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This document describes the statistical models used in ’morse’ to analyze survival and reproduction data,
and as such serves as a mathematical specification of the package. For a more practical introduction, please
consult the “Tutorial” vignette ; for information on the structure and contents of the library, please consult
the reference manual.

Model parameters are estimated using Bayesian inference, where posterior distributions are computed
from the likelihood of observed data combined with prior distributions on the parameters. These priors are
specified after each model description.

1 Survival toxicity tests

In a survival toxicity test, subjects are exposed to a measured concentration of a contaminant over a given
period of time and the number of surviving organisms is measured at certain time points during exposure. In
most standard toxicity tests, the concentration is held constant throughout the whole experiment, which we
will assume for 1.1 Analysis of target time survival toxicity tests, but not for 1.2 Toxicokinetic-Toxicodynamic
modeling which can handled time variable exposure. In the case of constant exposure, an experiment is
generally replicated several times and also repeated for various levels of the contaminant. For time-variable
exposure, a profile of exposure is usually unique, and the experiment is repeated with several profiles of
exposures.

In so-called target time toxicity tests, the mortality is usually analyzed at the end of the experiment.
The chosen time point for this analysis is called target time. Let us see how this particular case is handled
in ’morse’.

1.1 Analysis of target time survival toxicity tests

A dataset from a target time survival toxicity test is a collection D = {(ci, niniti , ni)}i of experiments, where
ci is the tested concentration, niniti the initial number of organisms and ni the number of organisms at the
chosen target time. Triplets such that ci = 0 correspond to control experiments.

1.1.1 Modelling

In the particular case of target time analysis, the model used in ’morse’ is defined as follows. Let t be
the target time in days. We suppose the mean survival rate after t days is given by a function f of the
contaminant level c. We also suppose that the death of two organisms are two independent events. Hence,
given an initial number niniti of organisms in the toxicity test at concentration ci, we obtain that the number
Ni of surviving organisms at time t follows a binomial distribution:

Ni ∼ B(niniti , f(ci))

Note that this model neglects inter-replicate variations, as a given concentration of contaminant implies a
fixed value of the survival rate. There may be various possibilities for f . In ’morse’ we assume a three
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parameters log-logistic function:

f(c) =
d

1 + ( ce )b

where b, e and d are (positive) parameters. In particular d corresponds to the survival rate in absence of
contaminant and e corresponds to the LC50. Parameter b is related to the effect intensity of the contaminant.

1.1.2 Inference

Posterior distributions for parameters b, d and e are estimated using the JAGS software [10] with the following
priors:

� we assume the range of tested concentrations in an experiment is chosen to contain the LC50 with high
probability. More formally, we choose:

log10 e ∼ N
(

log10(mini ci) + log10(maxi ci)

2
,

log10(maxi ci)− log10(mini ci)

4

)
which implies e has a probability slightly higher than 0.95 to lie between the minimum and the maximum
tested concentrations.

� we choose a quasi non-informative prior distribution for the shape parameter b:

log10 b ∼ U(−2, 2)

The prior on d is chosen as follows: if we observe no mortality in control experiments then we set d = 1,
otherwise we assume a uniform prior for d between 0 and 1.

1.2 Toxicokinetic-Toxicodynamic modeling

For datasets featuring time series measurements, more complete models can be used to estimate the effect of
a contaminant on survival. We assume the toxicity test consists in exposing an initial number n0

i of organisms
to a concentration ci(t) of contaminant (constant or time-variable), and following the number nki of survivors
at time tk (with t0 < t1 < · · · < tm and t0 = 0), thus providing a collection D = (ci, tk, n

k
i )i,k of experiments.

In ’morse’, we propose two Toxicokinetic-Toxicodynamic (TKTD) models belonging to the General Unified
Threshold model for Survival (GUTS) [4, 5]. One is known as the reduced stochastic death model [6] or
GUTS-SD and the other is the reduced organism tolerance model or GUTS-IT, which we describe now.

GUTS Modelling The number of survivors at time tk given the number of survivors at time tk−1 is
assumed to follow a binomial distribution:

Nk
i ∼ B(nk−1

i , fi(tk−1, tk))

where fi is the conditional probability of survival at time tk given survival at time tk−1 under concentration
ci(t). Denoting Si(t) the probability of survival at time t, we have:

fi(tk−1, tk) =
Si(tk)

Si(tk−1)

The formulation of the survival probability Si(t) in GUTS [4] is given by integrating the instantaneous
mortality rate hi:

Si(t) = exp

(∫ t

0

−hi(u)du

)
(1)
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Table 1: Parameters and symbols used for GUTS-SD and GUTS-IT models. Alternative symbols are used
within pubications (see for instance [4, 3, 5]). The unit [D] refers to unit of actual damage, n.d for non dimen-
sional. For GUTS-IT model, we assume a log-logistic distributions, but other distributions are occasionally
used [1].

Parameters Symbols Alternative symbols Units Models

Background hazard rate hb m0 time−1 SD and IT
Dominant toxicokinetic rate constant kd ke time−1 SD and IT
Threshold for effects zw NEC, z [D] SD
Killing rate constant bw ks, kk [D]−1.time−1 SD
Median of the threshold effect distribution mw α [D] IT
Shape of the threshold effect distribution β - n.d. IT

In the model, function hi is expressed using the internal concentration of contaminant (that is, the
concentration inside an organism) CINT

i (t). More precisely:

hi(t) = bw max(CINT

i (t)− zw, 0) + hb

where (see Table 1):

� bw is the killing rate and expressed in concentration−1.time−1 ;

� zw is the so-called no effect concentration and represents a concentration threshold under which the
contaminant has no effect on organisms ;

� hb is the background mortality (mortality in absence of contaminant), expressed in time−1.

The internal concentration is assumed to be driven by the external concentration, following:

dCINT
i

dt
(t) = kd(ci(t)− CINT

i (t)) (2)

We call parameter kd of Eq. (2) the “dominant rate constant” (expressed in time−1). It represents the
speed at which the internal concentration in contaminant converges to the external concentration. The
model could be equivalently written using an internal damage instead of an internal concentration as a dose
metric [4].

If we denote fz(zw) the probability distribution of the no effect concentration threshold, zw, then the
survival function is given by:

S(t) =

∫ t

0

Si(t)fz(zw)dzw =

∫
exp

(∫ t

0

−hi(u)du

)
fz(zw)dzw (3)

Then, the calculation of S(t) depends on the model of survival, GUTS-SD or GUTS-IT [4]:

GUTS-SD In GUTS-SD, all organisms are assumed to have the same internal concentration threshold
(denoted zw), and, once exceeded, the instantaneous probability to die increases linearly with the internal
concentration. In this situation, fz(zw) is a Dirac delta distribution, and the survival rate is given by Eq. (1).

GUTS-IT In GUTS-IT, the threshold concentration is distributed among all the organisms, and once
exceeded for one organism, this organism dies immediately. In other words, the killing rate is infinitely high
(e.g. kk = +∞), and the survival rate is given by:

Si(t) = e−hbt
∫ +∞

max
0<τ<t

(CINT
i (τ))

fz(zw)dzw = e−hbt(1− Fz( max
0<τ<t

CINT

i (τ)))
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where Fz denotes the cumulative distribution function of fz.

Here, the exposure concentration ci(t) is not supposed constant. In the case of time variable exposure
concentration, we use an midpoint ODE integrator (also known as modified Euler, or Runge-Kutta 2) to solve
models GUTS-SD and GUTS-IT. When the exposure concentration is constant, then, explicit formulation
of integrated equations are used. We present them in the next subsection.

1.2.1 For constant concentration exposure

If ci(t) is constant, and assuming CINT
i (0) = 0, then we can integrate the previous equation (2) to obtain:

CINT

i (t) = ci(1− e−kdt) (4)

GUTS-SD In the case ci < zw, the organisms are never affected by the contaminant:

Si(t) = exp(−hbt) (5)

When ci > zw, it takes time tzi before the internal concentration reaches zw, where:

tzi = − 1

kd
log

(
1− zw

ci

)
.

Before that happens, Eq. (5) applies, while for t > tzi , integrating Eq. (1) results in:

Si(t) = exp

(
−hbt− bw(ci − zw)(t− tzi )−

bwci
kd

(
e−kdt − e−kdt

z
i

))
In brief, given values for the four parameters hb, bw, kd and zw, we can simulate trajectories by using

Si(t) to compute conditional survival probabilities. In ’morse’, those parameters are estimated using Bayesian
inference. The choice of priors is defined hereafter.

GUTS-IT With constant concentration, Eq. 4 provides that CINT
i (t) is an increasing function, meaning

that:

max
0<τ<t

(CINT

i (τ)) = ci(1− e−kdt)

Therefore, assuming a log-logistic distribution for fz yields:

Si(t) = exp(−hbt)

1− 1

1 +
(
ci(1−exp(−kdt))

mw

)−β


where mw > 0 is the scale parameter (and also the median) and β > 0 is the shape parameter of the
log-logistic distribution.

1.2.2 Inference

Posterior distributions for all parameters hb, bw, kd, zw, mw and β are computed with JAGS [10]. We set
prior distributions on those parameters based on the actual experimental design used in a toxicity test. For
instance, we assume zw has a high probability to lie within the range of tested concentrations. For each
parameter θ, we derive in a similar manner a minimum (θmin) and a maximum (θmax) value and state that
the prior on θ is a log-normal distribution [3]. More precisely:

log10 θ ∼ N
(

log10 θ
min + log10 θ

max

2
,

log10 θ
max − log10 θ

min

4

)
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With this choice, θmin and θmax correspond to the 2.5 and 97.5 percentiles of the prior distribution on θ. For
each parameter, this gives:

� zmin
w = mini,ci 6=0 ci and zmax

w = maxi ci, which amounts to say that zw is most probably contained in
the range of experimentally tested concentrations ;

� similarly, mmin
w = mini,ci 6=0 ci and mmax

w = maxi ci ;

� for background mortality rate hb, we assume a maximum value corresponding to situations where half
the indivuals are lost at the first observation time in the control (time t1), that is:

e−h
max
b t1 = 0.5⇔ hmax

b = − 1

t1
log 0.5

To derive a minimum value for hb, we set the maximal survival probability at the end of the toxicity test
in control condition to 0.999, which corresponds to saying that the average lifetime of the considered
species is at most a thousand times longer than the duration of the experiment. This gives:

e−h
min
b tm = 0.999⇔ hmin

b = − 1

tm
log 0.999

� kd is the parameter describing the speed at which the internal concentration of contaminant equilibrates
with the external concentration. We suppose its value is such that the internal concentration can at
most reach 99.9% of the external concentration before the first time point, implying the maximum
value for kd is:

1− e−k
max
d t1 = 0.999⇔ kmax

d = − 1

t1
log 0.001

For the minimum value, we assume the internal concentration should at least have risen to 0.1% of the
external concentration at the end of the experiment, which gives:

1− e−k
min
d tm = 0.001⇔ kmin

d = − 1

tm
log 0.999

� bw is the parameter relating the internal concentration of contaminant to the instantaneous mortality.
To fix a maximum value, we state that between the closest two tested concentrations, the survival prob-
ability at the first time point should not be divided by more than one thousand, assuming (infinitely)
fast equilibration of internal and external concentrations. This last assumption means we take the
limit kd → +∞ and approximate Si(t) with exp(−(hb + bw(ci − zw))t). Denoting ∆min the minimum
difference between two tested concentrations, we obtain:

e−b
max
w ∆mint1 = 0.001⇔ bmax

w = − 1

∆mint1
log 0.001

Analogously we set a minimum value for bw saying that the survival probability at the last time point
for the maximum concentration should not be higher than 99.9% of what it is for the minimal tested
concentration. For this we assume again kd → +∞. Denoting ∆max the maximum difference between
two tested concentrations, this leads to:

e−b
min
w ∆maxtm = 0.001⇔ bmin

w = − 1

∆maxtm
log 0.999

� for the shape parameter β, we used a quasi non-informative log-uniform distribution:

log10 β ∼ U(−2, 2)
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2 Reproduction toxicity tests

In a reproduction toxicity test, we observe the number of offspring produced by a sample of adult organisms
exposed to a certain concentration of a contaminant over a given period of time. The offspring (young
organisms, clutches or eggs) are regularly counted and removed from the medium at each time point, so
that the reproducing population cannot increase. It can decrease however, if some organisms die during the
experiment. The same procedure is usually repeated at various concentrations of contaminant, in order to
establish a quantitative relationship between the reproduction rate and the concentration of contaminant in
the medium.

As already mentionned, it is often the case that part of the organisms die during the observation period.
In previous approaches, it was proposed to consider the cumulated number of reproduction outputs without
accounting for mortality [7, 8], or to exclude replicates where mortality occurred [9]. However, organisms
may have reproduced before dying and thus contributed to the observed response. In addition, organisms
dying the first are probably the most sensitive, so the information on reproduction of these prematurely dead
organisms is valuable ; ignoring it is likely to bias the results in a non-conservative way. This is particularly
critical at high concentrations, when mortality may be very high.

In a toxicity test, mortality is usually regularly recorded, i.e. at each time point when reproduction
outputs are counted. Using these data, we can approximately estimate for each organism the period it
has stayed alive (which we assume coincides with the period it may reproduce). As commonly done in
epidemiology for incidence rate calculations, we can then calculate, for one replicate, the total sum of the
periods of observation of each organism before its death (see next paragraph). This sum can be expressed
as a number of organism-days. Hence, reproduction can be evaluated through the number of outputs per
organism-day.

In the following, we denote Mijk the observed number of surviving organisms at concentration ci, replicate
j and time tk.

2.1 Estimation of the effective observation period

We define the effective observation period as the sum for all organisms of the time they spent alive in the
experiment. It is counted in organism-days and will be denoted NIDij at concentration ci and replicate
j. As mentionned earlier, mortality is observed at particular time points only, so the real life time of an
organism is unknown and in practice we use the following simple estimation: if an organism is alive at tk
but dead at tk+1, its real life time is approximated as tk+1+tk

2 .
With this assumption, the effective observation period at concentration ci and replicate j is then given

by:

NIDij =
∑
k

Mij(k+1)(tk+1 − tk) + (Mijk −Mij(k+1))

(
tk+1 + tk

2
− tk

)

2.2 Target time analysis

In this paragraph, we describe our so-called “target time analysis”, where we model the cumulated number
of offspring up to a target time as a function of contaminant concentration and effective observation time in
this period (cumulated life times of all organisms in the experiment, as described above). A more detailed
presentation can be found in [2].

We keep the convention that index i is used for concentration levels and j for replicates. The data will
therefore correspond to a set {(NIDij , Nij)}i of pairs, where NIDij denotes the effective observation period
and Nij the number of reproduction output. These observations are supposed to be drawn independently
from a distribution that is a function of the level of contaminant ci.
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2.2.1 Modelling

We assume here that the effect of the considered contaminant on the reproduction rate1 does not depend on
the exposure period, but only on the concentration of the contaminant. More precisely, the reproduction rate
in an experiment at concentration ci of contaminant is modelled by a three-parameters log-logistic model,
that writes as follows:

f(c; θ) =
d

1 + ( ce )b
with θ = (e, b, d)

Here d corresponds to the reproduction rate in absence of contaminant (control condition) and e to the value
of the EC50, that is the concentration dividing the average number of offspring by two with respect to the
control condition. Then the number of reproduction outputs Nij at concentration ci in replicate j can be
modelled using a Poisson distribution:

Nij ∼ Poisson(f(ci; θ)×NIDij)

This model is later referred to as “Poisson model”. If there happens to be a non-negligible variability of
the reproduction rate between replicates at some fixed concentrations, we propose a second model, named
“gamma-Poisson model”, stating that:

Nij ∼ Poisson(Fij ×NIDij)

where the reproduction rate Fij at ci in replicate j is a random variable following a gamma distribution.
Introducing a dispersion parameter ω, we assume that:

Fij ∼ gamma
(
f(ci; θ)

ω
,

1

ω

)
Note that a gamma distribution of parameters α and β has mean α

β and variance α
β2 , that is here f(ci; θ)

and ωf(ci; θ) respectively. Hence ω can be considered as an overdispersion parameter (the greater its value,
the greater the inter-replicate variability)

2.2.2 Inference

Posterior distributions for parameters b, d and e are estimated using JAGS [10] with the following priors:

� we assume the range of tested concentrations in an experiment is chosen to contain the EC50 with high
probability. More formally, we choose:

log10 e ∼ N
(

log10(mini ci) + log10(maxi ci)

2
,

log10(maxi ci)− log10(mini ci)

4

)
which implies e has a probability slightly higher than 0.95 to lie between the minimum and the maximum
tested concentrations.

� we choose a quasi non-informative prior distribution for the shape parameter b:

log10 b ∼ U(−2, 2)

� as d corresponds to the reproduction rate without contaminant, we set a normal prior N (µd, σd) using
the control:

µd =
1

r0

∑
j

N0j

NID0j

σd =

√√√√∑j

(
N0j

NID0j
− µd

)2

r0(r0 − 1)

1that is, the number of reproduction outputs during the experiment per organism-day
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where r0 is the number of replicates in the control condition. Note that since they are used to estimate
the prior distribution, the data from the control condition are not used in the fitting phase.

� we choose a quasi non-informative prior distribution for the ω parameter of the gamma-Poisson model:

log10(ω) ∼ U(−4, 4)

For a given dataset, the procedure implemented in ’morse’ will fit both models (Poisson and gamma-
Poisson) and use an information criterion known as Deviance Information Criterion (DIC) to choose the
most appropriate. In situations where overdispersion (that is inter-replicate variability) is negligible, using
the Poisson model will provide more reliable estimates. That is why a Poisson model is preferred unless the
gamma-Poisson model has a sufficiently lower DIC (in practice we require a difference of 10).
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