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Abstract

This an extention of the gmmS4 vignette, to explain how to use the package for generalized empirical
likelihood estimation.

1



Contents

1 A very brief review of the GEL method 3
1.1 An S4 class object for moment based models . . . . . . . . . . . . . . . . . . . . . . . . 4
1.2 The rhoXXX functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
1.3 The Lagrange multiplier solver . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2 The solveGel Method 6

3 The gelFit Method 8
3.1 Methods for “gelfit” classes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
3.2 Robust to misspecification standard errors . . . . . . . . . . . . . . . . . . . . . . . . . . 14

4 The evalGel Method 15

5 One function to fit them all: gel4 16

6 GEL confidence intervals for the mean 18

A Some extra codes 20

2



1 A very brief review of the GEL method

We present how to use the package to estimate models by the Generalized Empirical Likelihood method
(GEL) (see Newey and Smith (2004) for the iid case and Anatolyev (2005) for weakly dependent
processes). We assume that the reader has read the gmmS4 vignette in which many classes and
methods needed are defined. We first describe the method without going into too much details. The
author can refer to the above papers for a detailed description, or Chaussé (2010) who explains GEL
estimation using the gmm (Chaussé (2019))package.

The estimation is based on the following moment conditions

E[gi(θ)] = 0,

For the iid case, the estimator is defined as the solution to either

θ̂ = arg min
θ,pi

n∑
i=1

hn(pi)

subject to,
n∑
i=1

pigi(θ) = 0

and
n∑
i=1

pi = 1,

where hn(pi) belongs to the following Cressie-Read family of discrepancies:

hn(pi) =
[γ(γ + 1)]−1[(npi)

γ+1 − 1]

n
,

or

θ̂ = arg min
θ

[
max
λ

1

n

n∑
i=1

ρ (λ′gi(θ))

]
(1)

The first is the primal and the second is the dual problem, the latter being preferred in general to
define GEL estimators. The vector λ is the Lagrange multiplier associated with the first constraint
in the primal problem. Its estimator plays an important role in testing the validity of the moment
conditions. ρ(v) is a strictly concave function normalized so that ρ′(0) = ρ′′(0) = −1. It can be shown
that ρ(v) = ln (1− v) corresponds to Empirical Likelihood (EL) of Owen (2001) , ρ(v) = − exp (v)
to the Exponential Tilting (ET) of Kitamura and Stutzer (1997), and ρ(v) = (−v − v2/2) to the
Continuous Updated GMM estimator (CUE) of Hansen et al. (1996). In the context of GEL, the CUE
is also known at the Euclidean Empirical Likelihood (EEL), because it corresponds to hn(pi) being the
Euclidean distance.

Once the solution is obtained for θ and λ, the implied probabilities can be computed as follows

p̂i =
ρ′(λ̂′gi(θ̂))∑n
j=1 ρ

′(λ̂′gj(θ̂))
(2)

If we relax the iid assumption, the problem is identical, but the moment function must be smoothed
using a kernel method. Smith (2011) proposes to replace gi(θ) by:

gwi (θ) =

m∑
s=−m

w(s)gi−s(θ)

where w(s) are kernel based weights that sum to one (see also Kitamura and Stutzer (1997) and Smith
(2011).
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1.1 An S4 class object for moment based models

There is no dinstrinction between GEL and GMM models. They are all objects of class “moment-
Model”, and they are described in the gmmS4.pdf vignette. For the purpose of presenting the GEL
method, we create the same models.

• Linear models:

library(momentfit)

## Loading required package: sandwich

data(simData)

lin <- momentModel(y~x1+x2, ~x2+z1+z2, data=simData, vcov="iid")

• Formula-type models:

theta0=c(mu=1,sig=1)

x <- simData$x1

dat <- data.frame(x=x, x2=x^2, x3=x^3, x4=x^4)

gform <- list(x~mu,

x2~mu^2+sig,

x3~mu^3+3*mu*sig,

x4~mu^4+6*mu^2*sig+3*sig^2)

form <- momentModel(gform, NULL, theta0=theta0, vcov="MDS", data=dat)

form

## Model based on moment conditions

## *********************************

## Moment type: formula

## Covariance matrix: MDS

## Number of regressors: 2

## Number of moment conditions: 4

## Number of Endogenous Variables: 0

## Sample size: 50

• function:

fct <- function(theta, x)

cbind(x-theta[1], (x-theta[1])^2-theta[2],

(x-theta[1])^3, (x-theta[1])^4-3*theta[2]^2)

dfct <- function(theta, x)

{
m1 <- mean(x-theta[1])

m2 <- mean((x-theta[1])^2)

m3 <- mean((x-theta[1])^3)

matrix(c(-1, -2*m1, -3*m2, -4*m3,

0, -1, 0, -6*theta[2]), 4, 2)

}
theta0=c(mu=1,sig2=1)

func <- momentModel(fct, simData$x3, theta0=theta0, grad=dfct, vcov="iid")

func

## Model based on moment conditions

## *********************************

## Moment type: function

## Covariance matrix: iid

## Number of regressors: 2

## Number of moment conditions: 4

## Number of Endogenous Variables: 0

## Sample size: 50
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• Non-linear models:

theta0=c(b0=1, b1=1, b2=1)

gform <- y~exp(b0+b1*x1+b2*x2)

nlin <- momentModel(gform, ~z1+z2+z3+x2, theta0=theta0, vcov="MDS", data=simData)

nlin

## Model based on moment conditions

## *********************************

## Moment type: nonlinear

## Covariance matrix: MDS

## Number of regressors: 3

## Number of moment conditions: 5

## Number of Endogenous Variables: 2

## Sample size: 50

1.2 The rhoXXX functions

The package provides ρ(v) for ET, EL, EEL and HD. The function names are respectively “rhoET”,
“rhoEL”, “rhoEEL” and “rhoHD”. For any other GEL, users can pass user specific ρ(v) function to
the rhoFct argument of the gelModel(). The following example shows how the function must be built:

rhoEL

## function (gmat, lambda, derive = 0, k = 1)

## {

## lambda <- c(lambda) * k

## gmat <- as.matrix(gmat)

## gml <- c(gmat %*% lambda)

## switch(derive + 1, log(1 - gml), -1/(1 - gml), -1/(1 - gml)^2)

## }

## <bytecode: 0x560065afbd18>

## <environment: namespace:momentfit>

Therefore, the function must be in the form f(X,λ, d, k), where the first argument is an n × q
matrix, the second argument is a vector of q elements, the third is an integer that indicates the order
of derivative to return, and the last is a scalar that depends on the kernel used to smooth the moment
function. We will discuss that in more details below. The function must return the vector ρ(kXλ),
ρ′(kXλ) or ρ′′(kXλ), when derive is 0, 1, or 2, where ρ′(v) and ρ′′(v) are the first and second derivative
of ρ(v).

1.3 The Lagrange multiplier solver

The function getLambda() function solve the maximization problem

max
λ

1

n

n∑
i=1

ρ(λ′Xi)

It is used to solve problem (1). The arguments are:

args(getLambda)

## function (gmat, lambda0 = NULL, gelType = NULL, rhoFct = NULL,

## tol = 1e-07, maxiter = 100, k = 1, method = "BFGS", algo = c("nlminb",

## "optim", "Wu"), control = list())

## NULL
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The first argument is the n× q matrix X. The second argument is the starting value for λ. If set
to NULL, a vector of zeroes is used. The third argument is the GEL type, which is either ”ET”, ”EL”,
”EEL”, ”REEL” or ”HD”. If the rhoFct is provided, getType is ignored. The argument control is used
to pass a list of arguments to optim(), nlminb() or constrOptim(). The argument “k” is the scalar
described in the previous subsection. To describe all other arguments, we are presenting the options
by type of GEL:

• EL: There are three possible options for EL. The default is “nlminb”, in which case, the arguments
tol, maxiter and method are ignored. If algo is set to “optim”, the solution is obtained using
constrOptim(), with the restriction (1−λ′Xi) > 0 for all i. If algo is set to “Wu”, the Wu (2005)
algorithm is used. The argument tol and maxit are used to control the stopping rule.

• HD: Identical to EL, except that the “Wu” algorithm is not available for that type of GEL.

• EEL: There is an analytical solution, so all other arguments are ignored.

• REEL: This is EEL with a non-negativity constraint on all implied probabilities. In that case,
the maxiter can be used to control the number of iterations.

• Others: When rhoFct is provided or the type is ET, the solution is obtained by either “nlminb”
or “optim”. In that case, the algorithms are controlled through the control argument.

Here are a few example using the simulated dataset (convergence code of 0 means that the algorithm
converged with no detected problem):

X <- simData[c("x3","x4","z5")]

(res <- getLambda(X, gelType="EL"))$lambda

## [1] -0.04178415 -0.06745195 -0.02075063

res$convergence$convergence

## [1] 0

(res <- getLambda(X, gelType="ET",control=list(maxit=2000)))$lambda

## [1] -0.04171694 -0.06804520 -0.02120255

res$convergence$convergence

## [1] 0

The following shows that we can provide getLambda() with a rhoFct instead:

(res <- getLambda(X, rhoFct=rhoEEL))$lambda

## [1] -0.04119158 -0.06769691 -0.02148683

res$convergence$convergence

## [1] 0

Although we rarely call the function directly, it is good to understand how it works, because it is
an important part of the estimation procedure. @

2 The solveGel Method

The main method to estimate a model by GEL methods is solveGel. The available signatures are:

showMethods("solveGel")

## Function: solveGel (package momentfit)

## object="momentModel"
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The arguments are

• theta0: The initial value for the minimization algorithm. It is required if the model does not have
a theta0 slot. If it has a theta0 slot, it is used by default unless a new theta0 is provided.

• lambda0: The initial value to pass to the lambda solver. By default, it is set to 0, which is its
asymptotic value in case of correctly specified models.

• lamSlv: An optional function to solve for lambda. By default, getLambda() is used. The function
must have the following form:

mylSolve <- function(gmat, lambda0, gelType=NULL, rhoFct=NULL, k=1, ...)

{
lambda <- rep(0,ncol(gmat))

obj <- sum(colMeans(gmat)^2)

list(lambda=lambda, convergence=0, obj=obj)

}

Therefore, it must return a list with lambda, convergence and obj. In the above example, λ is set
to a vector of zeros and the returned obj is ḡ(θ)′ḡ(θ). The solution will therefore be the one step
GMM with the weighting matrix equals to the identity.

solveGel(lin,theta0=c(0,0,0), lamSlv=mylSolve)

## $theta

## (Intercept) x1 x2

## -0.226153103 1.009952150 0.002381384

##

## $convergence

## [1] 0

##

## $lambda

## (Intercept) x2 z1 z2

## 0 0 0 0

##

## $lconvergence

## [1] 0

To present a more realistic example, suppose we want to estimate the model using the exponen-
tially tilted empirical likelihood (ETEL) method of Schennach (2007), we could write a function
that solves the lambda using ET, and returns the empirical log-likelihood ratio:

mylSolve <- function(gmat, lambda0=NULL, gelType=NULL, rhoFct=NULL, k=1, ...)

{
gmat <- as.matrix(gmat)

res <- getLambda(gmat, lambda0, gelType="ET", k=k)

gml <- c(gmat%*%res$lambda)

w <- exp(gml)

w <- w/sum(w)

n <- nrow(gmat)

res$obj <- mean(-log(w*n))

res

}
etelFit <- solveGel(lin,theta0=c(1,1,0), lamSlv=mylSolve)

etelFit$theta

## (Intercept) x1 x2

## 1.3266917 0.8504703 -0.1030545

That’s equivalent to setting gelType to “ETEL”:
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solveGel(update(lin, gelType="ETEL"), theta0=c(1,1,0))$theta

## (Intercept) x1 x2

## 1.3272620 0.8505003 -0.1031604

• coefSlv: A character string that indicates the name of the minimization solver used to obtain θ̂.
By default, ”optim” is use. The other options are ”nlminb” and ”constrOptim”.

• lControl: A list of options for the lambda solver. It is passed to getLambda() or lamSlv() if
provided. By default, the Wu (2005) method is used to solve for the Lagrange multiplier. For
example, we can use nlminb() instead:

solveGel(lin, theta0=c(1,1,0), lControl=list(algo="nlminb"))$theta

## (Intercept) x1 x2

## 1.3272620 0.8505003 -0.1031604

• tControl: A list of control for the coefSlv function. We could, for example, use the following
options:

solveGel(lin, theta0=c(1,1,0),

tControl=list(method="BFGS", control=list(maxit=2000, reltol=1e-9)))$theta

## (Intercept) x1 x2

## 1.3271920 0.8505091 -0.1031434

In that particular case, the list is directly passed to optim().

The method returns a list with: theta=θ̂, lambda=λ̂, convergence = convergence message and code
for θ, and lconvergence = convergence message and code for λ.

3 The gelFit Method

This is the main estimation method. It returns an object of class “gelfit”. The arguments are:

• object: Any object that belongs to the union class “gelModels”

• gelType: Optional type of GEL. By default, the model is estimated by empirical likelihood.

• rhoFct: Optional ρ(v) function if we want to estimate the model with a function not included in
the package.

• initTheta: Method to obtain the starting value for θ. By default, the one step GMM is used. The
other option is to use the one included in the object.

• theta0: The stating value for θ. If provided, the argument initTheta is ignored.

• lambda0: Starting value for λ. By default, a vector of zeros is used.

• vcov: Logical argument that specifes if the covariance matrices of θ̂ and λ̂ should be computed?
It is FALSE by default.

• ... : Additional argument that is passed to the gelSolve method.

In general, it works fine with the default arguments:

fit <- gelFit(lin)

The following slots are available for the “gelfit” object:

showClass("gelfit")
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## Class "gelfit" [package "momentfit"]

##

## Slots:

##

## Name: theta convergence lambda lconvergence call

## Class: numeric numeric numeric numeric callORNULL

##

## Name: gelType vcov model

## Class: list list momentModel

3.1 Methods for “gelfit” classes

• print : It prints the model, θ̂ and λ̂. The arguments “model” and “lambda” can be set to FALSE
to avoid printing them.

fit <- gelFit(lin)

print(fit, lambda=FALSE, model=FALSE)

##

## Estimation: EL

## Convergence Theta: 0

## Convergence Lambda: 0

## coefficients:

## (Intercept) x1 x2

## 1.3270715 0.8505249 -0.1031374

• residuals: For “linearGel” and “nonlinearGel”, it returns the difference between the left hand
side and right hand side.

• getImpProb: It computes the vector of implied probabilities p̂i’s. By default, they are defined as:

p̂i =
−ρ′(λ̂′gi(θ̂))/n∑n
j=1−ρ′(λ̂′gj(θ̂))/n

The options are

– posProb: This option is only considered for EEL type of GEL. If set to TRUE, the method
of Antoine et al. (2007) is used to compute the probabilities:

p̃i =
p̂i + ε/n

1 + ε
,

where ε = −nmin(mini(p̂i), 0), and p̂i = −ρ′(gi(θ̂))/n, which is the unormalized version of
the above definition. It is then normalized to sum to 1. The method is only needed when
we want to compute moments based on them. It is therefore set to FALSE by default.

– normalize: If TRUE, the default, the above normalized version is returned. If FALSE, it
returns −ρ′(gi(θ̂))/n.

The method returns a list with pt, the vector {p̂i}, convMom =
∑n
i=1 p̂igi(θ̂), and convProb =

|(
∑n
i=1 p̂i)−1|. convMom is important, because it indicates if the estimation went well. It should

be a vector close to zero.

pt <- getImpProb(fit)

pt$convMom

## (Intercept) x2 z1 z2

## -1.441989e-17 -1.114560e-16 1.700842e-17 -4.645806e-17
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• vcov : It returns the covariance matrices of θ̂ and λ̂ in a list. The returned covariance matrix for
θ̂ is:

Σ̂ =
1

n

[
Ĝ′Ω̂−1Ĝ

]−1
when the “vcov” component of the object is not “HAC”, with

Ĝ =
1

n

n∑
i=1

dgi(θ̂)

dθ
,

and

Ω̂ =
1

n

n∑
i=1

gi(θ̂)gi(θ̂)
′.

For HAC specification, the covariance matrix is:

Σ̂w =
1

n

[
Ĝ′wΩ̂−1w Ĝw

]−1
,

with

Ĝw =
1

nk1

n∑
i=1

dgwi (θ̂)

dθ

and

Ω̂w =
b

nk2

n∑
i=1

gwi (θ̂)gwi (θ̂)′,

where b is the bandwidth and the scalars k1 and k2 are determined by the kernel. The values of
{k1, k2} are {2, 2} when the smoothing is based on the Truncated kernel, which implies Bartlett
for the HAC estimator, and {1, 2/3} when the smoothing is based on the Bartlett kernel, which
implies Parzen for the HAC estimator.

Using the above definitions, the returned covariance matrix for λ̂ is

V̂ ar(λ̂) =
1

n

[
Ω̂−1 − Ω̂−1ĜΣ̂Ĝ′Ω̂−1

]
for non-smoothed moments, and

V̂ ar(λ̂)w =
b2

n

[
Ω̂−1w − Ω̂−1w ĜwΣ̂wĜ

′
wΩ̂−1w

]
for smoothed moments. The method has two additional arguments. The first is “withImpProb”,
which is FALSE by default. if set to TRUE, all moment estimations in the form

∑n
i=1[]i/n

are replaced by
∑n
i=1 p̂i[]i. The second argument is tol, which is a tolerance level for too small

diagonal elements of the covariance matrix of λ̂. When some moment conditions are not binding,
the estimated variance of the associated Lagrange multiplier may be too small or even negative,
which is a numerical problem. To avoid negative values, tol is the minimum value the diagonal
elements can take.

• summary : It returns an object of class “summaryGel”. It returns the usual tables in estimation
methods. The only argument is ... which is passed to the ( vcov) method.
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summary(fit)

## Model based on moment conditions

## *********************************

## Moment type: linear

## Covariance matrix: iid

## Number of regressors: 3

## Number of moment conditions: 4

## Number of Endogenous Variables: 1

## Sample size: 50

##

## Estimation: EL

## Convergence Theta: 0

## Convergence Lambda: 0

## Average |Sum of pt*gt()]|: 4.7336e-17

## |Sum of pt - 1|: 0

##

## coefficients:

## Estimate Std. Error t value Pr(>|t|)

## (Intercept) 1.32707 0.86365 1.5366 0.12440

## x1 0.85052 0.11121 7.6480 2.041e-14 ***

## x2 -0.10314 0.06054 -1.7036 0.08845 .

## ---

## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

##

## Lambdas:

## Estimate Std. Error t value Pr(>|t|)

## (Intercept) 0.031751 0.070088 0.4530 0.6505

## x2 0.016730 0.046190 0.3622 0.7172

## z1 -0.027515 0.063545 -0.4330 0.6650

## z2 -0.075503 0.204461 -0.3693 0.7119

##

## Test E(g)=0

## Statistics df pvalue

## LR: 0.13377 1 0.71455

## LM: 0.13681 1 0.71147

## J: 0.13212 1 0.71624

• specTest It returns the likelihood ratio (LR), Lagrange multiplier (LM) and J test, for the hy-
pothesis H0 : E(g(θ)) = 0. The signature is (”gelfit”, ”missing”), so the second argument, which,
is not used. The argument type is set to ”ALL” by default, which means that the three test
are returned. Alternatively we can specify a single test. It returns an object of class “specTest”
which possesses a print method.

specTest(fit)

##

## Test E(g)=0

## Statistics df pvalue

## LR: 0.13377 1 0.71455

## LM: 0.13681 1 0.71147

## J: 0.13212 1 0.71624

• confint : It returnd confidence itervals for θ or λ By default, a simple Wald type interval is
constructed. The parm argument allows to select just a few parameters. By default, it is done
for all.
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confint(fit, parm=1:2, level=0.90)

##

## Wald type confidence interval

## 0.05 0.95

## (Intercept) -0.09351 2.748

## x1 0.66760 1.033

confint(fit, level=0.90, lambda=TRUE)

##

## Wald confidence interval for Lambda

## 0.05 0.95

## (Intercept) -0.08353 0.14704

## x2 -0.05925 0.09271

## z1 -0.13204 0.07701

## z2 -0.41181 0.26081

The “vcov” argument is used to provide the method with another covariance matrix. The ... is
passed to the vcov method.

Confidence interval can also be semi-parametric, by inverting any of the specification test. To
undertand how it is constructed, let us define θ−i as the vector θ without θi, and θ̃−i(θi) its
estimate for a given θi. Let S(θi, θ−i) be one of the specification test evaluated at {θi, θ−i}.
Under the null that θi is the true value,

T (θi) = S(θi, θ̃−i(θi))− S(θ̂i, θ̂−i)
d→ χ2

1

The following (1 − α) confidence interval for θi is therefore asymptotically valid (given some
regularity conditions):

{θi|T (θi) ≤ C1−α}

where C1−α is the (1 − α) quantile of the χ2
1 distribution. To get θ̃−i, we need to estimate a

restricted model for each θi and search for T (θi) = C1−α. This is done by setting type ”invLR”,
”invLM”, or ”invJ”. A function that returns [T (θi) − Ci−α] is passed to the uniroot() function

using intervals on both sides of θ̂i. The argument “fact” is used to control the wideness of the
interval passed to uniroot(). By default, the two intervals are (one for the left value and one for

the right value of the confidence interval) [θ̂i − 3si, θ̂i] and [θ̂i, θ̂i + 3si], where si is the standard

error of θ̂i. If the method fails, it is possible to adjust the intervals with “fact”.

confint(fit, 1:2, type="invLR", level=0.90)

##

## Confidence interval based on the inversion of the LR test

## 0.05 0.95

## (Intercept) -0.2466 2.664

## x1 0.6722 1.060

A common application in introductory course on EL, is to compute EL confidence interval for
a mean. Here, it is done by first creating a model with only one intercept and an intercept as
instrument:

muModel <- momentModel(x1~1, ~1, data=simData)

We then fit the model:

muFit <- gelFit(muModel, gelType="EL", tControl=list(method="Brent", lower=-10, upper=10))

muFit@theta
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## (Intercept)

## 5.072075

The solution is just the sample mean:

mean(simData$x1)

## [1] 5.072075

We can then compute the EL confidence interval:

confint(muFit, type="invLR")

##

## Confidence interval based on the inversion of the LR test

## 0.025 0.975

## (Intercept) 4.294 5.927

We will see below that we can construct GEL intervals in one step, using the confint method for
“numeric” vectors.

• update: The method is used to re-estimate a model with different specifications, keeping all the
others equal. Suppose we start with the estimation using the Wu (2005) algorithm:

fit <- gelFit(lin)

fit@theta

## (Intercept) x1 x2

## 1.3270715 0.8505249 -0.1031374

We want to re-estimate the model with the same algorithm for λ but a different one for θ:

fit2 <- update(fit, coefSlv="nlminb")

fit2@theta

## (Intercept) x1 x2

## 1.3270608 0.8505255 -0.1031361

We can also change the type of GEL

fit3 <- update(fit2, gelType="ET", lControl=list())

fit3@theta

## (Intercept) x1 x2

## 1.3324427 0.8498311 -0.1034840

It is also possible to pass a new model to update. This is particularly useful to estimate a restricted
model with the same numerical methods. This is used by confint to compute the interval by the
inverse of the specification test.

rlin <- restModel(fit3@model, "x1=1")

update(fit3, newModel=rlin)

## Model based on moment conditions

## *********************************

## Moment type: rlinear

## Covariance matrix: iid

## Number of regressors: 2

## Number of moment conditions: 4

## Number of Endogenous Variables: 1

## Sample size: 50
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## Constraints:

## x1 = 1

## Restricted regression:

## (y-x1) = (Intercept)+x2

##

## Estimation: ET

## Convergence Theta: 0

## Convergence Lambda: 0

## coefficients:

## (Intercept) x2

## 0.23219597 -0.05177569

## lambdas:

## (Intercept) x2 z1 z2

## -0.23451899 0.02899777 0.16810567 -0.09212368

Here, fit3 is an ET estimation. If we restrict the model lin, which is EL, the update will also use
EL. That’s why restModel is applied to the model in fit3.

3.2 Robust to misspecification standard errors

The covariance matrix of θ̂ that we described above assumes that the model is correctly specified. In
that case, the constraints associated with the moment conditions are asymptotically not binding, which
implies that λ̂ = Op(n

−1/2). In misspecified models, some moment conditions are not satisfied and the
associated Lagrange multipliers do not converge to 0. Under some regularity conditions (Schennach,
2007), the GEL estimator is still root-n consistent for a pseudo true value. However, inference using
the above expression for the covariance matrices is not valid.

One way to obtain valid inference is to rewrite the GEL model into a just-identified GMM one. If
we collect the first order conditions of the GEL problem for θ and λ into one vector, we get a GMM
model with moment condition E(ψi(η)) = 0, where

ψi(η) =

(
ρ′(λ′gi(θ))Gi(θ)

′λ
ρ′(λ′gi(θ))gi(θ)

)
,

and η = {θ′, λ′}′. If we define

Ω̂ =
1

n

n∑
i=1

ψi(η̂)ψi(η̂)′

and

Γ̂ =
1

n

n∑
i=1

∇ηψi(η̂) ,

where ∇η is the gradiant operator, then Γ̂−1Ω̂Γ̂−1 is a consistent estimator of the variance
√
n(η̂− η∗),

where η∗ is the pseudo true value. The momFct method for numeric vector and “gelfit” object computes
the ψi(η) matrix. We could therefore obtain a robust-to-misspecification covariance matrix using the
following steps:

mod1 <- momentModel(y~x1+x2, ~x2+z1+z2+z3, data=simData)

fit1 <- gelFit(mod1)

We create the η vector:

eta <- c(coef(fit1), fit1@lambda)

names(eta) <- NULL

We create a moment model using the momFct method:
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mod2 <- momentModel(momFct, fit1, theta0=eta, vcov="MDS")

After, we just need to evaluate the model and use the vcov method:

fit2 <- evalGmm(mod2, eta)

v <- vcov(fit2)[1:3,1:3]

sqrt(diag(v))

## theta1 theta2 theta3

## 1.08283410 0.14442965 0.06566796

Which differs a little from the non-robust standard errors:

sqrt(diag(vcov(fit1)$vcov_par))

## [1] 0.81563051 0.10697445 0.05761513

A quicker way is to use set the option “robToMiss” to TRUE:

sqrt(diag(vcov(fit1, robToMiss=TRUE)$vcov_par))

## (Intercept) x1 x2

## 1.08283410 0.14442965 0.06566796

Since the ... of the summary method is passed to vcov, we can obtain a robust-to-misspecification
summary table:

summary(fit1, robToMiss=TRUE)@coef

## Estimate Std. Error t value Pr(>|t|)

## (Intercept) 1.20857755 1.08283410 1.116124 2.643689e-01

## x1 0.86256232 0.14442965 5.972197 2.340794e-09

## x2 -0.09612985 0.06566796 -1.463878 1.432274e-01

4 The evalGel Method

This method create a “gelfit” object without estimation. It is possible to simply fix λ and θ. By
default, the GEL type is set to EL:

print(evalGel(lin, theta=c(1,2,3), lambda=rep(.1,4)), model=FALSE)

##

## Estimation: EL

## Convergence Theta: 1

## Convergence Lambda: 1

## coefficients:

## (Intercept) x1 x2

## 1 2 3

## lambdas:

## (Intercept) x2 z1 z2

## 0.1 0.1 0.1 0.1

If the λ is not provided, then it is estimated for the given θ. It is like calling getLambda() with
g(θ) as ”gmat”. The difference is that a “gelfit” object is returned. It is particularly usefull when we
estimate restricted models in which the number of restriction is equal to the number of coefficients. It
is use by confint method for the confidence interval on the mean (see above):
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specTest(evalGel(muModel, theta=4), type="LR")

##

## Test E(g)=0

## Statistics df pvalue

## LR: 7.5096 0 NA

The problem with the evalModel is that not much effort is put on adjusting the parameters of the
model. Above, it says that the degrees of freedom is 0. It is just not an estimation method. A proper
estimation of the above would be done with modelFit :

rmuModel <- restModel(muModel, R=matrix(1,1,1), rhs=4)

specTest(gelFit(rmuModel))

##

## Test E(g)=0

## Statistics df pvalue

## LR: 7.5096 1 0.0061372

## LM: 10.6270 1 0.0011145

## J: 5.8924 1 0.0152066

In that case gelFit is calling evalGel.

5 One function to fit them all: gel4

Most users will prefer to avoid going through the steps of building a model and fitting it. The gel4()
function build the model, fit it and return the “gelfit” object. The arguments are similar to the ones
described above for modelFit, gelSolve and gelModel().

• Arguments for the model: “g”, “x”, “theta0”, “gelType”,”rhoFct”, “vcov”, “grad”, “vcovOp-
tions”, “centeredVcov”, and “data”. See gelModel() above for details. The additional arguments
“cstLHS” and “cstRHS” are to estimate restricted models. “chstLHS” is passed to restModel as
“R” and “cstRHS” is passed as “rhs”. The default getType is ”EL”, and the default “vcov” is
”MDS”

• Arguments for the estimation: “lamSlv”, “coefSlv”, “initTheta”, “lControl” and “tControl”.
The default coefSlv is ”optim”, the default lamSlv is getLambda(), and the default initTheta is
”gmm”. See solveGel and modelFit above for more details.

• The argument “getVcov” is passed to modelFit as vcov. Therefore, if it is set to TRUE, the
covariance matrices are computed.

We can estimate the models from Section 1.1 as follows.

fit <- gel4(y~x1+x2, ~x2+z1+z2, data=simData, vcov="iid", gelType="EL",

lControl=list(algo="Wu"))

print(fit, model=FALSE)

##

## Estimation: EL

## Convergence Theta: 0

## Convergence Lambda: 0

## coefficients:

## (Intercept) x1 x2

## 1.3270715 0.8505249 -0.1031374

## lambdas:

## (Intercept) x2 z1 z2

## 0.03175148 0.01673016 -0.02751524 -0.07550335

To change the initial values in the linear case, we have to provide it and set initTheta to ”theta0”.
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fit <- gel4(y~x1+x2, ~x2+z1+z2, data=simData, vcov="iid", gelType="EL",

lControl=list(algo="Wu"), theta0=c(1,1,0), initTheta="theta0")

coef(fit)

## (Intercept) x1 x2

## 1.3272620 0.8505003 -0.1031604

To estimate the model with the restiction x1 = x2, we set cstLHS as R in the restModel method:

fit <- gel4(y~x1+x2, ~x2+z1+z2, data=simData, vcov="iid", gelType="EL",

lControl=list(algo="Wu"), cstLHS="x2=x1")

print(fit, model=FALSE)

##

## Estimation: EL

## Convergence Theta: 0

## Convergence Lambda: 0

## coefficients:

## (Intercept) (x1+x2)

## 8.835489 -0.313172

## lambdas:

## (Intercept) x2 z1 z2

## 0.2705212100 -0.0004247482 -0.2049316654 -0.0190353209

For the formula type, a named theta0 is required for the same reason it is required in gelModel().
The names are used to locate the coefficients in the formulas.

theta0=c(mu=1,sig=1)

x <- simData$x1

dat <- data.frame(x=x, x2=x^2, x3=x^3, x4=x^4)

gform <- list(x~mu,

x2~mu^2+sig,

x3~mu^3+3*mu*sig,

x4~mu^4+6*mu^2*sig+3*sig^2)

fit <- gel4(g=gform, gelType="EEL", theta0=theta0, vcov="MDS", data=dat)

print(fit, model=FALSE)

##

## Estimation: EEL

## Convergence Theta: 0

## Convergence Lambda: 0

## coefficients:

## mu sig

## 4.708788 4.532422

## lambdas:

## Mom_1 Mom_2 Mom_3 Mom_4

## -1.068346459 0.427092184 -0.055895513 0.002262411

For the function type, theta0 is required because the moment function is evaluated when the model
is created. It is also the starting value if initTheta is set to ”theta0”. the argument x must be provided,
because it is the second argument of the moment function

fct <- function(theta, x)

cbind(x-theta[1], (x-theta[1])^2-theta[2],

(x-theta[1])^3, (x-theta[1])^4-3*theta[2]^2)

dfct <- function(theta, x)

{
m1 <- mean(x-theta[1])

m2 <- mean((x-theta[1])^2)

m3 <- mean((x-theta[1])^3)
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matrix(c(-1, -2*m1, -3*m2, -4*m3,

0, -1, 0, -6*theta[2]), 4, 2)

}
fit <- gel4(g=fct, x=simData$x3, theta0=c(1,1), grad=dfct, vcov="iid", gelType="ET")

print(fit, model=FALSE)

##

## Estimation: ET

## Convergence Theta: 0

## Convergence Lambda: 0

## coefficients:

## theta1 theta2

## 0.1141224 0.8202444

## lambdas:

## h1 h2 h3 h4

## 0.24454931 -0.79959194 -0.09938698 0.16246548

The last type is non-linear models, which requires a named theta0 as for the formula type.

theta0=c(b0=1, b1=0, b2=0)

gform <- y~exp(b0+b1*x1+b2*x2)

fit <- gel4(gform, ~z1+z2+z3+x2, theta0=theta0, vcov="MDS", data=simData,

gelType="HD")

print(fit, model=FALSE)

##

## Estimation: HD

## Convergence Theta: 0

## Convergence Lambda: 0

## coefficients:

## b0 b1 b2

## 0.57889968 0.19054605 -0.01927983

## lambdas:

## (Intercept) z1 z2 z3 x2

## 0.022346736 -0.014311581 -0.044300403 -0.010552163 0.008644042

6 GEL confidence intervals for the mean

The method confint can also be used to construct confidence intervals for the mean, or confidence
region for two means. In this current version of the package, the default values for the algorithms used
to solve for λ and θ cannot be modified. The first method is for “numeric” objects:

x2 <- simData$x2

confint(x2, gelType="EL")

##

## Wald type confidence interval

## 0.025 0.975

## x2 5.209 6.927

print(confint(x2, gelType="EL", type="invLR"), digits=5)

##

## Confidence interval based on the inversion of the LR test

## 0.025 0.975

## x2 5.2529 6.9996

Which can also be done using the method for “data.frame”:
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confint(simData, "x2", gelType="EL")

##

## Wald type confidence interval

## 0.025 0.975

## x2 5.209 6.927

The arguments “level”, “fact” and “type” are as for the method with “gelfit” signature. The “parm”
is only used with “data.frame” in which case, it is used to select one or two columns. The argument
“vcov” is used to specify the type of data is stored in the object. The options are “iid”, the default, or
“HAC” for weakly dependent processes.

For “data.frame” and two variables, an object of class “mconfint” is created. The argument
“npoints” is the number of points to use to construct the region. The arguments “cores” is for the
number of cores to use with mclapply(). For Windows operating systems, it is set to 1. The following
shows how to use the print and plot methods for that class. Here is an example which compares Wald
and LR confidence regions.

res <- confint(simData, c("x2","y"), npoints=20)

res

## Wald type confidence region

## ***************************

## Level: 0.95

## Number of points: 20

## Variables:

## Range for mu_x2: [ 5.01, 7.141]

## Range for mu_y: [3.921, 6.092]

The following is not run because it creates some misterious error when the package is checked.
Beside that, it works perfectly. Try it.

res2 <- confint(simData, c("x2","y"), type="invLR", npoints=20)

c1 <- col2rgb("darkorange2")/255

c1 <- rgb(c1[1],c1[2],c1[3],.5)

c2 <- col2rgb("lightblue2")/255

c2 <- rgb(c2[1],c2[2],c2[3],.5)

plot(res, pch=20, bg=1, Pcol=c1, col=c1, density=10, ylim=c(3.5,6.5),

xlim=c(4.8,7.5))

plot(res2, pch=20, bg=2, Pcol=c2, col=c2, density=10, add=TRUE)

legend("topright", c("Wald","LR"), col=c(c1,c2), pch=20 , bty="n")

The arguments “main”, “xlab” “ylab”, “pch”, “ylim”, “xlim”, “Pcol” (the color of the points) and
“bg” are passed to plot.default(), and all other arguments are passed to polygon().
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A Some extra codes

The following extract is used with the “texreg” package of Leifeld (2013) to produce nice latex tables.

library(texreg)

setMethod("extract", "gelfit",

function(model, includeSpecTest=TRUE,

specTest=c("LR","LM","J"), include.nobs=TRUE,

include.obj.fcn=TRUE, ...)

{
specTest <- match.arg(specTest)

s <- summary(model, ...)

wspecTest <- grep(specTest, rownames(s@specTest@test))

spec <- modelDims(model@model)

coefs <- s@coef

names <- rownames(coefs)

coef <- coefs[, 1]

se <- coefs[, 2]

pval <- coefs[, 4]

n <- model@model@n

gof <- numeric()

gof.names <- character()

gof.decimal <- logical()

if (includeSpecTest) {
if (spec$k == spec$q)

{
obj.fcn <- NA

obj.pv <- NA

} else {
obj.fcn <- s@specTest@test[wspecTest,1]

obj.pv <- s@specTest@test[wspecTest,3]

}
gof <- c(gof, obj.fcn, obj.pv)

gof.names <- c(gof.names,

paste(specTest,"-test Statistics", sep=""),
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Model 1 Model 2

(Intercept) −1.0507 −0.4054
(0.6155) (0.9789)

x1 1.1968∗∗∗ 1.1129∗∗∗

(0.1254) (0.1505)
x2 −0.0355

(0.0504)

LR-test Statistics 0.5866 0.1901
LR-test p-value 0.7458 0.6628
Num. obs. 50 50
∗∗∗p < 0.001, ∗∗p < 0.01, ∗p < 0.05

Table 1: Statistical models

paste(specTest,"-test p-value", sep=""))

gof.decimal <- c(gof.decimal, TRUE, TRUE)

}
if (include.nobs == TRUE) {

gof <- c(gof, n)

gof.names <- c(gof.names, "Num.\\ obs.")

gof.decimal <- c(gof.decimal, FALSE)

}
tr <- createTexreg(coef.names = names, coef = coef, se = se,

pvalues = pval, gof.names = gof.names, gof = gof,

gof.decimal = gof.decimal)

return(tr)

})

Here is an example

fit1 <- gel4(y~x1, ~x2+x3+x4, data=simData)

fit2 <- gel4(y~x1+x2, ~x2+x3+x4, data=simData)

texreg(list(fit1,fit2), digits=4)
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