimmed_mean = mean(trim = 0.1), "median", range,

long_names = FALSE)
wide vs long format
df_stats(hp ~ cyl, data = mtcars, mean, median, range)
df_stats(hp ~ cyl, data = mtcars, mean, median, range, format = "long")
More than one grouping variable -- 3 ways.
df_stats(hp ~ cyl + gear, data = mtcars, mean, median, range)
df_stats(hp ~ cyl | gear, data = mtcars, mean, median, range)
df_stats(hp ~ cyl, groups = gear, data = mtcars, mean, median, range)

because the result is a data frame, df_stats() is also useful for creating plots
if(require(ggformula)) {

gf_violin(hp ~ cyl, data = mtcars, group = ~ cyl) %>%
gf_point(mean_hp ~ cyl, data = df_stats(hp ~ cyl, data = mtcars, mean),
color = ~ "mean") %>%

gf_point(median_hp ~ cyl, data = df_stats(hp ~ cyl, data = mtcars, median),
color = ~"median") %>%

gf_labs(color = "")
}

magrittr style piping is also supported
if (require(ggformula)) {

mtcars %>%
df_stats(hp ~ cyl, mean, median, range)

mtcars %>%
df_stats(hp ~ cyl + gear, mean, median, range) %>%
gf_point(mean_hp ~ cyl, color = ~ factor(gear)) %>%
gf_line(mean_hp ~ cyl, color = ~ factor(gear))

}

can be used with a categorical response, too
if (require(mosaic)) {

df_stats(sex ~ substance, data = HELPrct, table, prop_female = prop)
}
if (require(mosaic)) {

df_stats(sex ~ substance, data = HELPrct, table, props)
}

ediff 11

ediff Lagged Differences with equal length

Description

Often when creating lagged differences, it is awkward that the differences vector is shorter than the
original. ediff pads with pad.value to make its output the same length as the input.

Usage

ediff(x, lag = 1, differences = 1, pad = c("head", "tail", "symmetric"),
pad.value = NA, frontPad, ...)

Arguments

x a numeric vector or a matrix containing the values to be differenced

lag an integer indicating which lag to use

differences an integer indicating the order of the difference

pad one of "head", "tail", or "symmetric". indicating where the pad.value
padding should be added to the result.

pad.value the value to be used for padding.

frontPad logical indicating whether padding is on the front (head) or back (tail) end. This
exists for backward compatibility. New code should use pad instead.

... further arguments to be passed to or from methods

See Also

diff() since ediff is a thin wrapper around diff().

Examples

ediff(1:10)
ediff(1:10, pad.value = 0)
ediff(1:10, 2)
ediff(1:10, 2, 2)
x <- cumsum(cumsum(1:10))
ediff(x, lag = 2)
ediff(x, differences = 2)
ediff(x, differences = 2, pad = "symmetric")
ediff(.leap.seconds)
if (require(mosaic)) {

Men <- subset(SwimRecords, sex == "M")
Men <- mutate(Men, change = ediff(time), interval = ediff(year))
head(Men)

}

12 evalSubFormula

evalFormula Evaluate a formula

Description

Evaluate a formula

Usage

evalFormula(formula, data = parent.frame(), subset, ops = c("+", "&"))

Arguments

formula a formula (y ~ x | z) to evaluate

data a data frame or environment in which evaluation occurs

subset an optional vector describing a subset of the observations to be used. Currently
only implemented when data is a data frame.

ops a vector of operator symbols allowable to separate variables in rhs

Value

a list containing data frames corresponding to the left, right, and condition slots of formula

Examples

if (require(mosaicData)) {
data(CPS85)
cps <- CPS85[1:6,]
cps
evalFormula(wage ~ sex & married & age | sector & race, data=cps)
}

evalSubFormula Evaluate a part of a formula

Description

Evaluate a part of a formula

Usage

evalSubFormula(x, data = NULL, ops = c("+", "&"), env = parent.frame())

fit_distr_fun 13

Arguments

x an object appearing as a subformula (typically a name or a call)

data a data frame or environment in which things are evaluated

ops a vector of operators that are not evaluated as operators but instead used to fur-
ther split x

env an environment in which to search for objects not in data.

Value

a data frame containing the terms of the evaluated subformula

Examples

if (require(mosaicData)) {
data(CPS85)
cps <- CPS85[1:6,]
cps
evalSubFormula(rhs(~ married & sector), data=cps)
}

fit_distr_fun Fit a distribution to data and return a function

Description

Given the name of a family of 1-dimensional distributions, this function chooses a particular mem-
ber of the family that fits the data and returns a function in the selected p, d, q, or r format. When
analytical solutions do not exist, MASS::fitdistr() is used to estimate the parameters by numeri-
cal maximum likelihood.

Usage

fit_distr_fun(data, formula, dist, start = NULL, ...)

Arguments

data A data frame.

formula A formula. A distribution will be fit to the data defined by the right side and
evaluated in data.

dist A string naming the function desired. Tyically this will be "d", "p", "q", or
"r" followed by the (abbrevation for) a family of distributions such as "pnorm",
"rgamma". Fitting is done use MASS::fitdistr(); see the help there for a list
of distributions that are available.

start Starting values for the numerical maximum likelihood method (passed to MASS::fitdistr).

... Additional arguments to MASS::fitdistr()

14 formularise

Value

A function of one variable that acts like, say, pnorm(), dnorm(), qnorm(), or rnorm(), but with
the default values of the parameters set to their maximum likelihood estimates.

Examples

fit_distr_fun(~ cesd, data = mosaicData::HELPrct, dist = "dnorm")
fit_distr_fun(~ cesd, data = mosaicData::HELPrct, dist = "pnorm")
fit_distr_fun(~ cesd, data = mosaicData::HELPrct, dist = "qpois")

formularise Convert lazy objects into formulas

Description

Convert lazy objects into a formula

Usage

formularise(lazy_formula, envir = parent.frame())

Arguments

lazy_formula an object of class lazy

envir an environment that will be come the environment of the returned formula

Details

The expression of the lazy object is evaluated in its environment. If the result is not a formula, then
the formula is created with an empty left hand side and the expression on the right hand side.

Value

a formula

Examples

formularise(lazyeval::lazy(foo))
formularise(lazyeval::lazy(y ~ x))
bar <- a ~ b
formularise(lazyeval::lazy(bar))

infer_transformation 15

infer_transformation Infer a Back-Transformation

Description

For a handful of transformations on y, infer the reverse transformation. If the transformation is not
recognized, return the identity function. This is primarily intended to be used for setting a default
value in other functions.

Usage

infer_transformation(formula, warn = TRUE)

Arguments

formula A formula as used by, for example, lm().

warn A logical.

Value

A function.

inspect Inspect objects

Description

Print a short summary of the contents of an object. Most useful as a way to get a quick overview of
the variables in data frame.

Usage

inspect(object, ...)

S3 method for class 'list'
inspect(object, max.level = 2, ...)

S3 method for class 'character'
inspect(object, ...)

S3 method for class 'logical'
inspect(object, ...)

S3 method for class 'numeric'
inspect(object, ...)

16 joinFrames

S3 method for class 'factor'
inspect(object, ...)

S3 method for class 'Date'
inspect(object, ...)

S3 method for class 'POSIXt'
inspect(object, ...)

S3 method for class 'data.frame'
inspect(object, select = TRUE,
digits = getOption("digits", 3), ...)

S3 method for class 'inspected_data_frame'
print(x, digits = NULL, ...)

Arguments

object a data frame or a vector

... additional arguments passed along to specific methods

max.level an integer giving the depth to which lists should be expanded

select a logical, character (naming variables), or numeric vector or a function used to
select variables to which FUN is applied. If a function, it should take a vector as
input and return a single logical. See examples here and at link{dfapply}.

digits and integer giving the number of digits to display

x an object

Examples

if (require(mosaicData)) {
inspect(Births78)
inspect(Births78, is.numeric)

}

joinFrames Join data frames

Description

Join data frames

Usage

joinFrames(...)

joinTwoFrames(left, right)

logical2factor 17

Arguments

... data frames to be joined

left, right data frames

Value

a data frame containing columns from each of data frames being joined.

logical2factor Convert logical vector into factor

Description

Turn logicals into factors with levels ordered with TRUE before FALSE. Other inputs are returned
unaltered.

Usage

logical2factor(x, ...)

Default S3 method:
logical2factor(x, ...)

S3 method for class 'data.frame'
logical2factor(x, ...)

Arguments

x a vector or data frame

... additional arguments (currently ignored)

Value

If x is a vector either x or the result of converting x into a factor with levels TRUE and FALSE (in that
order); if x is a data frame, a data frame with all logicals converted to factors in this manner.

18 makeFun

logit Logit and inverse logit functions

Description

Logit and inverse logit functions

Usage

logit(x)

ilogit(x)

Arguments

x a numeric vector

Value

For logit the value is

log(x/(1− x))

For ilogit the value is

exp(x)/(1 + exp(x))

Examples

p <- seq(.1, .9, by=.10)
l <- logit(p); l
ilogit(l)
ilogit(l) == p

makeFun Create a function from a formula

Description

Provides an easy mechanism for creating simple "mathematical" functions via a formula interface.

makeFun 19

Usage

makeFun(object, ...)

S3 method for class 'function'
makeFun(object, ..., strict.declaration = TRUE,
use.environment = TRUE, suppress.warnings = FALSE)

S3 method for class 'formula'
makeFun(object, ..., strict.declaration = TRUE,
use.environment = TRUE, suppress.warnings = TRUE)

S3 method for class 'lm'
makeFun(object, ..., transformation = NULL)

S3 method for class 'glm'
makeFun(object, ..., type = c("response", "link"),
transformation = NULL)

S3 method for class 'nls'
makeFun(object, ..., transformation = NULL)

Arguments

object an object from which to create a function. This should generally be specified
without naming.

... additional arguments in the form var = val that set default values for the inputs
to the function.

strict.declaration

if TRUE (the default), an error is thrown if default values are given for variables
not appearing in the object formula.

use.environment

if TRUE, then variables implicitly defined in the object formula can take default
values from the environment at the time makeFun is called. A warning message
alerts the user to this situation, unless suppress.warnings is TRUE.

suppress.warnings

A logical indicating whether warnings should be suppressed.
transformation a function used to transform the response. This can be useful to invert a trans-

formation used on the response when creating the model. If NULL, an attempt
will be made to infer the transformation from the model formula. A few simple
transformations (log, log2, sqrt) are recognized. For other transformations,
transformation should be provided explicitly.

type one of 'response' (default) or 'link' specifying scale to be used for value of
function returned.

Details

The definition of the function is given by the left side of a formula. The right side lists at least one
of the inputs to the function. The inputs to the function are all variables appearing on either the left

20 makeFun

or right sides of the formula. Those appearing in the right side will occur in the order specified.
Those not appearing in the right side will appear in an unspecified order.

When creating a function from a model created with lm, glm, or nls, the function produced is a
wrapper around the corresponding version of predict. This means that having variables in the
model with names that match arguments of predict will lead to potentially ambiguous situations
and should be avoided.

Value

a function

Examples

f <- makeFun(sin(x^2 * b) ~ x & y & a); f
g <- makeFun(sin(x^2 * b) ~ x & y & a, a = 2); g
h <- makeFun(a * sin(x^2 * b) ~ b & y, a = 2, y = 3); h
if (require(mosaicData)) {

model <- lm(log(length) ~ log(width), data = KidsFeet)
f <- makeFun(model, transformation = exp)
f(8.4)
head(KidsFeet, 1)

}

if (require(mosaicData)) {
model <- lm(wage ~ poly(exper, degree = 2), data = CPS85)
fit <- makeFun(model)
if (require(ggformula)) {
gf_point(wage ~ exper, data = CPS85) %>%
gf_fun(fit(exper) ~ exper, color = "red")

}
}
if (require(mosaicData)) {
model <- glm(wage ~ poly(exper, degree = 2), data = CPS85, family = gaussian)
fit <- makeFun(model)

if (require(ggformula)) {
gf_jitter(wage ~ exper, data = CPS85) %>%
gf_fun(fit(exper) ~ exper, color = "red")
gf_jitter(wage ~ exper, data = CPS85) %>%
gf_function(fun = fit, color = "blue")

}
}
if (require(mosaicData)) {
model <- nls(wage ~ A + B * exper + C * exper^2, data = CPS85, start = list(A = 1, B = 1, C = 1))
fit <- makeFun(model)

if (require(ggformula)) {
gf_point(wage ~ exper, data = CPS85) %>%
gf_fun(fit(exper) ~ exper, color = "red")

}
}

make_df 21

make_df Convert to a data frame

Description

A generic and several methods for converting objects into data frames.

Usage

make_df(object, ...)

S3 method for class 'list'
make_df(object, ...)

S3 method for class 'matrix'
make_df(object, ...)

S3 method for class 'numeric'
make_df(object, ...)

Default S3 method:
make_df(object, ...)

Arguments

object An object to be converted into a data frame.

... Additional arguments used by methods.

Details

These methods are primarily for internal use inside df_stats(), but are exported in case they have
other uses. The conversion works as follows. Data frames are left as is. Matrices are converted
column-by-column and the columns assembled with as.data.frame(); this allows matrices that
are lists to be converted into data frames where columns can have differing types. The names are
then set to the column names of object, even if that results in NULL. A numeric vector is converted
into a data frame with 1 column. If object is a list, each element is converted using vector2df()
and the resulting columns are joined with bind_rows().

modelVars extract predictor variables from a model

Description

extract predictor variables from a model

22 mosaic_formula

Usage

modelVars(model)

Arguments

model a model, typically of class lm or glm

Value

a vector of variable names

Examples

if (require(mosaicData)) {
model <- lm(wage ~ poly(exper, degree = 2), data = CPS85)
modelVars(model)

}

mosaic_formula Convert formulas into standard shapes

Description

These functions convert formulas into standard shapes, including by incorporating a groups argu-
ment.

Usage

mosaic_formula(formula, groups = NULL, envir = parent.frame(),
max.slots = 3, groups.first = FALSE)

mosaic_formula_q(formula, groups = NULL, max.slots = 3,
groups.first = FALSE, ...)

Arguments

formula a formula

groups a name used for grouping

envir the environment in which the resulting formula may be evaluated. May also be
NULL, a list, a data frame, or a pairlist.

max.slots an integer specifying the maximum number of slots for the resulting formula.
An error results from trying to create a formula that is too complex.

groups.first a logical indicating whether groups should be inserted ahead of the condition
(else after).

... additional arguments (currently ignored)

na.warn 23

Details

mosaic_formula_q uses nonstandard evaluation of groups that may be necessary for use within
other functions. mosaic_formula is a wrapper around mosaic_formula_q and quotes groups
before passing it along.

Examples

mosaic_formula(~ x | z)
mosaic_formula(~ x, groups=g)
mosaic_formula(y ~ x, groups=g)
this is probably not what you want for interactive use.
mosaic_formula_q(y ~ x, groups=g)
but it is for programming
foo <- function(x, groups=NULL) {

mosaic_formula_q(x, groups=groups, envir=parent.frame())
}
foo(y ~ x , groups = g)

na.warn Exclude Missing Data with Warning

Description

Similar to stats::na.exclude() this function excludes missing data. When missing data are
excluded, a warning message indicating the number of excluded rows is emited as a caution for the
user.

Usage

na.warn(object, ...)

Arguments

object an R object, typically a data frame

... further arguments special methods could require.

named List extraction

Description

These functions create subsets of lists based on their names

24 nice_names

Usage

named(l)

unnamed(l)

named_among(l, n)

Arguments

l A list.

n A vector of character strings (potential names).

Value

A sublist of l determined by names(l).

nice_names Nice names

Description

Convert a character vector into a similar character vector that would work better as names in a data
frame by avoiding certain awkward characters

Usage

nice_names(x, unique = TRUE)

Arguments

x a character vector

unique a logical indicating whether returned values should be uniquified.

Value

a character vector

Examples

nice_names(c("bad name", "name (crazy)", "a:b", "two-way"))

n_missing 25

n_missing Counting missing/non-missing elements

Description

Counting missing/non-missing elements

Usage

n_missing(..., type = c("any", "all"))

n_not_missing(..., type = c("any", "all"))

n_total(..., type = c("any", "all"))

Arguments

... vectors of equal length to be checked in parallel for missing values.

type one of "any" (default) or "all".

Value

a vector of counts of missing or non-missing values.

Examples

if (require(NHANES) && require(mosaic)) {
tally(~ is.na(Height) + is.na(Weight), data = NHANES, margins = TRUE)
NHANES %>%
summarise(

mean.wt = mean(Weight, na.rm = TRUE),
missing.Wt = n_missing(Weight),
missing.WtAndHt = n_missing(Weight, Height, type = "all"),
missing.WtOrHt = n_missing(Weight, Height, type = "any")
)

}

parse.formula Parse Formulas

Description

Utilities for extracting portions of formulas.

26 parse.formula

Usage

parse.formula(formula, ...)

rhs(x, ...)

lhs(x, ...)

condition(x, ...)

operator(x, ...)

S3 method for class 'formula'
rhs(x, ...)

S3 method for class 'formula'
lhs(x, ...)

S3 method for class 'formula'
condition(x, ...)

S3 method for class 'formula'
operator(x, ...)

S3 method for class 'parsedFormula'
rhs(x, ...)

S3 method for class 'parsedFormula'
lhs(x, ...)

S3 method for class 'parsedFormula'
operator(x, ...)

S3 method for class 'parsedFormula'
condition(x, ...)

Arguments

formula, a formula

... additional arguments, current ignored

x, an object (currently a formula or parsedFormula)

Details

currently this is primarily concerned with extracting the operator, left hand side, right hand side
(minus any condition) and the condition. Improvements/extensions may come in the future.

print.msummary.lm 27

Value

an object of class parsedFormula from which information is easy to extract

print.msummary.lm Modified summaries

Description

msummary provides modified summary objects that typically produce output that is either identical
to or somewhat terser than their summary() analogs. The contents of the object itself are unchanged
(except for an augmented class) so that other downstream functions should work as before.

Usage

S3 method for class 'msummary.lm'
print(x, digits = max(3L, getOption("digits") - 3L),
symbolic.cor = x$symbolic.cor,
signif.stars = getOption("show.signif.stars"), ...)

S3 method for class 'msummary.glm'
print(x, digits = max(3L, getOption("digits") - 3L),
symbolic.cor = x$symbolic.cor,
signif.stars = getOption("show.signif.stars"), ...)

msummary(object, ...)

Default S3 method:
msummary(object, ...)

S3 method for class 'lm'
msummary(object, ...)

S3 method for class 'glm'
msummary(object, ...)

Arguments

x an object to summarize

digits desired number of digits to display

symbolic.cor see summary()

signif.stars a logical indicating whether to display stars to indicate significance

... additional arguments

object an object to summarise

28 prop

Examples

msummary(lm(Sepal.Length ~ Species, data = iris))

prop Compute proportions, percents, or counts for a single level

Description

Compute proportions, percents, or counts for a single level

Usage

prop(x, data = parent.frame(), useNA = "no", ..., success = NULL,
level = NULL, long.names = TRUE, sep = ".", format = c("proportion",
"percent", "count"), quiet = TRUE, pval.adjust = FALSE)

prop1(..., pval.adjust = TRUE)

count(x, ...)

perc(x, data = parent.frame(), ..., format = "percent")

Arguments

x an R object, usually a formula

data a data frame in which x is to be evaluated

useNA an indication of how NA’s should be handled. By default, they are ignored.

... arguments passed through to tally()

success the level for which counts, proportions or percents are calculated

level Deprecated. Use sucess.

long.names a logical indicating whether long names should be when there is a conditioning
variable

sep a character used to separate portions of long names

format one of proportion, percent, or count, possibly abbreviated

quiet a logical indicating whether messages regarding the success level should be su-
pressed.

pval.adjust a logical indicating whether the "p-value" adjustment should be applied. This
adjustment adds 1 to the numerator and denominator counts.

Details

prop1 is intended for the computation of p-values from randomization distributions and differs from
prop only in its default value of pval.adjust.

reop_formula 29

Note

For 0-1 data, success is set to 1 by default since that a standard coding scheme for success and
failure.

Examples

if (require(mosaicData)) {
prop(~sex, data=HELPrct)
prop(~sex, data=HELPrct, success = "male")
count(~sex | substance, data=HELPrct)
prop(~sex | substance, data=HELPrct)
perc(~sex | substance, data=HELPrct)

}

reop_formula Insert Inhibition of Interpretation/Conversion into formulas

Description

model.frame() assumes that certain operations (e.g. /, *, ^) have special meanings. These can
be inhibited using I(). This function inserts I() into a formula when encountering a specified
operator or parens.

Usage

reop_formula(x, ops = c("/", "*", "^"))

Arguments

x a formula (or a call of length 2 or 3, for recursive processing of formulas). Other
objects are returned unchanged.

ops a vector of character representions of operators to be inhibited.

Value

a formula with I() inserted where required to inhibit interpretation/conversion.

Examples

reop_formula(y ~ x * y)
reop_formula(y ~ (x * y))
reop_formula(y ~ x ^ y)
reop_formula(y ~ x * y ^ z)

30 tally

tally Tabulate categorical data

Description

Tabulate categorical data

Usage

tally(x, ...)

S3 method for class 'tbl'
tally(x, wt, sort = FALSE, ..., envir = parent.frame())

S3 method for class 'data.frame'
tally(x, wt, sort = FALSE, ..., envir = parent.frame())

S3 method for class 'formula'
tally(x, data = parent.frame(2), format = c("count",
"proportion", "percent", "data.frame", "sparse", "default"),
margins = FALSE, quiet = TRUE, subset, groups = NULL, useNA = "ifany",
groups.first = FALSE, ...)

Arguments

x an object

... additional arguments passed to table()

wt for weighted tallying, see dplyr::tally() in dplyr
sort a logical, see dplyr::tally() in dplyr
envir an environment in which to evaluate

data a data frame or environment in which evaluation occurs. Note that the default
is data=parent.frame(). This makes it convenient to use this function inter-
actively by treating the working envionment as if it were a data frame. But this
may not be appropriate for programming uses. When programming, it is best to
use an explicit data argument – ideally supplying a data frame that contains the
variables mentioned

format a character string describing the desired format of the results. One of 'default',
'count', 'proportion', 'percent', 'data.frame', 'sparse', or 'default'.
In case of 'default', counts are used unless there is a condition, in which case
proportions are used instead. Note that prior to version 0.9.3, 'default' was
the default, now it is 'count'. 'data.frame' converts the table to a data frame
with one row per cell; 'sparse' additionally removes any rows with 0 counts.

margins a logical indicating whether marginal distributions should be displayed.

quiet a logical indicating whether messages about order in which marginal distribu-
tions are calculated should be suppressed. See stats::addmargins().

tally 31

subset an expression evaluating to a logical vector used to select a subset of data

groups used to specify a condition as an alternative to using a formula with a condition.

useNA as in table(), but the default here is "ifany".

groups.first a logical indicating whether groups should be inserted ahead of the condition
(else after).

Details

The dplyr package also exports a dplyr::tally() function. If x inherits from class "tbl" or
"data frame", then dplyr’s dplyr::tally() is called. This makes it easier to have the two
packages coexist.

Otherwise, tally() is designed as an alternative to table() and xtabs(). The primary use case
it to describe a (possibly multi-dimensional) table using a formula. For a table of counts, each
component of the formula becomes one of the dimensions of the cross table. For tables of propor-
tions or percents, conditional proportions and percents are computed, conditioned on each level of
all "secondary" (i.e., conditioning) variables, defined as everything other than the left hand side, if
there is a left hand side to the formula; and everything except the right hand side if the left hand
side of the formula is empty. Note that groups is folded into the formula prior to this determination
and becomes part of the conditioning.

When marginal totals are added, they are added for all of the conditioning dimensions, and propor-
tions should sum to 1 for each level of the conditioning variables. This can be useful to make it
clear which conditional proportions are being computed.

See the examples for some typical use cases.

Value

A object of class "table", unless passing through to dplyr or converted to a data frame because
format is "data.frame" or "sparse".

Note

The current implementation when format = "sparse" first creates the full data frame and then
removes the unneeded rows. So the savings is in terms of space, not time.

Examples

if (require(mosaicData)) {
tally(~ substance, data = HELPrct)
tally(~ substance + sex , data = HELPrct)
tally(sex ~ substance, data = HELPrct) # equivalent to tally(~ sex | substance, ...)
tally(~ substance | sex , data = HELPrct)
tally(~ substance | sex , data = HELPrct, format = 'count', margins = TRUE)
tally(~ substance + sex , data = HELPrct, format = 'percent', margins = TRUE)
tally(~ substance | sex , data = HELPrct, format = 'percent', margins = TRUE)
force NAs to show up
tally(~ sex, data = HELPrct, useNA = "always")
show NAs if any are there
tally(~ link, data = HELPrct)
ignore the NAs

32 vector2df

tally(~ link, data = HELPrct, useNA = "no")
}

vector2df Convert a vector to a data frame

Description

Convert a vector into a 1-row data frame using the names of the vector as column names for the
data frame.

Usage

vector2df(x, nice_names = FALSE)

Arguments

x A vector.

nice_names A logical indicating whether names should be nicified.

Value

A data frame.

Examples

vector2df(c(1, b = 2, `(Intercept)` = 3))
vector2df(c(1, b = 2, `(Intercept)` = 3), nice_names = TRUE)

Index

∗Topic stats
coverage, 6

apply(), 7
as.data.frame(), 21
ash_points, 2

bind_rows(), 21

ci.mean (coverage), 6
ci.median (coverage), 6
ci.prop (coverage), 6
ci.sd (coverage), 6
coef (coef.function), 3
coef.function, 3
columns, 4
condition (parse.formula), 25
count (prop), 28
counts, 4
coverage, 6

df_stats, 8
df_stats(), 21
dfapply, 7
diff(), 11
dplyr::tally(), 30, 31

ediff, 11
evalFormula, 12
evalSubFormula, 12

fit_distr_fun, 13
formularise, 14

glm(), 3

ilogit (logit), 18
infer_transformation, 15
inspect, 15
inspect(), 7
interval_statistics (coverage), 6

joinFrames, 16
joinTwoFrames (joinFrames), 16

lapply(), 7
lhs (parse.formula), 25
lm(), 3, 8, 15
logical2factor, 17
logit, 18

make.names(), 9
make_df, 21
makeFun, 18
MASS::fitdistr(), 13
modelVars, 21
mosaic::binom.test(), 7
mosaic::count(), 5
mosaic::ntiles(), 9
mosaic::prop(), 5
mosaic::t.test(), 7
mosaic_formula, 22
mosaic_formula_q (mosaic_formula), 22
mosaicCore::df_stats(), 7
msummary (print.msummary.lm), 27

n_missing, 25
n_not_missing (n_missing), 25
n_total (n_missing), 25
na.warn, 23
na.warn(), 9
named, 23
named_among (named), 23
nice_names, 24
nls(), 3

operator (parse.formula), 25

parse.formula, 25
perc (prop), 28
percs (counts), 4
print.inspected_data_frame (inspect), 15

33

34 INDEX

print.msummary.glm (print.msummary.lm),
27

print.msummary.lm, 27
prop, 28
prop1 (prop), 28
props (counts), 4

reop_formula, 29
rhs (parse.formula), 25
rows (columns), 4

sapply(), 7
stats::addmargins(), 30
stats::model.frame(), 8, 9
stats::na.exclude(), 23
summarise, 9
summary(), 27

table(), 30, 31
tally, 30
tally(), 28
tapply(), 7

unnamed (named), 23

vector2df, 32
vector2df(), 21

xtabs(), 31

	ash_points
	coef.function
	columns
	counts
	coverage
	dfapply
	df_stats
	ediff
	evalFormula
	evalSubFormula
	fit_distr_fun
	formularise
	infer_transformation
	inspect
	joinFrames
	logical2factor
	logit
	makeFun
	make_df
	modelVars
	mosaic_formula
	na.warn
	named
	nice_names
	n_missing
	parse.formula
	print.msummary.lm
	prop
	reop_formula
	tally
	vector2df
	Index

